
A
T

L
-S

O
F

T
-P

R
O

C
-2

0
1
7
-0

0
6

0
7

Ja
n

u
a

ry
2

0
1

7

Production Experience with the ATLAS Event1

Service2

D Benjamin1, P Calafiura2, T Childers6, K De3, W Guan4,3

T Maeno5, P Nilsson5, V Tsulaia2, P Van Gemmeren6 and4

T Wenaus5 on behalf of the ATLAS Collaboration5

1Duke University, 134 Chapel Drive, Durham, NC 27708, USA6

2Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA7

3University of Texas at Arlington, 701 South Nedderman Drive, Arlington, TX 76019, USA8

4University of Wisconsin, 1150 University Avenue, Madison, WI 53706, USA9

5Brookhaven National Laboratory, PO Box 5000, Upton, NY 11973, USA10

6Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439, USA11

E-mail: VTsulaia@lbl.gov12

Abstract. The ATLAS Event Service (AES) has been designed and implemented for efficient13

running of ATLAS production workflows on a variety of computing platforms, ranging from14

conventional Grid sites to opportunistic, often short-lived resources, such as spot market15

commercial clouds, supercomputers and volunteer computing. The Event Service architecture16

allows real time delivery of fine grained workloads to running payload applications which process17

dispatched events or event ranges and immediately stream the outputs to highly scalable Object18

Stores. Thanks to its agile and flexible architecture the AES is currently being used by19

grid sites for assigning low priority workloads to otherwise idle computing resources; similarly20

harvesting HPC resources in an efficient back-fill mode; and massively scaling out to the 50-100k21

concurrent core level on the Amazon spot market to efficiently utilize those transient resources22

for peak production needs. Platform ports in development include ATLAS@Home (BOINC) and23

the Google Compute Engine, and a growing number of HPC platforms.24

After briefly reviewing the concept and the architecture of the Event Service, we will25

report the status and experience gained in AES commissioning and production operations on26

supercomputers, and our plans for extending ES application beyond Geant4 simulation to other27

workflows, such as reconstruction and data analysis.28

1. Introduction29

The ATLAS Experiment [1] processes its data at about 140 computing centers around the world30

at a scale of about 4M CPU-hours/day. To date it has accumulated a globally distributed data31

volume in excess of 220 Petabytes. Even with such a massive processing scale, the experiment32

is resource limited. The ATLAS physics program can benefit from applying more compute33

resources to Monte Carlo simulation, and over the next decade the situation will become even34

more critical because the LHC [2] and ATLAS upgrade programs will bring an order of magnitude35

increase in computing requirements. In view of the steady demand for new computing resources,36

it becomes very important for the experiment to not only efficiently use all CPU power available37

to it, but also to proactively leverage opportunistic computing resources.38



Opportunistic computing resources have a large potential for expanding the ATLAS39

processing pool. Such resources include cost-effective clouds such as the Amazon spot market [3],40

supercomputers (HPCs), shared Grid resources and volunteer computing (ATLAS@Home) [4].41

Porting of regular ATLAS workloads (e.g. simulation, reconstruction) to opportunistic resources42

does not come for free. In order to use them fully and efficiently ATLAS has implemented43

a fine-grained event processing system - the ATLAS Event Service (AES) [5] - in which the job44

granularity changes from input files to individual events or event ranges. The Event Service45

delivers fine-grained workload to the running event processing application (the payload) in real46

time. After processing each event range (about 10 min processing time), the Event Service writes47

the corresponding output into a separate file and saves the output file into a secure location, such48

that Event Service jobs can be terminated practically at any time with minimal data losses. This49

architecture allows the Event Service to efficiently adapt to the characteristics of opportunistic50

resources, in which a job slot lifetime is unpredictable and may be either very short or very long.51

In order to efficiently utilize CPU resources of supercomputers, we have developed an52

HPC-specific implementation of the Event Service called Yoda [6], which leverages MPI for53

running massively parallel event processing jobs on multiple HPC compute nodes simultaneously.54

Yoda has been developed and prepared for production usage on the Edison supercomputer at55

the National Energy Research Scientific Computing Center (NERSC), Berkeley, USA. Since late56

2015 Yoda has been running ATLAS simulation production workloads at NERSC and in 201657

it delivered about 20M CPU hours to the experiment.58

In section 2 of this paper we describe the concept and the architecture of the Event Service.59

Yoda is described in Section 3 and the AES commissioning status is presented in Section 4.60

During the commissioning phase of Yoda we studied various factors which can have a visible61

effect on the CPU efficiency of compute nodes. Such factors include initialization time of62

the payload application, sequential running of several payloads on a compute node within63

the same MPI-submission, and handling of fine-grained outputs. The former two factors are64

discussed in Section 5, while in Section 6 we present the results of our studies of the performance65

of Object Stores, which are used by the Event Service as an intermediate storage for fine-grained66

outputs produced by payload applications.67

2. The ATLAS Event Service68

The JEDI [7] (Job Execution and Definition Interface) extension to PanDA [8] adds new69

functionality to the PanDA server to dynamically break down tasks in a way that optimally70

utilizes available processing resources. With this capability, tasks can be broken down at71

the level of either individual events or event clusters (ranges). This functionality allowed us72

to develop the ATLAS Event Service capable to dynamically deliver to a compute node only73

that portion of the input data which will be actually processed there by the payload application.74

Input data is streamed to the compute node in real time in small portions. While the payload75

persists, it can elastically continue to consume new inputs and stream away outputs with no76

need to tailor workload execution time to resource lifetime. A schematic view of the Event77

Service workflow is shown in Figure 1.78

On the compute node the PanDA Pilot establishes a connection with the PanDA server over79

HTTP and starts a parallel event processing application (payload) in order to utilize all available80

CPU cores. The payload application in the Event Service is represented by AthenaMP [9],81

a process-parallel version of the ATLAS data processing framework Athena. AthenaMP starts82

as a serial process, which first goes through the application initialization phase, then forks several83

event processors (workers) and informs the pilot that it is ready for data processing. The pilot84

downloads event range identifiers (strings) from the PanDA server and delivers them in real85

time to the running AthenaMP application, which assigns them to its workers on a first-come,86

first-served basis. The worker uses the event range string to locate the corresponding input file87



Figure 1. Schematic view of the Event Service

and find event range data within the file. After processing the given event range, the worker88

writes the output into a separate file on the local disk and declares its readiness to process89

another event range. AthenaMP reports back to the Pilot the locations of output files produced90

by its workers and the Pilot takes care of streaming the outputs in real time to a remote storage91

system (Object Store), and informing the PanDA server of the event range completion status.92

In the present architecture each AthenaMP worker individually reads input event data, which93

couples data reading and its associated latency with the event processing. In the long term we94

plan to make data retrieval across the WAN fully asynchronous to the processing in order to95

avoid inefficiencies from WAN latency. Data access will be mediated by the Event Streaming96

Service (ESS), represented by the red box on Figure 1. ESS is not yet part of the deployed97

Event Service. It is in development and is expected to provide us with additional efficiency98

measures such as utilizing local cache preferentially over WAN access, and marshaling data sent99

over the WAN to limit data transferred to what is actually needed by the payload. An important100

step towards design and implementation of the ESS is the development and testing of a first101

prototype of asynchronous data pre-fetching on compute nodes.102

3. Yoda - Event Service on HPC103

Supercomputers are one of the important deployment platforms for the Event Service. However,104

compute nodes on most HPC machines are not connected to the outside world over WAN. This105

limitation makes it impossible to deploy the conventional Event Service on such supercomputer106

systems because in the AES architecture the PanDA Pilot running on a compute node must107

communicate with central services (e.g. job brokerage and data aggregation facilities) over108

the network. In order to overcome this limitation we have developed an HPC-specific109

implementation of the Event Service, called Yoda, which leverages MPI to run on multiple110

compute nodes simultaneously. A schematic view of Yoda is presented on Figure 2.111

Yoda is an MPI application which gets submitted to the HPC batch system by a specialized112

component of the PanDA Pilot running on the HPC edge node, i.e. the node which is connected113

to the WAN. The Pilot also downloads input data to the HPC Shared File System, gets job114



Figure 2. Schematic view of Yoda

definitions from the PanDA server and streams out the outputs produced by Yoda jobs to115

the Object Store. Yoda applications implement the master-slave architecture in which rank 0116

is the master and all other ranks are the slaves. For the development of Yoda ranks we reused117

the code of the conventional Event Service and implemented lightweight versions of PanDA118

JEDI (hence Yoda, a diminutive Jedi) and the PanDA Pilot (Droid). Yoda (rank 0) orchestrates119

the entire MPI-application by continuously distributing fine-grained workloads to Droids (rank120

N, N!=0) and collecting their outputs. On a compute node Droid starts the payload application121

and delivers the workload to it exactly the same way the PanDA Pilot does it on compute nodes122

of the conventional Event Service applications. This allows us to run the same configuration of123

AthenaMP payload on HPC and on other Event Service platforms such as the Grid and Clouds.124

The outputs produced by AthenaMP on the compute nodes are temporarily stored to the HPC125

Shared File System until the Pilot streams them out to Object Stores.126

4. Event Service commissioning127

We have chosen ATLAS Geant4 Simulation [10, 11] as a first use-case for the Event Service in128

general and for Yoda in particular. Simulation jobs use a substantial fraction of the ATLAS CPU129

budget on the Grid which makes it very beneficial for the experiment to offload its simulation130

to other computing platforms such as opportunistic resources and HPCs. On the other hand,131

simulation jobs are CPU-intensive with minimal I/O requirements and relatively simple handling132

of in-file metadata, characteristics which allowed us to make rapid progress in the development133

of the Event Service and Yoda components and to begin commissioning the Event Service for134

production usage.135

Until recently NERSC supercomputers (Edison and Cori Phase I) had been our primary136

platforms for the development and commissioning of the AES. We started to run Simulation137

production workloads with the Event Service (Yoda) on the Edison HPC in late 2015, and in138

2016 Yoda delivered about 20M CPU-hours to the ATLAS collaboration. Also in late 2015139

we successfully scaled Event Service up to 50,000 concurrent processors on the Amazon Spot140

Market cloud. In Summer 2016 the Event Service commissioning effort was shifted over to Grid141

sites and it has been showing steady progress since then. Event Service deployment on volunteer142

computing (ATLAS@Home) has not progressed significantly due to manpower shortages.143



5. Performance studies144

During the commissioning of Yoda on the Edison supercomputer we studied various factors145

which can have a visible effect on the CPU efficiency of Yoda ranks. In this section we discuss146

payload initialization time and sequential running of several payloads on a compute node within147

the same MPI submission.148

5.1. Payload initialization149

During its initialization step AthenaMP reads a large number of files from the disk. These files150

include python scripts, shared libraries, XML configuration files, static replicas of the geometry151

and conditions database, etc. If the ATLAS offline software release is installed on the HPC152

shared file system, then the concurrent reading of software installation files by many compute153

nodes during the payload initialization phase can lead to a serious performance bottleneck.154

For example, we have observed rather poor scaling of AthenaMP initialization time on Edison155

compute nodes when all instances of AthenaMP were accessing a software release installed on156

Edison’s scratch file system (Lustre).157

In order to work around this problem we package the entire ATLAS software release into158

a single tarball. At the beginning of its execution the Droid first unpacks this tarball into159

the memory-resident disk on the compute node, then it starts AthenaMP and lets it initialize160

on the local copy of the software release. With this approach we eliminate concurrent reading of161

the shared release installation by all Yoda payloads which considerably speeds up162

the initialization phase of the entire Yoda application.163

Although with this mechanism we achieved very good scaling up to 1,000 concurrent starts,164

the preparation of software release tarballs requires considerable manual effort and so is not165

considered sustainable in the long run. On the Cori Phase I supercomputer we studied166

AthenaMP initialization performance scaling by installing software releases on different systems167

including Lustre, Burst Buffer [12] and Shifter [13]. So far the results obtained with the Shifter168

system look the most promising.169

5.2. Sequential running of multiple payloads on the same compute node170

Before submitting Yoda jobs to the HPC batch system, the Pilot first needs to get the workload171

from a PanDA production task. This mechanism is illustrated by Figure 3. PanDA tasks172

consist of many jobs and each job requires processing of many events. When a new task gets173

defined in PanDA all its jobs contain the same number of events. Depending on the number174

of ranks (compute nodes) allocated for a given Yoda job, the Pilot decides how many PanDA175

jobs should be processed by this MPI-job and passes this information over to Yoda. Yoda then176

assigns each PanDA job to one or more ranks. The strategy here is to keep each compute node177

busy for the entire lifetime of the MPI-job. In cases when Yoda does not have enough time to178

process all events from a PanDA job, all leftover events are returned back to the PanDA server,179

which generates new PanDA jobs containing only these leftover events. This mechanism leads to180

the creation of many PanDA jobs with a number of events less than the task’s default number181

per job.182

If Yoda has to process PanDA jobs with a small number of events, it assigns several such183

jobs to a single compute node. The Droid running on this compute node deals with multiple184

PanDA jobs in sequence, which means several instances of AthenaMP are started and stopped185

by the Droid during its lifetime. While AthenaMP is going through the initialization phase,186

all CPU cores on the node are idling and in this way significant CPU time is wasted. Dealing187

with multiple PanDA jobs within a single PanDA task in this way quite often leads to rather188

poor overall CPU efficiency of Yoda jobs. In the future we plan to overcome this problem189

by implementing a new concept of Jumbo Jobs in PanDA. With Jumbo Jobs each production190

task in PanDA will be represented by a single PanDA job. Thus, Yoda will not have to deal191



Figure 3. Yoda dealing with multiple PanDA jobs

Figure 4. CPU efficiency of Yoda compute nodes

with multiple PanDA jobs and no time will be wasted initializing more than one instance of192

AthenaMP on a single compute node.193

5.3. CPU efficiency of Yoda compute nodes194

Figure 4 shows three time-line plots demonstrating CPU efficiency of Yoda compute nodes.195

These plots were obtained from Yoda test runs on Edison. The X axis of each plot shows196

the wall time in minutes since the beginning of Droid execution on the compute node, and197

each bin on the Y axis corresponds to one CPU core (Edison compute nodes have 24 physical198

CPU cores). The white color on the plot means the core is idle, turquoise means the core is199

processing an event and red means event processing was started but not finished for some reason200

(e.g. segmentation fault occurred, or the job was killed because it reached its wall time limit).201

• The plot on the left is an example of poor CPU efficiency caused by the very long202

initialization time of AthenaMP;203

• The plot in the middle is an example of poor CPU efficiency caused by running more than204

one PanDA job on a single compute node;205

• The plot on the right is an example of good CPU efficiency: just one PanDA job runs on206

the compute node, initialization is fast and the number of events is enough to keep the node207

busy for the entire job lifetime.208



Figure 5. OS bandwidth dependency on the object size

6. Interaction with Object Stores209

Intermediate output files produced by the Event Service payload applications are shipped in real210

time to the Object Stores (OS). PanDA then generates specialized jobs which merge these files211

into final outputs. Such merge jobs usually run on Grid sites. The initial implementation of212

Yoda was sending event range outputs directly from Edison compute nodes to the Object Store213

at BNL. The stage-out process was coupled with the event processing, therefore data transfer214

issues (e.g. network connection problems, slow file upload) were affecting the CPU efficiency215

of Yoda compute nodes. To avoid these problems we decoupled data transfer to the OS from216

event processing on the compute nodes, making output uploading the responsibility of the Pilot,217

which runs on the HPC edge node.218

As part of the Event Service commissioning at NERSC we studied the Object Store219

performance by running a series of tests which involved uploading of objects of different size to220

the CEPH OS at BNL. We observed that the clients can overload the OS with various errors221

occurring including authentication errors, inability to connect to a bucket, inability to write an222

object, long running writer, etc. This suggests that either the client software should have retry223

and perhaps queuing capabilities, or we need a server side system that can regulate OS writes.224

Another important observation is that we can achieve much higher bandwidth by increasing225

the object sizes. This is demonstrated on Figure 5, which shows that by grouping 10-50 events226

into a single transfer (transfer size 6.8-34 MB) we achieved 950MB/s upload speed vs 125MB/s227

for single event transfers (transfer size 0.68 MB).228

7. Summary229

The Event Service has been commissioned to run ATLAS Geant4 Simulation production on230

HPC systems. The commissioning process on Grid sites is well underway and other deployment231

platforms (e.g. clouds, volunteer computing) are expected to follow.232

Several important lessons were learned during the development and testing of Yoda at233

NERSC:234

(i) Primary causes of sub-optimal usage of CPU resources on the compute nodes are slow235

initialization of the payload and the fact that for the time being Yoda must combine multiple236

PanDA jobs into a single MPI-submission;237

(ii) By staging out large numbers of small files we can saturate Object Stores;238



(iii) Data stage out must be decoupled from event processing.239

By addressing the issues listed above we were able to successfully scale production Yoda jobs240

up to 700 compute nodes (almost 17,000 cores) on Edison HPC at NERSC.241

In the future we plan to further develop Event Service functionality by implementing242

the Event Streaming Service. Also we will be applying the Event Service to other ATLAS243

production workflows beyond Geant4 Simulation (e.g. Reconstruction and Analysis) with244

the ultimate goal to make the Event Service a unified workflow architecture across all ATLAS245

computing platforms.246

8. Acknowledgments247

The results presented in this paper have been obtained by using resources of the National Energy248

Research Scientific Computing Center, a DOE Office of Science User Facility supported by249

the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-250

05CH11231.251

References252

[1] ATLAS Collaboration, 2008 JINST 3 S08003253

[2] L. Evans and P. Bryant LHC Machine, 2008 JINST 3 S08001254

[3] The Amazon Elastic Computing Cloud, http://aws.amazon.com/ec2/255

[4] Adam-Bourdarios C et al. on behalf of the ATLAS Collaboration 2015 ATLAS@Home: Harnessing Volunteer256

Computing for HEP J. Phys.: Conf. Ser. 664 022009257

[5] Calafiura P et al. on behalf of the ATLAS Collaboration 2015 The ATLAS Event Service: A new approach258

to event processing J. Phys.: Conf. Ser. 664 062065259

[6] Calafiura P et al. on behalf of the ATLAS Collaboration 2015 Fine grained event processing on HPCs with260

the ATLAS Yoda system J. Phys.: Conf. Ser. 664 092025261

[7] De K, Golubkov D, Klimentov A, Potekhin M and Vaniachine A on behalf of the ATLAS Collaboration 2014262

Task Management in the New ATLAS Production System J. Phys.: Conf. Series 513 032078263

[8] Maeno T for the ATLAS Collaboration 2008 PanDA: Distributed production and distributed analysis system264

for ATLAS J. Phys.: Conf. Series 119 062036265

[9] Calafiura P et al. on behalf of the ATLAS Collaboration 2015 Running ATLAS workloads within massively266

parallel distributed applications using Athena Multi-Process framework (AthenaMP) J. Phys.: Conf. Ser.267

664 072050268

[10] GEANT4 Collaboration, S. Agostinelli et al., 2003 Nucl. Instrum. Meth. A 506 250269

[11] ATLAS Collaboration 2010 ATLAS Simulation Infrastructure Eur. Phys. J C70 823270

[12] Bhimji W et al. 2016 Extreme I/O on HPC for HEP using the Burst Buffer at NERSC. Proceedings of the271

CHEP2016 conference J. Phys.: Conf. Ser.272

[13] Gerhardt L et al. 2016 Using Shifter to Bring Containerized CVMFS to HPC. Proceedings of the CHEP2016273

conference J. Phys.: Conf. Ser.274


