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Background: The potential effects of global climate change on allergenic pollen production are
still poorly understood.

Objective: To study the direct impact of rising atmospheric CO2 concentrations on ragweed
(Ambrosia artemisiifolia L.) pollen production and growth.

Methods: In environmentally controlled greenhouses, stands of ragweed plants were grown
from seed through flowering stages at both ambient and twice-ambient CO2 levels (350 vs 700
µL L-1). Outcome measures included stand-level total pollen production and end-of-season
measures of plant mass, height, and seed production.

Results: A doubling of the atmospheric CO2 concentration stimulated ragweed-pollen
production by 61% (P = 0.005).

Conclusions: These results suggest that there may be significant increases in exposure to
allergenic pollen under the present scenarios of global warming. Further studies may enable
public health groups to more accurately evaluate the future risks of hay fever and respiratory
diseases (eg, asthma) exacerbated by allergenic pollen, and to develop strategies to mitigate
them.
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INTRODUCTION

Global environmental change has received significant attention in the fields of conservation
biology, agriculture, and economics. Only recently, however, has research begun to address how
a changing global environment may affect public health. 1 Outbreaks and expansion of diseases
transmitted by vectors sensitive to climatic shifts (eg, malaria, dengue fever, and equine
encephalitis) have been linked to environmental change. 2,3  Thinning of the ozone layer is
expected to increase the incidence of melanomas. 5 Recent studies have also shown a link
between warming trends within the past 50 years and the phenology and abundance of allergenic



pollen released by a number of European tree species. 6,7 However, only limited data are
currently available to evaluate the direct effects of rising atmospheric CO2 concentrations on
pollen production by allergenic plants and its potential impact on public health. 8

Human allergic responses to the pollen of certain plant species (hay fever, allergenic rhinitis,
pollinosis) is a serious environmental health issue. 9 Aeroallergens, including pollen, also play a
role in the exacerbation of asthma. 10 The prevalence of both hay fever and asthma has increased
significantly in recent decades. 11,12 Little research has been devoted to understanding how
various components of global environmental change influence allergenic pollen production and,
thus, the potential for pollen-related disease.

An increase in the concentration of atmospheric CO2 is one of the most certain predictions of
climate change models. CO2 concentration has increased by 29% since preindustrial times, and
is expected to double again sometime between 2050 and 2100. 13 Increased CO2 concentrations
stimulate plant net photosynthetic rate, 14 increase water use efficiency, 15 decrease carbon loss
to dark respiration, 16 and alter phenology 17 and allocation patterns. 18 The net result of these
responses is that plants grown in CO2-enriched atmospheres generally grow faster and are larger
at maturity, although the magnitudes of growth and physiologic enhancements vary considerably
with environmental conditions and species identity. 19,20 Whereas significant CO2-induced
changes to reproduction have been documented, 21,22 nearly all studies to date have focused on
the responsiveness of female reproductive structures (ie, flowers, fruits, and seed). In one recent
study, Ziska and Caulfield 8 found that exposing ragweed plants to the higher CO2

concentrations predicted in the year 2100 doubled the quantity of pollen produced.

Ragweed (Ambrosia artemisiifolia L.) is a plant common to roadsides and disturbed habitats
throughout most of the United States and Canada. 23 It is dioecious, with male and female
flowers born on distinct axillary branches, allowing for independent control of allocation to
sexes. 24 Throughout its distribution, ragweed pollen is one of the most abundant aeroallergens
in late summer and fall, and it is one of the primary causes of seasonal pollen allergy in North
America. 25 Consequently, ragweed pollen and specific allergens extracted from it have been
used in many clinical studies, and the biochemistry and genetics of ragweed allergens and their
impacts on the human immune systems are well understood. 26,27

This study investigates the direct impact of rising CO2 concentrations on pollen production in
experimental populations of ragweed. The results will be used to more accurately evaluate the
future risks of hay fever and respiratory disease exacerbated by allergenic pollen, and to develop
strategies to mitigate them.

 

MATERIALS AND METHODS

To study pollen production by ragweed populations in elevated CO2 atmospheres, seeds of
Ambrosia artemisiifolia L. were grown to reproductive maturity in controlled-environment
glasshouses. Seeds were initially collected from wild populations in Woodstock, Illinois. Seed
were sown into 12 total 30-L growth containers (50 x 40 x 15 cm). Soil in each container was
composed of a 4:3 mix of Pro-Mix compost (Red Hill, PA) and washed sand (Quickrete Co,
Atlanta, GA). Containers were fertilized weekly with 500 mL of 20:20:20 NPK Peter's Solution



(Allentown, PA), and watered daily. Day/night temperatures were maintained at 26/21° C and
ambient glasshouse light levels were approximately 70% of full sun.

Containers were randomly assigned to two blocks, each containing two modules maintained at
either ambient 350 µL L-1) or double ambient (700 µL L-1) CO2 concentrations (ie, three
containers per growth module). Thirty plants were established in each growth container and
arranged in a regular grid. This resulted in a density of 150 plants m-2, a density commonly
observed in natural field populations. 28 To minimize any edge effect, only the central 12 plants
per container were measured and used in analyses.

Pollen was collected and pooled from the 12 central plants in each stand after 84 days of growth,
during the peak of the flowering season. All pollen bearing shoots on each plant were vigorously
shaken within a large Teflon-coated (DuPont, Wilmington, DE) funnel that opened at its narrow
end into a collection vial filled with 50 mL of ethanol. To estimate pollen concentration, a 5-mL
sample of well mixed pollen-ethanol solution was transferred to a glass vial and dried for 24
hours in an oven. The dried pollen was then mixed with 4 mL of concentrated salt water (Instant
Ocean, Mentor, OH) and subsamples of this solution were analyzed for pollen particle number
and size using a Coulter Z-series Particle Count and Size Analyzer (Hialeah, FL). Calibration for
particle size was conducted by using 50-µm beads using the protocol suggested by the
manufacturer. Particle number was calibrated against solutions of pure salt water. After pollen
removal from plants, all mature seeds were removed from each shoot, and along with total shoot
biomass, oven-dried and weighed to the nearest g-4. Shoot height was measured immediately
before pollen removal. Persons responsible for pollen collection and measurements of particle
counts and plant size, were not blinded as to which CO2 environments plants were grown in.

For all traits, including total pollen production, mean pollen size, shoot biomass, height, and
seed weight, differences between treatments were evaluated with analysis of variance that
compared the effects of CO2 to the larger of Block x CO2 and container-to-container variation.

 

RESULTS AND DISCUSSION

We found that stand-level pollen production was 61% higher in elevated versus ambient CO2

environments (F = 15.16, P = 0.005); however CO2 did not significantly influence the average
size of pollen grains (Fig 1). CO2-induced growth stimulation of stand shoot biomass was similar
to that of total pollen production (63%, F = 9.08, P = 0.017; Fig 1). Both shoot height and total
seed mass were also greater in elevated CO2 environments (9% and 31%, respectively);
however, these effects were not statistically significant (P = 0.057 and P = 0.3781; Fig 1). Our
observation of a CO2-induced increase in pollen production parallels the results reported by
Ziska and Caulfield, 8 who reported an even greater magnitude of pollen increase. Similarly, our
observed CO2-induced enhancement to shoot biomass is similar to average species
enhancements values (54%) observed in surveys of fast-growing wild plants. 18

Figure 1. The effects of a doubling of the atmospheric CO2 concentration (350 vs 700 µL L-1) on components of
reproduction and growth of ragweed (Ambrosia artemisiifolia L.) plants grown in stands in climate-controlled
glasshouses. Significant differences are indicated with an asterisk and a P value. Error bars represent ± 1 standard
error of the mean.



Detailed data on individual plant pollen production and reproductive development were not
investigated in this study. Nevertheless, it is possible that in addition to increasing stand-level
pollen production through increased plant size, high CO2 may have resulted in plants allocating
proportionally more resources to pollen relative to seed or total shoot mass. Previous studies
with ragweed have shown that adding essential resources to stands (eg, nitrogen) results in plants
investing in proportionally more male versus female reproductive structures. 29 More generally,
studies with ragweed and other wind-pollinated species suggest that larger and taller plants
within populations tend to be male more often. 30,31

It will be challenging to accurately predict the future threat to public health caused by CO2-
stimulated pollen production. As with most environmental health issues, many factors are
involved, and in the specific case of climate change, the future state of many of the factors
themselves is uncertain. Based on previous climate change studies evaluating the responses of
plant growth and yield, it is likely that plant pollen production will also be influenced by factors
expected to change in concert with CO2, including temperature, precipitation, and atmospheric
pollutants. 15,32,33 Over longer periods of time, these factors are likely to impact the relative
abundance and geographic distribution of plant species, 34 possibly altering the demographics of
populations currently exposed to allergenic species. In fact, recent models suggest that climate
change scenarios will favor the spread of ragweed throughout Europe. 35

 

CONCLUSION

Despite these uncertainties, our observation that a doubling of the atmospheric CO2

concentration markedly stimulates ragweed pollen production suggests that the incidence of hay
fever and related respiratory diseases may increase in the future. Additional research is
warranted to more accurately evaluate the future impact of allergenic pollen on public health and
to help develop effective ecologic, public health, and policy strategies for mitigating these
threats.
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