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Hermite-sinusoidal-Gaussian solutions to the wave equation have recently been obtained. In the limit of 
large Hermite-Gaussian beam size, the sinusoidal factors are dominant and reduce to the conventional modes 
of a rectangular waveguide. In the opposite limit the beams reduce to the familiar Hermite-Gaussian form. 
The propagation of these beams is examined in detail, and resonators are designed that will produce them. As 
an example, a special resonator is designed to produce hyperbolic-sine-Gaussian beams. This ring resonator 
contains a hyperbolic-co sine-Gaussian apodized aperture. The beam mode has finite energy and is perturba­
tion stable. © 1998 Optical Society of America [S0740-3232(98)02809-9] 

Oe1S codes: 140.3410, 230.5750, 350.5500. 

1. INTRODUCTION 

It has long been known that the modes of a rectangular 

metal waveguide are sinusoidal functions. The ampli­

tude of the sinusoids is approximately zero at the metal 

waveguide walls, which impose well-defined boundary 

conditions. When ends are put on these waveguides, 

they become resonators, such as those used for the first 

maser oscillators. With the advent of the laser, it was 

found that because of the small divergence of coherent la­

ser light, the rectangular waveguide walls were no longer 

necessary.! The rectangular-symmetry beam modes of 

these open resonators (with slightly spherical end mir­

rors) were found to be describable in terms of real-valued 

Hermite polynomials multiplied by complex-valued 

Gaussian functions. 2 These Hermite- Gaussian modes 

have been highly successful in characterizing the reso­

nant fields of low-diffraction-loss resonators. They also 

have the attractive property that they retain their beam 

shape and spherical phase fronts as they propagate 
through free space. 

The real-argument Hermite-Gaussian modes apply to 

laser resonators that do not contain spatial loss varia­

tions that are due to, for example, Gaussian-profiled 

apodized apertures and laser amplifiers with a radial gain 

profile. For lasers with these elements, alternative 
complex-argument Hermite-Gaussian3,4 beam modes are 

found as solutions to the paraxial wave equation. These 

beam modes are called complex argument on the basis 

that the arguments of the Hermite polynomials are com­

plex. The original real-argument modes are a special 

~ase of the complex-argument modes.5 Unlike the real­

argument modes, the complex-argument modes do not, in 
general, retain their beam shape as they propagate 
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through free space; and their phase fronts may be much 

more complicated than those of a spherical wave. 

Although the sinusoidal beams used previously in the 

study of rectangular waveguides are well known, these 

beams have been only recently proposed for use in free­

space propagation. Since these beams would require in­

finite energy, interest has centered on truncated sinu­

soidal beams for pseudonondiffracting beam applica­

cations.6 An important alternative to these beams is 

given by the newly obtained sinusoidal-Gaussian beams.7 

In particular, the much squarer hyperbolic-cosine­

Gaussian (cosh-Gaussian) beam shape may be more use­

ful than the Gaussian beam shape at extracting energy 

from a laser amplifier. 

In an associated study Hermite-sinusoidal-Gaussian 

beams are obtained as rectangular-symmetried solutions 

to the paraxial wave equation.8 In the limit of large 

Hermite-Gaussian beam size, the sinusoidal factors are 

dominant, and the solutions become the modes of the rect­

angular waveguide. In the opposite limit of large sinu­

soidal beam size, the beams reduce to the complex­

argument beam modes. The basic theory governing the 

propagation of these beams through misaligned optical 

systems representable by complex ABCDGH matrices is 

discussed in Section 2. The lowest-order beam mode is 

the sinusoidal Gaussian.7 However, no resonator has 

been identified previously that produces this mode. In 

Section 3 a variable-reflectivity mirror resonator is de­

signed that has a hyperbolic sinusoidal Gaussian as its 

cavity mode. Variable-reflectivity mirrors and graded­

phase mirrors are commonly used to increase the mode 

volume of a laser resonator.9
-

11 In this study the reso­

nator is designed to ensure that the sinusoidal-Gaussian 

© 1998 Optical Society of America 
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beam profile repeats after a round trip. In addition to 

satisfying this oscillation condition, however, the cavity 

mode must also be stable with respect to inevitable 

perturbations.12 In Section 4 it is shown that the de­

signed resonator mode is perturbation stable. 

2. PROPAGATION OF 
HERMITE-SINUSOIDAL-GAUSSIAN BEAMS 

As may be shown by a rigorous density-matrix derivation, 

media that have gain (or loss) can be represented with a 

complex propagation constant k. If this is done, the 

Heaviside form of Maxwell's equations may be combined 

to form the following Helmholtz equation: 

V2E'(x, y, z) + k2(x, y, z)E'(x, y, z) = 0, (1) 

where the complex scalar amplitude of the electric field is 

related to the real vector electric field by the relation 

E(x, y, z, t) = Re[E'(X, y, Z)eXP(iwt)(~:)]. (2) 

The terms in the large curly brackets are meant to sug­

gest a possible superposition of unit vector components of 

the form aix + bi y, where a and b are complex constants. 

If, for example, a = 1 and b = -i, the light field would 

be circularly polarized. In deriving Eq. (1) from Max­

well's equations, it has been assumed that the propaga­

tion constant has only slow spatial variations, so that the 

scalar approximation may be used.13 

If we further assume that E' (x, y, z) propagates 

paraxially, then for linear media with spatially varying 

gain (or loss) a(x, y, z) and/or refractive index n(x, y, z) 

of the form 

27T 
k(x, y, z) == T n(x, y, z) + ia(x, y, z) (3) 

= ko(z) - k Ix (z)xI2 - k Iy (z)yI2 

- k 2Az)x2/2 - k 2y (z)y 2/2 (4) 

the Hermite-sinusoidal-Gaussian beam solutions to Eq. 
(1) are8 

E'(x, y, z) ~ E~(z)expl - i[Qx~Z) x 2 + Qy~Z) y2 

+ Sx(z)x + Sy(z)y + P(z) II 
X Hm(w~) [x - 8.(Z)]) 

X Hn(w!) [y - 8,(Z)]) 

X 
( 

cosh[Dx(z)x + <PAZ)]) 

sinh[ Dx(z)x + <P x(z)] 

cos[DAz)x + <PAz)] 

sin[Dx(z)x + <px(z)] 

(5) 
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where again the curly brackets designate a linear combi­

nation of function solutions. In deriving Eq. (5), it has 

also been assumed that the transverse spatial variation of 

the medium is slow, so that the square of the complex 

propagation constant k in Eq. (4) is at most quadratic in x 

and y. Equation (5) is identical to one in Ref. 8 if a 

== ~/W, b == -~8IW, a' == D, b' == <P, and appropri­
ate changes are made in the phase parameter. 

Though it would seem that Eq. (5) is valid only for con­

tinuous media, it can easily be shown that it is also valid 

for "thin" optical elements such as thin lenses, curved 

mirrors, thin prisms, etc. This follows because each of 

these elements can be viewed as a special case of Eq. (4). 

For example, the x variation of an aligned and lossless op­

tical element has a(x, y, z) = 0, both y-subscripted vari­

ables are zero, and nlx(z) = 0. In the limit as z ~ ° and 
n2(z) ~ nof-Iz- I , Eq. (4) is valid for a thin lens. This 

can be verified by comparing the beam matrix of a lens­

like medium in those limits with the beam matrix for a 

thin lens.12 

For a system of optical components, it is common to 

designate the various reference planes numerically. In 

particular, Eq. (5) may be rewritten as 

(6) 

where the 2 subscript indicates the output plane for a 

given optical element or system. A 1 subscript would in­

dicate the corresponding input plane. The significance of 

the parameters of the Gaussian portion of the beam is 

contained in the relations 

1 1 Am 
--~--

qx Rx 7TW x 
2 

(7) 

1 1 Am 
--i--

2
, 

qy Ry 7TWy 
(8) 

8 x 1 

f30 
-- d xa + d~a' 

qx 
(9) 

8 y 1 
- -- d ya + d;a, 
f30 qy 

(10) 
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where R x and R y are the radii of the phase-front curva­

tures, wx and W y are the spot sizes, d xa and d ya are the 
transverse displacements of the beam from the z axis, and 

d ~ a and d;a are the slopes of the propagating beam in the 
x and y directions, respectively. It has also been as­
sumed in writing Eqs. (7)-(10) that the input and output 

planes of the optical system are in a medium with a low 
gain per wavelength. 

With this formalism an optical element is fully charac­
terized by three matrices: a 3 X 3 generalized beam ma­

trix for each of the x and y directions and what can be 
viewed as a 1 X 1 matrix for the plane-wave portion of 

the beam: 

( u:;q x) = [ ~ : 
B x 

~] ( UXU;qx) , D x 

Sxux 2 Gx H x 1 S xu x 1 

(11) 

( u;fqy) = [ ~: 
By 

~] ( u;fql Dy 

S yUy 2 G Hy 1 S yUy 1 y 

(12) 

(Eb)Z = AJ(Ebh · (13) 

The ABCD portion of the generalized beam matrices are 

identical to ordinary beam matrices. The complex G and 
H terms account for element displacement or 
misalignment.14 For astigmatic media the matrix in Eq. 
(11) would be different from the matrix in Eq. (12). For 

thin optical elements, AJ in Eq. (13) would be unity. An­

isotropic media may be treated approximately by replac­

ing the 1 X 1 matrix in Eq. (13) with a 2 X 2 Jones ma­

trix. As an example, a length d of free space would be 
represented by 

Mx = [~ 
d 

H 1 

0 

(14) 

My = [~ 
d 

~l 1 

0 

(15) 

AJ = exp( -i/3od). (16) 

In Eq. (16) the wave number is related to the wavelength 

by the relation /30 = 2 7T/'A. Since free space is stigmatic, 

M x = My . Since free space is also isotropic, it does not 
require a Jones matrix. Tables with the generalized 
beam matrix representation of several optical elements 
are given in Ref. 14. Additionally, the matrix represen­
tation for a grating is given in Ref. 15. 

The transformations for the beam parameters q x and 
q y and the displacement parameters S x and S y may be 
obtained by dividing rows of Eqs. (11) and (12): 

1 Cx + Dxlqx1 
(17) 

A x + B xlqx1 
, 

qx2 

1 Cy + DylqY1 
(18) 

A y + B y lqY1 
, 

qy2 
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S x1 + Gx + H xlqx1 

S x2 = A + Bxlqx1 
x 

(19) 

S y1 + Gy + HylqY1 
S 2 = ~--~-~~~ 

y A y + B ylqY1 
(20) 

These transformations are valid for continuous media, 
thin optical elements, and optical systems. The other re­

quired transformations are8 

W x2
2 = Wx12(Ax + Bx Iq x1)2 + 4iBx(Ax + B x Iq x1)lk 01 , 

(21) 

Wy2
2 = WY12(Ay + By Iqy1)2 + 4iBy(Ay + B y Iqy1)lk 01 , 

0x2 = ox1(Ax + B xlqx1) + S X1Bxlk01 

+ (B xGx - A xH x)lk 01 , 

Oy2 = oy1(Ay + BylqY1) + S Y1Bxlk01 

+ (B xGy - AyHx)/k Ol , 

flx1 
flx2 = A B I ' x + x qx1 

fly 1 
flY2 = A B I ' y + y qy1 

(22) 

(23) 

(24) 

(25) 

(26) 

<l>x2 = <l>x1 -
flx1B x (SX1 + Gx + H xlqx1) 

k01 A x + B xlqx1 

flx1Hx 
+-k-' 

01 
(27) 

_ _ flY1By (SY1 + Gy + H ylqY1) flY1Hy 
<l>Y2 - <l>Y1 k A B I + k ' 01 y + y qy1 01 

(28) 
i 

P2 - P 1 = "2 ln(AxDx - B xCx) 

i ~ 

"2 ln(Ax + B xlqx1) - "2 ln(Ay + BylqY1) 

( 
4i B x ) 

+ i m In 1 + k W 12 A + B x I q x l 
2 01 x x 

+ i ~ In( 1 + 4i 2 __ B_y __ ) 

2 kOl Wy1 A y + By Iq y1 

[
flX12 ( B x )] 

+= i 2kOl A x + B xlqx1 

- .[flY12( B y )] 
+ ~ 2kOl A y + B ylqY1 

B x (Sx1 + Gx + H xlqx1)2 

2k01 Ax + B xlqx1 

B y (Sy1 + Gy + H y Iqy1) 2 

2k01 Ay + B y Iq y1 

H x 
+ 2k01 (2Sx1 + Gx + Hxlq x1) 

H y 
+ 2kOl (2Sy1 + Gy + HylqY1) 

J. ----
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+ 2~Ol J:( Gx :,x -Hx :~)dz' 

+ 2~J:( Gy :: - Hy ::)dz' (29) 

Transformation equations (21)-(24) govern the propaga­

tion of the Hermite portion of the beam, and transforma­
tion equations (25)-(28) govern the propagation of the 

sinusoidal portion of the beam. Equation (29) governs 

the propagation of the axial phase and gain that are due 

to the Gaussian, Hermite, and sinusoidal portions of the 

beam. This equation has a + sign. The minus sign is to 

be used with the hyperbolic sinusoids, and the plus sign is 

used for the conventional sinusoids. 

The general procedure for obtaining the detailed propa­

gation characteristics for the beam parameter of the 

Gaussian portion of the beam through an optical system 

is as follows: 

1. Determine the system matrix by multiplying the 

individual optical element matrices (as given in Refs. 14 

and 15, for example) in the reverse of the order in which 

they are encountered by the input beam. 

2. Determine the input complex beam parameters q x 

and qy given an input spot size, radius of curvature, and 
wavelength from Eqs. (7) and (8). 

3. Determine the output complex beam parameters 

from the Kogelnik transformation equations (17) and (18). 

4. The output spot sizes and radii of curvature may be 

determined by again using Eqs. (7) and (8). 

Hermite-sinusoidal-Gaussian beams contain other pa­

rameters and associated beam transformations. How­

ever, the basic procedure to analyze these other param­

eters of the beam is essentially the same as the four steps 

given above for each parameter. 

As an example, consider the propagation of a cosh­

Gaussian beam in a Fourier-transforming lens-free-space 

optical system. If the lens has a focal length f and the 

free-space segment of the optical systems has a length of 

f, then the system matrix is 

Note that since the system is aligned, there are no G and 

H elements, and thus conventional complex 2 X 2 beam 

matrices were used. With the beam matrix in Eq. (30), 

the Kogelnik transformation equation (17) governing the 

beam parameter reduces to 

(31) 

Similarly, Eq. (25) becomes 

(32) 

(0) 1 
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4 

4 
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Plane 

Fig. 1. (a) Field amplitude before the light beam enters the op­
tical system, (b) example optical system, (c) field amplitude after 
the beam propagates through the optical system. 

Here we consider an input field whose complex amplitude 

is 

(33) ' 

so that the phase fronts are initially fiat (R 1 = (0); then 

1 
(34) 

Combining Eqs. (31)-(34), it follows that the complex am­

plitude of the output field is proportional to 

IE~utl = exp[ -x 2
/(", fl7T WI)2]cosh(iDI7T WI

2
", -If-IX), 

(35) 

where the axial amplitude factor has been ignored, since 

only the beam shape is of interest here. If we further 

choose the focal length of the lens, f, to be 

7TWI
2 

f= -",-, 

then the output field reduces to 

(36) 

which is identical to the input field except for the imagi­

nary unit in the argument of the cosh factor. These in­

put and output fields have been normalized and plotted in 

Fig. 1. 
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3. HYPERBOLIC·SINE·GAUSSIAN·MODE 
RESONATOR DESIGN 

Although it is important to understand the propagation of 

sinusoidal-Gaussian beams in optical systems, it is also of 

interest to be able to design laser resonators that can pro­

duce these beams. An example of such a design is given 

here. We begin with the observation that in addition to 

complex sine-Gaussian and cosine-Gaussian beams, there 

are also hyperbolic-sine-Gaussian (sinh-Gaussian) and 

cosh-Gaussian beams, which are governed by similar 

transformations. These alternative modes have certain 

important properties for practical applications, and our 

example will involve a mode of this type. The basic cri­

terion for determining whether a given field profile is a 

mode of a laser resonator is the oscillation condition, 

which requires that the profile reproduce itself after a 

round trip through the resonator. Thus we start by as­

suming that the initial field configuration corresponds to 

an x-varying on-axis beam of the form 

E; ~ E;,o exp[ -i(2::
1 

x 2 + PI) ] sinh(flx 1x) , (38) 

where f30 = 2 7Tn 0 /A represents the dominant real part of 

the propagation constant k ° . There are several ap­

proaches that one could now take in designing a resonator 

that would support the mode given in Eq. (38). The os­

cillation condition mentioned above can be used with Eqs. 

(17) and (25) to develop constraints on the parameters 

lIqxl and Dxl ' In this way a resonator can, in principle, 

be designed to produce the field distribution in Eq. (38) by 

using only conventional optical elements that are repre­

sented by ABCD beam matrices. But, applying the oscil­

lation condition to Eq. (25) results in D = 0, which is not 

a beam of the desired type. The novel sinh function in 

Eq. (6) also suggests the possibility of designing a resona­

tor that includes optical elements that do not have an 

ABeD matrix representation. This possibility is illus­
trated here. 

In our resonator design the field given in Eq. (38) is 

imagined to immediately strike an apodized aperture 

whose amplitude transmission is 

t(X) = t aper cosh( Daperx). (39) 

This aperture does not have an ABCD matrix representa­

tion. Now if we choose Dxl = Daper> the field distribu­
tion after the aperture becomes 

E2 = ~ t.p"E;,o exp[ -i(2::
1 

x
2 + PI) ]sinh(2flx1X) , 

(40) 

where we have used a standard product identity for the 

hyperbolic trigonometric functions . It is important to 

note that with this particular aperture choice the sinh­

Gaussian mode remains a sinh-Gaussian mode. Only 

the effective width of the sinh factor is changed when the 

beam is transmitted through the aperture. 

In this ring laser design, the field distribution encoun­

ters the output coupler, the amplifier, and an optical sys­

tem that is otherwise representable in terms of a beam 

matrix before returning to plane 1. Thus the field after a 
round trip is 
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1 
E ~ = "2 r mirror taper exp( g oll2)E ~ , o 

( 
.(f3o(Cx +Dx/qXl) 2 

X exp - ~ -2 A + B /q X 
x x xl 

+ [PI - ~ In(Ax + B x /Q xl ) 

2 D;lBx 11) 
+ f30A x + B x/q xl 

( 
2Dxl x), 

X sinh A x + B x/q xl 
(41) 

where r mirror is the amplitude reflectivity of the output 

coupler, go is the intensity gain coefficient of the ampli­

fier, and l is the amplifier length. Equations (17), (25), 

and (29) have been the basis for the transformations of 

the parameters lIq x ' Dx , and P, respectively, that have 

been incorporated in Eq. (41). 

Examining the argument of the sinh functions in 

Eqs. (38) and (41), it can be seen that the sinh portion 

of the field will repeat if, for example, A x = 2 and B x 

= 0. Since the beam matrix must be unimodular 

(AxDx - B xCx = 1), it follows that the most general form 

of the beam matrix under these conditions is 

Mx = [~ x 1~21· (42) 

Our next objective is to find a matrix element Cx that 

will satisfy the resonator constraints. It will be postu­

lated, without loss of generality, that this element can be 

written as 

3 2A 
Cx = -- - i --2-' 

2L 7TW aper 
(43) 

If these elements are substituted into Eq. (41), the output 

field is given by 

f [f3o(-3 E~ = 2-3/2rmirrortaper exp(goll2)E~ , o eXPl-i 4 2L 

- i ~ + _1_)x2 + PI]) sinh(Dxlx). (44) 
7TW aper 2q xl 

If we further make the choices 

1 1 4A 

i --2 ' 
L 37TW aper 

(45) 
qxl 

r mirror taper exp( g oll2) 2 - 3/2 , (46) 

we find that the right-hand side ofEq. (44) reduces to Eq. 

(38). Therefore the assumed field distribution does in­

deed repeat after a round trip through the resonator. 

It remains to determine a sequence of optical elements 

that can be represented by the matrix in Eq. (42) with the 

Cx element given in Eq. (43). The procedure for synthe­

sis of Gaussian beam optical systems has been given 

previously,16 and only the results for one possible realiza­

tion will be given here. It can be shown by direct multi­

plication that Eq. (42) can be factored as 
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Fig. 2. Resonator design that produces a sinh-Gaussian beam. 
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M = x [ -il\/( :W~p,,) 

X [-1~2/L ~ ] [ ~ 

~ 1 [ - ~/L ~ ] [ ~ 

L:3] [ -15~(2L) ~][~ 
L/3] 

1 . 

(47) 

However, each of these matrices can be represented by ei­

ther a length of free space, a lens, or a Gaussian apodized 

aperture. This ring resonator configuration is shown in 

Fig. 2. 

It should be noted that the two apertures in this design 

are adjacent to each other. Therefore, in practice, they 

could be combined into a single apodized aperture whose 

variable transmission is 

ttotal(X) = taper cosh(naperx)exp( -x2
/w;per)' (48) 

This transmission profile is plotted in Fig. 3, where it is 

also compared with the more familiar Gaussian transmis­
sion factor. 

Equation (39) represents only one of a class of aperture 

transmission functions that may be used to design 

sinusoidal-Gaussian beam modes. In particular, Eq. (39) 

is a special case of 

A. A. Tovar and L. W. Casperson 

taper sinh( Caper n aper x) 
t(x) = 

caper sinh( n aperx) 
(49) 

The denominator represents the input beam, and the nu­

merator represents the output beam. When caper is cho­
sen to be 2, Eq. (49) reduces to Eq. (39). The fundamen­

tal mode of a resonator whose transmission function is 

given by Eq. (49) would be sinh Gaussian. Similarly, if 

the sinh functions in Eq. (49) were replaced with cosh 

functions, the corresponding resonator mode would be 

cosh Gaussian. 
It should also be noted that the cosh-Gaussian beams 

described here may in some cases have significant advan­

tages over conventional Gaussian beams. In particular, 

the squarer mode profiles that can be obtained resemble 

the super-Gaussian field distributions that are known to 

be more efficient at extracting energy from an amplifying 

medium. 7 

As a corollary result, if Eq. (49) were replaced with a 

ratio of Hermite polynomials, one could use the synthesis 

procedure demonstrated in this paper to design a resona­

tor that would produce a specific Hermite-Gaussian 

mode. A desired Laguerre-Gaussian beam mode could 

also be obtained in this way. However, in some situa­

tions the transmission function may be difficult to manu­

facture. 

4. RESONATOR MODE STABILITY 

The basic design procedure has been to assume that the 

mode at some plane within a resonator has the desired 

form and to show that after a round trip the mode repro­

duces the guessed form. In this way the mode satisfies 

the oscillation condition. However, physically realizable 

beam modes must also possess finite energy and be stable 

with respect to inevitable perturbations. 12 For the sinh­

Gaussian mode to be stable, it must be stable with respect 

to both Gaussian and hyperbolic sinusoidal perturba­

tions. Both of these types of perturbation are considered 

here. 

A. Mode Stability with Respect to Gaussian 

Perturbations 

The Gaussian portion of the beam is unchanged by the 
cosh aperture. It is stable ifl2 

(50) 

However, from Eq. (42), A x = 2 and E x = 0, and thus 

F s = 2, which indicates that the Gaussian portion of the 

beam is stable. 

B. Mode Stability with Respect to Sinusoidal 

Perturbations 
The unperturbed field is given by Eq. (38), and the corre­

sponding perturbed field is 

E; = E;,o exp[ -it 2::
1 

x
2 + PI) ]Sinh[(flx1 + 8)x], 

(51) 

where 8 is the perturbation of r xl' After striking the 
cosh aperture, this field becomes 
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E-,- E' [.( f30 2 p)] 
2 - taper 1,0 exp -l 2qx1 X + 1 

x sinh[(Dx1 + 8)x]cosh(Dx1x) (52) 

taper, [.( f30 2 )] 2 E 1,0 exp -l 2qx1 X + PI 

x {sinh[ (2Dx1 + 8)x] + sinh( 8x n. (53) 

Thus the aperture converts the perturbed field into two 

sinusoidal-Gaussian beams. Next we must propagate 

these beams through the ABeD portion of the optical sys­

tem. Since Ax = 2 and Ex = 0, it follows from Eq. (25) 

that the arguments of each of the sinh terms are reduced 

by a factor of 2, so that 

E' r mirror taper exp( g 01l2) 
3 E' 2 1,0 

x exp[ -i( 2::
3 

X
2 

+ P3) ] 

X {sinh[(Dx1 + 8/2)x] + sinh(8x/2n. (54) 

However, the perturbed field after a round trip may be 

written in terms of a new perturbation 8' as 

IE; ~ E;,o exp[ -i( 2::
' 

x2 + PI) ]{Sinh[(fix 1 + 8')x]) , 

(55) 

By equating Eqs. (54) and (55), we can compare the initial 

perturbation 8 with its corresponding perturbation after a 

round trip, 8'. It follows that the curly bracketed terms 

in Eq. (54) must equal the curly bracketed term in Eq. 
(55): 

sinh[(Dx1 + 8')x] = sinh[(Dx1 + 8/2)x] + sinh(Dx1x/2). 

(56) 

For small perturbations, 8x ~ 1 and 8'x ~ 1, and Eq. 
(56) becomes 

I ~I = 11 + COSh(Dx1x)l· 
8 2 cosh(Dx1x) 

(57) 

The mode is stable if the magnitude of the perturbation 

amplitude is decreased after a round trip. Since cosh(·) 

is always greater than or equal to unity, it follows that 

this ratio is always less than or equal to unity. Thus the 

magnitude of the perturbation is reduced after a round 

trip through the resonator, and the proposed mode is 
stable. 

One may follow a similar derivation to show that if a 

sinh-Gaussian aperture were used, the corresponding 

cosh-Gaussian mode would also be stable. However, if a 

cosine-Gaussian aperture were used, then Eq. (57) would 
become 

I ~I = 11 + COS(Dx1X)1 
8 2 COS(Dx1X) , 

(58) 

which is always greater than or equal to unity. Thus the 

cosine-Gaussian and sine-Gaussian beam modes obtained 

by using the design procedure shown here would be un-
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stable. This result is consistent with Fig. 2 of Ref. 7, 

which shows that the cosine-Gaussian beam profile 

changes as it propagates through free space. In that fig­

ure the cosine-Gaussian beam quickly converts (in less 

than a Rayleigh length) into a predominantly cosh­

Gaussian beam. 

5. SUMMARY 

A straightforward procedure to design novel laser resona­

tors whose beam mode consists of a sinh function multi­

plied by a Gaussian function has been shown. The sche­

matic for an example ring sinh-Gaussian-mode resonator 

design is shown in Fig. 2. A prerequisite for physical re­

alization of the sinh-Gaussian beam mode is that it be 

stable to perturbations, and it has been shown that the 

designed resonator produces a perturbation-stable mode. 

However, it has also been shown that the corresponding 

resonator design for sine-Gaussian beams does not pro­

duce perturbation-stable modes. It is therefore impos­

sible to design a resonator that produces sine-Gaussian 

modes by using these methods. 

As discussed, the procedure outlined herein may be 

used to design novel laser resonators whose beam mode is 

cosh Gaussian. Such beams resemble super-Gaussian 

beams, which are known to be more efficient at extracting 
energy from a laser amplifier. 
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