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ABSTRACT

We discuss the production via fragmentation of excited heavy mesons and

baryons, and their subsequent decay. In particular, we consider the question of

whether a net polarization of the initial heavy quark may be detected, either in

a polarization of the final ground state or in anisotropies in the decay products

of the excited hadron. The result hinges in part on a nonperturbative parameter

which measures the net transverse alignment of the light degrees of freedom in the

fragmentation process. We use existing data on charmed mesons to extract this

quantity for certain excited mesons. Using this result, we estimate the polarization

retention of charm and bottom baryons.

Submitted to Physical Review D

? Work supported by the Department of Energy, contract DE–AC03–76SF00515.
† On leave from The Johns Hopkins University, Baltimore, Maryland
‡ Address after October 1, 1993: Department of Physics 0319, University of California at San

Diego, La Jolla, California 92039-0319



1. Introduction

It is well known that many properties of a hadron containing a single heavy

quarkQ simplify considerably in the large mass limitmQ→∞.
[1]

For mQ� ΛQCD,

the light degrees of freedom become insensitive to the mass mQ, and as far as

they are concerned the heavy quark acts simply as a non-recoiling source of color.

Hyperfine effects associated with the heavy quark chromomagnetic moment also

decouple, and a new “heavy quark spin-flavor symmetry” emerges. There is now

an extensive literature in which this symmetry has been used to make rigorous,

model-independent predictions relating heavy hadron spectra, weak matrix ele-

ments and strong decay rates. Corrections to the mQ → ∞ limit, both radiative

and nonperturbative, have been explored in great detail.
[2]

In this article we will apply the same symmetries to the production of heavy

mesons and baryons. In the limit mQ → ∞ such a process factorizes into short-

distance and long-distance pieces. A heavy quark Q is first produced via some high

energy interaction, perhaps as part of a pair QQ with large relative momentum.

This process, for example the decay of a virtual photon or Z boson, is typically

calculable in perturbation theory. This perturbative stage is finished in a time

short compared to the time scale of the nonperturbative strong interactions. Over

a longer time scale, a fragmentation process occurs which eventually forms a phys-

ical hadron containing the heavy quark. One might visualize this process as the

splitting of a color flux tube which joins the heavy Q to the other colored products

of the hard reaction. However one models the fragmentation process, it occurs

entirely at length scales of order 1/ΛQCD, and hence involves the redistribution of

energies small compared to mQ. As a result, the velocity of Q remains unchanged

once it has been produced, and its mass and spin, which are determined by the

calculable short-distance physics, decouple from the nonperturbative dynamics.

The situation here is entirely analogous to that of the much-explored weak decays

of heavy hadrons. This analogy has already been exploited in discussions of the

production of ground state pseudoscalar and vector mesons.
[3]
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It is tempting to generalize this philosophy directly to the production of excited

heavy mesons and heavy baryons. For these systems, a major issue is the question

of the polarization of the heavy state along the axis of fragmentation. We will

show that when one computes this polarization, the factorization of heavy- and

light-quark physics in the fragmentation process is not quite so straightforward.

Two new ingredients enter the analysis. First, it is often the case that the

strict heavy quark approximation fails for the last stage of fragmentation in sys-

tems with c and b quarks. We will present some examples in which light-quark

rearrangements, with rates formally independent of mQ, are slowed by phase space

or angular momentum factors so that they become comparable to the rate, of order

(mQ)−1, for processes that flip the heavy quark spin.

The possibility to transfer angular momentum from the heavy to the light

degrees of freedom means that the final heavy quark polarization will depend on the

polarization of the light degrees of freedom created in the fragmentation process.

This brings in the second new feature of the analysis. Since fragmentation is a

strong interaction process which conserves parity, it cannot select a prefered spin

direction along the axis of fragmentation. However, the strong interactions can

produce the light degrees of freedom in a way which is anisotropic about this axis,

for example, preferring states with longitudinal to those with purely transverse

polarization. We will define parameters wj which characterize the alignment of

light degrees of freedom of spin j and show how these affect the polarization of the

heavy hadrons and their decay products. The wj are new parameters of potential

importance which provide nontrivial tests of fragmentation models.

Our analysis is organized as follows: In Section 2, we will give a more detailed

discussion of the relative time scales in heavy quark fragmentation. In Section 3,

we will discuss the polarization of heavy quarks in ground state heavy mesons D,

D∗ and B, B∗. This is the simplest case, but we will see that here all polarization

information is lost in the fragmentation process. In Section 4, we will discuss the

polarization of excited heavy mesons. Here we will identify reactions in which
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light-quark processes are hindered below the heavy quark spin flip time. This

affects the dependence of the heavy meson decay distributions on the fragmentation

orientation. We will determine the orientation parameter w3/2 from data on excited

charmed mesons.

In Section 5, we will discuss the polarization of heavy baryons. The ground

state heavy baryon is the ΛQ, the bound state of a heavy quark with a light di-

quark system of spin 0. Using this identification and the mQ → ∞ limit, Mannel

and Schuler
[4]

and Close, Körner, Phillips, and Summers
[5]

have argued that Λb’s

produced at the Z0 resonance should be highly polarized. The second of these

groups also pointed out the potential for depolarization when Λb’s are produced by

the decay of excited baryons Σb and Σ∗b . We will discuss this effect quantitatively

and show that it potentially leads to significant depolarizations in an interesting

pattern. These effects can also be seen in the study of charmed baryons. We

will show how these effects are sensitive to the basic parameters governing baryon

fragmentation and decay and suggest ways to determine these parameters experi-

mentally.

2. Time Scales in Heavy Quark Fragmentation

We are concerned in this paper with the dynamics of the spin of a heavy quark

produced in a fragmentation process. To begin, we will discuss in this section the

various time scales which arise in heavy quark fragmentation. This will provide a

consistent framework for our later analysis.

We always imagine that we begin with a heavy quark which has been ejected at

relativistic speed from a hard reaction. We will compute time in the frame of the

heavy quark. The axis linking this frame to the center-of-mass frame of the hard

process is a preferred direction, which we call the axis of fragmentation. We will

take the 3̂ axis to lie along this line, pointing in the direction of the heavy-quark

velocity.
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In the rest frame of the heavy quark, the leading operator which couples to

the heavy-quark spin is the color magnetic moment operator, whose coefficient is

suppressed by 1/mQ. Thus, the rate of heavy quark spin flip is very slow on the

scale of ΛQCD. We might imagine the early stages of fragmentation to involve

the production of highly excited mesons or baryons containing the heavy quark,

which then rapidly eject pions and decay to lighter excited states. Throughout this

process, the heavy quark spin retains its initial orientation. The process continues

until we reach a state whose lifetime is comparable to the time required to flip the

heavy quark spin.

This long-lived heavy quark state is characterized by two angular momenta:

s = 1
2 , the heavy quark spin, and j, the spin of the light degrees of freedom. The

combination gives states of total spin J = j ± 1
2 , which we will call H and H∗.

The color magnetic moment interaction produces a small mass splitting between

H and H∗ which we call ∆. This energy splitting ∆ can be identified with the rate

of heavy quark spin flip processes in the (H,H∗) multiplet.

The states of the heavy quark multiplet can decay either by transitions involv-

ing the heavy or light quarks separately or by transitions H∗ → H. In the former

case, H and H∗ have the same decay rate, Γ. We will call the rate of the H∗ → H

transition γ. This latter decay is a QCD or QED magnetic dipole transition. Thus,

it is suppressed by two powers of 1/mQ from the square of the matrix element and

by further powers from the phase space. We expect, then, that γ � ∆. On the

other hand, the overall decay rate Γ may have an arbitrary relation to these two

parameters.

To visualize the roles of the three rates ∆, Γ, and γ, it is useful to think about

the three possible extreme cases:

1. Γ � ∆ � γ: In this case, the heavy hadrons decay so rapidly that the

color magnetic moment interactions of the heavy quark with the light degrees of

freedom do not have time to work. If Γ is a rate of a strong interaction decay

process, then in this case the multiplet (H,H∗) would belong to the early stages of
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fragmentation, in the sense described above, and transitions through this multiplet

would have no effect on the heavy quark spin dynamics. Another possibility, if the

quark mass is extremely large, is that the dominant contribution to Γ could come

from the heavy quark weak decay. In this circumstance, as long as Γ � ∆, the

weak interaction decay will measure a spin orientation for the heavy quark which is

the same as that which was produced in the hard process, with no depolarization

by fragmentation. This is the case which typically arises in studies of the top

quark.
[6]

Notice that the approximation Γ� ∆ can be valid even if Γ ∼ ΛQCD, so

that the heavy quark partially hadronizes before it decays.

2. ∆ � Γ � γ: In this case, the heavy hadron states H and H∗ form

distinct resonances. These resonances have width Γ and are well separated from

one another. The decay products reflect the heavy quark spin orientation in the

separate states H and H∗. These two contributions must be added incoherently;

thus, the heavy quark is depolarized from its initial orientation. In Sections 4 and

5, we will given examples in which this limit applies even though Γ is the rate of

a strong interaction decay process.

3. ∆ � γ � Γ: In this case, the heavy hadrons H∗ have time to make the

transition to H before undergoing a decay out of the multiplet. In this case, the

decay products of the multiplet reflect only the heavy quark spin orientation in the

state H. This leads to a substantial (and sometimes complete) depolarization. The

simplest example of this situation arises in the production of B and B∗ mesons in

fragmentation; we will discuss this example in Section 3.

In our arguments in the next few sections, we will begin by assuming that

the initial heavy quarks produced by the hard process are completely polarized.

At some stage, though, we must go over to the realistic situation in which they

are produced with partial polarization. We will denote the initial heavy quark

polarization by P . Since the Z0 resonance provides the most accessible source of

polarized heavy quarks, and since Z0 decays produce mainly left-handed quarks,
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we will define the polarization to be positive in this case. At the Z0,

Pq = AqLR =
g2
Lq − g2

Rq

g2
Lq + g2

Rq

, (2.1)

so that

Pb = 0.94, Pc = 0.67 , (2.2)

for sin2 θw∗ = 0.232. In the course of this paper, we will investigate what fractions

of these very large values are actually visible to experimenters.

3. Heavy Pseudoscalar and Vector Mesons

The simplest example with which to start is that in which the light degrees of

freedom have spin-parity jP = 1
2

−
. The constituent quark model would suggest

that such a state, consisting of a light antiquark in an S-wave, is the one of lowest

energy, and in the charm and bottom systems this has indeed been observed to be

the case. This light quark system combines with the heavy quark Q to form the

multiplet (H,H∗) consisting of a heavy pseudoscalar meson and a heavy vector

meson. The states are split by an amount of order ΛQCD
2/mQ. In the charm

system, this is the (D,D∗) multiplet; for bottom, it is the (B,B
∗
) system. In the

following discussion, we will refer to the spin of the light degrees of the freedom

loosely as the ‘spin of the antiquark’.

In the charm case, most of the parameters of this system are well determined.

The D–D∗ splitting ∆ is approximately 140 MeV. Although ∆ > mπ and the

strong decay D∗ → Dπ occurs, it is so suppressed by phase space that as yet

there is only an upper limit on the intradoublet transition width, γ < 1.1 MeV

for D∗0, < 2 MeV for D∗+. However, quark model estimates lead one to believe

that γ should be no more than an order of magnitude smaller than this upper

bound. Finally, since the D meson can only decay weakly, its width Γ is extremely

small, of the order of 10−10 MeV. Hence we are safely within the region ∆ �
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γ � Γ discussed above. A similar picture applies for the bottom mesons. Here

∆ = 46 MeV. Because the strong decay B
∗ → Bπ is prohibited, the transition

must occur electromagnetically. The width γ for B
∗ → Bγ may be estimated from

the upper limit on D∗ → Dπ and the branching ratio for D∗ → Dγ; we find an

approximate value γ ∼ 0.01 MeV. The multiplet width Γ is again due to a weak

decay and so is many orders of magnitude smaller. In both cases, we are in the

situation of case 3 described in Section 2. For concreteness, we will refer to the

bottom system in the following discussion.

We begin with the case in which the initial b quark is completely polarized in

the left-handed direction. We would like to investigate whether any information

on the initial b polarization can be recovered experimentally. The fragmentation

process leads to a heavy meson in which the b is combined with an antiquark

(more carefully, with light degrees of freedom with j = 1
2). We may assume that

the fragmentation process occurs so rapidly that the color magnetic forces do not

have time to act; thus the spin of the antiquark is uncorrelated from the spin

of the b. In this case, there are only two choices for the spin orientation of the

antiquark: j3 = ±1
2 ; we must sum over these possibilities incoherently. Since the

fragmentation process conserves parity, the antiquark spin cannot be preferentially

aligned in one direction along the axis of fragmentation; thus, the two choices

occur with equal probability. Hence, the result of fragmentation is to produce

meson states with the quark and antiquark spins

| ↓ 〉b| ↓ 〉q̄, | ↓ 〉b| ↑ 〉q̄ (3.1)

with equal probability. Notice that the second state in (3.1) is a linear combination

of a B and a B
∗

meson. The two components of this state propagate coherently up

to a time ∆−1 and then go out of phase with one another. Since, in this example,

∆ � γ � Γ, the B and B
∗

components become completely incoherent before

any decay occurs. This gives rise to the following table of probabilities for the
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occupation of the various possible helicity states:(
p(B

∗
, h)

p(B, h)

)
=

(
1
2

1
4 0

1
4

)
. (3.2)

The helicity of the B runs across the table from negative to positive values; for

example, the table assigns the state B
∗
(h = −1) the probability 1

2 .

At a time γ−1, the B
∗

mesons decay electromagnetically to B’s. After this

point, the B’s will contain no polarization information, since the B meson has

spin zero. Thus, the polarization information can only be encoded in the photons

emitted in the decay.

The decay B
∗ → Bγ proceeds primarily through the light quark magnetic

moment operator

eqσq ·B
2mq

, (3.3)

since the b magnetic moment is suppressed by 1/mb. Let θ be the angle between

the photon momentum and the fragmentation axis, in the B
∗

rest frame. Then

the differential partial widths dγ/d cos θ for the various B
∗

helicity states are pro-

portional to

B
∗
(±1) :

B
∗
(0) :

1
2(1 + cos2 θ) ,

sin2 θ .
(3.4)

Multiplying these rates by the probabilities for producing the helicity states B
∗
(±1)

and B
∗
(0), we find that the total distribution is proportional to

1
4(1 + cos2 θ) + 1

4 sin2 θ = 1
2 (3.5)

Hence, the photons are emitted isotropically, and their angular distribution gives

no polarization information. The emitted photons are preferentially polarized left-

handed, but this polarization cannot be observed by a standard high-energy particle

detector. We conclude that the polarization of the b quark is unobservable in

fragmentation to B and B
∗

mesons.
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This is our first example of a ‘no-win’ theorem, to which we shall return. Under

most conditions, the angular distribution of decay products gives no information

on the polarization of the heavy quark. In reaching this conclusion, we do not

assume that the heavy quark spin is decoupled from the decay process. In this

example, the heavy quark spin couples to the light antiquark, giving it a net polar-

ization 1
2 on a time scale of order ∆−1. However, the strong and electromagnetic

interactions responsible for the decay conserve parity and thus cannot be sensitive

to the direction of the heavy quark spin. Thus, the angular distribution of the

decay products is the same as as it would be if we averaged over the two possible

directions of the heavy quark spin. There is one amusing exception to this rule,

which we will discuss in Section 4.

As a footnote to this section, we comment on the validity of the helicity distri-

butions (3.2) for the charmed mesons. The heavy quark limit predicts that, when

we average over the direction of the heavy quark spin, we recover the naive spin-

counting predictions that the D and D∗ mesons are produced in a 1:3 ratio, and

that the D∗ mesons are unpolarized. The latter result is confirmed by a CLEO

measurement
[7]

which finds only a few percent longitudinal polarization in D∗’s

produced directly from e+e− annihilation. However, many groups have measured

the ratio PV = (D∗)/(D +D∗), which spin-counting predicts to be 0.75, and find

a substantially smaller number:
[10]

PV = 0.65± .06 . (3.6)

Such a value would not be unexpected in a thermodynamic model of particle pro-

duction in which the higher-mass states are suppressed by a factor

exp
[
−∆m/TH

]
, (3.7)

where ∆m is the D∗–D mass difference and TH is a hadronic ‘temperature’, which

should be expected to be about 300 MeV. Indeed, the central value of (3.6)is

10



reproduced by setting TH = 280 MeV. Notice that the suppression factor (3.7)

does formally tend to 1 in the heavy quark limit in which members of the same

heavy-quark multiplet become degenerate. However, for the charmed mesons, it

gives almost a factor 2 suppression. The correction results from the fact that the

excited charm states which decay to D and D∗ have widths which are comparable

to the D∗–D mass difference and so can resolve these two states and prefer the

lighter D. This is a first example of the competition between decay rates and mass

splittings which we will discuss quantitatively in the later sections of this paper.

In the examples discussed later in this paper, we will continue to ignore the

thermodynamic factor (3.7) in the initial probability distributions of heavy mesons.

In those later examples, this assumption will be justified by the fact that the states

which decay to the (H,H∗) multiplet in those cases typically have widths much

larger than the H–H∗ mass splitting.

4. Excited Heavy Mesons

We now turn to the more complicated case of heavy mesons in which the light

degrees of freedom are in an excited state. We will focus on the charm system,

and in particular on the observed excited charmed mesons D1(2420) and D∗2(2460).

We will discuss the decay distributions of these states from the viewpoint of heavy

quark symmetry.

In the quark model, the lowest-energy excited states of the D and D∗ mesons

should be states in which the light antiquark has one unit of orbital angular mo-

mentum. By coupling this angular momentum to the antiquark spin, we find states

in which the light degrees of freedom have jP = 1
2

+
and 3

2

+
. In the mc →∞ limit,

the angular momentum j is a good quantum number irrespective of its quark model

interpretation.

It is reasonable to identify the spin-1 D1(2420) and the spin-2 D∗2(2460) as

the heavy meson multiplet (H,H∗) with jP = 3
2

+
.
[11,12]

The jP = 1
2

+
doublet,
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consisting of a spin-0 (D∗0) and a spin-1 (D′1) meson, has not yet been identified.

At order 1/mc, there may be mixing between the D1 and the D′1 states, since they

have identical quantum numbers.

It is likely that the (D∗0, D
′
1) doublet has not been found because these states

have a very large decay width to D and D∗. They should decay by emitting a

pion in the S-wave, a completely open channel. Kaidalov and Nogteva
[13]

have

estimated the width Γ for this multiplet to be several hundred MeV. On the other

hand, the mass splitting ∆ should be smaller than 40 MeV, the mass splitting of

the j = 3
2 multiplet. Thus, this doublet corresponds to the uninteresting case 1 of

Section 2, Γ� ∆.

The situation for the observed D1 and D∗2 is more interesting. Since the jP

of the light degrees of freedom changes from 3
2

+
to 1

2

−
, the decay pion must be

emitted into an orbital D-wave, and so the decay width is suppressed by angular

momentum factors. The observed decay width Γ of the two members of the doublet

is about 20 MeV, while the observed splitting ∆ is approximately 35 MeV.
[14,15]

The intradoublet transition is an electromagnetic decay, so γ is much smaller than

either of these rates. In the following discussion, we will treat the decays of D1

and D∗2 in the limit ∆ � Γ � γ, case 2 of Section 2. This is justified as a first

approximation: Since the D1 and D∗2 peaks are well separated compared to their

width, their decays can be treated incoherently.

Because the experiments of refs. 14 and 15 were carried out well below the Z0,

the charmed quarks were produced from e+e− annihilation with no polarization.

Nevertheless, for full generality, we will begin our analysis by assuming that the

charmed quarks have complete left-handed polarization. To this polarized charmed

quark, we must add the light j = 3
2 system. This system can be formed in one

of four possible helicity states. Parity invariance requires that the probability

of forming a given helicity state cannot depend on the sign of this helicity j3.

However, states with different magnitudes |j3| can have different probabilities. For

the examples discussed in this paper, we can characterize these probabilities in the
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following way: For a system of light degrees of freedom of spin j, let wj be the

probability that fragmentation leads to a state with the maximum value of |j3|. The

parameter wj takes values between 0 and 1.

In the case at hand, the various helicity states of the light degrees of freedom

appear with the probabilities

p(3
2 , j

3) =
(

1
2w3/2,

1
2(1− w3/2), 1

2(1− w3/2), 1
2w3/2

)
, (4.1)

where the helicity j3 of the light degrees of freedom runs across the table from −3
2

to 3
2 . The state of definite left-handed c spin, combined with the state of the light

degrees of freedom of definite j3, produces a coherent linear superposition of the

D1 and D∗2 states of helicity h = j3 − 1
2 . In a time ∆−1 into the fragmentation

process, the D1 and D∗2 components of this state become incoherent and it becomes

appropriate to describe the original state as a mixed state containingD1 or D∗2 with

fixed probabilities. Following this logic, we find that the possible helicity states

of D1 and D∗2 should be populated with the probabilities shown in the following

table:(
p(D∗2, h)

p(D1, h)

)
=

(
1
2w3/2

3
8(1− w3/2) 1

4(1− w3/2) 1
8w3/2 0

1
8(1− w3/2) 1

4(1− w3/2) 3
8w3/2

)
. (4.2)

The notation is as in (3.2), with the values of the helicity running from negative to

positive across the table. To find the probabilities for charmed quarks with initial

polarization P = 0, average the probabilities of states with equal and opposite

helicities. Notice that for any value of w3/2, and for any P , the total probabilities

for producing the spin-2 and spin-1 states are 5
8 and 3

8 , respectively.

Given these probabilities, we may now compute the angular distributions for

the observed decays (D1, D∗2)→ (D,D∗) + π(p). The general theory of pion tran-

sitions between heavy hadrons is due to Isgur and Wise,
[11]

and is reviewed in Ap-

pendix A. According to this theory the rate for the pion transition from a heavy

hadron with light degrees of freedom with spin j to a heavy hadron with light
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degrees of freedom freedom of spin j′ depends on the total spins J , J ′ of the initial

and final hadrons according to the factor

(2j + 1)(2J ′ + 1)

∣∣∣∣∣
{
j′ j L

J J ′ 1
2

}∣∣∣∣∣
2

· p2L+1
π . (4.3)

In this equation, L is the pion orbital angular momentum, the bracket denotes a

6-j symbol, and pπ is the pion 3-momentum. For the transitions from (D1, D∗2)

to (D,D∗), L = 2. The last factor in (4.3) is the kinematic suppression factor for

emitting pions of large L, which may vary significantly over the heavy multiplets

even if their splitting is small. The purely group theoretic factors give
[11]

Γ(D1 → Dπ) : Γ(D1 → D∗π) : Γ(D∗2 → Dπ) : Γ(D∗2 → D∗π)

= 0 : 1 : 2
5 : 3

5 .
(4.4)

The kinematic factor p5
π for these decays are

4.5 : 0.90 : 6.2 : 1.4, (4.5)

in units of 10−2 GeV5.

We can use these numbers to assess the experimental validity of the heavy

quark approach to (D1, D∗2) decays. Our discussion here follows the work of Lu,

Wise, and Isgur (LWI).
[16]

Assembling the factors above, one finds

Γ(D∗2 → Dπ)/Γ(D∗2 → D∗π) = 3.0, (4.6)

independent of charge assignments; this is in good agreement with the Particle

Data Group average of 2.4 ± 0.7 for the relative rates of D∗02 → D+π−, D∗+π−.
[8]

From these values and the observed D∗02 width of 19±7 MeV, one predicts the total

width of the D1 meson to be Γ(D1) = 5 ± 2 MeV, which is substantially smaller

than the observed value of 20 ± 7 MeV for the D0
1. LWI ascribed the discrepancy
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to a small mixing of the D1 with the D′1. An increment of the D0 width by 10

MeV, which would be accomplished by a mixing angle of order 0.2, would be quite

sufficient. Such a mixing angle is not unreasonable, since the mixing is expected to

be of order (300 MeV/mc). LWI proposed an experimental test of this idea, which

we will return to below.

We now add to these results our understanding of fragmentation to heavy

mesons. This will allow us to compute the angular distributions of the D1 and D∗2

decay products in terms of the parameter w3/2. We begin with the decayD∗2 → Dπ.

Let θ, φ denote the orientation of the pion with respect to the fragmentation axis,

as measured in the D∗2 rest frame. The amplitude for the production of a pion at

θ, φ from a D∗2 meson of helicity h is proportional to Y2h(θ, φ). Thus, the complete

pion angular distribution should be proportional to

∑
h

p(D∗2, h)
∣∣Y2h(θ, φ)

∣∣2, (4.7)

where p(D∗2 , h) are the probabilities from (4.2). Expanding and normalizing, we

find

1

Γ

dΓ

d cos θ
(D∗2 → Dπ) = 1

4

[
1 + 3 cos2 θ − 6w3/2

(
cos2 θ − 1

3

)]
. (4.8)

Note that this distribution is invariant under cos θ → − cos θ, as required by parity,

and thus gives no information on the c quark polarization. This accords with the

‘no-win’ theorem discussed at the end of Section 3. The pion angular distribution is

generally anisotropic but becomes isotropic for isotropic fragmentaion, w3/2 = 1
2 .

In fact, the dependence of (4.8) on w3/2 is fixed by this requirement and the

requirement that the total rate be independent of w3/2.

This angular distribution has been measured by ARGUS,
[14]

and so the pa-

rameter w3/2 can be extracted from experiment. The ARGUS data are shown in

Fig. 1, along with the theoretical predictions for w3/2 = 0 and 0.2. The ARGUS

analysis found no significant population of the extreme helicity states h = ±2.
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This implies that w3/2 is small. Our best fit would come at w3/2 = −0.3, if this

were meaningful. Assuming that w3/2 > 0, we find

w3/2 < 0.24, 90% conf. (4.9)

We will discuss the physical interpretation of this result below.

Once w3/2 is known, we have definite predictions for the angular distributions

of the remaining excited D meson decays. Consider next the decay D∗2 → D∗π.

The amplitude for a decay from the helicity state h to the D∗ state of helicity k

and a pion with orientation (θ, φ) is proportional to

Y2m(θ, φ)
〈
2m1k

∣∣ 2h
〉
, (4.10)

with m = h − k. Summing over D∗ helicities, and summing over D∗2 helicities

with the probabilities from (4.2), we find the following result for the pion angular

distribution:

1

Γ

dΓ

d cos θ
(D∗2 → D∗π) = 3

8

[
1 + cos2 θ − 2w3/2

(
cos2 θ − 1

3

)]
. (4.11)

This is a flatter distribution then we found for the direct decay to D. The two

distributions are compared in Fig. 2 for the preferred value w3/2 = 0.

Additional information can be obtained if the D∗ is observed through its pion

decay to D. The amplitude for this secondary decay is proportional to Y1k(θ2, φ2),

where the angles give the orientation of the secondary pion. The joint angular

distribution of the two pions is proportional to

∑
h

p(D∗2 , h)

∣∣∣∣ ∑
k=−1,0,1

Y2m(θ, φ)Y1k(θ2, φ2)
〈
2m1k

∣∣ 2h
〉∣∣∣∣2, (4.12)

where, again, m = h−k. In writing (4.12), we ignore theD∗ recoil, as is appropriate
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in the heavy quark limit. Simplifying this expression, we find

1

Γ

dΓ

d cos θd cos θ2dφ2
(D∗2 → ππD) =

9

32π

[
1 + 2 cos θ cos θ2 cosα− cos2 α− cos2 θ2 − cos2 θ cos2 α

− 2w3/2(1
3 + 2 cos θ cos θ2 cosα − 1

3 cos2 α− cos2 θ2 − cos2 θ cos2 α)
]
,

(4.13)

where

cosα = cos θ cos θ2 + sin θ sin θ2 cos(φ2 − φ) (4.14)

is the angle between the two pions in the D∗ rest frame. The integral of this

expression over θ2, φ2 reproduces (4.11), and the integral over orientations with

α fixed gives the sin2 α distribution characteristic of the spin-2 parent.
[14,15]

Notice

that the complete distribution (4.13) is symmetric under cos θ → − cos θ, so, again,

all information about the heavy quark polarization is lost.

The decay D1 → D∗π can be analyzed in a similar fashion. In the ideal

situation, we would ignore mixing of theD1 with theD′1. Then the decay amplitude

from D1 helicity h to D∗ helicity k would be proportional to

Y2m(θ, φ)
〈
2m1k

∣∣ 1h
〉
. (4.15)

This would lead to a pion angular distribution

1

Γ

dΓ

d cos θ
(D1 → D∗π) = 3

8

[
1 + cos2 θ − 2w3/2

(
cos2 θ − 1

3

)]
. (4.16)

Curiously, this distribution is identical to (4.11).

However, we have argued above that the D1 must also have some S-wave

component to its decay due to mixing. Following LWI, we modify (4.15) to

Y2m(θ, φ)
〈
2m1k

∣∣ 1h
〉
− S

D
eiη · Y00(θ, φ)δ(k, h) (4.17)

The parameter S/D contains the D1–D′1 mixing angle and the relative magnitudes

of the D1 and D′1 decay amplitudes. Note that S/D can be negative. The phase η
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of the interference term is approximately equal to the the D∗π I = 1
2 S-wave phase

shift; we do not call it δ1/2 to avoid confusion with the Kronecker delta symbol

δ(k, h). Extrapolating linearly from the Weinberg value
[17]

of the phase shift at

threshold, we estimate

η =
1

4π

m2
π

f2
π

· pπ
mπ

= 0.45 (4.18)

at the excitation energy of the D1. The inclusion of the S-wave amplitude increases

the width of the D1 by a factor (1 + (S/D)2). In our numerical examples, we will

take (S/D)2 = 2. The inclusion of the S-wave term dilutes the angular dependence

of (4.16) as follows:

1

Γ

dΓ

d cos θ
(D1 → D∗π) =

1

1 + (S/D)2
· 3

8

[
1 + cos2 θ + 4

3

( S
D

)2 − 2
3

√
2
S

D
cos η(1− 3 cos2 θ)

− 2w3/2

(
cos2 θ − 1

3 −
2
3

√
2
S

D
cos η(1− 3 cos2 θ)

)]
.

(4.19)

The corrected pion angular distribution is compared to the idealized form, and to

our earlier results, in Fig. 2.

LWI suggested that the mixing parameter S/D can be measured from the

properties of the joint pion angular distribution in D1 → πD∗ → ππD. They

presented a number of useful partial distributions. But actually it is not difficult

to construct the complete joint distribution of the two pion momenta, since it is

simply proportional to

1

1 + (S/D)2
×

∑
h

p(D1, h)

∣∣∣∣ ∑
k=−1.0.1

Y1k(θ2, φ2)
[
Y2m(θ, φ)

〈
2m1k

∣∣ 2h
〉
− 1√

4π

S

D
eiηδ(k, h)

]∣∣∣∣2
.

(4.20)
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The explicit formula for this angular distribution is:

1

Γ

dΓ

d cos θd cos θ2dφ2
(D1 → ππD) =

1

32π

1

1 + (S/D)2

[
1− 18 cos θ cos θ2 cosα + 3 cos2 α + 3 cos2 θ2 + 27 cos2 θ cos2 α

− 2w3/2(−1− 18 cos θ cos θ2 cosα− 3 cos2 α+ 3 cos2 θ2 + 27 cos2 θ cos2 α)

+ 2
( S
D

)2(
1 + 3 cos2 θ2 − 2w3/2(3 cos2 θ2 − 1)

)
− 2
√

2
S

D
cos η

(
1− 9 cos θ cos θ2 cosα − 3 cos2 α + 3 cos2 θ2

− 2w3/2(−1− 9 cos θ cos θ2 cosα+ 3 cos2 α+ 3 cos2 θ2)
)

+ 6
√

2
S

D
sin η cosα · (1− 4w3/2) · (3̂× p̂π · p̂π2) · P

]
.

(4.21)

The invariant in the last line is the triple product of the fragmentation axis with

the directions of the two pion momenta. We have multiplied this term by the orig-

inal charmed quark polarization P , since it is odd under reversal of the charmed

quark spin direction. The remaining terms in (4.21) are independent of P . When

the distribution (4.21) is integrated over angles with α fixed, it gives a distribu-

tion intermediate between the pure D-wave distribution (1 + 3 cos2 α) and the flat

distribution expected from an S-wave decay. Unfortunately, the results on the α

distribution reported in refs. 14 and 15 are not yet sufficiently precise to give a

useful constraint on (S/D).

The last term in (4.21) is a counterexample to the no-win theorem, the only

one that we have found in the study of heavy meson fragramentation. It arises

because the invariant

~s× p̂π · p̂π2 , (4.22)

where ~s is the heavy quark spin, is parity-even and so can appear in the angular

distribution formula.
[18]

This invariant is apparently T -odd, but this simply means

that the contribution of the invariant must be proportional to an absorptive phase.

In this case, the phase is η, given approximately by (4.18). The phase is sufficiently
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large that this effect might someday be used to confirm that the c quarks emerging

from the Z0 are predominantly left-handed.

Since the D1 and D∗2 are prominent resonances of the charmed mesons, it

is natural that bottom mesons should possess similar excited states. We now

briefly discuss the properties of those resonances. The splitting of the heavy quark

multiplet should decrease by a factor (mb/mc) ∼ 3 as we go from the charm to

the bottom system, while the decay rates remain roughly constant, up to angular

momentum factors. Thus, we expect that the bottom mesons should have a set

of resonances located about 530 MeV above the centroid of the (B,B∗) system.

These resonances should have widths of 20 MeV and a splitting of 10 MeV. The

added width due to B1–B′1 mixing should be down by a factor (mc/mb)
2 from the

charm case; thus we can ignore this effect here. Note that the change to b quarks

interchanges the relation of Γ and ∆ that we had for charm.

Since the bottom system has Γ > ∆, the two peaks associated with the initial

B1 and B∗2 should be merged. However, since the B–B∗ splitting is 46 MeV, the

separate decays to B and B∗ should be resolved. Thus, we would expect that,

when B mesons are produced in fragmentation, one should see two peaks in the

pion energy distribution in the B meson frame, corresponding to pion energies of

about 520 and 565 MeV, each peak having a width of about 20 MeV. The relative

populations of the two peaks should be 2:1 in favor of the lower-energy transition

(B1, B∗2) → B∗; the 3:1 ratio from spin counting is partially balanced by a 1.5:1

ratio of the kinematic factors p5
π. This experiment would allow both the discovery

of the (B1, B∗2) multiplet and a nontrivial confirmation of the B–B∗ mass splitting.

The fact that the B1 and B2 decay coherently has a curious effect on the

angular distribution of the decay pion. In the limit Γ � ∆, we should compute

this distribution as a decay of the jP = 3
2

+
light antiquark configuration. The

angular distribution for this decay is proportional to

∑
h

p(3
2 , j

3)

∣∣∣∣Y2m(θ, φ)
〈
2m1

2j
′3 ∣∣ 3

2j
3
〉∣∣∣∣2, (4.23)
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where p(3
2 , j

3) are the light antiquark probabilities from (4.1) and j′3 is the helicity

of the light antiquark after the decay. Our formalism predicts that the two helicity

states j′3 = ±1
2 are equally populated; these populations then can be combined

with the heavy b quark spin to form B and B∗ mesons. For any b polarization, the

pion angular distribution follows from (4.23). Working this out explicitly, we find

1

Γ

dΓ

d cos θ
(B1, B

∗
2 → B,B∗π) = 1

4

[
1 + 3 cos2 θ − 6w3/2

(
cos2 θ − 1

3

)]
, (4.24)

with the same distribution for the decay to B and B∗. This distribution is identical

to (4.8), and that is easy to understand: We can think of the decay amplitude to

B as a coherent sum of the decay amplitudes from B1 and B∗2 to B; however, the

amplitude for B1 → Bπ is zero, and so we revert to the earlier case. However, the

relation of (4.24) to (4.11) and (4.16) is quite surprising. Naively, we might have

expected the distribution in this case to be an average of (4.11) and (4.16) (which

are actually identical). However, we find instead a sharper angular distribution, as

the result of the coherent superposition of the two decay amplitudes. The difference

between (4.24) and (4.11), (4.16) reflects the loss of information on the spin of the

light degrees of freedom which occurs when the heavy quark spin becomes involved

in the dynamics. By observing this transition from the charm to the bottom

system, we would effectively be timing the heavy quark spin flip.

It should be noted that the calculation we have done applies to the asymptotic

case Γ � ∆. For Γ and ∆ of the same order of magnitude, a more complicated

formula is required. We give this formula in Appendix B.

We close this section with some speculations on the meaning of the result

w3/2 = 0. We have learned, in effect, that when a light spin-3
2 object forms in

heavy quark fragmentation, its angular momentum prefers to align transverse to,

rather than along, the fragmentation axis. This is a striking result, and we have

not been able to find an explanation for it. In models of string fragmentation,

the physical degrees of freedom of the string are transverse oscillations, and so the

orbital angular momentum would tend to point along the string direction, that is,
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along the fragmentation axis. Perturbative quark evolution by the Altarelli-Parisi

equations can produce correlations between quark helicity and orbital angular mo-

mentum. For example, a polarized quark preferentially emits a gluon with the

same helicity and opposite orbital angular momentum. Some, but not all, of this

angular momentum can accompany an antiquark produced from the gluon. Nei-

ther viewpoint seems to lead to a crisp explanation of the phenomenon. In any

event, this result on w3/2, and related results for other values of wj that will be

found in the near future, provide information on the process of fragmentation from

a new perspective. Thus, they should provide incisive tests for proposed schemes

of hadronization.

5. Polarization of Heavy Baryons

We will now carry over the insights we have gained from the study of heavy

mesons to the phenomenology of heavy baryons. For heavy mesons, we saw that the

‘no-win’ theorem prohibits any visible effects of an initial heavy quark polarization,

except under the special conditions described below (4.22). However, for heavy

baryons, the situation is very different. The ground state heavy baryon is built

from a heavy quark combined with a j = 0 combination of two light quarks.

Since this system has no angular momentum to transfer to the heavy quark, the

initial polarization cannot be diluted. Mannel and Schuler
[4]

and Close, Körner,

Phillips, and Summers
[5]

have used this argument to conclude that the ground

state b baryons produced in Z0 decays will retain the initial high polarization P of

the b quark. In this section, we will compute the first correction to this argument

and find the depolarization of the b quark in this scheme of fragmentation. In the

process, we will explore the polarization dependence of excited heavy baryon decays

and find some further reactions which are sensitive to the competition between the

decay and the spin splitting of a heavy quark multiplet.

To begin, we review some basic properties of b baryons. Baryons are expected

about 5% of the time in b fragmentation,
[19]

so that about 10% of bb̄ events or 2%
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of Z0 hadronic events will contain baryons. In the nonrelativistic quark model, the

lightest heavy baryons consist of a heavy quark together with a light quark pair

with zero orbital angular momentum. This pair can be either a ud system with

isospin and spin I = S = 0 or a uu, ud, or dd system with I = S = 1. (We ignore

strange heavy baryons.) In the heavy quark effective theory, the lightest baryons

should be formed from states of the light degrees of freedom with these quantum

numbers. We will refer to such states as ‘diquarks’ even when we do not assume

that the quark model describes them accurately. By combining the s = 1
2 b quark

with the diquarks of jP = 0+ and 1+, we form the Λb baryon and the (Σb,Σ
∗
b)

baryon multiplet. We will treat these three sets of states as the final states of the

rapid phase of b fragmentation to baryons.

Even if we ignore the coupling of the b quark spin, as is appropriate to the

heavy quark approximation, the relative probabilities of finding these states in b

fragmentation is still governed by two unknown parameters. The first of these,

which we will call A, is the relative probability of producing an I = S = 1 diquark

as opposed to an I = S = 0 diquark. This is the ratio of the total (Σb,Σ
∗
b)

production to primary Λb production, summed over the 9 possible spin and isospin

states of the I = S = 1 multiplet. The second of these is the parameter w1 which

gives the probability that the spin 1 diquark has maximum angular momentum j3 =

±1 along the fragmentation axis. The parameterA is related, but not identical, to a

parameter of the Lund fragmentation model which gives the relative probability of a

spin 1 or a spin 0 diquark appearing when the color string breaks: A ≈ 9·PAR(4).
[20]

An important difference is that our parameter A is an output rather than an input

of the fragmentation scheme, so that it is defined independently of any model.

The parameter PAR(4) is not well determined experimentally. For example, in a

recent study by the OPAL collaboration,
[21]

this parameter could be varied by a

factor 3 from the Lund default value of 0.05 by adjusting the other parameters

of the baryon decay scheme. We know of no experimental determination of w1.

Nevertheless, it will be useful to have some definite values of these parameters for

our numerical estimates. Motivated by the Lund default value and the results of
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the previous section, we will choose

A = 0.45 , w1 = 0 (5.1)

as our reference values. With these values, about 30% of b baryons are born initially

as Σb or Σ∗b .

We now consider the fragmentation of a b quark with complete left-handed

polarization. Given values of A and w1, the various helicity states of the b baryons

are populated by fragmentation according to the following table:

 p(Σ∗b , h)

p(Σb, h)

p(Λb, h)

 =
1

1 +A
·


1
2w1A

2
3(1− w1)A 1

6w1A 0

1
3(1− w1)A 1

3w1A

1 0

 . (5.2)

The probabilities for the Σb and Σ∗b helicity states represent the sum over the three

isospin states. The relative production rate of Σb : Σ∗b is 1:2 independently of w1.

We next consider the mass splittings of the b baryons. Unfortunately, in the b

baryon system, only the Λb is known,
[22]

and the only certain piece of information

on any heavy baryon splitting is: m(Σc)−m(Λc) = 168 MeV.
[8]

The Σ∗c has not yet

been discovered. One can estimate its position from the splittings of the strange

baryons; using quadratic mass relations, we find m(Σ∗c) −m(Σc) = 100 MeV; for

comparison, Kwong, Rosner, and Quigg
[23]

find 64 MeV for this mass difference

using linear relations. The experiments which give the Σc mass
[24]

would seem

to exclude values of this mass difference below 80 MeV. Using our estimates, the

centroid of the (Σc,Σ∗c) multiplet is located 230 MeV above the Λc. The value

of this mass splitting is expected to have only a weak dependence on the heavy

quark mass. Thus, we expect that the Σb and Σ∗b should lie roughly 210 MeV and

240 MeV, respectively, above the Λb. Both splittings are well above the threshold

for single-pion transitions to the Λb. Thus, we expect that all b baryon states will

eventually decay hadronically to Λb.
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The decay rate for the transitions (Σb,Σ
∗
b) → π + Λb can be estimated in the

nonrelativistic quark model by using a pion-quark coupling estimated from the

Goldberger-Trieman relation. This computation has been done by Yan et al.
[25]

They find

Γ =
g2
Aq

6πf2
π
p3
π = 28 MeV ·

( pπ
200 MeV

)3
, (5.3)

where pπ is the pion 3-momentum, fπ = 93 MeV, and gAq is the axial vector

coupling of the constituent quark. In the numerical estimate, we take gAq = 0.75

to give the correct gA for the nucleon. The Σb and Σ∗b have the same decay rate

up to kinematic factors, since the decay mechanism does not directly involve the

heavy quark.

It is curious that the predicted decay rate Γ and mass splitting ∆ for the

(Σb,Σ
∗
b) multiplet are approximately equal. This is an accident, since Γ is inde-

pendent of the heavy quark mass while ∆ is proportional to 1/mb. We have stressed

that our estimates of ∆ and Γ are quite uncertain. However, if they are correct,

the Σb and Σ∗b form two distinct resonances which thus decay incoherently. The

two excited baryons can be observed together starting from a sample of (partially)

reconstructed Λb’s by plotting the distribution of pion energies in the Λb frame.

The Σb and Σ∗b should appear as two closely spaced peaks on this distribution. The

proper values of Γ and ∆ for the analysis to follow must eventually be determined

experimentally by the measurement of this double-peak structure.

If it had turned out that Γ � ∆, the Σb and Σ∗b baryons could decay to Λb’s

without involving the heavy quark spin. In this limit, there would be no depolar-

ization of the b quark from its initial polarization P . However, our estimates make

it reasonable to consider the opposite limit in which the two baryon resonances

decay incoherently. After we analyze this limit in some detail, we will also present

results for intermediate values of Γ/∆.

Now we have all the ingredients we need to compute the properties of the

excited baryon decays and the effect of these decays on the Λb polarization. We
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first consider the pion angular distributions. The amplitude for the decay of a Σb

of helicity h to a Λb of helicity k is proportional to

Y1m(θ, φ)
〈
1m1

2k
∣∣ 1

2h
〉
, (5.4)

where θ, φ give the pion orientation with respect to the fragmentation axis and

m = h − k. The amplitude for Σ∗b decay is given by the analogous formula with

j = 3
2 . Squaring and summing with the probabilities from (5.2), we find the pion

angular distributions

1

Γ

dΓ

d cos θ
(Σb → Λbπ) = 1

2

1

Γ

dΓ

d cos θ
(Σ∗b → Λbπ) = 1

4

[
1 + 3 cos2 θ − 9

2w1

(
cos2 θ − 1

3

)]
.

(5.5)

The first of these distributions is isotropic; the second becomes isotropic at w1 =

2
3 . This second distribution can be used to determine w1 experimentally. For

comparison, the pion angular distribution in the case Γ� ∆ is:

1

Γ

dΓ

d cos θ
(Σb,Σ

∗
b → Λbπ) = 3

2

[
cos2 θ − 3

2w1

(
cos2 θ − 1

3

)]
. (5.6)

The intermediate situation can be analyzed using the formulae provided in Ap-

pendix B.

On the other hand, we may integrate over the pion angles and look instead

at the distribution of final Λb helicities which result from a sample of completely

left-handed polarized b quarks. Again, we consider the extreme limit ∆� Γ. From

Σb decay, we find

Λb(+
1
2)

Λb(−1
2)

=
2−w1

1 + w1
. (5.7)

From Σ∗b decay, we find

Λb(+
1
2)

Λb(−1
2)

=
2−w1

4 + w1
. (5.8)
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Summing over all primary and secondary Λb’s, we find

Λb(+
1
2)

Λb(−1
2)

=
2(2−w1)A

9 +A(5 + 2w1)
. (5.9)

To return to the situation of Z0 decays, multiply the corresponding polariza-

tions by the initial b polarization P given by (2.2). Thus, we find for the final Λb

polarization PΛ the values

PΛ =

{
1 + (1 + 4w1)A/9

1 +A
P ,

1 + w1

3
P , −1− 2w1

3
P

}
, (5.10)

for Λb’s from the full sample, from Σ∗b decays, and from Σb decays, respectively.

Inserting the value from (5.1), we find

PΛ =
{

0.72 P , 0.33 P , −0.33P
}

; (5.11)

with (2.2), this implies a 68% polarization in the full sample of Λb’s observed in

Z0 decay. The minus sign in the last entry of (5.11) is not a misprint but rather

a curious prediction which would be very interesting to confirm. We emphasize

again that these predictions are valid only if the Σb and Σ∗b are distinct resonances

and revert to the naive prediction PΛ = 1 · P in the limit where these resonances

completely overlap.

The intermediate case Γ ∼ ∆ can be treated by regarding the Σb and Σ∗b as

partially overlapping resonances. We present the formulae for this case in Appendix

B. In Fig. 3(a), we show the pion energy spectrum for decays (Σb,Σ
∗
b)→ Λb + π,

and the contributions to the spectrum from each Λb helicity state, for the case

Γ = ∆ = 30 MeV. In Fig. 3(b), we show how the three polarizations computed in

(5.11) change as a function of the ratio Γ/∆.

Since the extreme limit ∆� Γ is well satisfied in the case of charmed baryons,

all of the results we have obtained in the preceding paragraphs should also apply

27



to the Λc, Σc, Σ∗c system. We predict a polarization of 48% for Λc’s produced

in Z0 decays. The parameter w1 could well be measured at CESR or in fixed

target experiments, since the distributions (5.5) are independent of the heavy quark

polarization.

We should, finally, comment on the measurement of the polarization of Λb

baryons. Close, Körner, Phillips, and Summers
[5]

and Amundson, Rosner, Worah,

and Wise
[26]

have proposed that the absolute magnitude of the Λb polarization can

be obtained by comparing the lepton distribution in semileptonic b decays to the

spectator model, and the first set of authors have proposed additional methods

using the Λb → ψΛ decay mode. However, it is important to note as well that the

relative polarization of two different samples of Λb’s can be obtained more easily

by observing any parity-violating forward-backward asymmetry with respect to the

fragmentation axis in Λb decay. For example, the forward-backward asymmetry of

Λ production in Λb decays should be proportional to PΛ and can thus be used to

check the relative magnitudes of PΛ in the three samples described in (5.10).

6. Conclusions

In this paper, we have discussed a number of phenomena connected to heavy

hadron spectroscopy which are sensitive to the competition between the rate of a

hadronic decay and the rate of a heavy quark spin flip. We have seen that this

competition can affect the angular distributions observed for the decay of heavy

hadrons and the degree of polarization of heavy baryons. Conversely, the proper-

ties of heavy hadron decays can be used to measure a new set of fragmentation

parameters which we have called wj , which provide nontrivial tests of schemes of

hadronization.

We have added two contributions to the study of the observability of heavy

quark polarization as viewed from the final state of the hadronization process. For

heavy baryons, one expects a large polarization; we have computed the leading

effect of fragmentation which degrades this polarization. For heavy mesons, one
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generally expects no observable polarization effects, though we have identified one

particular circumstance in which a polarization effect may be visible.

We look forward to further insights that will come from experiments on the

excited states of hadrons containing heavy quarks.

APPENDIX A: Isgur-Wise Theory of Hadronic
Transitions Between Heavy-Quark States

In ref. 11, Isgur and Wise presented the general theory of hadronic transitions

between states containing a single heavy quark. This theory was presented in a

telegraphic (Physical Review Letters) style, which somewhat concealed the elegant

structure of their formalism. In this appendix, we review their theory and supply

a few additional formulae which make this basic structure more clear. We apply

these formulae in Sections 4 and 5 of this paper.

An excited state of a heavy hadron may decay to a lower-mass state containing

the same heavy quark by a strong interaction process in which light hadrons are

emitted. In the examples of this paper, the decay involves the emission of a single

pion; however, the general formalism depends only on the angular momentum of

the emitted system. To leading order as the heavy quark mass goes to infinity, the

heavy hadron does not recoil and the heavy quark does not flip its spin. Thus, we

have the following general structure: The initial and final states are composed of

a heavy quark with spin s = 1
2 , combined with light degrees of freedom of angular

momentum j for the initial state and j′ for the final state to form heavy hadrons

of total spin J and J ′. The transition from j to j′ involves the emission of a light

hadronic system of angular momentum L and does not change the heavy quark

spin. These six angular momenta form a tetrahedron, and so the rate of the process

is governed by a Wigner 6-j symbol.

More explicitly, we assign an invariant matrix element M as the strength of

the j → L+ j′ transition. Then the decay rate from any J state in the j+ s heavy
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hadron multiplet is given by decomposing the J state in the j+s basis, setting the

decay rate of the j state to be M times the appropriate Clebsch-Gordon coefficient,

and then recombining the j′ + s states into the J ′ appropriate to the final state.

Thus, the decay amplitude is given by

A((J ′J ′3 → JJ3 + Lm) =

M ·
〈
J ′J ′3

∣∣ j′j′3ss3
〉 〈
Lmj′j′3

∣∣ jj3
〉 〈
jj3ss3

∣∣ JJ3
〉
,

(A.1)

summed over the intermediate values s3, j3, j′3. This is eq. (1) of ref. 11. This

expression can be rewritten the form
[27]

A((J ′J ′3 → JJ3 + Lm) =

M · (−1)L+j′+s+J (2j + 1)1/2(2J ′ + 1)1/2

{
j′ j L

J J ′ s

}〈
LmJ ′J ′3

∣∣ JJ3
〉
,

(A.2)

involving the Wigner 6-j symbol. The dependence on J ′3,m, J3 is given by the

angular momentum Clebsch-Gordon coefficient for the overall process, as must be

so.

The formula (A.2) decouples the angular dependence of the hadronic decay

products from the dependence of the decay amplitudes on the position J in the

j + s heavy quark multiplet. Both aspects of this equation are thus clarified. The

angular distribution of the decay products is determined by the simple relation

A ∼
∑
m

YLm(Ω)
〈
LmJ ′J ′3

∣∣ JJ3
〉
, (A.3)

for fixed J3, J ′3. The total rate of hadronic decays from a state J in the j + s

multiplet depends on J through the factor

∑
J ′

(2j + 1)(2J ′ + 1)

∣∣∣∣∣
{
j′ j L

J J ′ s

}∣∣∣∣∣
2

= 1 (A.4)

by the standard orthogonality relation. Thus, the total decay rate is independent

of J , as predicted by the physical picture of Isgur and Wise.
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It is important to note, as Isgur and Wise do, that these relations apply for-

mally to the limit in which the heavy hadrons in each in the j + s multiplets are

essentially degenerate. In realistic situations, there may be important corrections

to these relations coming from kinematic factors in the amplitude. For example,

a decay which emits a pion with angular momentum L has a rate proportional to

p2L+1
π . This factor may vary significantly over the heavy quark multiplet in cases

of practical interest, for example, in the (D1, D∗2)→ (D,D∗)+π transitions consid-

ered in Section 4. In addition, the emission of high-energy pions may be suppressed

by form factors. Isgur and Wise assume a suppression factor exp[−p2
π/(1 GeV)2],

but we omit this factor for simplicity. It gives at most a 15% correction to relative

decay rates. We encourage the reader to keep this factor in mind, however, as

contributing to the theoretical uncertainty of our heavy quark predictions.

On the other hand, it is a major point of this paper that these relations also

do not apply when the splitting within a j + s multiplet is much smaller than the

hadronic widths of the heavy hadrons. The transition to this regime is discussed

in Section 4.

APPENDIX B: Partial Coherence of Heavy Hadron Decays

In this paper, we have mainly discussed heavy hadron decays in the extreme

limits Γ � ∆ or ∆ � Γ. However, it often happens that Γ and ∆ are of the

same order of magnitude, and so it is useful to have a formula which interpolates

between these two limits. To obtain such a formula, we sum coherently over the

heavy hadron states H and H∗ as distinct resonances. In the following discussion,

we will use a language in which the decay from (H,H∗) procedes by emission of

a single pion of angular momentum L. However, similar formulae apply to any

strong interaction decay.

We consider transitions from H and H∗, of spin J = j ± 1
2 , to a ground state

hadron H of spin J ′. Let Eπ be the pion energy and let EJ be the excitation energy

of the resonance: EJ = mH −mH for H, and similarly for H∗. In the heavy quark
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limit, H and H∗ have the same width Γ. Assume first that the light system which

leads to H and H ′ has angular momentum (j, j3) with respect to the fragmentation

axis, and that the heavy quark spin is initially polarized left-handed. Then the

amplitude for production of the state H in association with a pion of energy Eπ in

the angular momentum state (L,m) is

A(j3) =
∑
J

〈
LmJ ′J ′3

∣∣ JJ3
〉 AJ
Eπ − EJ + iΓ/2

〈
jj3s− 1

2

∣∣ JJ3
〉
, (B.1)

with J3 = j3 − 1
2 , m = J3 − J ′3. The factor AJ is the prefactor of the Clebsch-

Gordon coefficient in (A.2). Only the ratio of the two factors AJ is important. In

the two examples analyzed here,

A1 : A2 = 1 : +

√
3

5
(B.2)

for the (D1, D∗2)→ D∗π transition, and

A1/2 : A3/2 = 1 : +1 (B.3)

for the (Σb,Σ
∗
b)→ Λbπ transition.

To find the dependence of the pion emission rate on Eπ, we square the ampli-

tudes (B.1) and sum them incoherently with the probability distributions of the

light degrees of freedom:

dΓ

dEπ
∼
∑
j3

p(j, j3)
∣∣A(j3)

∣∣2. (B.4)

For (D1, D∗2), we use (4.1); for (Σb,Σ
∗
b), we use

p(1, j3) = (1
2w1, (1− w1), 1

2w1) . (B.5)

The resulting distribution of pion energies contains two overlapping resonances;

thus, there is some ambiguity in the assignment of observed decays to one resonance
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or the other. In constructing Fig. 3, we have arbitrarily divided the distribution

at the centroid of the (Σb,Σ
∗
b) multiplet, mC = (m(Σb) + 2m(Σ∗b))/3. Pions with

energy less than mC −m(Λb) were assigned to the Σb sample; those with greater

energy were assigned to the Σ∗b .
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FIGURE CAPTIONS

1) Angular distribution of pions in the decay D∗2 → Dπ. The data are shown,

along with theoretical predictions corresponding to w3/2 = 0 (solid curve)

and w3/2 = 0.2 (dashed curve).

2) Angular distribution of pions from the decays D∗2 → Dπ (solid), D∗2 → D∗π

(dashed), and D1 → D∗π. For D1 decays, the dashed curve denotes the ideal

case of zero mixing (and is the same as for D∗2 → D∗π), while the dotted

curve is computed for the more realistic situation (S/D)2 = 2, η = 0.45. The

curves assume the preferred value w3/2 = 0 and average over the polarization

of the final D∗’s.

3) (a) Pion energy spectrum for decays (Σb,Σ
∗
b) → Λb + π, for the case Γ =

∆ = 30 MeV. The upper curve is the total spectrum, while the lower curve is

the contribution from the Λb(−1
2) helicity state. The spectrum is computed

using the formula for dΓ/dEπ given in Appendix B. (b) The polarization of

the final Λb’s as a function of Γ/∆. We show the polarization of the full

sample of Λb’s as well as the separate contributions arising from Σb and Σ∗b

decays. These subsamples are defined carefully in Appendix B.
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