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ABSTRACT 

Aquaculture is one of the fastest growing areas of the food production system. According 

to the FAO, its rise is expected to continue through the year 2030 in order to maintain per-capita 

consumption levels required for the increasing population. Fishmeal—obtained from wild-

harvested fish—has been the source of protein for fish feed. However, data indicates that these 

fish harvests are in decline, which could restrain that growth. The possibility of a shortage of 

fishmeal prompted the industry to look into possible alternatives. Soybean meal appears as a 

promising substitute since it is an affordable high quality source of protein. However, the 

presence of anti-nutritional factors—trypsin inhibitors, lectins, glycinin, β-conglycinin, saponins, 

phytates, and oligosaccharides—can negatively affect the growth and the general health of fish, 

limiting its inclusion as fish food. Several studies have been done in order to reduce these anti-

nutritional factors. However, there is no method that eliminates all of them while preserving the 

protein content of the soybean meal. The aim of this work was to obtain a protein-rich soybean 

meal with low anti-nutritional factors and a greater protein digestibility to be used for fish food. 

To accomplish this, the deactivation kinetics (D and Z-values) of glycinin and β-conglycinin at 

different temperatures were studied using Differential Scanning Calorimetry (DSC). The 

reduction in the content of phytate was evaluated by pre-treatment of soybean meal with phytase. 

And lastly, Central Composite Rotatable Design (CCRD) was employed to determine the best 

combination of factors (temperature, time, pH, and ethanol concentration) that maximizes the 

extraction of soluble sugars, saponins, and phytate while increasing protein content and 

digestibility. Results indicated that the inclusion of phytase under different conditions reduced 

the phytate content. The CCRD determined that a pH of 4.5 at 59oC, 35% ethanol concentration 

for 65 minutes are the optimal conditions for the highest extraction of soluble anti-nutritional 



factors, which increased the content of total protein and digestibility of the soybean meal. 

However, according to the kinetics studies, the deactivation of glycinin—the more resistant of 

the two proteins—at this temperature is not complete. 
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CHAPTER I 

INTRODUCTION AND RESEARCH OBJECTIVES 

The Food and Agriculture Organization of the United Nations (FAO) has estimated that 

the demand for aquaculture products will continue to rise through the year 2030 in order to 

maintain current per-capita consumption levels for the increasing global population. In order to 

accomplish that level, the aquaculture industry needs to expand to meet the demand for fish. 

However, the availability of fishmeal could restrain that growth (FAO 2012). In aquaculture 

feeds, protein is the most important and expensive and, at the same time, the most important 

component of the diet (Watanabe 2002). Traditionally, fishmeal and fish oil have been used as 

sources of proteins and lipids for fish feed, both obtained from wild-harvested fish. However, 

data indicate that these fish harvests are in decline. The possibility of a shortage of fishmeal 

compelled the industry to look into possible alternatives including both optimizing feed 

conversion ratios (FCRs) and reducing the proportion of fishmeal used for farmed fish feed.  

Although several plant protein meals are used to replace fishmeal, soybean meal is the most 

common source for herbivorous and omnivorous fish species (FAO 2012). Soybean meal has a 

well-balanced amino acid profile compared to other plant protein sources, is consistently 

available, and is economical (Watanabe 2002).  Additionally, as long as fishmeal prices continue 

to rise, soybean protein concentrates will become increasingly important in the aquaculture 

industry (FAO 2012). 

Soybeans are a rich source of proteins known for their high nutritional value and 

exceptional functional properties (Amadou and others 2010). A large portion of the soybean 

supply is used for oil production (Dixit and others 2011), which generates a residue—defatted 

soybean meal (less than 1% oil) (Jideani 2011)—which is often used in animal feed (Dixit and 
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others 2011).  Soybean meal is used for fish, pig, and poultry feed (Dersjant-Li 2002). However, 

only a low inclusion level of soybean meal can be used as a fishmeal replacement because soy 

contains a variety of anti-nutritional factors (ANFs) that can negatively affect the growth and the 

general health of fish (Dersjant-Li 2002). Tilapia, carp, and mrigal fed with soybean showed 

reduced growth performance that was attributed to the anti-nutritional factors (Jana and others 

2012).  

Anti-nutritional factors in soybean meal include trypsin inhibitors (Van den Hout and 

others 1998, 1999; Machado and others 2008; Fasina and others 2003; Bajpai and others 2005), 

lectins (Machado and others 2008; Bajpai and others 2005; Fasina and others 2003), phytates 

(Storebakken and others 1998), oligosaccharides (Zdunczyk and others 2011; Gatlin III and 

others 2007), glycinin (Yang and others 2011; Kilshaw and Sissons 1979), and β-conglycinin 

(Yang and others 2011; Kilshaw and Sissons 1979). Additionally, Chen and others (2011) 

demonstrated that saponins cause negative effects in Japanese flounder when soybean meal is 

used as an alternative to traditional fish feed. In fact, morphological changes in the intestine of 

many fish species—rainbow trout, Atlantic salmon, Atlantic cod, and common carp—have been 

linked to inflammation of the small intestine (enteritis), associated with the presence of saponins 

in soybean meal (Knudsen and others 2008; The Research Council of Norway, 2011). 

The pretreatment of soybean meal with phytase has been extensively studied in rainbow 

trout (Sugiura and others 2001; Cain and Garling 1995; Yang and others 2011), Nile Tilapia 

(Cao and others 2008), Korean rockfish (Yoo and others 2005), and Atlantic salmon 

(Storebakken and others 1998; Denstadli and others 2007). These studies concluded that phytase 

was able to reduce the phytic acid content in the soybean meal. Additionally, phytase treatment 

likely leads to improved mineral absorption (Obendorf and Kosina 2011). Trypsin inhibitors and 
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lectins can be reduced with heat treatment, which also enhances protein digestibility (Jana and 

others 2012).  However, there is still no method that eliminates all the anti-nutritional factors 

while preserving the protein content of soybean meal. 

The use of ethanol in the production of soy protein concentrates has been extensively 

studied since it allows the extraction of soluble sugars and saponins from the sample. However, 

ethanol is a flammable, volatile, colorless solvent with a slight odor that requires complex 

manipulation and more than one extraction to reduce the oligosaccharides content. In contrast, a 

single water extraction also allows the reduction of oligosaccharides and saponins making it a 

cheaper, simpler, and more sustainable alternative to ethanol extraction and therefore worthy of 

further investigation.  

The goal of this research was to obtain a protein-enhanced soybean meal with enhanced 

nutritional value that can be used as a fishmeal replacement.  The primary objective was to 

eliminate or minimize the anti-nutritional factors (galacto-oligosaccharides, phytates, glycinin, β-

conglycinin, and saponins) present in the meal using aqueous buffer solutions or ethanol 

extractions while increasing the protein content and digestibility of the defatted soybean meal. 

To accomplish this, three specific objectives were established: 

Specific objective 1: Study the deactivation kinetics of glycinin and β-conglycinin.  

Specific objective 2: Evaluate the effect of the pre-treatment of soybean meal with phytase to 

reduce phytic acid content.  

Specific objective 3: Evaluate the removal of oligosaccharides, saponins, and phytate with water 

or ethanol extraction. 
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CHAPTER II 

LITERATURE REVIEW 

1. SOYBEAN MEAL        

Soybean is an extensively cultivated crop, with 83.18 million metric tons produced in the 

United States in 2011 (Soystats 2011). The United States is the largest producer, followed by 

Brazil, Argentina, and China (Soybeans and Oil Crops 2012).  The bulk of soybean is used for 

soybean oil production, and the soybean meal residue is used for animal feed. A small 

percentage of this soybean meal is additionally processed into different food ingredients that 

include soy flour, concentrates, isolates and textured protein (Jideani 2011) (Figure 2.1). The 

composition of soybean meal may be influenced by the soybean variety and by the growing and 

processing conditions (Grieshop and others 2003). 

2. MAJOR COMPONENTS OF SOYBEAN MEAL 

2.1. Carbohydrates         

Defatted soybean meal contains approximately 40% carbohydrates (Karr-Lilienthal and 

others 2005), which are present in a variety of forms—monosaccharides, oligosaccharides, 

polysaccharides, saponins, sterol glucosides, glycolipids, and isoflavones—(Eldridge and others 

1979) (Table 2.1).  

α-Galacto-oligosaccharides, or simply α-galactosides, are low molecular weight non-

reducing sugars that are soluble in water and aqueous alcohol solutions. They have been 

characterized by the presence of α(1→6) linkages between units of galactose linked by α(1→3) 

linkages to a terminal unit of sucrose (Zdunczyk and others 2011). Two examples are stachyose, 

a tetraose with a galactose-galactose-glucose-fructose structure, and raffinose, a triose with a 
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galactose-glucose-fructose structure (Dixit and others 2011). During the production of soybean 

meal these oligosaccharides are not damaged or detached (Zdunczyk and others 2011). 
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Figure 2.1: Soybean processing flow chart (From Soy Protein Concentrate for Aquaculture Feeds 
2008). 
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Table 2.1: Classification of carbohydrates present in soybeans (From Karr-Lilienthal and others 
2005, and Giannoccaro and others 2006). 
 

Classification Examples Soluble in 

H2O 

Non-Structural 

Low molecular weight sugars 
Glucose, galactose, 

fructose, sucrose 
Yes 

Oligosaccharides 
Raffinose, Stachyose, 

Verbascose 
Yes 

Starch  No 

Structural  
Pectin, hemicellulose, 

cellulose 
No 

 

Soybean oligosaccharides are undesirable components present in food. They can cause 

excessive flatulence (Kim and others 2003) in monogastric animals (Zdunczyk and others 2011; 

Graham and others 2002) due to the absence of the enzyme α-galactosidase in the small intestine. 

Due to the α-galactoside linkage in their structure, the oligosaccharides present in soybean, 

stachyose and raffinose, are not digestible and are responsible for flatulence, nausea, and 

abdominal discomfort in animals (Karr-Lilienthal and others 2005; Bainy and others 2008). Even 

though they cannot be digested, they are fermented by the intestinal microflora producing short-

chain fatty acids and various gases such as CO2 and H2 that can cause the aforementioned 

problems (Karr-Lilienthal and others 2005).  

2.2. Proteins 

Defatted soybean meal is comprised of 50% proteins (Fischer and others 2001), primarily 

globulins, which are classified according to their sedimentation coefficients (Hill and 

Breidenbach 1974) as 2S (22% of the total), 7S (37% of the total), 11S (31% of the total), and 

15S (11% of the total) (Lusas and Rhee 1995).  Soybean proteins contain all the amino acids 

needed for human health, making it the only vegetable food regarded as a complete protein 



8 
	  

source for humans (Caprita and Caprita 2010). Thus, soy products are comparable in quality to 

proteins from animal sources with less saturated fat and no cholesterol (Dixit and others 2011).  

Glycinin (11S) and β-conglycinin (7S) are the major storage proteins present in soybeans 

(Lusas and Rhee 1995; Moriyama and others 2005; Barać and others 2004; Guo and others 2012). 

These globulins account for about 65% of the total protein content (Delwiche and others 2007; 

Tukur and others 1996). Glycinin is composed of six subunits—300-380 kDa—each of them 

formed by an acidic and a basic polypeptide linked together by a single disulfide bond (Hou and 

Chang 2004; Tukur and others 1996; Guo and others 2012; Lakemond and others 2000). On the 

other hand, β-conglycinin is composed of three subunits: α (~67 kDa), α’ (~71 kDa) and β (~50 

kDa) (Moriyama and others 2005; Delwiche and others 2007; Tukur and others 1996; Guo and 

others 2012). Ionic strength and pH affect the structure of glycinin and β-conglycinin (Lakemond 

and others 2000), modifying the temperature of denaturation of both proteins (Koppelman and 

others 2004; Jiang and others 2010). Globulins are insoluble in water at their isoelectric point of 

4.5 (Lusas and Rhee 1995; Barać and others 2004). They are most soluble at pH values of 1.5 to 

2.5 and 7.0 to 12.0 and less soluble at pH in the range of 4.2 to 4.6 (Lusas and Rhee 1995). This 

behavior is related to the position of the acidic and basic polypeptides at pH 7.6 (Lakemond and 

others 2000). Additionally, protein solubility (%) decreases as the particle size of soybean meal 

increases. Thus, increasing the stirring speed and length of stirring time positively affects protein 

solubility (Parsons and others 1991). 

Both globulins are considered allergens (Hei and others 2012; Ma and others 2010; 

Kilshaw and Sissons 1979; Rumsey and others 1994). Glycinin has been associated with 

intestinal damage, diarrhea, growth depression, and alteration of the immune function (Ma and 

others 2010; Rumsey and others 1994). Its prejudicial effects are lost by denaturation or 
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destruction of its quaternary structure (Koshiyama and others 1980-81). β-conglycinin has been 

associated with intestinal damage, protein digestibility, and allergenic symptoms (Hei and others 

2012; Rumsey and others 1994).  

The three main high protein soy products that are usually used for food are defatted soy 

flours, soy protein concentrates, and soy protein isolates. Defatted soy flours (52-54% protein 

content) are produced by grinding the dehulled, defatted soy flakes. Soy protein concentrates 

(65% minimum protein content) are made by extraction of the water or alcohol soluble 

components. Soy protein isolates (90% minimum protein content) are produced by extraction 

with water under alkaline conditions followed by acid precipitation (Lusas and Rhee 1995). 

In the aquaculture industry, three different types of soy protein concentrates (SPC) are of 

interest: traditional SPC—produced by aqueous alcohol extraction of defatted soybean meal, 

texturized SPC—produced using extrusion on traditional SPC, and low-antigen SPC—produced 

by modification of temperature, aqueous alcohol proportion, and time of processing. Each 

technology accomplishes a reduction in the amount of anti-nutritional factors present in the final 

product. The low-antigen SPC has the lowest concentration of anti-nutritional factors and is 

therefore preferred for aquafeeds (Soy Protein Concentrate for Aquaculture Feeds 2008).  

2.3. Phytochemicals 

The major phytochemicals in soybean are: phytic acid (1.0-2.2%), sterols (0.23-0.46%), 

saponins (0.17-6.16%), isoflavones (0.1-0.3%), lignans (0.02%) sphingolipids, inositol, phenolic 

acids, and Bowman-Birk and Kunitz trypsin inhibitors (Luthria and others 2007; Choi and others 

2002; Wolf 1976; Wu and Kang 2011). Anti-nutritional factors—trypsin inhibitors, lectins, 

phytates, and oligosaccharides—inhibit protein digestibility (Caprita and Caprita 2010), which 

negatively affects the nutritive value of the soybean meal (Kakade and others 1972; Charpentier 
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and Lemmel 1984). These anti-nutritional factors need to be minimized or inactivated in order to 

maximize the nutritional value of soybean meal (Caprita and Caprita 2010). 

2.3.1. Trypsin inhibitors 

Trypsin inhibitors—Bowman-Birk and Kunitz—are proteins that act as protease 

inhibitors and antigrowth factors while reducing the digestibility of other proteins in monogastric 

animals including carnivorous fish (Lusas and Rhee 1995; Refstie and Storebakken 2001). The 

Bowman-Birk inhibitor is stable to heat, acid, and proteolytic digestion because it has a rigid 

tertiary structure consisting of seven disulfide cross-linkages (Wolf 1976). However, both trypsin 

inhibitors can be inactivated using steaming and extrusion after the oil extraction process (Van 

den Hout and others 1999; Refstie and Storebakken 2001).  Twenty percent of Bowman-Birk and 

Kunitz inhibitors remain active after heat treatment of soybean meal (Friedman and Brandon 

2001); however this level is tolerable for carnivorous fish (Refstie and Storebakken 2001). Care 

must be taken when using heat in soybean processing. Even though undesirable substances may 

be eliminated, the functional and nutritional properties of other proteins may suffer damage 

(Kakade and others 1972). In general, the extent of protein damage is attributed to the 

temperature, moisture content, screw-speed, shear forces, and duration of heating during 

processing (Marsman and others 1997).  

2.3.2. Phytates 

Phytate (the salt of phytic acid) is a polyphosphorylated carbohydrate that serves as 

storage for phosphorus and minerals (Figure 2.2). It represents the major source of phosphorus in 

soy (Wu and Kang 2011), where it accounts for 70% of the total phosphorus (Smith and Rackis 

1956). In people, it can contribute to mineral deficiencies since it acts as a strong chelator of 

calcium, magnesium, iron, and zinc (Wu and Kang 2011). For the same reason, these essential 
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cations appear to be unavailable to other monogastric animals (Okubo and others 1975) 

including fish (Yang and others 2011; Refstie and Storebakken 2001). In addition, phytate 

interacts with proteins forming phytate-mineral-protein complexes reducing the bioavailability of 

proteins (Morales and others 2012; Refstie and Storebakken 2001) in monogastric animals 

(Phumee and others 2011).  

 

Figure 2.2: Phytic acid (From Wu and Kang, 2011). 
 

Extraction with water at pH 5.0 removes about 75% of the phytate content (Lusas and 

Rhee 1995). Furthermore, the inclusion of phytase in the treatment of soybean meal can release 

phosphorus and chelated cations from the phytate-mineral-protein complexes, increasing both 

protein digestibility (Morales and others 2012) and the bioavailability of phosphorous (Imanpoor 

and Bagheri 2012). Experiments with rainbow trout have demonstrated that absorption and 

retention of phosphorus increase when soybean meal is supplemented with phytase in the diet 

(Phumee and others 2011). 

2.3.3. Lectins 

Lectins are glycoproteins with at least one non-catalytic site (or a site that binds to mono- 

or oligosaccharides in the cells). They have a great affinity for terminal N-acetyl-D-

galactosamine and, to a lesser extent, D-galactose. Lectins are classified according to their 

degree of denaturation as agglutinating or non-agglutinating lectins. The former, with an intact 
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quaternary structure with multiple carbohydrate-binding sites, has the ability to bind to 

carbohydrates and agglutinate cell membranes. The latter has only one partially denatured 

carbohydrate-binding site and therefore binds to but does not agglutinate cell membranes (Fasina 

and others 2003). Given their carbohydrate binding ability, both groups of soybean lectins can 

attach to the enterocytes of the intestine of fish producing pathological changes. The 

concentration of lectins in soybean meal depends on the cultivar, the storage conditions, and the 

processing techniques and conditions used to produce it (Fasina and others 2003). Fortunately, 

lectins can be denatured by proper heat treatment (Buttle and others 2001) and are reduced to 

about 10% activity in defatted soybean meal as a consequence (Van der Ingh 1996). 

2.3.4. Saponins 

Saponins are triterpenoid or steroid aglycones linked to one or more units of sugars that 

occur naturally in plants (Knudsen and others 2008; Güçlü-Üstündağ and others 2007). Saponins 

are present in relatively high concentration in soybeans and soybean products (Hu and others 

2002). A total of 30 soy saponins have been described (Dixit and others 2011). Their presence 

and quantity differ based on cultivar, age, physiological stage, geographical location, processing, 

and storage conditions. However, the total concentration, composition, and biological activity of 

saponins in soybean can change as a result of chemical modifications produced during 

processing and storage. Saponins are sensitive to thermal treatments (Mastrodi Salgado and 

Donado-Pestana 2011).  

Saponins are amphiphilic compounds that have both a polar—one or more sugars chains 

(Mastrodi Salgado and Donado-Pestana 2011)—and a non-polar fraction—aglycone, triterpene 

or a steroid called sapogenin—(Mastrodi Salgado and Donado-Pestana 2011); thus, they are 

good emulsifiers and foaming agents (MacDonald and others 2005; Güçlü-Üstündağ and others 
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2007).  Saponins are classified according to the number of sugar chains present in their structure 

(Güçlü-Üstündağ and others 2007) (Figure 2.3). Soybeans contain group A and B saponins 

(Knudsen and others 2008). Group B is the major saponin (Hu and others 2002) accounting for 

~83% of the total saponins present in defatted soybean meal (Rickert and others 2004). Group A 

soyasaponins, associated with the bitter and astringent taste of soy products (Hubert and others 

2005), are called bidesmosidic—two sugar chains (Güçlü-Üstündağ and others 2007; Gu and 

others 2002). Soyasaponins in group B are monodesmosidic—one sugar chain (Güçlü-Üstündağ 

and others 2007; Gu and others 2002)—and are the ones associated with the health benefits of 

soybean saponins (Hubert and others 2005). The monosaccharides that can be present in the 

structure of saponins include: glucose, galactose, glucuronic acid, rhamnose, arabinose, xylose, 

and fucose. The different aglycone moieties and sugars present in the structure vary significantly, 

making saponins a diverse group of compounds that have a great number of physical, chemical, 

and biological properties with only a few of them common to all compounds (Güçlü-Üstündağ 

and others 2007). It has been stated that only the DDMP-2,3-dihydro-2,5-dihydroxy-6-methyl-

4H-pyran-4-one- conjugated soybean saponins αg, βg, and βa are the real group B saponins 

present in soybean while the non-DDMP soyasaponins V, I, and II are products formed by heat 

exposure (Kudou and others1994). It has been suggested that saponins may interact with the 

major storage proteins in soybeans, glycinin and β-conglycinin, through different types of 

interactions (Rickert and others 2004).  
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Saponin     R1           R2 DDMP 
Βg CH2OH α-L-Rhamnosyl Yes 
Ι CH2OH α-L-Rhamnosyl No 
Βa H α-L-Rhamnosyl Yes 
ΙΙ H α-L-Rhamnosyl No 
Γg CH2OH H Yes 
ΙΙΙ CH2OH H No 
Γa H H Yes 
IV H H No 
Αg CH2OH β-D-Glucosyl Yes 
V CH2OH β-D-Glucosyl No 

  
Figure 2.3: Structure of saponins (From Hu and others 2002). 

 
 Saponins have been extensively used as surface active and foaming agents, but their use 

in foods has been limited because of their bitter taste. In addition, they have generally been 

regarded as “anti-nutritional factors” (Mastrodi Salgado and Donado-Pestana 2011; Güçlü-

Üstündağ and others 2007). Saponins seem to have negative effects when present in animal diets 

(Chen and others 2011). To illustrate, they have been associated with lower feed intake, 

reduction in weight gain, and lower protein digestibility in tilapia (Francis and others 2001). 

They also have hemolytic and toxic effects in fish and invertebrates as a consequence of their 

ability to form foamy solutions in water (Mastrodi Salgado and Donado-Pestana 2011). 

DDMP 
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3. SOYBEAN AS A FISHMEAL REPLACEMENT 

Fishmeal is the preferred protein ingredient for fish feed (Rawles and others 2011), 

particularly for carnivorous fish species (Dersjant-Li 2002). However, the rapid development of 

the aquaculture industry caused fishmeal prices to increase as supplies dwindled (Phumee and 

others 2011; Rawles and others 2011; Dersjant-Li 2002). For that reason, it is imperative to look 

for sustainable alternatives that allow the continued growth of aquaculture with lower production  

costs (Rawles and others 2011). Given the concurrent increase in the global production of  

soybeans (Biswas and others 2011) and the need for alternative protein sources of plant  

origin, soybean meal has become a potential source for the partial or total replacement of  

fishmeal (Phumee and others 2011). 

Soybean meal is a rich source of protein, has a high nutritional value, is available in large 

quantities on the market, and costs less than fishmeal (Phumee and others 2011). However, the 

presence of anti-nutritional factors including trypsin inhibitors, lectins, phytate, saponins, 

oligosaccharides, glycinin, and β-conglycinin (Soy Protein Concentrate for Aquaculture Feeds 

2008; Adelizi and others 1998) are an impediment for the use of soybean in fish diets (Chen and 

others 2011). The desolventizer-toaster process which is used to eliminate solvent following 

soybean oil extraction (Soybean Processing-Fact Sheet n.d.) also inactivates trypsin inhibitors 

and lectins, thereby improving the quality of the soybean meal as a fish feedstuff (Refstie and 

Storebakken 2001). 

On the other hand, phytate cannot be inactivated, leading to a reduction in the 

bioavailability of mineral elements and proteins. This problem can be solved by the use of 

phytase as an additive in plant-based feeds, improving fish growth and mineral absorption (Yang 

and others 2011; Imanpoor and Bagheri 2012). Knudsen and others (2008) demonstrated in their 
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study that soybean saponins in combination with one or more unidentified components present in 

soybean induce enteritis in Atlantic salmon. Hillestad (The Research Council of Norway 2011) 

arrived at the same conclusion with salmon and rainbow trout. Furthermore, Sørensen and others 

(2011) demonstrated that raffinose and stachyose could also be involved in reduced feed 

utilization in Atlantic salmon. It is likely that the combination of saponins and oligosaccharides 

could be the source of enteritis in fish (Knudsen and others 2008) and it could also be involved in 

the reduction of gut length in crucian carp (Cai and others 2012). Both oligosaccharides and 

saponins should be removed from soybean meal in order to use it as fishmeal replacement. The 

negative effects produced by glycinin and β-conglycinin can be reversed by modification of the 

chemical structure of these antigens during processing (Rumsey and others 1994). Both of them 

can be inactivated using heat treatments. 

4. REMOVAL OF ANTI-NUTRITIONAL FACTORS 

Trypsin inhibitors and lectins can be inactivated during processing while phytate can be 

treated with phytase (Yang and others 2011). But the other anti-nutritional factors—saponins, 

oligosaccharides, conglycinin, and β-conglycinin—still present significant problems when using 

soybean meal in fish feed.  

Various methods are used to produce soy protein concentrates (SPC) including aqueous 

alcohol, acid leaching, and hot-water leaching processes (Figure 2.4) (Lusas and Rhee 1995). 
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Figure 2.4: Soy Protein Concentrate Processing Methods (From Lusas and Rhee 1995). 

 

 Oligosaccharides and strong flavor components are removed during the SPC production. 

However, some minerals and other soluble components are also removed (Lusas and Riaz 1995).  
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CHAPTER III 

KINETIC STUDIES ON GLYCININ AND β-CONGLYCININ 

1. INTRODUCTION 

 Glycinin (11S) and β-conglycinin (7S) are the major storage proteins present in soybeans 

(Lusas and Rhee 1995), where they account for about 70% of the total protein content (Barać and 

others 2004). Both proteins are considered allergens for both humans and animals, because they 

are able to cause intestinal damage, diarrhea, growth depression, reduction of protein 

digestibility, and alteration of the immune function (Rumsey and others 1994; Ma and others 

2010; Hei and others 2012). By denaturation or destruction of their quaternary structure, the 

harmful effects are lost (Koshiyama and others 1980-81). Heat denaturation of proteins is related 

to the disruption of the intramolecular hydrogen bonds (Nurul and Azura 2012), and can be 

affected by ionic strength and pH (Lakemond and others 2000; Koppelman and others 2004; 

Jiang and others 2010). The thermal stability of proteins can be studied by Differential Scanning 

Calorimetry (DSC) (Nurul and Azura 2012). DSC establishes the heat capacity (Cp) of the 

sample as a function of the temperature (Schön and Velázquez-Campoy 2005) and presents the 

information as an endothermic peak. The center of the peak corresponds to the maximum Cp. 

The integration of the area under the peak corresponds to the ΔHo
m (enthalpy change), which 

relates to the denaturation of the protein (Bruylants and others 2005). The changes produced in 

heat capacity are monitored as changes in heat flow (watts) (Perkin Elmer 2013). 

The DSC equipment usually consists of two cells: a sample cell that contains the protein 

solution to be analyzed, and a reference cell that usually contains a buffer solution. The 

temperature is increased in both cells, and each cell temperature is monitored individually and 

continuously. Any difference in the heat capacity between the sample and the reference cells will 
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produce a temperature difference that will force the system to provide extra heat to the cell with 

the lower temperature. As a response, the system will provide the µJ/s or µcal/s needed to 

maintain the temperature difference between the cells equal to zero. In the case of proteins, 

which require energy for the denaturation process, the system will provide the heat required to 

maintain the sample and reference cells at the same temperature until all the protein is denatured 

(Schön and Velázquez-Campoy 2005). 

The objective of this work was to study the kinetics of deactivation of glycinin and β-

conglycinin using the Decimal reduction time or D-value (time required to reduce 90% of the 

protein activity) and the thermal resistant constant or Z-value (temperature increase for one log 

reduction in D-value). To accomplish this, the remaining activity of both proteins after exposure 

to thermal treatments was determined by DSC. The technique relates the enthalpy of 

denaturation to the amount of active protein by comparing the heat capacity of a protein sample 

with the heat capacity of the untreated protein.  

 

2. MATERIAL AND METHODS 

2.1. Experimental design 

 The effect of temperature and time on the deactivation kinetics of each protein was 

studied with different combinations of temperature and time. The temperature levels were 40, 50, 

65, 70, 75, 80, 85, and 90oC and time durations were 5, 10, 15, 20, and 30 minutes. 

2.2. Soybean meal preparation 

The soybean meal used in this study was provided by a soybean crusher in the state of 

Arkansas.  The soybean meal was ground using a coffee grinder (Mr. Coffee, Rye, NY, USA), 
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and then sieved using a 60-mesh screen. The fraction of particles that passed the screen was used 

for the experiment.  

2.3. Heat treatment of samples 

Duplicates of five hundred milligrams of soybean meal were placed in a disposable 

culture tube (VWR borosilicate glass 16 x 100mm), and hydrated with 1.5 ml of distilled (DI) 

water. The tubes were slightly capped with Parafilm®—to avoid water evaporation and to 

prevent possible glass rupture when the tubes were immersed in the hot water bath—and left 1 

hour at room temperature. The tubes were then put in a water bath at the specified temperatures 

of 40, 50, 65, 70, 80, 85, and 90 oC, and incubated for 5, 10, 15, 20, and 30 minutes. After the 

duration of the treatment was achieved, the tubes were removed and the heat treatment stopped 

by submerging the tubes in an ice bath. Sample pools for each treatment were generated for the 

DSC study. 

2.4. Differential scanning calorimetry study 

The DSC measurements were performed using a differential scanning calorimeter (Perkin 

Elmer, Norwalk, CT). Aluminum and stainless steel pans were used in the study. Approximately 

20 mg of sample was weighed into stainless steel pans, or 4 mg of sample in the case of 

aluminum pans. The pans were then sealed. An empty pan was used as reference. The pans were 

heated at a scan rate of 10oC/min under nitrogen through the range of 20 to 120oC while data was 

collected. Transition temperatures (T0: onset temperature of denaturation, Tm: maximum 

temperature of denaturation, and TE: end temperature), and enthalpy (ΔH: area under the curve in 

J/g)) were determined with Pyris (v.3.52) (Perkin Elmer, Norwalk, CT). 
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2.5. Determination of D-value and Z-value 

The rate of deactivation of glycinin (11S) and β-conglycinin (7S) as a function of 

temperature was studied using the concept of D- and Z- values. The results obtained for each 

treatment were plotted in an x-y scatter plot with a logarithmic scale for enthalpy and a regular 

scale for time. The data were fit with a linear regression line using the least-squares approach. D-

values were calculated as the time needed to reduce 90% of the concentration of active protein. 

D-values were calculated as follows: 

  D− value =
!!!!!

!"#∆!1!!"#∆!!
                                                                                     [Eq. 3.1] 

Where:  

Ti = temperature (oC) 

          ΔH = enthalpy of denaturation in J/g     

 

 The Z-values were obtained by plotting D-values for each temperature in an x-y scatter 

plot with regular scales. The data was fitted to a linear regression by the least-squares method. Z-

values were calculated as the temperature increase needed to reduce 1 logarithmic cycle the D-

value. Z-values were calculated using the following equation: 

 

Z− value  (℃) =
!!!!!

!"#!!!!"#  !2
                                                                                             [Eq. 3.2] 

Where:  

Ti = temperature (oC) 

D = D-value (min) 
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3. Results and Discussion 

3.1. Decimal reduction time (D-value) of β-conglycinin and glycinin 

Figure 3.1 shows a selected thermogram for the thermal denaturation of β-conglycinin 

(7S) and glycinin (11S) in the untreated sample. As seen in the graph, two thermal transitions at 

approximately 82.4oC and 102.8oC that correspond to the denaturation temperature of β-

conglycinin and glycinin, respectively, are evident.  

 

 

Figure 3.1: Thermogram showing the onset, maximum, end, and enthalphy of denaturation of a) 
β-conglycinin and b) glycinin in the untreated soybean meal. 
 

The temperature of denaturation obtained for both proteins is higher than those reported 

by L’Hocine (2006), whose samples showed two different thermal transitions at approximately 

75oC and 93oC corresponding to the denaturation temperature of β-conglycinin (7S), and 

glycinin (11S), respectively. The lower temperature reported by L’Hocine (2006) could be 

consequence of working with the isolated glycinin and β-conglycinin. This study indicated that 
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their denaturation requires a higher amount of energy when they are present within the matrix of 

the soybean meal when compared to the purified ones. 

Figure 3.1 shows that denaturation of β-conglycinin in the untreated soybean meal starts 

at about 77oC, with maximum denaturation at 82.4oC, ending at approximately 87oC. Figure 3.2 

shows the D-value plots for β-conglycinin within the soybean meal treated at different 

temperatures. ΔH (J/g) vs time (min) follows an approximate linear pattern (R2  coefficients 

between 0.8996 and 0.9697). Table 3.1 displays the corresponding D-values calculated using the 

regression lines from graphs in Figure 3.2 and Eq. 3.1.  It can be seen from the plots that there 

was deactivation of β-conglycinin at temperatures higher than 40oC. At lower temperatures, the 

deactivation occurred at a slower rate. D-value could not be determined at 40oC since the amount 

of protein at 0 and 30 minutes treatment remained the same and the small differences found 

could be attributed to experimental error. There was no detectable protein after either the 20 

minutes treatment at 65oC or after 15 minutes at 70oC. As long as treatment time increased at a 

specified temperature, the concentration of active protein decreased, which is indicated by the 

lower ΔH (J/g). In the case of temperature, as long as treatment temperature increased, the time 

required to deactivate the protein declined as indicated by the lower D-values (Table 3.1). 

Denaturation of glycinin in the untreated soybean meal occurs in the range of 98 to 107oC, 

with maximum denaturation temperature at approximately 103oC (Figure 3.1). Figure 3.3 shows 

the D-value graphs for temperature treatments ranging from 40 to 90oC. D-values follow a linear 

regression pattern with R2 coefficients ranging from 0.8664 to 0.9968. Table 3.2 displays the D-

values calculated using the linear regression lines from Figure 3.3 and Eq. 3.1. Denaturation of 

glycinin occurred in the whole range of temperatures studied, except at 40oC. D-value could not 

be determined in the 40oC treatment since there was no deactivation of glycinin in the period of 
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time analyzed. The other temperature treatments revealed how ΔH (J/g)—related to the amount 

of remaining active protein—decreased as long as time and temperature increased. As time 

increased during a specified temperature treatment, the remaining active glycinin decreased. The 

same occurred when the temperature of the treatment increased. 
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Figure 3.2: ∆H (J/g) vs time (min) of β-conglycinin at different temperatures. 

 

0.01 

0.1 

1 

0 10 20 30 40 

∆
H

 (
J
/g

) 

0.01 

0.1 

1 

0 10 20 30 40 

∆
H

 (
J
/g

) 

0.001 

0.01 

0.1 

1 

0 5 10 15 20 25 

0.001 

0.01 

0.1 

1 

0 5 10 15 20 

R2=0.89962 

R
2
=0.96972 

R
2
=0.96547 



25 
	  

Table 3.1: D-values of β-conglycinin at different temperatures. 
 

Temperature (
o
C) D-value (min) 

40 
50 

  65* 
70 

- 
47.2 
21.9 
14.9 

                                          *Aluminum pans 
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Figure 3.3: ΔH (J/g) vs time (min) of glycinin at different temperatures.  
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Table 3.2: D-values at different temperatures of glycinin. 

Temperature (
o
C) D-value (min) 

40 
50 

  65* 
70 

  75* 
80 

  85* 
90 

- 
133.3 
112.4 

            73 
            75.2 
            55.6 
            47.6 
            16.3 

                                           * Aluminum pans 

 

 

3.2. Thermal resistant constant (Z-value) of β-conglycinin and glycinin 

 Z-values were determined using Figure 3.4 and Eq. 3.2. The Z-value obtained for β-

conglycinin was 48.7oC, which means that an increase in 48.7oC is needed to reduce 1 log of the 

D-value. In the case of glycinin, an increase of 70.9oC is needed to reduce 90% of the D-value. 
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(a) β-conglycinin 

 

 

(b) Glycinin 

 

Figure 3.4: D-value (min) vs temperature (oC) of (a) β-conglycinin, and (b) glycinin.   
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      4. CONCLUSIONS            

The results of this study indicated that both glycinin and β-conglycinin are resistant to 

temperature, and that glycinin is the most resistant. D-values—time needed to reduce 90% of the 

protein activity—of glycinin were higher compared to those of β-conglycinin for the same 

temperature treatment. The same occurred with the thermal resistant constant (Z-value); the 

temperature increase needed to reduce 1 log of the D-value was also higher for glycinin. 

According to this study, an efficient heat treatment based on the deactivation characteristics of 

glycinin could be employed in order to reduce the content of active protein present in the sample, 

yielding a soybean meal with a superior nutritional value. 
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CHAPTER IV 

EFFECT OF PRETREATMENT OF SOYBEAN MEAL WITH PHYTASE 

1. INTRODUCTION 

 The presence of phytate—the indigestible form of phosphate—in soybean meal is one of 

the limiting factors for its inclusion in fish food. Phytate is a poly-phosphorylated carbohydrate 

that represents about 70% of the total phosphorus present in soybean (Smith and Rackis 1956). 

Phytate cannot be digested because of the lack of an intestinal phytase in monogastric animals, 

resulting in phosphorus deficiencies in the diet and also in contamination of water bodies from 

excreted phosphorus (Cao and others 2008). Phosphorus deficiency can cause problems in bone 

mineralization and impair weight gain (Cain and Garling 1995). Also, phytate forms complexes 

with some proteins and with minerals such as zinc, magnesium, and calcium, thus reducing their 

bioavailability (Denstandli and others 2007). Therefore, a process to reduce or eliminate the 

content of phytate from the meal could be of importance, for instance by pre-treating the meals 

with phytase.  

Phytase is an enzyme that has the ability to hydrolyze phytate (Cao and others 2008). Pre-

treatment or dephytinization of feedstuffs and spraying phytase onto pellets are the two 

treatments used to study the role of phytase (Cao and others 2007). Working on carp, Schäfer 

and others (1995) found that the addition of 500 and 1000 U/kg of phytase, delivered on sprayed 

pellets, was able to release 20 and 40% of phosphate, respectively, from the phytic acid present 

in the soybean meal diet. Lanari and others (1998) and Tudkaew and others (2008) reported that 

the inclusion of phytase in diets for rainbow trout increased the availability of dietary phosphorus, 

while lowering the release of phosphorus into the environment. Additionally, the pretreatment of 

soybean meal diets with phytase made the inorganic phosphate from phytic acid available to 

rainbow trout (Cain and Garling 1995, Sugiura and others 2001, Yang and others 2011). Cao and 
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others (2008), in their work with Nile tilapia, also found that the pretreatment of plant 

ingredients with phytase effectively transformed the phytate present in the sample into available 

phosphate. The apparent digestibility of phosphorus also increased in Korean rockfish (Yoo and 

others 2005). In their study with Atlantic salmon, Storebakken and others (1998) reported that 

the pretreatment of soy protein concentrate with phytase reduced the concentration of phytic acid 

by about 94%. Studies using soy protein concentrate also showed a reduction of 66% in phytic 

acid in the samples treated with phytase (Denstadli and others 2007). All authors, although 

working under different experimental conditions, concluded that either the supplementation or 

the pretreatment of the samples with phytase was effective in hydrolyzing phytic acid and 

making inorganic phosphate available. These techniques can replace the supplementation of 

inorganic phosphorus in the diets, thus reducing costs (Cao and others 2008) and also the 

phosphorus content of aqueous effluents (Cain and Garling 1995). 

 The objective of this study was to determine the effectiveness of a microbial phytase 

derived from Aspergillus niger (American Laboratories Inc, Omaha, NE) in reducing the content 

of phytate in soybean meal. To accomplish this, the sample was pretreated with the enzyme 

under two different experimental conditions. Enzyme concentration, incubation time, and 

sample-to-buffer ratios were studied in order to determine if the hydrolysis of phytate could be 

affected by any of these factors. The ratio of soybean meal to citrate buffer used was 1:1 and 

1:15 (w/v). The ratio 1:1 is usually employed in the pre-treatment of soybean meal with phytase. 

However, since other anti-nutritional factors—oligosaccharides and saponins—can be reduced in 

the sample using a higher amount of buffer, this study attempted to determine if the effectiveness 

of phytase could be disturbed by the new ratio employed. Additionally, this new approach was 

useful to determine if the buffer played an important role by itself in the extraction of phytate, 
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while giving the correct pH to the enzyme. After treatment, the efficiency of the enzyme was 

evaluated by measuring total phosphate. This determination is more straightforward than 

determining the remaining phytate in the treated soybean meal and provides comparable results. 

Since phytate represents about 70% of the total phosphorus in soybean meal, the determination 

of total phosphorus can be used to estimate the remaining phytate after treatment. The 

quantification of total phosphorus was performed for both the solid fraction and the washing 

liquid, from now on referred to as supernatant.  

 

2. MATERIALS AND METHODS 

2.1. Materials 

 Defatted soybean meal, phytase (1500 U/g, American Laboratories Inc, Omaha, NE), 

citric acid monohydrate, sodium citrate, trichloroacetic acid solution (TCA), iron (II) sulfate 

heptahydrate, ammonium molybdate tetrahydrate, and phosphorus standard solution, all obtained 

from Sigma-Aldrich (St. Louis, MO, USA). 

2.2. Treatments 

 Two different approaches were followed.  

2.2.1. Treatment 1 

 The experiment was performed following the procedure described by Cao and others 

(2008) with some modifications. Soybean meal was treated with microbial phytase at 0, 750, or 

1500 U/Kg. The enzyme was dissolved in 0.2M citrate buffer pH 5.5 using a magnetic stirrer for 

30 min. Twenty five grams of soybean meal were then added to the buffer at 1:1 (w/v) ratio, and 

heated with constant stirring to 50-55oC on a hot plate (Super-Nuova, Barnstead International, 

Dubuque, IA). The mixture was covered with aluminum foil and incubated (Thermo Scientific 
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MAXQ 4450, Dubuque, IA) at 55oC for 6 hours. After treatment, the solid fraction was washed 

twice with 75 ml distilled H2O to separate any phosphorus hydrolyzed by the enzyme from any 

phytate that might be present in the treated soybean meal. The solid fraction was dried in an oven 

(VWR model # 1310) at 60oC for 24 hours. The liquid fraction was clarified by centrifugation 

(Beckman Coulter Allegra X-22R) at 3900 x g for 30 minutes. 

2.2.2. Treatment 2 

This experiment followed the same steps as Treatment 1; however, the enzyme 

concentrations, incubation time, and sample to buffer ratio employed were different. Phytase at 0, 

50, 100, 150, 300, or 450 U/g of soybean meal was dissolved in 150 ml of 0.2M citrate buffer pH 

5.5 using a magnetic stirrer for 10 minutes. Then, 10 g of soybean meal was added to the buffer. 

The mixture was heated to 55oC with constant stirring at 300 rpm in a hot plate. The heated 

mixture was covered with aluminum foil and incubated at 55oC for 3 and 6 hours. To deactivate 

the enzyme, the mixture was then heated for 5 minutes at 95oC on a hot plate. After treatment, 

the supernatant was separated from the solid fraction and centrifuged at 3900 x g for 30 minutes. 

Both fractions were dried in an oven at 60oC for 24 hours.  

2.3. Determination of total phosphorous 

Quantification of total phosphorus in the treated soybean meal (solid fraction) was 

conducted by a contract lab (Agricultural Diagnostic Laboratory, Fayetteville, AR, USA). The 

method consisted of a wet digestion using HNO3 and H2O2 on a heated block, and analyzed by a 

Spectro Arcos Inductively Coupled Plasma (ICP) (Ametek, Kleve, Germany). 

Total phosphorus in the supernatant was analyzed using the Molybdate-Blue Method. All 

determinations were performed in triplicate. Two milliliters of sample were mixed with 2 ml of 

deionized water, 1 ml of 10% (v/v) Trichloroacetic acid solution (TCA), and 5 ml of Tausky-
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Shorr color reagent (TSCR). Absorbance was read at 660nm with a UV-1700 PharmaSpec 

spectrophotometer (Shimadzu, Columbia, MD, USA) and compared to a standard of phosphate. 

The standard curve of phosphate was prepared following the procedure for the enzymatic assay 

of phytase (EC 3.1.3.26) with concentrations ranging from 1 to 5 µmoles of phosphate.  

 

3. RESULTS AND DISCUSSION 

3.1. Treatment 1 

 Figure 4.1 (a) shows the remaining content of phosphorus in the solid fraction at the two 

different concentrations of phytase employed and the control (without the presence of enzyme) 

test. It appears that the pH of the buffer utilized in the experiment was enough to extract the 

phytic acid from the soybean meal since the amount of total phosphorus in the control is almost 

the same as the content in the experimental trials. The enzyme did not seem to have any effect on 

the reduction of the phytate present in the sample. However, interesting results were found when 

the supernatant was analyzed for total phosphorus. In this case, as shown in figure 4.1 (b), the 

total content of phosphorus in the supernatant for the control test was almost zero. That little 

amount could be attributed to the inorganic phosphorus originally present in the soybean meal 

that was rinsed with H2O during the last step of the experiment. On the other hand, the 750 and 

1500 U/Kg of soybean meal tests showed a high concentration of phosphorus. Additionally, the 

750 U/Kg test exhibited the highest amount of total phosphorus. The concentration was 

approximate 38% greater than the total phosphorus in the 1500 U/Kg test. The determination of 

total phosphorus in the supernatant showed that the enzyme was able to release phosphate from 

the phytic acid present in soybean meal. If the samples were not washed during the experimental 

procedure, that phosphorus could be available for fish if the soybean meal pretreated with 

phytase was used as fish feed.  
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Cao and others (2008) found that 1000 U of phytase was the optimal dose needed to 

transform the phytate present in 1 kg of plant ingredients into inorganic phosphate. He reported 

that about 70% and 89% of phosphate were released from the phytate present in soybean meal 

when doses of 750 and 1500 U/kg were used in a proportion of 1:1 (w/v) soybean to buffer. He 

also reported that the citrate buffer used in the experiment could also help in the transformation 

of phytate into available phosphate to some degree.  

The content of total phosphorus in the untreated soybean meal used in this study was 

0.81% (Data not shown). About 70% of that content corresponds to phytate (Smith and Rackis, 

1956). According to this work, about 38% of the total phosphorus was removed from the sample. 

Moreover, the enzyme was able to hydrolyze the phosphorus from the phytate present, thus 

increasing the amount of free phosphorus. These results are to a certain point comparable to the 

ones described by Cao and others (2008), even though he worked with phytate determination and 

available phosphorus instead of total phosphorus. 
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(a) 

	   	   

(b) 

	  	    

Figure 4.1: Total phosphorus (%) in (a) solid fraction, and (b) supernatant after 6 hours treatment 
with phytase. 
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3.2. Treatment 2 

Figure 4.2 displays the results of total phosphorus in the solid fraction and supernatant at 

3 and 6-hour treatments. The content of total phosphorus in the solid fractions was similar in all 

samples (Figure 4.2 (a)). No meaningful differences were found between the samples treated 

only with buffer at pH 5.5 and the samples treated with buffer at pH 5.5 and different 

concentrations of phytase (50, 100, 150, or 300 U/g of soybean meal) during the 3 and 6 hours 

treatments. The treatment with buffer alone seemed to remove most of the phytate present in the 

soybean meal as well as the content of inorganic phosphate. On the other hand, the concentration 

of total phosphorus in the supernatant showed a completely different pattern (Figure 4.1 (b)). The 

concentration in the controls was almost zero. Since the Molybdate-Blue method only quantifies 

inorganic phosphate, even though the phytate released from the soybean meal by the action of 

the buffer was present in the supernatant it could not be quantified. That was the reason that 

explained the lower values. On the other hand, the concentration of total phosphate in the 

samples treated with the enzyme at lower concentrations (50 and 100 U/g of soybean meal) for 

both 3 and 6 hour treatments were similar, and higher compared to the results obtained for the 

experimental trials using 150 and 300 units of enzyme per gram of soybean meal. That amount 

represents the inorganic phosphate liberated from the phytic acid in addition to the phosphate 

already present in the sample and liberated by the buffer.  
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(a) 

	   

 

(b) 

 

Figure 4.2: Total phosphorus in (a) solid fraction, and (b) supernatant after 3 and 6 hours 
treatment with phytase. 
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4. CONCLUSIONS 

Results from Treatment 1, where a soybean meal to citrate buffer ratio of 1:1 (w/v) was 

employed, showed that the microbial phytase successfully released phosphate from the phytic 

acid present in the sample. The same result was attained from Treatment 2 using a 1:15 (w/v) 

proportion of soybean meal to buffer. Both trials provided positive results, but the applicability 

of each of them is different. Each test can be practical under different conditions. The 

pretreatment with the enzyme using a 1:1 sample to buffer ratio (Treatment 1) is a good 

alternative if the purpose is to improve the availability of phosphorus for fish feed, and also 

minimize its release to the environment. However, if the idea is to reduce the phytic acid content 

while concurrently reducing other soluble anti-nutritional compounds, the second treatment is a 

better choice. Even though the latter reduces the content of phosphorus that could be necessary 

for a balanced fish diet, it also reduces the content of the indigestible phytate to a greater extent 

than treatment 1. Additionally, it reduces the presence of other factors that could cause digestive 

problems in fish. 
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CHAPTER V 

REMOVAL OF OLIGOSACCHARIDES, SAPONINS, AND PHYTATE BY 

EXTRACTION WITH WATER- ETHANOL SOLUTIONS 

1.  INTRODUCTION 

 The presence of anti-nutritional factors—oligosaccharides, saponins, and phytate—in 

soybean meal limits its use as a substitute for fishmeal. Oligosaccharides have been associated 

with several digestive problems—flatulence, nausea, and abdominal discomfort—when present 

in animal diets (Karr-Lilienthal and others 2005, Bainy and others 2008). These problems appear 

to be exacerbated when in the presence of saponins (Knudsen and others 2008). Saponins also 

reduce weight gain by decreasing feed intake and reducing protein digestibility (Francis and 

others 2001). Lowered protein digestibility is also a consequence of phytate in the sample 

(Refstie and Storebakken 2001). Phytate can form complexes with proteins, which makes them 

less suitable for digestion (Morales and others 2012). Furthermore, phytate contributes to water 

contamination because of its lack of absorption during the normal digestive process (Cao and 

others 2008). Elimination or reduction of these anti-nutritional factors in soybean meal will 

increase the likelihood of using soybeans as alternative feed ingredients to replace fishmeal. 

 The objective of this work was to reduce the content of soluble anti-nutritional factors—

oligosaccharides, saponins, and phytate—from soybean meal while boosting the protein content 

and its digestibility using hot water-ethanol extractions. The central composite rotatable design 

(CCRD) was used to determine the effect of temperature, time, pH, and ethanol concentration 

that optimized the extraction of the aforementioned anti-nutritional factors, and increased the 

protein concentration and digestibility of the soybean meal.  

 



41 
	  

2. MATERIALS AND METHODS 

2.1. Materials 

 Commercial defatted soybean meal (SBM) used in the experiments was obtained from a 

soybean crusher in the state of Arkansas. The main reagents employed were citric acid 

monohydrate (99-102%), sodium phosphate dibasic (99%), formononetin, and methanol, all 

obtained from Sigma-Aldrich (St. Louis, MO, USA). Sulfuric acid (96.5%), phenol, and glucose 

were obtained from J.T. Baker (Phillipsburg, NJ, USA); urea from Omni-Pur EMC (Darmstadt, 

Germany); monobasic and dibasic potassium phosphate from VWR (West Chester, PA), and 

ethanol from EMD Millipore (Billerica, MA).  

2.2. Methods 

Extraction of anti-nutritional factors from defatted soybean meal was performed using 

different combinations of citrate-phosphate buffer and ethanol concentrations as a solvent at pHs 

in the range of 4.5 to 7, and temperatures between 25 to 75oC for a period of 5 to 65 minutes. 

According to the literature and preliminary studies, only one extraction is necessary to remove 

all the soluble sugars when water is used as a solvent. For that reason, one extraction was 

performed in successive experiments. Preliminary studies have also shown that the best ratio of 

water to soybean meal (SBM) that maximizes the amount of soluble sugars extracted is 15:1. 

Therefore this ratio was utilized. Experiments were accomplished using the central composite 

rotatable design (CCRD) to establish the best extraction conditions.  

2.2.1. Experimental design 

 The effect of temperature, time, pH, and ethanol concentration for the extraction of 

soluble sugars, saponins, and phytate was studied using a central composite rotatable design 

(CCRD) with four factors, five levels, and 31 runs (Table 5.1). The responses obtained 
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experimentally were fitted to a quadratic polynomial equation (Eq. 5.1) and the significance of 

the terms determined using analysis of variance. The response surface was analyzed with 

Minitab version 15.1.30.0. (Minitab Inc., State College, PA) using full quadratic models for each 

response. 

 

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X1
2 + β6X2

2 + β7X3
2 + β8X4

2 + β9X1X2 + 

+ β10X1X3 + β11X1X4 + β12X2X3 + β13X2X4 + β14X3X4                 [Eq. 5.1] 
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Table 5.1: Central Composite Rotatable Design for the extraction of soluble sugars, saponins, 
and phytate using ethanol-water extractions.  
 

  
Codified Factors Real Factors 

Std 

Order 

Run 

Order 

 

X1 

 

X2 

 

X3 

 

X4 

Temp. 

(
o
C) 

pH 

 

Time 

(min) 

[EtOH] 

(%) 

27 1  0 0 0  0 50.0 5.75 35.0 35.0 

  3 2 -1 1 -1 -1 37.5 6.38 20.0 17.5 
21 3  0 0 -2  0 50.0 5.75   5.0 35.0 
22 4  0 0  2  0 50.0 5.75 65.0 35.0 
31 5  0 0  0  0 50.0 5.75 35.0 35.0 

  8 6  1 1  1 -1 62.5 6.38 50.0 17.5 
17 7 -2 0  0  0 25.0 5.75 35.0 35.0 
18 8  2 0  0  0 75.0 5.75 35.0 35.0 
20 9  0 2  0  0 50.0 7.00 35.0 35.0 
24 10  0 0  0  2 50.0 5.75 35.0 70.0 
  1 11 -1 -1 -1 -1 37.5 5.13 20.0 17.5 
16 12  1 1  1  1 62.5 6.38 50.0 52.5 
23 13  0 0  0 -2 50.0 5.75 35.0   0.0 
  4 14  1 1 -1 -1 62.5 6.38 20.0 17.5 
10 15  1 -1 -1  1 62.5 5.13 20.0 52.5 
  7 16 -1 1  1 -1 37.5 6.38 50.0 17.5 
  5 17 -1 -1  1 -1 37.5 5.13 50.0 17.5 
14 18  1 -1  1  1 62.5 5.13 50.0 52.5 
28 19  0 0  0  0 50.0 5.75 35.0 35.0 

12 20  1 1 -1  1 62.5 6.38 20.0 52.5 
  6 21  1 -1  1 -1 62.5 5.13 50.0 17.5 
  9 22 -1 -1 -1  1 37.5 5.13 20.0 52.5 
30 23  0 0  0  0 50.0 5.75 35.0 35.0 

26 24  0 0  0  0 50.0 5.75 35.0 35.0 

13 25 -1 -1  1  1 37.5 5.13 50.0 52.5 
11 26 -1 1 -1  1 37.5 6.38 20.0 52.5 
29 27  0 0  0  0 50.0 5.75 35.0 35.0 

19 28  0 -2  0  0 50.0 4.50 35.0 35.0 
25 29  0 0  0  0 50.0 5.75 35.0 35.0 

  2 30  1 -1 -1 -1 62.5 5.13 20.0 17.5 
15 31 -1 1  1  1 37.5 6.38 50.0 52.5 

 

Note: Factors were codified as follows: X1 =  
!!!"

12.5
, X2 =  

  !"!!.!"

0.625
, X3 =  

!!!"

15
, X4 =  

[!"#$]!!"

17.5
, where 

T = temperature, and t = time. 
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2.2.2. Sample preparation 

 Samples were prepared as follows: 450 ml of citrate-phosphate buffer/ethanol, in the 

proportions described by the experimental design, were added to 30g of SBM and stirred at 300 

rpm on a Super-Nuova SP131825 hot plate (Barnstead International, Dubuque, IA, USA), at the 

temperature, time, and pH specified by the CCRD. After treatment, the supernatant was 

separated from the treated soybean meal by centrifugation with a Beckman Coulter Allegra X-

22R centrifuge (Palo Alto, CA) for 30 minutes at 3900 x g. The insoluble solids were dried at 

25oC until constant weight using a VWR oven (Cornelius, OR). 

2.2.3. Analytical methods 

2.2.3.1. Moisture content 

Moisture content was determined by oven drying 15g of SBM at 115oC until constant 

weight (18-24 hours) in a VWR #1310 oven (VWR, West Chester, PA). 

2.2.3.2. Ash content 

 Ash was determined according to the AOAC 923.03 method. Approximately 1 g of SBM 

was put into a porcelain crucible and placed in a muffle furnace at 550oC for 24 hours. After 

treatment, the crucible was removed from the furnace and placed in a closed desiccator to allow 

the container to cool before weighing the ashes. The ash content was calculated using the 

following equation: 

 

%  ash =
!"#$%&  !"  !"#$"  !  !"#$  !"  !"#!$%&'

!"#  !"#$%&  !"#$%&  –  !"#$  !"  !"#!$%&'
x  100              [Eq. 5.2] 
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2.2.3.3. Total carbohydrate content 

 Total percentage of carbohydrates was calculated by subtracting protein, ash, and crude 

lipids from the initial sample weight on a dry basis  (Kim and others 2003). 

2.2.3.4. Total soluble sugars 

 Extraction of soluble sugars from the defatted soybean meal sample was performed 

following the procedure described by Giannoccaro and others (2006). Triplicate samples of 1g of 

soybean meal were added to 5 ml of distilled water aliquots and stirred at 50oC for 15 minutes. 

Then, the supernatant was separated from the solids by centrifugation at 3900 x g for 15 minutes 

and soluble sugars were measured in the supernatant by the phenol-sulfuric acid method (Dubois 

and others 1956). For this procedure, five hundred microliters of supernatant were mixed with 

500 µl of 5% phenol solution and 2.5 ml of concentrated sulfuric acid. Following a 30-minute 

incubation at room temperature, absorbance was read at 490 nm using a UV-1700 PharmaSpec 

spectrophotometer (Shimadzu, Columbia, MD, USA) and compared to a 5-point glucose 

standard curve. 

2.2.3.5. Total fiber 

 Total fiber content was determined by subtraction of ash, proteins, lipids and soluble 

sugars from the initial sample on a dry basis (Giannoccaro and others 2006). 

2.2.3.6. Crude protein content 

Crude protein content was determined by the Agricultural Diagnostic Laboratory, 

University of Arkansas (Fayetteville, AR), measuring total nitrogen combustion with Elementar 

Variomax (Elementar Americas, Inc. Mt. Laurel, NJ, USA). Total crude protein was determined 

by multiplying total nitrogen content by 6.25. 
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2.2.3.7. Urease assay 

 Potential residual lectin and trypsin inhibitor activity was evaluated using the urease 

activity assay (Official Method Ba 9-58, American Oil Chemists Society 1968) as an indirect 

marker of activity. Approximately 0.2 g of finely ground soybean meal was placed into a test 

tube and 10 mL of buffered urea solution were added. The content was mixed and placed in a 

water bath at 30oC. In a second test tube, 0.2 g of soybean meal was added to 10 ml of 0.05M 

phosphate buffer solution (blank). The content was mixed and placed in a water bath at 30oC. 

The content of both test and blank tubes were mixed every five minutes during the 30-minute 

incubation period. Then, the tubes were removed from the water bath and allowed to stand for 

five minutes at room temperature (approximately 25oC). Approximately 5 ml of the supernatant 

was transferred to a new test tube and the pH measured in both the blank and the treated sample. 

The difference in pH between the treated sample and the blank was an index of urease activity. 

Activities higher than 0.15 were indicative of a high level of urease as a result of under-

processing, while activities lower than 0.05 pH units were indicative of over-processing. 

2.2.3.8. Saponins 

 Extraction of saponins was performed following the procedure described by Rupasinghe 

and others (2003) with some modifications. Five hundred milligrams of soybean meal was 

weighed directly into a 50 ml conical bottom flask and the exact weight was recorded. Five 

hundred microliters of formononetin (1.5 µmol/ml) were then added as an internal standard. Ten 

milliliters of 70% ethanol and a stir bar were added to the flask, stirred at room temperature on a 

magnetic stirrer for at least 2.5 hours, then centrifuged at 3900 x g for 10 minutes and the 

supernatant was filtered through a Whatman #1 filter paper, using a glass funnel. Ten milliliters 

of 100% ethanol was added to the residue. After centrifugation at 3900 x g for 10 minutes, the 
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supernatant was filtered, and the residue discarded. The supernatant was rotary evaporated to 

dryness at 30oC (Rotavapor® R II, Buchi UK Ltd., Lancashire OL9 9QL, United Kingdom) and 

2.4 ml of 100% methanol were added to the residue. The sample was transferred a to conical 

bottom tube and centrifuged at 3900 x g for 10 minutes. From the tube, 1.6 ml of supernatant 

was removed and 0.4 ml MQ water was added. The final sample was put into a mini-centrifuge 

tube and allowed to stand overnight. The sample was filtered with a 0.45 µm PFTE membrane 

filter (VWR, West Chester, PA) into a sample vial to be analyzed by HPLC. 

 Quantification of saponins was performed by the Nutrition Laboratory at the Food 

Science Department of the University of Arkansas (Fayetteville, AR). HPLC analysis was done 

with an RP-18, YMC-Pack-ODS-AM (250mm x 4.6mm) L x ID column (YMC America Inc., 

Allentown, PA). Saponins were separated with a gradient of 0.05% trifluoroacetic acid in water 

(solvent A) and 100% acetonitrile (solvent B) at a total flow rate of 1 mL/min. The gradient of 

elution was as follows: before injection the column was stabilized for 9 min with 63%A and 37% 

B. After injection, B was increased from 37% to 40% in 12 min and then ramped to 48% in 25 

min. Solvent B was then incremented to 100% in 1 min, held for 2 min, and then returned to 37% 

in 1 min. The temperature of the column was 25oC (room temperature), and the injection volume 

35 µl. The flow rate used was 1.0 ml/min during a 50-minute cycle. Compounds were monitored 

with a 168 Beckman Photodiode Array detector at a wavelength range between 200 and 600 nm. 

Data was analyzed using 32 Karat (v.8.0) software (Beckman Coulter Inc., Brea, CA, USA). 

Concentrations of saponins were calculated using standard calibration curves prepared with 

purified standards of the individual saponins. 

 



48 
	  

 

Figure 5.1: Monitored absorbance of saponins at 205 and 292 nm. 

2.2.3.9. Phosphate 

 Total phosphate was quantified by the Agricultural Diagnostic Laboratory, University of 

Arkansas (Fayetteville, AR) using wet digestion with H2O2 and HNO3, followed by analysis with 

a Spectro Arcos Inductively Coupled Plasma (ICP) (Ametek, Kleve, Germany).  

 

3.  RESULTS AND DISCUSSION 

3.1. Chemical composition of the untreated soybean meal  

 The defatted soybean meal sample contained 9.10 ±  0.09% moisture content, 7.93 

±  0.06% dry basis ash, 34.67 ±  0.27% d.b. total carbohydrate content (9.40 ± 1.56% soluble 

sugars plus 25.27 ± 1.29% total fiber), and a crude protein concentration of 57.40 ±  0.21% d.b.. 

 The initial concentration of phosphate and saponins were 0.81 ± 0.03% d.b. and 0.103 ± 

0.002% d.b., respectively. The protein digestibility of the untreated sample was 72.2 ± 0.97%. 

The results obtained for moisture content, crude protein, ash, phosphorus, and total 

carbohydrates are comparable to those reported by Lusas and Rhee (1995) and Tudkaew (2008). 

sss
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However, they are higher than those reported by Kim and others (2003), Da Silva (2009), and 

Lujan-Rhenals (2013). The differences found in composition could be related to different 

cultivars, storage, and processing conditions of the soybean meal samples utilized by the 

different authors. 

3.2. Residual trypsin inhibitors and lectins 

 Trypsin inhibitors and lectins are two important anti-nutritional factors present in 

soybean (Machado and others 2008; Bajpai and others 2005; Fasina and others 2003). However, 

according to the literature, both of them are inactivated during the desolventizer-toaster process 

employed to eliminate the residual solvent following the oil extraction from the soybean (Refstie 

and Storebakken 2001). Nevertheless, it was decided to analyze if there was any residual activity 

of these two anti-nutritional factors using the urease activity test. According to this assay the 

residual level was 0.085 ± 0.02 units, meaning no lectins and trypsin inhibitors were active in 

the sample. 

3.3. Extraction of soluble sugars 

 Total soluble sugars response fitted a quadratic equation that contained the linear terms 

temperature (X1), time (X3), and ethanol concentration (X4), the quadratic term time (X3
2), and 

the time-ethanol interaction (X3 X4) (Eq. 5.4). The analysis of variance (Table 5.2) indicates the 

significance of the terms of Eq. 5.4 and the goodness of the statistical fit of the model that can be 

judged by a “lack-of-fit” p-value of 0.903. These findings are in agreement with those published 

by Kim and others (2003) and Giannoccaro and others (2006), whose works described a strong 

relationship between temperature, time, and aqueous alcohol solutions with the extraction of 

soluble sugars. The magnitude of the coefficients of each term described the importance of each 
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factor involved in the extraction. This is particularly important in the case of temperature, where 

the coefficient is suggestively large. 

Y = 11.8839 + 1.0738 X1 + 0.6054 X3 – 0.5037 X4 – 0.6805 X3
2 + 0.7431 X3 X4             [Eq. 5.4] 

Table 5.2: Analysis of variance (ANOVA) for total soluble sugars. 
 

Source DF Seq SS Adj SS Adj MS F P 

Regression 5 65.017 65.017 13.0035 12.00 0.000 
    Linear 3 42.558 42.558 14.1859 13.09 0.000 
    Square 1 13.624 13.624 13.6241 12.57 0.002 
    Interaction 1 8.836 8.836 8.8358 8.15 0.009 
Residual Error 25 27.094 27.094 1.0837   
    Lack-of-fit 9 5.214 5.214 0.5793 0.42 0.903 
    Pure Error 16 21.880 21.880 1.3675   
Total 30 92.111     

 

 The response surface of the extraction of soluble sugars shows a twisted shape (Figure 

5.2). At short treatment time, extraction was favored at low ethanol concentration. However, the 

opposite was true at longer treatment times, where the extraction was enhanced at high ethanol 

concentrations. The concentration of soluble sugars extracted steadily increased with treatment 

time up to the 35-40-minute treatment at low ethanol concentration, after which the 

concentration started to decrease as the time of treatment increased. This could be attributed to 

the polarity of the solvent used. Sugars, because of their structure, are more soluble in water than 

in alcohols, which could explain why less time is necessary to remove the sugars from the 

sample when a higher concentration of water is used. However, at higher ethanol concentrations 

the extraction of sugars progressively increased with treatment time. It was also noticed that 

concentrations of ethanol in the range of 50% to 100%, significantly favored the extraction of 

sugars. The maximum amount of soluble sugars that were extracted under the conditions 

described by Eq. 5.4 was 14.03% using the combination of 50oC, pH 5.75, an ethanol 

concentration of 35% during a period of 35 minutes. The minimum concentration determined 
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was 7.95% following the combination of 75oC, pH 5.75, 35% ethanol concentration during a 35-

minute treatment. The content of total soluble sugars quantified in the untreated soybean meal 

(9.40 ± 1.56%) by the technique described by Giannoccaro and others (2006) using water as the 

extracting solvent is low compared to the concentrations obtained using citrate-phosphate 

buffer/ethanol as a solvent. This study shows that the use of citrate-phosphate buffer/ethanol 

under controlled pH and temperature can be successfully employed to optimize the extraction of 

soluble sugars. 

 

 
Figure 5.2: Total soluble sugars (%) extracted as a function of time (min) and [EtOH] (%) at 
50oC. 
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3.4. Extraction of phosphate 

 The coefficients for the quadratic equation that represent the response of remaining total 

phosphorus in the sample are described in Eq. 5.5. The significance of the terms of the equation 

was determined by analysis of variance (ANOVA) (Table 5.3), and the “lack of fit” p-value of 

0.111. Ethanol concentration seemed to be the factor that played the most important role in the 

extraction of phosphate since it is has the largest coefficient. 

 

Y = 0.859737 + 0.0220833 X1 + 0.0354167 X2 + 0.06875 X4 + 0.0236732 X4
2 + 

    + 0.025625 X1 X2 – 0.026875 X2 X4                    [Eq. 5.5] 

 

Table 5.3: Analysis of variance (ANOVA) for remaining total phosphorus. 
 

Source DF Seq SS Adj SS Adj MS F P 

Regression 6 0.19380 0.19380 0.032299 13.44 0.000 
    Linear 3 0.15525 0.15525 0.051749 21.53 0.000 
    Square 1 0.01649 0.01649 0.016487 6.86 0.015 
    Interaction 2 0.02206 0.02206 0.011031 4.59 0.021 
Residual Error 24 0.05769 0.05769 0.002404   
    Lack-of-fit 8 0.02894 0.02894 0.003617 2.01 0.111 
    Pure Error 16 0.02875 0.02875 0.001797   
Total 30 0.25148     
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 The extraction of phosphate described by Eq. 5.5 was favored at low pH, and also low 

ethanol concentration (Figure 5.3). As long as the pH of the solvent, and the concentration of 

ethanol increased, the remaining content of phosphate in the sample increased, meaning the 

extraction was not efficient under the circumstances described by the objective of the experiment, 

which was to reduce the remaining content of phosphate. The maximum extraction of 

phosphorus, according to Eq. 5.6, occurred at 62.5oC, a pH of 5.13, and a 17.5% ethanol 

concentration during a 20 or 50-minute treatment, leaving 0.75% of total phosphorus in the 

treated sample. On the other hand, the least effective treatment occurred at 50oC, pH 5.75, with 

an ethanol concentration of 70% during a treatment of 35 minutes yielding a sample with 1.09% 

of remaining total phosphorus. The results obtained in this work are in accordance with the 

findings of Lusas and Rhee (1995) who found that phytate is effectively extracted with water at 

pH 5.0. These results also confirm that the ethanol concentration and pH, both described by the 

model employed, play an important role in the extraction of phytate.  
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Figure 5.3: Remnant phosphate (%) as a function of [EtOH] (%) and pH at 50oC. 
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 The study of total saponins was focused on Group B saponins, which account for 
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significant terms with the corresponding coefficients for remaining total Group B saponins in the 

treated soybean meal sample are shown in Eq. 5.6 and Table 5.4. Ethanol concentration exhibited 
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products formed by heat exposure (Kudou and others 1993), therefore affecting the final content 

of saponins present in the samples. Additionally, saponins are amphiphilic compounds readily 

soluble in aqueous alcohol solutions, which favors their extraction from the soybean meal sample. 

 

Y = 0.052125 – 0.003768 X1 – 0.000425 X2 – 0.005429 X3 - 0.035465 X4 + 

    + 0.003023 X1
2 + 0.003020 X3

2 + 0.015524 X4
2 + 0.004376 X2 X3           [Eq. 5.6] 

 
Table 5.4: Analysis of variance (ANOVA) for total saponins in treated soybean meal. 

 
Source DF Seq SS Adj SS Adj MS F P 

Regression 8 0.038641 0.038641 0.004830 132.68 0.000 
    Linear 4 0.031238 0.031238 0.007810 214.52 0.000 
    Square 3 0.007096 0.007096 0.002365 64.97 0.000 
    Interaction 1 0.000306 0.000306 0.000306 8.42 0.008 
Residual Error 22 0.000801 0.000801 0.000036   
    Lack-of-fit 16 0.000658 0.000658 0.000041 1.73 0.259 
    Pure Error 6 0.000143 0.000143 0.000024   
Total 30 0.039442     

 
  

 The extraction of total saponins increased as the time of treatment increased, in all 

ethanol concentrations tested (Figure 5.4). However, it is hard to perceive this behavior from the 

graph since the starting and extracted concentrations of saponins were extremely small. The 

extraction was greatest at 50-60% ethanol concentration. The highest concentration of total 

saponins described by Eq. 5.6 under the experimental conditions was 0.19% employing the 

combination of 50oC, pH 5.75, citrate-phosphate buffer (no ethanol) for a 35-minute treatment. 

On the other hand, the lowest concentration of saponins, which corresponds to the most efficient 

treatment, was 0.025% following treatment at 62.5oC, pH 5.13, 52.5% ethanol for 50 minutes. 

The comparison of the concentration of Group B saponins in the untreated soybean meal sample 

(0.103 ± 0.002%) with the minimum concentration described by Eq. 5.6  (0.025%) shows that an 
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effective treatment could lead to a sample with reduced concentration of saponins more suitable 

to be used as fishmeal replacement. However, the highest concentration described (0.19%) is 

higher than the concentration of the untreated sample demonstrating that some treatments can 

also lead to harmful results. 

 

 

Figure 5.4: Total saponins content (%) as a function of time (min) and [EtOH] (%) at 50oC and 
pH of 5.75. 
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3.5.1. 2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one saponins 

 In the DDMP saponins study, the linear model was the highest order model with 

significant terms (Eq. 5.7 and Table 5.5). Ethanol concentration is critical since, as already 

mentioned, the structure of saponins makes them soluble in aqueous alcohol solutions. 

Temperature could play a role by transforming the DDMP saponins into non-DDMP saponins, 

thus reducing the DDMP content in the sample as the temperature of the treatment increases. In 

addition, as the time of the treatment increases, the remaining content of saponins decreases. 

 

Y = 0.000113 – 0.000018 X1 – 0.000012 X3 – 0.000048 X4              [Eq. 5.7] 

 

Table 5.5: Analysis of variance (ANOVA) for DDMP saponins in treated soybean meal. 
 

Source DF Seq SS Adj SS Adj MS F P 

Regression 3 0 0 0 49.31 0.000 
    Linear 3 0 0 0 49.31 0.000 
Residual Error 27 0 0 0   
    Lack-of-fit 11 0 0 0 0.97 0.510 
    Pure Error 16 0 0 0   
Total 30 0     

 

 

 The extraction of DDMP saponins, (Figure 5.5), was extremely dependent on time and 

ethanol concentration. The extraction improved as treatment time and ethanol concentration 

increased. The highest concentration of DDMP saponins in the treated soybean meal described 

by Eq. 5.7 was 0.000209% and occurred with the following combination of factors: 50oC, pH 

5.75, 0% ethanol concentration for a 35-minute treatment. On the other hand, the lowest 

concentration of remaining DDMP saponins was 0.000017% following treatment at 50oC, pH 

5.75, 70% ethanol concentration for a period of 35 minutes. The concentration of DDMP 
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saponins in all treated samples was lower—even the highest concentration (0.000209%) found in 

the least effective treatment—than the concentration present in the untreated sample (0.00022%, 

data not shown). 

 

Figure 5.5: Total DDMP saponins (%) as a function of time (min) and [EtOH] (%) at 50oC. 
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period of time of treatments increased for the ethanol concentrations examined (Figure 5.6). At 

50-60% ethanol concentration, the extraction was heightened. The lowest concentration of non-

DDMP saponins in the treated soybean meals was 0.025% following treatments at 62.5oC, pH 

5.13, 52.5% ethanol concentration, for 50 minutes. On the other hand, the highest amount of 

non-DDMP saponins was 0.18% following treatment at 50oC, pH 5.75, in the presence of only 

citrate-phosphate buffer, for a treatment time of 35 minutes. The highest concentration of non-

DDMP saponins present after treatments (0.19%) almost double the concentration found in 

untreated soybean meal (0.102% data not shown). Non-DDMP saponins are products formed by 

heat exposure of the DDMP saponins, which can explain this unfortunate result. Excessive 

temperature used during the removal procedure could affect the production of these compounds. 

Optimization of the extraction procedure can lead to significant improvement in the elimination 

of these harmful components for fish diets. 

 

Y = 0.052021 – 0.003750 X1 – 0.000417 X2 – 0.005417 X3 – 0.035417 X4 + 0.003019 X1
2 + 

0.003019 X3
2 + 0.015519 X4

2 + 0.004375 X2 X3               [Eq. 5.8] 

 

 
Table 5.6: Analysis of variance (ANOVA) for non-DDMP saponins in treated soybean meal. 

 
Source DF Seq SS Adj SS Adj MS F P 

Regression 8 0.038547 0.038547 0.004818 132.24 0.000 
    Linear 4 0.031150 0.031150 0.007787 213.73 0.000 
    Square 3 0.007091 0.007091 0.002364 64.87 0.000 
    Interaction 1 0.000306 0.000306 0.000306 8.41 0.008 
Residual Error 22 0.000802 0.000802 0.000036   
    Lack-of-fit 16 0.000659 0.000659 0.000041 1.73 0.258 
    Pure Error 6 0.000143 0.000143 0.000024   
Total 30 0.039348     
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Figure 5.6: Total Non-DDMP saponins (%) as a function of time (min) and [EtOH] (%) at 50oC 
and pH of 5.75. 
 

4. CONCLUSIONS 
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0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

5 10 15 20 25 30 35 40 45 50 55 60 65 

[E
tO

H
] 

(%
) 

Time (min) 

0.2-0.25 

0.15-0.2 

0.1-0.15 

0.05-0.1 

0-0.05 



61 
	  

compounds studied at the same time. The treatment that was efficient for the extraction of one 

compound did not produce the same effect on the extraction of a different one. This was the case 

for the extraction of phytate and DDMP saponins. The most efficient treatment for the extraction 

of DDMP saponins (50oC, pH 5.75, 70% ethanol concentration, for a 35 minute treatment) 

produced the lowest extraction of phosphate. The quadratic pH and the interactions temperature-

time, and temperature-ethanol were not significant in any of the extractions studied. The 

optimization of the factors temperature, pH, time, and ethanol concentration that produces the 

highest extraction of soluble sugars, saponins, and phytate, in addition to protein concentration 

and digestibility improvement, in a unique treatment will be discussed in the next chapter. 
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CHAPTER VI 

PROTEIN CONTENT AND DIGESTIBILITY, AND RESPONSE OPTIMIZATION 

1. INTRODUCTION 

 This chapter is a continuation of the work presented in Chapter V. Here, the treated 

soybean meals obtained according to the conditions presented in the previous chapter were 

analyzed for protein content and digestibility. An optimization response was also evaluated 

considering all the factors studied in order to obtain the one that best fitted the objective of this 

work, which was to reduce the anti-nutritional factors present in soybean meal while increasing 

the protein content and digestibility to be used as fish feed.  

 Protein digestibility is a measure of the protein quality. There are in-vivo and in-vitro 

methods to study digestibility. The in-vivo methods are time-consuming and very expensive to 

perform. In-vitro methods have the advantage of being cheaper and faster (Fenerci and Şener 

2005) and therefore were used in this work. Protein digestibility was studied by comparing the 

drop in the pH of casein (considered to be 100% digestible) treated with three digestive 

enzymes—trypsin, α-chymotrypsin, and peptidase—to the drop in pH of samples treated with the 

same enzymes (Hsu and others 1977). The use of a multi-enzyme system reduces the variability 

that can be found using a single-enzyme system (Hsu and others 1977). 

 As observed in the previous chapter, there was not a unique treatment that could 

eliminate all the anti-nutritional factors at the same time. The process optimization previously 

discussed allows maximizing or minimizing the desired responses based on the factors studied. 

In this work, the optimization response focused on the minimization of the remaining content of 

soluble sugars, saponins, and phytate, while maximizing the crude protein content and 
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digestibility of the treated soybean meal samples. As a result, the temperature, time, pH, and 

ethanol concentration at which the responses are optimized are obtained. 

 

2. MATERIALS AND METHODS 

2.1. Materials 

 The chemicals employed were trypsin from porcine pancreas, Type IX-S, 13,000-20,000 

BAEE U/mg (Sigma Aldrich, St Louis, MO, USA), chymotrypsin from bovine pancreas, Type II, 

≥ 40 U/mg protein (Sigma Aldrich), peptidase 100,000 HUT/g (American Laboratories Inc., 

Omaha, NE, USA), and casein from bovine milk (Sigma Aldrich). 

2.1.1. Treated soybean meals 

 The starting materials were the 31 treated soybean meals obtained in Chapter V after 

treatment of the defatted soybean meal samples under the conditions described by the CCRD 

experimental design (Table 5.1). 

2.2. Methods 

2.2.1. Experimental design 

 The responses of the effect of temperature, time, pH, and ethanol concentration on the 

protein content and digestibility, performed according to the CCRD experimental design 

described in Chapter V, were fitted to the quadratic polynomial equation (Eq. 5.1) with Minitab 

version 15.1.30.0 (Minitab Inc., State College, PA). 

2.2.2. Response optimization 

 The optimization of soluble anti-nutritional factors extraction (oligosaccharides, saponins, 

and phytate), protein content, and digestibility were evaluated using Minitab version 15.1.30.0 

(Minitab Inc., State College, PA). Optimization was conducted using the response optimizer 
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provided by Minitab 15.1.30.0, which gives the optimal solution to the desired responses for the 

combination of factors studied, and also an optimization plot of the results. The response 

optimization provides the overall desirability (D)—a number in the range from 0 (one or more 

responses are not within the acceptable limits) to 1 (ideal situation)—that describes how well the 

responses fit the proposed goals, and the optimal desirability for each response. The response 

optimization also provides the maximal composite desirability obtained by the combination of 

the individual desirabilities, and identifies the optimal condition of the factors that led to the 

results. 

2.2.3. Analytical methods 

2.2.3.1. Crude protein content 

Crude protein content was determined as described in Chapter V. 

2.2.3.2. Protein digestibility 

Protein digestibility was determined by the method described by Hsu and others (1977) 

with some modifications. All treated soybean meal samples from chapter V were finely ground 

using a coffee grinder (Mr. Coffee, Rye, NY, USA), and then sieved with a US standard 60-mesh 

screen. Fifty milliliters of 1% NaCl solution was added to each soybean meal sample previously 

weighed to produce a protein suspension with a final concentration of 6.25 mg protein/ml. The 

samples were adjusted to pH 8.0 with 0.1 N HCl and/or 0.1 N NaOH, while stirring in a water 

bath at 37oC. At the same time, a 1% NaCl solution containing the following solid enzymes was 

prepared: 1.6 mg trypsin, 3.1 mg chymotrypsin, and 1.3 mg peptidase/ml, and maintained in an 

ice bath and adjusted to pH 8.0 with 0.1 N HCl and/or NaOH. Five milliliters of the multi-

enzyme solution were then added to the protein suspension, while stirring at 37oC. The pH drop 

of the samples was recorded automatically over a 10-minute period using a pH meter (VWR 
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Symphony SP70P). The activities of the individual enzymes were determined using casein from 

bovine milk (6.25 mg/ml). Protein digestibility was calculated as follows: 

 

Protein  Digestibility   % =
!∆!"  !"#$!#%  !"#$%&'  !"#$

!∆!"  !"#$%&
  x  100                       [Eq. 6.1] 

 

3. RESULTS AND DISCUSSION    

3.1. Crude protein 

 The significant terms with their corresponding coefficients in the analysis of crude 

protein content were the linear terms temperature (X1), time (X3), and ethanol concentration (X4), 

the quadratic terms for temperature (X1
2) and time (X3

2), and the interaction temperature-ethanol 

concentration (X1X4) (Eq. 6.2, Table 6.1). The interaction temperature-ethanol concentration 

seemed to be the most important term in the behavior of crude protein content since it is the 

factor with the largest coefficient. Time is the next significant factor, while temperature and 

ethanol concentration appeared to have a comparable influence. 

 

Y = 64.6483 – 0.4004 X1 + 0.6946 X3 + 0.3804 X4 – 0.4626 X1
2 – 

    – 0.4976 X3
2 + 0.7881 X1 X4                           [Eq. 6.2] 
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Table 6.1: Analysis of variance (ANOVA) for total crude protein content in treated soybean meal. 
 

Source DF Seq SS Adj SS Adj MS F P 

Regression 6 41.232 41.232 6.8720 5.64 0.001 
    Linear 3 18.900 18.900 6.3000 5.17 0.007 
    Square 2 12.394 12.394 6.1968 5.09 0.014 
    Interaction 1 9.938 9.938 9.9383 8.16 0.009 
Residual Error 24 29.244 29.244 1.2185   
    Lack-of-fit 8 15.215 15.215 1.9019 2.17 0.089 
    Pure Error 16 14.029 14.029 0.8768   
Total 30 70.476     

 

 The content of crude protein increased with treatment time, reaching the maximum at a 

45-minute treatment (Figure 6.1). Beyond that point, concentration started to decrease as 

treatment time increased. A similar behavior followed the factor temperature. The protein 

content increased with increasing temperature, reaching maximum concentrations at 40-50oC, 

after which point concentration started to decrease with increasing temperature. The maximum 

concentration of protein in treated soybean meal described by Eq. 6.2 was 65.41% following 

treatment at 50oC, pH 5.75, with a concentration of ethanol of 70% during a 35 minute-treatment. 

The pH of this treatment is close to the isoelectric point of proteins, which could explain the 

highest amount of protein found in the sample. According to Lusas and Rhee (1995), the result 

obtained categorizes the sample as soy protein concentrate. Moreover, this crude protein level is 

desired for aquaculture feeds since it is similar to the protein content of fishmeal (Soy Protein 

Concentrate for Aquaculture Feeds 2008). The minimum concentration occurred with treatment 

at 50oC, pH 5.75, 35% ethanol concentration for 5 minutes, yielding a soybean meal sample with 

61.27% protein content. The protein concentration of all samples, even in the less efficient 

treatment, was higher compared to the untreated soybean meal (57.40 ±  0.21%). The optimum 

result is comparable to those of Lujan-Rhenals (2013) who found that treatments with 0.25 to 

1.7% of H2SO4 for 0.5 to 2.5 hours at 80oC increased the protein content from 48% to 58% d.b.  
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Figure 6.1: Crude protein content (%) as a function of time (min) and temperature (oC) at a 
concentration of ethanol of 35 %. 
 

3.2 Protein digestibility 

3.2.1. Calibration curves of digestive enzymes 

 The calibration curves were studied in order to determine the behavior of different 
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and others (1977). The pH drop curves obtained by incubation of casein with both the individual 
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was in the presence of the enzymatic cocktail, followed by trypsin, α-chymotrypsin, and finally 

peptidase, the one with the lowest pH decline. These results are in agreement with those 

presented by Hsu and others (1977), even though the source of peptidase employed was different. 

The enzyme used in Hsu and others (1977) technique was a porcine intestinal peptidase (Grade 

III), 40 units per g powder from Sigma Chemical Company. However, that enzyme has been 

discontinued. American Laboratories Inc., (Omaha, NE, USA) offers the enzyme from a 

different source. Their peptidase is produced by Aspergillus melleus. According to the results 

presented in this study, this new source of enzyme can replace the porcine intestinal peptidase 

originally employed in the protein digestibility technique without compromising the results. 

 

 

 

Figure 6.2: Calibration curves of digestive enzymes in the presence of casein. 
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3.2.2. Digestibility of samples 

 The coefficients for the quadratic equation that represent the response of protein 

digestibility are shown in Eq. 6.3 and Table 6.2. Interactions between factors were not significant. 

The three significant terms appear to play an important role in protein digestibility. Ethanol 

likely aids the removal of oligosaccharides and saponins, an optimal pH prevents loss of protein 

during the extraction process thus increasing the protein concentration, and the ideal temperature 

prevents protein damage while assisting in the removal of soluble sugars, saponins, and phytate. 

Ethanol concentration seemed to be the factor with the greatest influence in protein digestibility 

since it is the term with the largest coefficient. 

 

Y = 83.140 + 1.604 X1 – 2.154 X2 + 4.729 X4 – 1.170 X1
2 – 2.457 X4

2                       [Eq. 6.3] 

 

Table 6.2: Analysis of variance (ANOVA) for protein digestibility in treated soybean meal. 

Source DF Seq SS Adj SS Adj MS F P 

Regression 5 912.96 912.963 182.593 25.62 0.000 
    Linear 3 709.89 709.891 236.630 33.20 0.000 
    Square 2 203.07 203.072 101.536 14.25 0.000 
Residual Error 25 178.18 178.185 7.127   
    Lack-of-fit 9 89.03 89.030 9.892 1.78 0.152 
    Pure Error 16 89.15 89.155 5.572   
Total 30 1091.15     

 

 Protein digestibility considerably increased up to 50% ethanol concentration, after which 

point digestibility started to decrease (Figure 6.3). The behavior of pH in protein digestibility 

was interesting since as long as the pH increased, the protein digestibility decreased, over the 

range of ethanol concentrations tested. The largest protein digestibility in the treated samples was 

88 % following treatment at 62.5oC, pH 5.13, 52.5% ethanol concentration for a 20-50-minute 

treatment. This result is greater than the protein digestibility of soy concentrate (87.2%) reported 
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by Hsu and others (1977), and even greater than the protein digestibility of fishmeal (78.08  ± 

0.36%) reported by Ali and others (2009). The lowest protein digestibility was 63.85% after 

treatment at 50oC, pH 5.75, 0% ethanol concentration for 35 minutes. The uppermost protein 

digestibility obtained with treatments was approximately 22% higher than the protein 

digestibility of the untreated sample (72.2 ± 0.97%). However, the less efficient treatment 

produced a sample with a protein digestibility lower than the untreated soybean meal. 

 

 

Figure 6.3: Protein digestibility (%) as a function of [EtOH] (%) and pH at 50oC. 
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3.3. Response optimization 

 The objective of the optimization process was to obtain a final product with low 

concentrations of oligosaccharides, saponins, and phosphate while concurrently maximizing the 

protein content and digestibility. The response optimization that best represents the objective of 

this work was the one that optimized protein digestibility (Figure 6.4). At this level the content of 

total saponins and phosphate in the treated sample were minimized to 0.036% and 0.77%, 

respectively. The desirability of both responses was low, especially in the case of remaining total 

phosphate. The optimization also maximized the content of total sugars extracted to 11.10%, the 

crude protein content to 64.23%, and the protein digestibility of the samples to 87.90%. with 

optimal desirabilities, indicating that ideal results were obtained according to the proposed goals. 

The response optimization’s composite desirability was 0.71, meaning that one or more 

responses were not within the suitable limits. In this particular case, the content of remaining 

phosphate, and to a lesser extent, the saponins content, affected the overall response. The best 

conditions that led to the aforementioned results were a consequence of working with a 

temperature of 59oC, a pH of 4.5, and a 35% ethanol concentration for a period of 65 minutes. 
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Figure 6.4: Optimization plot with maximized protein digestibility. 
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4. CONCLUSIONS 

 The different treatments performed on soybean meal were able to increase both the 

protein content and digestibility of the sample. The most efficient treatments were able to 

produce a soybean meal with an increase in protein content from 57.4% to 65.41%, and a protein 

digestibility increase from 72.2% to 88%, making the final product a good alternative for fish 

feed. The technique used in this work is simple and economical. However, similar to the analysis 

of soluble sugars, saponins, and phytate, there was not one treatment that could increase both 

protein content and digestibility at the same time. Nonetheless, the optimization response can be 

employed to define the optimal solution based on the desired responses for the combination of 

factors studied. The optimization of protein digestibility demonstrated that it is possible to work 

at relatively low temperature, pH, and ethanol concentration for a short processing time, and 

obtain a pronounced reduction in soluble sugars and saponins content while increasing the 

protein content and digestibility. 
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CHAPTER VII 

CONCLUSIONS AND FUTURE RESEARCH 

 This research established the deactivation kinetics of β-conglycinin and glycinin using D-

values and Z-values, and evidenced the resistance to temperature of both proteins when present 

within the matrix of the soybean meal. It concludes that effective heat treatments could be 

employed to reduce the content of active protein based on the deactivation characteristics of 

glycinin, the more resistant of the two proteins. The deactivation of these proteins produces a 

soybean meal with a greater nutritional value that could be used for fish feed. 

 Reduction of the phytic acid content present in the soybean meal sample with microbial 

phytase was confirmed with this study. Depending on the characteristics of the final product 

desired two different treatments could be employed using different citrate buffer proportions. 

The 1:1 (w/v) treatment showed that phytase is able to make phosphorus available, which could 

be of nutritional importance for fish feed, and also reduces its release to the environment. On the 

other hand, the 1:15 (w/v) treatment is a good alternative if the objective is to reduce the phytic 

acid content while reducing the content of other soluble anti-nutritional compounds present in 

the sample that could also cause damage to fish. 

 Optimization of the extraction of soluble sugars, saponins, and phosphate while 

increasing the protein content and digestibility of soybean meal was achievable in this work 

using the optimization response of protein digestibility. The optimal solution based on the factors 

studied allowed us to reduce the content of saponins in the sample to 0.036%, the phosphate 

content to 0.77%, increase the extraction of soluble sugars to 11.1%, and improve the protein 

content and digestibility to 64.23% and 87.90%, respectively, while working at 59oC, pH of 4.5, 

35% ethanol concentration for 65 minutes. These results are comparable to those published by 
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the aquaculture industry; however, the important advantage is that the results were obtained 

using a one-step process, which makes it simple and also economical since it uses a lower 

ethanol concentration. 

 Further studies in connection with this research could include an economic analysis of the 

method employed for the extraction of the anti-nutritional factors to enhance the protein content 

and digestibility of the soybean meal. Also, it could be of importance to evaluate the in-vivo 

protein digestibility of the sample obtained under this work, and to do the in-vivo test in different 

species—omnivores (catfish) and carnivores (bass, trout). Additionally, it would be useful to 

investigate the advantages/disadvantages of the product obtained when nutritionally enhanced 

soybean meal is used as a fishmeal substitute. 
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APPENDICES 

APPENDIX I 

Experimental results of total soluble sugars (%), phosphorus (%), non-2,3-dihydro-2,5-
dihydroxy-6-methyl-4H-pyran-4-one (non-DDMP) saponins (%), 2,3-dihydro-2,5-dihydroxy-6-
methyl-4H-pyran-4-one (DDMP) saponins (%), and total saponins (%) in soybean meal obtained 
after treatment of defatted soybean meal under the CCRD conditions. 
 
 

Run 

Order 

Soluble 

sugars 

Phosphorus 

 

Non-

DDMP 

DDMP 

 

Total 

saponins 

1   9.95 0.88 0.05   0.000069* 0.050069 
2 10.61 0.91 0.11 0.000189 0.110189 
3   7.73 0.87 0.08 0.000135 0.080135 
4 10.76 0.83 0.05 0.000073 0.050073 
5 11.66 0.86 0.06 0.000095 0.060095 
6 13.30 0.93 0.11 0.000120 0.110120 
7   8.89 0.88   0.08* 0.000154   0.080154* 
8 13.30 0.97 0.05 0.000077 0.050077 
9 11.82 0.87 0.05 0.000075 0.050075 
10 11.04 1.07 0.04 0.000051 0.040051 
11 10.45 0.78 0.12 0.000209 0.120209 
12 13.30   1.10* 0.03 0.000037 0.030037 
13 13.49 0.86 0.19 0.000189 0.190189 
14 12.75 0.88 0.10 0.000174 0.100174 
15 11.04 0.96 0.04 0.000063 0.040063 
16 10.45 0.79 0.11   0.000207* 0.110207 
17 10.10 0.72   0.09* 0.000165   0.090165* 
18 11.35 0.94 0.03 0.000047 0.030047 
19 10.92 0.80 0.05 0.000103 0.050103 
20 10.80 0.99 0.04 0.000050 0.040050 
21 11.74 0.69 0.10   0.000177* 0.100177 
22   7.65 0.88 0.05 0.000108 0.050108 
23 10.49 0.82 0.05 0.000099 0.050099 
24 12.21 0.91 0.05 0.000114 0.050114 
25 11.43 0.95 0.04 0.000059 0.040059 
26   8.27 0.89 0.04 0.000091 0.040091 
27 12.91 0.86 0.06 0.000113 0.060113 
28 13.88 0.84 0.05 0.000146 0.050146 
29  14.43* 0.85 0.05 0.000107 0.050107 
30 13.49 0.71 0.12 0.000156 0.120156 
31 11.86 0.93 0.04 0.000065 0.040065 

    *Unusual observations 
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APPENDIX II 

Experimental results of total crude protein (%) and digestibility (%) obtained after treatment of 
soybean meal under the CCRD conditions. 

 
 

Run Order Crude Protein  

(%) 

Protein Digestibility 

(%) 

1 64.75 82.8 
2 63.00 71.1 
3 61.10   77.3* 
4   65.81* 82.5 
5 64.88 82.2 
6   60.25* 73.2 
7 63.31 74.6 
8   63.88* 80.4 
9 63.94 79.0 
10 65.81 86.3 
11 65.31 76.6 
12 64.75 83.2 
13 63.50   58.4* 
14 61.69   80.8* 
15 63.06 87.3 
16 63.56 72.9 
17 66.00 76.3 
18 63.25 85.9 
19 64.44 82.5 
20 63.69 82.8 
21 63.06 81.8 
22 62.06 81.8 
23 65.69 84.5 
24 65.31 84.9 
25 64.94 86.3 
26 62.69 81.1 
27 65.25 83.8 
28 65.50 90.4 
29 65.25 80.8 
30 61.19 78.4 
31 64.13 80.4 

                        * Unusual observations 

 


	Production of a Soybean Meal with High-Protein and Low Anti-Nutritional Factors for Fish Feed
	Citation

	FullThesis_MercedesCastro

