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Abstract

Current concept, development, and testing applications in production concerning Cyber-Physical Systems (CPS), Industry 4.0
(I40), and Internet of Things (IoT) are mainly addressing fully autonomous systems, fostered by an increase in available
technologies regarding distributed decision-making, sensors, and actuators for robotics systems. This is applied also to produc-
tion logistics settings with a multitude of transport tasks, e.g., between warehousing or material supply stations and production
locations within larger production sites as for example in the automotive industry. In most cases, mixed environments where
automated systems and humans collaborate (e.g., cobots) are not in the center of analysis and development endeavors although
the worker’s adoption and acceptance of new technologies are of crucial relevance. From an interdisciplinary research perspec-
tive, this constitutes an important research gap, as the future challenges for successful automated systems will rely mainly on
human-computer interaction (HCI) in connection with an efficient collaboration between motivated workers, automated robotics,
and transportation systems.We develop a HCI efficiency description in production logistics based on an interdisciplinary analysis
consisting of three interdependent parts: (i) a production logistics literature review and process study, (ii) a computer science
literature review and simulation study for an existing autonomous traffic control algorithm applicable to production logistics

Purpose
This paper addresses three approaches determined to analyze the crucial
role of human interaction in automated environments in production
logistics and Industry 4.0 settings. The methods stem from different
disciplines as successful automation concepts also have to consider
computer science, economics and work science perspectives.
Contribution
We answer the question of human intuition and its development within a
digitalized production logistics setting as well as automated algorithm
reaction to human actions from an interdisciplinary perspective. So far,
existing research contributions are mainly focusing on technical aspects
and automation concepts as solely computer science optimization aspects.
However, feasible and sustainable concepts for automated production,
e.g., within production transport will only work out if the human factor
is included as for a long time to come production environments will be
mixed settings of robotics and human workers. Thus, we develop a HCI
efficiency description in production logistics for future research and
business applications.
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settings with the specific inclusion of human actors, and (iii) a work science analysis for automation settings referring to
theoretical foundations and empirical findings regarding the management of workers in digital work settings. We conclude with
practical implications and discuss avenues for future research and business applications.

Keywords Production logistics . HCI . Cobots . Autonomous traffic control

1 Introduction

Production concepts and technology developments concerning
automation, Cyber-Physical Systems (CPS), Industry 4.0 (I40),
and Internet of Things (IoT) are addressing fully autonomous
systems, fostered by an increase in available technologies re-
garding distributed decision-making, sensors, and actuators for
robotics systems [1–3]. For specific production logistics set-
tings with a multitude of transport tasks, e.g., between
warehousing or material supply stations and production loca-
tions within larger production sites as for example in the auto-
motive industry, this also has important implications [4–8]. In
most cases, mixed environments where automated systems and
humans collaborate (e.g., cobots) are not in the center of such
analysis and development endeavors. From an interdisciplinary
research perspective, this constitutes an important research gap,
as the future challenges for successful automated systems will
rely on human-computer interaction (HCI) and an efficient,
successful collaboration between competent workers and auto-
mated robotics and transportation systems [9–12].

We derive a HCI efficiency description for production logis-
tics based on an interdisciplinary analysis consisting out of
three interdependent parts: (i) a production logistics literature
review and process study, (ii) a computer science literature
review and simulation for an existing decentral autonomous
traffic control algorithm applicable to production logistics set-
tings with the specific adaption to HCI, and (iii) a work science
analysis for automation settings referring to theoretical founda-
tions and empirical findings regarding the management of
workers in digitalized work settings. A conceptual synthesis
is deriving a generalized concept for production logistics re-
garding HCI for future research and business applications from
these inputs. The three applied approaches are determined to
analyze the crucial role of human interaction in automated en-
vironments in production logistics and I40 settings. The
methods stem from different disciplines as successful automa-
tion concepts also have to consider computer sciences, eco-
nomics, and work science perspectives. Existing research con-
tributions are mainly addressing technical aspects and automa-
tion concepts as solely computer science optimization aspects.
Overall feasible and sustainable concepts for automated pro-
duction, e.g., within production transport, will only work out if
the human factor is included as for a long time to come pro-
duction environments will be mixed settings of robotics and
human workers [13–15]. For such an interdisciplinary analysis
and concept development, we address the question of human

intuition and its development within a digitalized production
logistics setting as well as automated algorithm reaction to
human actions is newly included into the analysis.

The specific contribution of this paper is to emphasize the
value of an interdisciplinary approach to HCI settings in pro-
duction logistics. This is represented by the objective to derive a
HCI efficiency description for production logistics based on the
three areas of production logistics management, computer sci-
ence, and work science. This is enhanced by a production lo-
gistics traffic control problem exemplified in a simulation and
including human as well as automated robot actors, outlining
also a hybrid decision model with human-robot interaction.

This paper is structured as follows: Section 2 is outlining a
literature review as well as a process study regarding produc-
tion logistics as a preamble for questions of automation and
HCI in production. Section 3 is presenting a computer science
literature review for HCI as well as a simulation addressing a
typical production logistics traffic coordination problem like,
e.g., for automated and human-operated forklift trucks in a
larger production hall complex. Adding on that, Sect. 4 is
outlining the state of the art in HCI from a work science and
human resources perspective, providing further inputs to-
wards a comprehensive HCI model explained in detail in
Sect. 5. Finally, Sect. 6 is describing a conclusion and research
outlook regarding HCI in production logistics.

2 Automation and HCI in production logistics

2.1 State-of-the-art and current developments

Automation and application of artificial intelligence (AI) are a rife
topic in production, transportation, and logistics—from autono-
mous cars and trucks to ergonomic enhancements of workers in
production process handling and picking for example [16–20].
Manufacturing and productionmanagement changed over the last
decades, e.g., with the advent of cheap sensors and actuators
communicatingwithin the Internet, enabling the real-time connec-
tion between systems, materials, machines, tools, workers, cus-
tomers, and products as the IoT [3, 21, 22]. The resulting data
volume (Big Data) generated by all connected objects represents
the new rawmaterial of our time, changingmany businessmodels
and environments. IoT allows for a production paradigm with
digital customer involvement from the development and design
phase [7, 23–25]. At the same time, market demand requires high
volumes of individual products, bearing on I40 with a
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transformation of industrial production by merging the Internet
and information and communication technologies with traditional
physical manufacturing processes [20, 26, 27].

With I40, new smart factories grounded on the manufactur-
ing and assembly process digitalization are expected. Such
factories are characterized by a high production flexibility
through the use of reconfigurable machines that enable a per-
sonalized production in batches as small as lot size one [28,
29]. A remarkable opportunity to target these goals is the
development of a brand-new generation of manufacturing
and assembly systems implementing the I40 principles to pro-
duction processes (Fig. 1).

Besides that, complex production systems and strategies
like, e.g., make-to-order, require advanced supply and logistics
concepts as high-volume stock keeping is not feasible for such
production strategies and customer demands regarding quality
and delivery time have to be met nevertheless [20, 30, 31].
Especially the automotive industry has been a strong leader
and innovator in applying new automation and enhancement
technologies. This has been true for logistics concepts like just-
in-time or just-in-sequence in the past and is still true today for
innovations such as I40 and CPS [25–27, 32, 33].

In order to shed light on the actual business practice devel-
opments in production logistics as well as challenges and hur-
dles in automation as requested by I40 concepts, the following
section is outlining a current process study of a mid-size firm.
The inputs are also essential in terms of the derived HCI op-
timization model in the later part of the paper.

2.2 Example case

The example case provided here is addressing a mid-size lo-
gistics company. The company has about 200 employees and

is strongly innovating company processes, especially in the
areas of order picking and logistics. The company is involved
in many production logistics settings for larger companies in
retail and manufacturing and has a focus on automation as
workers still handle heavy materials and products. On a site
area of 40,000 m2, the workers perform typical production
preparation processes like re- and co-packing. Usually, a wide
variety of specific product and process requirements are de-
manding high qualification levels of the included workers. For
example, they have to keep meticulously the required quantity
and quality as well as scheduling and sequence profiles. In
order to allow for comprehensive tracking and tracing of all
activities, they use support systems to document all move-
ments and actions, e.g., with barcode scanning or voice ap-
proval of used parts. Moreover, they rely on fully automated
processes, e.g., for securing transport items within the site and
towards other production areas. Furthermore, the company
applies automation in order to safeguard workers regarding
hard working conditions, with high ergonomic challenges es-
pecially for the back during lifting activities as well as during
repeated monotonous handling activities performed many
thousand times a day. Automation and robot support in this
area is also helping the company to enlarge the potential work-
er pool as human resources are scarce and there are not many
people willing to work in production logistics. Therefore, this
study reports and discusses the hurdles and experiences with
additional automation steps and concepts, also in order to de-
rive further insights for a generalized HCImodel in production
logistics.

As specif ic hurdles for automation steps and
implementations, we identify the following items regarding the
included workers: (i) processes and technology: the company
tested several automation technologies together with qualified

Fig. 1 Infographics regarding important trends
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suppliers and changed the addressed processes accordingly. This
included height adjustment for manual processes, automated
lifting devices as well as automated transportation items.
Although they implemented an intensive change management
with integration of workers and process analysis and adaption in
many cases, the workers used automated support only for a short
time before traditional behavior and processes settled in again:
though initial acceptance and use were high, later application
after some week declined rapidly. (ii) Acceptance: although the
company did not apply automation throughout or followed
through, acceptance and motivation for optimization in general
with workers increased. This was an important lesson learned as
they integrated workers in projects and feedback loops regarding
production logistics process optimization. (iii) Competence: the
company recognized in addition, that workers—though highly
motivated—were not adequately qualified, e.g., regarding ergo-
nomics in automation steps or decision speed and competence.
Therefore, workers structurally underestimated long-term health
and productivity effects of automation investments, though es-
pecially health support and improvement are in their own vital
interest.

Altogether, the example process described shows that in-
cluding workers in the change management process, allowing
for an extended test and implementation period as well as top
management commitment is crucial for successful automa-
tion. This is in line with traditional change management con-
cepts. In addition to these internal factors, external factors
such as customer requirements and technical or market influ-
ences are important for automation changes and have to be
managed and included sensibly too. For example, the range of
required variants and sequences from the demand side may
well restrict the technically feasible automation options avail-
able, which is a crucial result before entering expensive
change processes towards automation.

As benefits of automation steps and implementations, the
example case reveals following points regarding the included
workers: (i) motivation: automation and technology applica-
tion can enhance the engagement and motivation of workers
considerably. This is explained due to general technology ad-
vance also in private contexts and workers are on average very
motivated to support and experience such developments, most
of the times improving their own knowledge and capabilities.
(ii) Work environment: technical advances can also be used to
improve the general work environment, e.g., in order to in-
crease the attractiveness of logistics jobs and to recruit new
personnel. (iii) Simplicity: simple solutions are superior to
more complex variations as the feasibility for workers to com-
prehend those changes is higher. This is for example the case
with modern-day barcode scanners, where handheld models
without cables are available but the process would be more
complex due to the risk of mistakes and wrong scheduling.

In total, the bottom line of the specific company experi-
ences with automation steps can be formulated as follows:

hurdles and benefits are often addressing the same questions
or areas like for example worker motivation and acceptance.
The time perspective is important, meaning allowing for long
test phases and process adjustments before a final steady state
implementation is planned and expected—and also the time
horizon for expected benefits as, e.g., regarding ergonomic
health improvements or decision time improvements are ob-
vious only after a certain period and still enhance overall pro-
ductivity in production logistics significantly. Therefore, pos-
itive worker acceptance in HCI contexts can be expected from
this business practice experience if workers are competent to
understand changes, can see short- and long-term benefits,
and solutions are kept simple where feasible.

In most production settings, solutions are connected to the
state-of-the-art in computer science and robot technology as
well as artificial intelligence applications, which are outlined
in the following section in order to complement this first
perspective.

3 Computer science perspective on HCI

3.1 State-of-the-art

The ongoing development in recent years brought a larger
paradigm shift to HCI: new sensors allow for new interaction
modalities.1 While mobile devices recently introduced the
most notable change (touch and gesture-based interaction
evolved into the main interaction modality), the advances in
machine learning, cognitive computing and sensor technology
will have a larger impact on how we interact with machines.
We also see constant improvement in the field of language and
speech processing. We will now review recent advances in
HCI with regard to autonomous systems and then focus on
how to create the interaction with such systems. It should be
noted that we use the terms autonomous systems and robots
synonymously.

Sheridan [35] reviews the status of Human-Robot-
Interaction (HRI) in recent times and proposes a set of differ-
ent challenges that need to be solved for proper interaction
with autonomous systems. For the sake of brevity, we will
focus on three topics that Sheridan [35] identifies: (i) tasks
must be clearly divided between humans and robots, i.e.,
when developing the system, we must explicitly define which
tasks should be carried out by humans and/or autonomous
systems. (ii) A direct consequence of a robot’s tasks is its
physical form, whose definition itself is a major challenge.
Furthermore, possible consequences of robot actions must
be determined to avoid negative outcomes. Finally, (iii)

1 A modality is a way of expressing thoughts; in the context of HCI a way to
interact with a machine, e.g. via speech, keyboard, gestures, etc. [34]. Other
authors use the term interaction channel.
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humans need a mental model of the robot’s capabilities and
vice versa—also robot’s need to understand human actions
and reactions.

Furthermore, research suggests that humans feel better
when autonomous machines explain their actions [36] and
communicate their intents [65]. For example, different modal-
ities can be used to inform pedestrians about an autonomous
vehicle’s planned actions [38], which is important because
pedestrians tend to rely on direct communication with drivers.
Autonomous systems should also incorporate methods for
signaling problems to humans, especially due to the increasing
reliance on a robot’s action. Users seem to perceive robots
communicating failures and problems as more trustworthy
[39]. Also, Honig, Oron-Gilad [40] point out that recent re-
search tends focus on technical reliability of the autonomous
system and do not take problems resulting from error-prone
interaction between human and machine into account. The
authors suggest a taxonomy specifically distinguishing be-
tween technical failures and interaction failures; the latter in-
cluding interaction between autonomous systems and humans
as well as between different autonomous systems.

Alongside the new HCI capabilities, a new quality aspect
for applications emerged: the User Experience (UX). Users
today expect applications not only to function well, but to be
fun and enjoyable, too.While nowidely accepted definition of
UX exists, most acknowledge it to be a highly subjective
matter and that interaction with the application and context
of use play a dominant role [41]. Hassenzahl, Tractinsky
[42] describe three UX aspects derived from scientific litera-
ture: technology is more than a mere tool; the user’s context
and internal state are important; and each user has an individ-
ual, subjective sense of good UX. Their result is that these
three cannot be separated, but overlap, and they conclude that
HCI surpasses the pure usefulness of applications and lies at
the core of a good UX. Also, Hinckley, Wigdor [43] and
Watzman, Re [44] define UX with a special focus on HCI.
Furthermore, the authors emphasize that constant testing and
evaluation with users are crucial to achieve a good UX.

However, creating a suitable UX is a challenging task [45].
While their work not directly relates to autonomous systems,
the underlying assumptions are as well valid: designing UX
implies to specifically define UX goals. In their example, they
define two seemingly contradicting UX goals: using the sys-
tem feels like magic and sense of control over the system.
While the former should surprise users, the latter implies that
the system should react as expected. Both UX goals can be
easily mapped to environments with autonomous systems:
while they most certainly feel like magic—some mechanical
thing doing something on its own—humans may still need to
knowwhy systems do things to not lose the feeling of being in
control.

Tonkin et al. [46] describe a method to develop UX in HRI-
application based on LeanUX [47] and Agile Science [48].

While the authors’ focus is on creating applications using
humanoid robots, their approach can be translated to any ap-
plication involving autonomous systems. Essentially, they ex-
tend classic UX design with two additional steps: personality
design and interaction design. Personality design involves
giving robots a demeanor depending on the desired UX. In
simple terms, designers must define how autonomous ma-
chines react to humans. Are they submissive to humans or
competitive (which could be used for, e.g., serious gaming
in working environments)? Humans tend to assign personali-
ties to humanoid robots [49], thus specifically integrating per-
sonality design into the UX design process supports creating
an appropriate UX. In any case, the designed personality must
match the desired task, context, and working environment.
Besides personality, Tonkin et al. [46] suggest to specifically
design interaction with the robot. As described before, inter-
action design is an important part of UX design and thus must
be specifically tailored to the task at hand. In the approach of
Tonkin et al. [46], UX designers should specifically model the
robot’s behavior for each activity, location, and task.

The UX always depends on technical constraints defined
by the used hard- and software, essentially creating a natural
threshold for possible interaction. While we should of course
aim for the best UX, we need to settle for the optimal UX. UX
development thus requires a cross-functional team having a
task-oriented design and a technology-oriented engineering
perspective to determine the best suitable compromise be-
tween desirable UX and possible technical capabilities.
Designers and engineers, however, tend to develop different
solutions [50] and have different views on desired tasks and
systems: while designers focus on the developed task and the
user’s perspective—a top-down view—engineers tend to take
technical capabilities more into account—a bottom-up view
[51]. Engineers thus tend to create systems based on existing
possibilities (essentially adapting the user to the system),
while designers tend to generate alternative ideas (adapting
the system to the user’s needs). Both approaches have their
advantages and disadvantages, but in an optimal development
they cannot exist without each other and both perspectives
must be considered to find the optimal solution—as Tonkin
et al. [46] suggest, UX development requires cross-functional
teams.

Unfortunately, UX cannot be measured, thus iterative de-
velopment steps and constant testing are necessary [52]. It is
furthermore decisive to identify possible sources of critical
UX and optimize the affected components. Steinfeld et al.
[53] describe a set of metrics for HRI that are still used to
evaluate autonomous systems [54] of which three biasing ef-
fects might influence the interaction’s effectiveness and per-
formance: communications, robot response, and user.
Especially the latter emphasizes that besides technical capa-
bilities a deeper understanding of the human’s role within the
system is necessary to create an acceptable UX. Steinfeld et al.
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[53] point to Scholtz [55], who differentiates between five
possible roles for humans: supervisor, operator, mechanic,
teammate, and bystander. While each of them might interact
with the system, their tasks and requirements differ, thus their
respective UX and forms of interaction must be considered.

In our current work, we are focusing on the teammate and
bystander roles. Both require humans and autonomous ma-
chines to consider each other and maybe—depending on the
underlying approach to cooperation—to find consensus for
actions. We developed a consensus algorithm for purely au-
tonomous systems that we will subsequently extend to inte-
grate humans.

3.2 Experimental HCI setting

Autonomous systems make decisions and act independently
in their environment. However, this does not exclude them
from communication with other systems operating in the same
environment. In the most challenging case, this can range up
to cooperation in order to achieve overall goals, for example in
a warehouse setting [e.g., 56] or to investigate serious acci-
dents [57]. However, the need for communication and nego-
tiation begins as soon as there is potential access to shared and
limited resources in the environment. Communication can be
solved differently, either centralized [e.g., 58, 59] or distribut-
ed [e.g., 60]. The term resource is not limited to concrete
objects, but is broadly defined in this context and includes
everything whose allocation can lead to a potential conflict,
such as locations on which a system moves or wants to store
something. Especially in logistics, this results in a multitude of
situations in which autonomous systems must encounter each
other and find joint solutions. In a work environment in which
humans and robots increasingly work together, this also af-
fects humans as soon as they act in areas that are also used by
autonomous systems. In the following, we demonstrate an
example application to avoid collisions on intersecting paths
to show how a system for decentralized consensus finding can
look from a technical point of view and discuss the challenges
that exist to integrate people into such a system. We also
structure the solution space and discuss possible solutions.

3.2.1 Finding consensus in decentralized autonomous

systems

Decentralized decision-making means that there is no central
system connected to all autonomous systems in the environ-
ment and makes higher-level decisions to coordinate them and
resolve possible conflicts. This is first of all a question of the
system design and has to consider different advantages and
disadvantages. A centralized approach concentrates complex-
ity since decisions are only made in one (logical) place. This
allows to avoid simply and effectively many classic problems
such as concurrency. At the same time, an entity has

comprehensive knowledge of the situation and can derive
suitable solutions. Since all autonomous systems are linked
to the entity, this automatically prevents decisions which
might lead to a conflict instead of a solution. On the other
hand, centralization leads to difficulties compared to
decentralized communication infrastructures in ensuring, for
example, reliability [61]. If the controlling node of the system
fails, the entire system no longer works. A fallback mecha-
nism must always be installed in this case to safeguard the
system’s functionality. This is particularly important in sys-
tems that interact with a real environment in which humans
act, too. For larger solutions, the scalability of the system is
often a problem, since the computing effort increases expo-
nentially with the number of autonomous units. Imagine, for
example, a traffic control system for all vehicles in just one
city area. One solution is to reduce the area of responsibility of
a central unit to such an extent that its complexity remains
manageable. For traffic control, for example, this can be done
by restricting the geographical area of responsibility. Then, in
turn, the entire infrastructure must be upgraded to such an
extent that a central instance is available for the whole area
at every possible point of conflict, which will handle the con-
trol. This also applies to areas that are rarely or only potential-
ly affected, which quickly becomes a cost factor for such
architectural decisions in real world applications.

A possible solution is not to delegate the decision-making
process to external nodes, but to rely on the autonomous sys-
tems themselves. This removes the need for area-covering
control systems, since in case of a conflict the systems in-
volved have the necessary logic in place. It also increases
security inmeans of reliability and latency [61], since conflicts
can be solved independently and regardless of the reliability of
a central system at any time. However, there may be situations
in which no participant has a complete overview of the overall
situation, instead only has partial knowledge. This also means
that there is no single central instance that can guarantee at all
times that all conflicts in the overall system are handled prop-
erly. It is in the responsibility of a group of nodes, their com-
munication, and the emergent behavior, which is typical for
such systems. This also complicates the system development,
since logic and the guarantee of the correctness of the system
can no longer be carried out locally [37], instead completely
distributed over a set of autonomous systems, whereby the
exact composition of the systems need not necessarily be
known at the time of development. This is often the case, for
example, in CPS [24].

To simplify the engineering of such decentralized ap-
proaches, we have developed a pattern for designing a suitably
decentralized consensus algorithm. This is particularly appli-
cable for security-critical systems, as it prefers communication
and propagation of information mainly at conflict-free times
and, thus, tries to minimize the communication effort at the
time of danger or ideally to avoid it completely in order to be
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as independent as possible from external influences such as
network latency. Figure 2 shows the design pattern behind.
The system is divided into two states. The first one is the
normal state in which the system exchanges status information
with other systems. These are only the systems in which there
is likely to be a conflict in the near future, i.e., only a subset of
all systems in the environment. Any discover protocols or
distributed registries can be used to find them. Each system
is exclusively responsible for its own future conflict situations.
Since at least two systems have to be involved in each case,
appropriate redundancy is guaranteed. If an expected future
conflict is calculated from the information exchanged, the
system switches to the conflict resolution state. Here rules
are stored, which calculate a reaction directly from the previ-
ously exchanged data. These must be designed in such a way
that they come to the same solution regardless of which of the
conflicting systems they are running. This does not mean that
both choose the same reaction, but that no one determines a
reaction that the other does not expect. The following example
of a decentralized intersection control system for autonomous
vehicles shows what a practical example looks like.

3.2.2 Prototype for collision avoidance in autonomous traffic

Our example scenario describes a decentralized system for
collision-free control of intersecting travel paths of autono-
mous systems [37]. The general problem can be applied to
autonomous systems in road traffic, warehouses, or industrial
areas.We assume that all involved autonomous vehicles know
their position, intended travel path, and current speed to deter-
mine estimated travel times into potentially dangerous zones
with possible collisions (henceforth: danger zones) indepen-
dently. While we focus on fully autonomous vehicles, the
same principles apply to automated guided vehicles as well

if their paths intersect, with the constraint that their movement
options might be strictly pre-defined.

The general prototype works as follows. All vehicles con-
tinuously store their own data in a distributed hash table. The
data includes current position, planned route, and planned
speed. The key is derived from the vehicle’s local position,
which enables other vehicles to quickly find all information
about relevant vehicles in the surrounding area without having
to query all possible vehicles. Based on this information, each
vehicle can now check independently in advance whether a
collision is to be expected in the future and with whom. If an
impending collision is detected, the respective vehicle goes
into a state for danger prevention. The practical problem here
is that both involved vehicles could decide to brake in order to
avoid a collision independently. As a result, the collision mo-
ment only shifts, but the problem itself is not resolved. A joint
consensus is necessary, which can either be achieved through
an applicable communication protocol or communication-free
through our approach. We thus reduce dependencies on criti-
cal elements such as network communication. In order to find
a consensus, in the sense of a joint, consistent and fitting
solution, a the system follows a few simple rules.
Algorithm 1 below outlines our consensus algorithm. In sim-
ple terms, autonomous vehicles estimate their own and the
other vehicle’s time of passage through a potential danger
zone. As a rule, the later arriving vehicle will brake (which
should also optimize the traffic flow for efficiency). In the
relatively unlikely scenario that both vehicles enter the danger
zone at exactly the same time, the vehicle with the smaller ID
brakes in this case. The other vehicle simply maintains its
current speed. This way guarantees that the joint solution is
working and impending collisions are prevented. We also
added some extended features, such as the selection of
energy-efficient decisions or the integration of vehicles with
special rights [see 37 for details].

Algorithm 1. Decentralized consensus protocol for conflict avoidance
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The described system prototype works well as long as all
participants in the system are autonomous vehicles that com-
municate quickly with each other via computer interfaces and
follow the defined rules deterministically. In many areas, how-
ever, such systems do not consist exclusively of autonomous
vehicles, but also involve humans. Thus, human actors must
be integrated into our distributed consensus finding. Humans,
unfortunately, cannot communicate at the same speed via the
same machine interfaces. Furthermore, humans might act un-
predictable or ignore potential technical support (e.g., naviga-
tional information). This poses several challenges in the nec-
essary HRI-components. If a person moves through a danger
zone, it must be ensured that all the necessary data is ex-
changed, that the decision is made quickly enough, and that
it can then be executed without risk for any participant. We
propose a potential model for collaborative decision-making
in HRI allowing for several variations. When developing a
system requiring interaction between humans and autono-
mous machines, developers must decide for one of the options
for each use case to unsure the optimal UX.

3.2.3 Potential models of human-robot interaction

for collaborative decision-making

We divide our model into three different categories including
several variations: human first, robot first, and hybrid.

3.2.4 Human first

Zero communication The easiest way for machines to prevent
the human speed disadvantage in communication is not to com-
municate with them in the first place. Autonomous systems can
still detect humans independently using sensors and react ac-
cordingly, though [e.g., 62, 63]. Since there is no communica-
tion, robots cannot predict how individual people will behave,

but may use a general predictive model for human behavior
[64]. The only way to guarantee safety is that autonomous
systems do not take any action in any state where potential
conflicts with humans exist. To avoid collisions, the robot has
the tasks to detect humans, to determine all possible actions
potentially endangering the human, and to avoid them. With
regard to our prototype, autonomous vehicles will always brake
if a human or human-controlled vehicle is in a danger zone.
However, this inevitably leads to the overall system being po-
tentially inefficient, since the lack of information exchange
forces autonomous vehicles to take the most extreme measures
even in situations where they would not be necessary.

Information-based reasoning To prevent the system from be-
coming inefficient due to a lack of communication, it is nec-
essary to exchange information so that autonomous systems
can estimate the likely actions of humans. The information
must not be provided by the humans themselves but may
originate in other systems: information about the tasks
assigned to humans and similar data can also be helpful, as
they have an influence on possible action. Robots can thus
build a more individual model of human decisions and ac-
tions. Nevertheless, humans might still react irrationally and
thus provoke potential conflicts. For example, what if an em-
ployee sees a colleague from a distance and decides to walk in
his or her direction? There are usually actions and interactions
taking place in the environment not directly accessible to au-
tonomous systems. Expected actions can only be weighed up
probabilistically and a restrained behavior of the autonomous
systems is still required. However, such a system is a solution
that gives people the greatest possible freedom. But especially
in crowded scenarios where an autonomous system has to
react to people most of the time, it has to be considered how
far these degrees of freedom lead to autonomous systems in
this area not fulfilling their tasks efficiently because they can

Fig. 2 The underlying design
pattern for the consensus
algorithm
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always only act secondary and have to react cautiously due to
the partial unpredictability.

Human to robot communication In order to minimize uncer-
tainty, a unidirectional communication channel from the human
to the robot may be used. Different options exist. Mobile sys-
tems such as smartphones or wearables are particularly inter-
esting for this scenario. Humansmay announce planned actions
(e.g., going to place x) and thus offer a possible interface to
communicate with the autonomous systems. On the side of the
autonomous systems, this leads to improved models as prior
unknown human actions are now plannable. However, various
new questions that cannot be answered from a technical view-
point exist. How do people interact with the system knowing
that they can always influence things to their advantage? This
may not be a problem in some scenarios, but situations where it
is problematic are possible. In our intersection prototype, for
example, vehicles with special permission may appear when
used in real road traffic, which require an unconditional prior-
ity. Leaving full control to human participants here can possibly
lead to misuse to gain personal advantages (i.e., always having
priority in crossing the intersection).

Robot first In contrast to privileging humans, in a Robot First
approach, the duty of care can also be transferred to humans.
This scenario is rather common nowadays: in factories, special
fenced off areas for robots are often used indicating danger zones
for humans (essentially simply locking humans out of the danger
zone). An alternative could be providing information about robot
actions to humans.An autonomous system’s actions are typically
deterministic in many cases and can be displayed via corre-
sponding unidirectional communication channels. For example,
autonomous systems could project information about their ac-
tions in front of them [38]. Another possibility could be to trans-
fer information to a device that humans carry, e.g., augmented
reality glasses [65]. The autonomous systems then act as usual
and humans are tasked with paying attention when entering dan-
ger zones. Human errors inevitably lead to safety problems, as
the involved autonomous systems will not consider human ac-
tions specifically. In addition, it must be discussed whether such
an approach fulfills the desired safety requirements. Another
problemmight be overloading humans with information in com-
plex environments, potentially overwhelming them and provok-
ing dangerous situations due to disorientation. Particularly in
safety-critical areas, a potential danger to humans is not accept-
able, while in reality such an approach will probably only work
with additional securitymechanisms in autonomous systems that
prevent emergencies.

Hybrid The last option is equal integration, which requires
bidirectional communication. Various verbal and non-verbal
possibilities have been discussed in the past [66].
Autonomous systems need information about the human

participants in the environment and these in turn must be able
to estimate the planned actions of the autonomous systems.
With all the approaches discussed above, it can be shown that
these have problems in various areas. Perhaps the Hybrid ap-
proach can help by allowing people and autonomous systems
to work together, as in our Robot first approach, to find a
consensus on the most suitable solution to potential conflicts
and, thus, maintain the efficiency and functionality of the
overall system. In order to achieve such a system, there are
many research questions to be answered in the future such as
the design of the bidirectional communication channel and to
the best of our knowledge not solved by a comprehensive
solution.

3.2.5 Comparison

To compare the outlined approaches, we investigated the con-
sequences using our intersection prototype. The experimental
setup, some preliminary results, and possible limitations are
discussed now. For the original prototype, we used Anki [67]
Overdrive,2 a set of autonomous model cars driving on a track
assembled individually. Anki comes with a Software
Development Kit (SDK) providing all necessary means to
influence the vehicles, e.g., accelerate, break, change lanes,
etc. We used the SDK to connect digital twins to the vehicles
that essentially implement the algorithm outlined above. The
digital twins and the corresponding vehicles communicate via
Bluetooth, which introduced some latencies into the setup.
The original prototype was initially designed for purely auton-
omous systems. We extended the prototype and introduced
humans and their interaction with the autonomous compo-
nents. For this purpose, the control inputs of a vehicle were
redirected in such a way that humans could operate a vehicle
remotely via an application running on a desktop computer.

For the scenario Human First, we prioritized the human-
controlled vehicle and examined a version in which the auton-
omous vehicles always reacted as soon as possible to the
human-controlled vehicle, typically by breaking and reducing
their velocity so the human could pass before them. Due to the
physical environment of the prototype, this could of course only
take place within certain limits. Unforeseen actions shortly be-
fore the intersection could therefore result in a too short reaction
time window (for both human and robots) and, thus, increase
the danger of a potential collision. Responsibility for collision
avoidance was centered in the autonomous vehicles.

For the scenario Robot First, we removed the prioritization
of the human-controlled vehicle and also forced the autono-
mous vehicles to ignore the human-controlled vehicle. The
autonomous vehicles thus never reacted to the human-
controlled vehicle and the human had to adapt their actions.
Here it was the human’s task to avoid collisions.

2 https://www.anki.com
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In theHybrid scenario, we implemented a version in which
all participants paid equal attention to each other and found a
consensus as described above. However, no suitable commu-
nication channel supporting the bidirectional exchange of in-
formation between autonomous vehicles and human drivers at
the necessary speed exists right now, which obviously is a
challenge as discussed above. We therefore replaced the hu-
man driver with a virtual agent randomly ignoring the calcu-
lated consensus with a probability of 5% to mimic irrational
human behavior, but otherwise following the protocols like
the autonomous systems to come to joint solutions.

The tests ran for 10 min each, whereby the autonomous
vehicles were able to adjust their speed randomly over time.
This was necessary to avoid the overall system falling into a
(theoretically possible) perfect state, where all vehicles could
maintain their velocity without causing problems in the danger
zone. The random generator was always initialized with the
same seed, so that the same sequence was guaranteed in all
setups. For each run, we acquired several variables:

& The distance covered by each vehicle, provided by the
underlying SDK.

& The number intersection crossings by having the digital
twin count howmany times a vehicle would pass a defined
position.

& The number of collisions per vehicle by manually
counting all occurrences and identifying the involved
vehicles.

3.2.6 Results

Table 1 shows the results of all scenarios for distance and
number of intersection crossings. On average, it can be seen
that the two robots involved have roughly the same results.
This corresponds to the expectations, as both robots have the
same configuration and no different prerequisites. It also
shows that no unwanted misconfigurations have occurred
there, as otherwise, we would expect to obtain different values
for the robots that are not connected. However, the human
results differ from the robots and between all three scenarios.
In total, results are highest for the Hybrid scenario and lowest
for Human First. Figure 3 contrasts the distances and Fig. 4

the number of collisions. Again, from all scenarios, Hybrid
scores best with the least number of collisions. Interestingly,
humans could only achieve the same values as the robots in
the Hybrid. The distance and the number of crossings were
smaller in the other two experimental situations. This even
applies to the Human First approach, where the robots con-
sistently consider human decisions. Because of the higher
total distance covered and the larger number of crossings,
the number of collisions was also the lowest here.

In theHuman First approach, on average, the least distance
could be covered, as the autonomous systems acted with cau-
tion and the overall system thus became slower. We recorded
an increased number of collisions, mainly due to the failure of
the autonomous systems to react in time to very short-term
human decisions. Some collisions must be attributed to tech-
nical constraints—specifically network latency—within our
prototype environment, but as we used the same environment
for all three test runs, the influence on the overall results
should be minimal. Interestingly, the constant reaction also
had an effect on the collisions between the autonomous sys-
tems. An autonomous vehicle’s reactions to the human driver
instantly triggered cascading reactions from other autonomous
vehicles since these had to adapt to the changed environment
and coordinate their actions.

In the Robot first approach, the distance covered by the
autonomous systems was considerably increased, but it was
much more difficult for the human-controlled vehicle to cover
a longer distance, because they had to act cautiously. In this
run, no collisions between autonomous vehicles were detect-
ed, but constantly with the human-controlled vehicle. In the
Hybrid approach, the distance covered is still relatively high
and, in particular, very balanced between autonomous and
human-controlled vehicles. The cumulative total distance of
all participants was highest in this run. Although collisions
between autonomous systems occurred here in a similar way
to the Human first approach, the number was lower. Overall,
the number of accidents was lowest here.

Our experimental setting provides hints that it is worth
developing methods that lead to a hybrid and equal coopera-
tion between humans and robots. Therefore, it is necessary to
dive deeper into the relevance of the human factor from a
work science perspective as provided in the next section in
order to develop promising HCI concepts.

Table 1 Evaluation results
Human first Robot first Hybrid

Vehicle Distance Crossing Vehicle Distance Crossing Vehicle Distance Crossing

Robot 1 333.078 108 Robot 1 413.726 135 Robot 1 374.492 122

Robot 2 321.337 102 Robot 2 416.518 136 Robot 2 388.257 126

Human 307.334 98 Human 232.682 76 Human 382.238 124

961.749 308 1062.926 348 1144.987 372
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4 Work science perspective on AI adoption
and acceptance

4.1 AI adoption and acceptance

Drivers are an important group of workers in logistics and
transportation. Automation and AI applications such as cruise
control systems [10, 68, 69] are introduced in their work envi-
ronment to improve efficiency and competitiveness, safety of
drivers and other traffic participants as well as working condi-
tions [70–73]. The outstanding problem is the often insufficient
connection between humans and automation resulting in critical
issues [74]. Cummings, Bruni [75] emphasize the necessity to
promote the HCI as a collaboration especially in highly com-
plex decision-making situations since not all factors can be
included in the algorithms. They describe functions that can
be assigned to the actors (either human or AI) in the decision-
making process differentiated in (i) the moderator to ensure the
progress of the decision-making process; (ii) the generator who

searches, identifies and develops decisions; and (iii) the
decision-maker who finally decides or has a veto.

However, the use and outcome of such automated concepts in
logistics depend on the collaboration with humans and their
acceptance of such systems [75]. This is true also for the simu-
lated traffic control situation on shopfloors, e.g., by forklifts as
these vehicles driven by human workers or by AI as automated
systems have the joint task to avoid accidents and share the same
traffic space efficiently. Thus, the potential for substantially im-
proving performance often is obstructed by users’ unwillingness
to accept and use of technology [74, 76, 77]. Certain models and
theories aim to explain the acceptance of new technologies like
the UX models mentioned in Section 3. For example, the
Technology Acceptance Model (TAM) measures the effects of
certain functionalities (design features) of computer-based infor-
mation systems in organizational contexts on user acceptance
with the help of intervening variables. Davis [78] assumes that
concrete functionalities, both the perceived usefulness as well as
the perceived user-friendliness determine acceptance. Perceived

Fig. 4 Distance covered by the
actors involved

Fig. 3 Collisions due to
uncertainty and delays
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usefulness is defined as “the degree to which an individual be-
lieves that using a particular systemwould enhance his or her job
performance”; perceived ease of use is defined as “the degree to
which an individual believes that using a particular systemwould
be free of physical or mental effort” [78]. So far, numerous
empirical studies have supported the TAM [79, 80].
Furthermore, models theorize the adoption of an innovation by
an individual [81] which can be transferred to dealing with new
technologies and AI applications in digitalized work settings.
The innovation-decision process starts from first knowledge of
an innovation to forming an attitude towards it, to a decision to
adopt or reject, to an AI or robotics implementation and use, and
to confirmation of this decision [82]. Consequently, the process
typically consists of the following phases:

(i) Knowledge: The individual gains knowledge of an inno-
vation and how it works; the acquisition of knowledge
depends on socio-economic characteristics, personality
traits, and the communication behavior.

(ii) Persuasion: The individual forms a positive or negative
attitude toward the innovation. The evaluation depends on
the perceived relative advantage resulting from the inno-
vation compared to the previous technology, the compat-
ibility with existing values, experience and demand, the
trialability as possibility to try out an innovation, the ob-
servability as the degree to which the results of innovation
are available to others, and the system’s complexity.

(iii) Decision: The individual engages in activities that lead
to a choice to adopt or reject an innovation.

(iv) Implementation: The individual puts an innovation
to use.

(v) Confirmation: The technology will not be adopted fur-
ther if another superior innovation is available or if the
acquirer is dissatisfied with the innovation.

The rate of adoption is the relative measure with which
members of a social system adopt an innovation operational-
ized as the number of individuals adopting new technologies
in a certain time.Most of the variance in the rate of adoption of
an innovation is explained by the attributes introduced above:
relative advantage, compatibility, trialability, observability,
and complexity [82]. Reactance of people can be expected
when they perceive restrictions given that they value freedom
and autonomy [83, 84]. Moreover, there might be a gap be-
tween the individual’s views, attitudes, intentions, and the
actual behavior as the Theory of Reasoned Action (TRA)
proposes. This theory is based on the assumption that the
behavior of individuals results from certain intentions which
depends on the attitude of a person as well as on social influ-
ences [85]. The TRA is refined by the Theory of Planned
Behavior (TPB) focusing on situations in which individuals
do not have complete control over their behavior proposing
that the individual’s self-efficacy is decisive [86].

In a temporal perspective, human interaction with AI ap-
plications and automation [14, 17] can be characterized by
three hurdles or areas of resistance (see Fig. 5). Once an area
is overcome, usually acceptance settles in [87, 88].

The three depicted hurdles (“increased resistance areas” or
“waves”) are connected to three AI functional areas and rep-
resent an increasing, but temporary, level of resistance (y axis)
throughout this development in line with an increasing level of
personal intrusion (x axis):

(i) Level of AI competences: Automation and AI applications
require new competencies for humans. Since they are com-
paratively less frightening, the resistance level towards them
is relatively low. For logistics, this may include for example
the automated gearbox in truck driving, automated routing
and navigation systems as well as automated intralogistics
applications like order retrieval and warehouse transporta-
tion systems. These systems have in common that usually
any final decision, e.g., regarding the traveled street, in re-
ality are still taken by humans—and in many cases AI sug-
gestions from navigation systems are not followed through
by humans, an obvious sign of resistance.

(ii) Level of AI decisions: Increasingly also in logistics, AI
applications are providing management decisions, which
usually rises greater anxiety and resistance levels with
humans. This is the case for example in the expected
physical internet environment, where AI applications un-
dertake specific transport and distribution decisions as
symbolized in the Robot first simulation case before [2,
3]. In such concepts and work environments, humans are
more anxious as core management tasks are addressed
and possibly human workers might become replaced.
Understandably, this sort of AI application is rising higher
levels of rejection among humans, usually also requiring a
longer period of adaption before, again, acceptance can
settle in as described for instance by Weyer et al. [15].

(iii) Level of AI autonomy: In a final stage, AI applications
are responsible for a bunch of different decisions, leading
to autonomous behavior as for instance in fully automat-
ed manufacturing and shop floor environments [29, 89].
In these cases, humans usually adopt a passive supervi-
sion role [90]. These applications are at the doorstep to
industrial and real-world application, in production and
warehousing [12, 91] or road traffic (fully autonomous
cars and trucks). This lets the highest level of resistance
emerge among human workers as they usually feel ex-
cluded from day-to-day decisions and in many cases can-
not really understand how decisions are taken (e.g., with
which information or based on which algorithms).

Connected to the experimental setting before, these levels or
hurdles can be seen throughout a sequential level of personal
intrusion, arriving at a completely new situation after the three
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hurdle areas: The situation of trust with respect to an AI appli-
cation, where humans are inclined to trustfully and intuitively
cooperate with such applications [92]. This is closely related to
the Turing test, where passing the test implies that humans are
not able to distinguish between human or artificial for their
communication with another unknown entity [93]. The stage
of AI trust is a special form of passing the Turing test as it can
be assumed that a human being may only be able to develop
trust towards an AI application if an interaction-based evalua-
tion can judge the collaboration partner to behave like a human
being. This is a crucial and business-relevant form of trust be-
tween human beings and AI applications in logistics for a suc-
cessful partnership, taking into account realities in a world of
human cooperation aswell as HCI. In addition, this is extending
the traditional view of technology acceptance in the past [80],
where application-specific trust and acknowledgement of hu-
man workers was tested and analyzed. Now, long-term work
situations like driving and machine handling with possible life-
threatening situations are concerned with a required trust to-
wards AI applications. Trust in turn can be seen as a major
prerequisite for workers to develop intuition as this can only
be trained and grown by trial and error experiences in practice,
not in theory. Therefore, the next section is discussing the ques-
tion and growth circle of intuition and self-efficacy along such
experience processes for workers.

4.2 Intuition and self-efficacy in logistics

Recently, it has been argued that intuition might be able to
complement rationality as an effective decision-making ap-
proach in organizations [94–96]. Intuition helps to cope with
a wide range of critical decisions and is integral to successfully
completing tasks that involve high complexity and short time

horizons [97]. However, conceptualizations of intuition lack
clarity so far. In general, intuition is differentiated in reliance
on gut feelings (creative intuition) or in reliance on past expe-
riences (justified intuition) [98]. Adding to this discussion,
Carter et al. [99] consider intuition as a major human driving
force in decision-making for logistics management. On the
basis of a qualitative content analysis of academic literature
and interviews with supply chain management experts and
quantitative testing with experts in supplier selection, they
conceptualize intuition as a multidimensional construct
consisting of the following dimensions: (i) Experience-based
intuition implies that persons recognize parallels to past deci-
sions in making the current decision and, thus, refer to knowl-
edge that builds over time, (ii) emotional processing means
that affect or (positive and negative) feelings guide decisions
and actions, and (iii) automatic processing implies that per-
sons quickly and almost instantly decide without awareness or
knowledge of specific decision rules. Based on their analyses,
they argue that intuition is rather experience-based in situa-
tions with high time pressure, while emotional processing can
be found in contexts with both, high time pressure and high
information uncertainty. Against this background, obviously
dual-processing theories (intuition vs. rationality) seem be too
simplistic since different dimensions of intuition occur
likewise.

Any approach to intuition has in common that intuitive
judgments occur beneath the level of conscious awareness
(i.e., they are tacit). The importance of intuition in working
behavior has already been emphasized for top executives re-
vealing that intuition was one of the skills used to guide their
most important decisions [95, 100]. Khatri, Ng [101] surveyed
senior managers of companies representing computer, bank-
ing, and utility industries in the United States and highlight

Fig. 5 Human acceptance model
for AI applications [11]
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that intuitive processes are in fact used in organizational deci-
sionmaking conceptualizing intuition as a form of expertise or
distilled experience based on deep knowledge. Also Hogarth
[102] argues that intuition is effective when a person is knowl-
edgeable and experienced within a certain domain. The effec-
tive use of intuition has even been seen as critical in differen-
tiating the more from less successful workers [97]. Especially
for workers in digitalized logistics settings, intuition seems to
be decisive in view of the requirement to cope with a wide
range of critical decisions, highly complex tasks and short
time horizons. This can interestingly underline and explain
the results in the experimental setting from Section 3 with
the hybrid decision model as the most efficient one.

In search for approaches to enhance intuition, Agor [100]
reveals that physical and/or emotional tension and anxiety or
fear are conceived as factors that impede the use of intuition,
and in turn, positive feelings such as excitement lead to an
enhanced sense of confidence in own judgments. Burke,
Miller [103] argue that mentors, role models, and supervisors
as well as working with diverse groups of people and learning
about their decision making styles helps to develop intuition. In
this sense, intuition is based on implicit learning [104] and au-
tomaticity [105]. Interestingly, these key determinants for using
intuition tie in perfectly with the core assumptions of Social
Cognitive Theory [SCT; 106]. SCT accounts for the develop-
ment and maintenance of self-efficacy across a broad range of
knowledge, values, and associated behavior patterns [107]. An
efficacy expectation is the conviction that a person can success-
fully execute the behavior required to produce certain outcomes.
In this sense, self-efficacy means that coping behavior will be
initiated, how much effort will be expended, and how long it
will be sustained in the face of obstacles and aversive experi-
ences [108]. Thus, self-efficacy regulates behavior, effort, and
persistence over extended periods of time and is concerned with
individual beliefs about ones capability to cope with certain and
new situations, to use ones abilities to solve problems and tasks,
e.g., whether they feel competent in using and learning how to
use new technologies. In this respect, it can be expected that
individuals with high self-efficacy are more proactive and con-
fident in their decision-making, dealing with digital devices and
show greater intuition. Moreover, self-efficacy is similar to the
concept of perceived ease of use as defined above [76]. In work
contexts, especially following leverages are identified to support
the worker’s self-efficacy: (i) Performance accomplishments are
based on personal mastery experiences in a sense that repeated
success enhances self-efficacy, (ii) vicarious experience means
that seeing others performing activities and its consequences
generate expectations that persons will improve and intensify
their efforts as well, (iii) verbal persuasion is quite common to
influence human behavior, i.e., people are led through sugges-
tions, and, finally, (iv) emotional arousal affects perceived self-
efficacy in coping with certain situations, i.e., removing dys-
functional fears.

In our context of logistics workers, the concept of self-
efficacy is decisive for the use of digital devices and the per-
ceived ease of use. Also, the role of intuition has already been
emphasized for successful workers in other fields guiding im-
portant decisions in working life. However, more research is
required to understand the role of human intuition within an
IoT and AI application environment in logistics and supply
chain processes. Especially in these fields, we find new tech-
nologies and digitalized working contexts requiring the intui-
tion of the workers, affecting their behavior, and the reaction
speed. Moreover, the link between intuition and self-efficacy
has not been discussed although these two concepts show
striking commonalities and provides approaches to further
develop human intuition as basis for effective decisions in
digitalized work contexts in logistics. As outlined, AI is de-
veloping fast within the supply chain and logistics manage-
ment domain and there is a considerable body of literature
concerning intuition and self-efficacy. However, both subjects
are brought forward mainly independent of each other. This
constitutes a major research gap, as obviously HCI concepts
and existing business experience are testimony to the fact that
the human factor is largely influencing technology implemen-
tation and AI efficiency, especially in logistics as seen in
Sections 2 and 3. Thus, research concepts combining these
perspectives are needed urgently as mid- to long-term lead
times can be expected until results are obtained and transferred
into applicable concepts for increasing AI application effec-
tiveness in logistics.

5 Discussion

5.1 Summary of findings

The three different discipline parts and perspectives have
established distinctive findings for the use in a HCI efficiency
description in production logistics:

(i) The production logistics management state-of-the-art
analysis and process study provided the insights that hu-
man workers have to be included in any automation steps
and projects in order to improve effectiveness as well as
the fact that automation is happening in many contexts
and areas. Although there is a broad concept develop-
ment with the IoT and I40 strategies, it is also obvious
that not all implementation endeavors will be profitable
in any context. Therefore, the research requirement of
differentiating between more or less promising HCI ap-
proaches in production logistics automation is crucial and
important for automation success.

(ii) The computer science literature review and simulation
has established the facts that HCI and HRI scenarios
and concepts are on the move and often referencing to
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direct (ergonomic) interaction of humans, robots and
cobots. Therefore, the simulation study presented here
with individual tasks (traffic control, vehicle steering)
of humans and robots alike is a new approach with in-
teresting insights regarding HCI on a “peer to peer lev-
el”. In this context, simulation results provide hints that
hybrid decision modelsmight bemore efficient than only
human- or robot-centered approaches.

(iii) The work science analysis outlined that management
concepts especially regarding technology acceptance,
intuition and self-efficacy of workers are highly relevant
for HCI concepts. Especially human resistance towards
automation and AI or robot applications are crucial and
differ regarding the degree of acceptance. Therefore,
also management approaches addressing HCI in pro-
duction logistics have to incorporate such human intui-
tion and resistance questions.

5.2 Conceptual contribution–HCI efficiency
description

As identified with the preceding analysis steps, the question of
HCI in production logistics is—among other factors—
influenced by the question of acceptance, adoption, intuition
and reaction speed of the human as well as the computer ac-
tor(s). The following figure is outlining the presumed connec-
tion between HCI and decision efficiency as a possible success
factor, indicating that there might be an optimum feasible re-
garding the adjusted learning and reaction rates of humans as
well as automated actors (see Fig. 6). On the x-axis, we deter-
mine the “reaction mode” of the actors in the system: whereas
on the left side, only human actors are reacting to the computer

actors (e.g., letting automated transport vehicles pass when a
crash seems likely, therefore “taking a step back”, representing
a Robot First approach), on the right side only the autonomous
computer actors are reacting to the (fixed) actions of human
actors, e.g., stopping when human actor transport vehicles are
approaching in order to determine right of way and avoid acci-
dents (Human First approach). The y-axis is representing the
level of decision efficiency, e.g., measured in the number of
passes realized at an intersection—or alternatively by the num-
ber of successful passes in relation to accidents occurring.

The interesting area is the development of actions in-be-
tween, when both sets of actors increasingly (and v/v decreas-
ingly) react to the actions of the other actor group. It is pro-
posed therein that the actual decision improvement (measured,
e.g., in the number of vehicles passes handled at intersections)
is strongly depending on the mutual learning/adjustment/reac-
tion rates of human and computer actors. With low and high
adjustment rates, it can be presumed that decision efficiency
will decline as actors either commence into a “deadlock” (e.g.,
human and computer vehicles both stopping at intersections,
waiting for each other) or in too much mutual activity (e.g.,
vehicles starting and stopping too often in reaction to each
other). Whereas it can be conceptualized that a medium rate
of adjustment and reaction on both sides might be able to
actual improve decision efficiency as depicted, forming an
“optimum lens” of HCI interaction.

5.3 Practical implications

It has emerged in the interdisciplinary analysis approach of
this paper, that the most single important factor for successful
automation concepts is embedded in the question of
implementing new technologies and how to integrate human

Fig. 6 HCI efficiency description
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workers into the pathway towards automated systems [74]. It
is potentially less crucial how the final “steady state” automat-
ed production system is looking like—given that new systems
will emerge very fast, too—but more how the way getting
there is structured, how framing and motivation are incorpo-
rated to optimize HCI [69, 109]. Consequently, the successful
AI and robotics implementation in HCI contexts requires
[110].

(i) that AI is used as an aid to the worker—including the UX
design requirement—and not only as an improvement in
manufacturing,

(ii) that the workers are informed on the upcoming change,
see an advantage in using new AI and robotics systems,
have the possibility to test such systems, and the intro-
duction of AI represents only a small change in existing
assembly practice; and

(iii) that the solution combines the strengths of human
workers with those of AI and robotics.

Whereas many ideas and experiences might be transferable
from existing approaches to improve the efficiency and suc-
cess rate of automation concepts and HCI in production logis-
tics settings, also new insights are required as for example
how automation and robotics concepts have to be designed
in order to allow for a smooth change management in this
specific application field of production logistics and to devel-
op the worker’s self-efficacy as outlined in Section 4 [11, 17,
19, 111, 112].

This is highly relevant for management practice as there are
many projects for further automation steps at the doorsteps in
most companies. Especially the HCI efficiency description as
highlighted in Fig. 5 might be an important practical contri-
bution in this context, as especially for operations people like
engineers the suggested best solution with a medium adjust-
ment rate or speed for human and AI actors in production
logistics settings might be counter-intuitive.

6 Conclusion and outlook

Altogether, the future competitiveness and logistics perfor-
mance will depend on the described factors regarding human
acceptance, intuition and interaction in HCI and HRI or other
concepst like self-efficacy. The challenge for production lo-
gistics will include the question of how to align and propagate
the human factor with automation in production logistics as
highlighted in this study. The specific contribution of this
paper consists of the fact to establish the value of an interdis-
ciplinary approach to HCI and HRI settings in production
logistics and can be outlined as follows:

& The first results point in the direction of mixed systems
and steering mechanisms with human and robot actors
cooperating also in small-scale decision making (traffic
control example) being most efficient, superior to one-
sided models like Robot First or Human First decision
approaches.

& In the proposed HCI efficiency description explained in
Section 5 the cooperation approach was further detailed,
warranting further research and testing in order to arrive at
optimized and efficient settings in production automation.

& Practical implications entail suggestions for the design,
implementation and revision of AI and robotics systems
in production work settings.

The limitations and avenues for further research can be
outlined as follows: (i) while our work is pioneering, we still
have some limitations to clarify. However, a first trend to-
wards hybrid systems needing further investigation is visible.
The intersection prototype was implemented with Anki [67]
Overdrive, a track on which small model cars can drive au-
tonomously. The Anki SDK provides methods for algorithmic
control via Bluetooth, leading to the aforementioned latency
delays. No programming logic can be deployed directly to the
vehicles, so each vehicle is represented as an autonomous
digital twin (a so-called agent) calculating and interpolating
the necessary data within our system but leading to the afore-
mentioned latency delays. For example, the vehicles do not
have any distance sensors, forcing us to calculate necessary
information from the overall system status and distributing it
to all agents. (ii) We also mimicked a human-controlled vehi-
cle in the Hybrid run due to the lack of a suitable communi-
cation interface between humans and vehicles. The results
therefore only serve as a base for assessing the possible prop-
erties of such a solution. (iii) Moreover, limitations of this
study include the fact that only production logistics is ad-
dressed and the applied HCI simulation sample is representing
a very restricted setting. This would have to be extended for
further insights, e.g., regarding the number of vehicles, the
human and computer driver mix or the geographical exten-
sion. (iv) Finally, the proposed HCI efficiency description
requires further discussion and empirical grounding.
Especially qualitative and quantitative research in different
industries would be required to validate several aspects.

Interdisciplinary research approaches and results are highly
warranted and required in order to provide necessary insights
into the development and successful design of production
automation in the form of AI and robotics implementation.
This will be a high-profile research field in the decade to
come in the light of IoT and Physical Internet developments
[22, 113–116].
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