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1 Introduction

Production of multiple heavy quark pairs in high-energy hadron collisions was first observed

in 1982 by the NA3 collaboration in the channels π−(p) nucleon → J/ψJ/ψ + X [1, 2]. Soon

after, evidence for the associated production of four open charm particles in pion-nucleon re-

actions was obtained by the WA75 collaboration [3]. A measurement of J/ψ pair production

in proton-proton (pp) collisions at
√
s = 7 TeV [4] has been made by the LHCb collabora-

tion in 2011. This measurement appears to be in good agreement with two models within

the single parton scattering (SPS) mechanism, namely non-relativistic quantum chromo-

dynamics (NRQCD) calculations [5] and kT-factorization [6]. However the obtained result

also agrees with predictions [7] of the double parton scattering (DPS) mechanism [8–12].

The production of J/ψ pairs has also been observed by the D0 [13] and CMS [14] col-

laborations. A large double charm production cross-section involving open charm in pp col-

lisions at
√
s = 7 TeV has been observed by the LHCb collaboration [15]. The measured

cross-sections exceed the SPS expectations significantly [16–20] and agree with the DPS

estimates. A study of differential distributions supports a large role for the DPS mechanism

in multiple production of heavy quarks.

The study of (bb)(cc) production in hadronic collisions started with the observation of

B+
c mesons in pp collisions by the CDF collaboration [21]. A detailed study of B+

c produc-

tion spectra in pp collisions by the LHCb collaboration [22] showed good agreement with

leading-order NRQCD calculations [23–25] including the SPS contribution only.
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The leading-order NRQCD calculations using the same matrix element as in ref. [23],

applied to another class of (bb)(cc) production, namely associated production of bot-

tomonia and open charm hadrons in the forward region, defined in terms of the rapidity y

as 2 < y < 4.5, predict [26]

RSPS =
σΥcc

σΥ
= (0.2–0.6) % , (1.1)

where σΥcc denotes the production cross-section for associated production of Υcc-pair and

σΥ denotes the inclusive production cross-section of Υ mesons. A slightly smaller value of

RSPS is obtained through the kT-factorization approach [17, 27–34] using the transverse

momentum dependent gluon density from refs. [35–37],

RSPS =
σΥcc

σΥ
= (0.1–0.3) % . (1.2)

Within the DPS mechanism, the Υ meson and cc-pair are produced independently in

different partonic interactions. Neglecting the parton correlations in the proton, the con-

tribution of this mechanism is estimated according to the formula [38–40]

σΥcc =
σΥ × σcc
σeff

, (1.3)

where σcc and σΥ are the inclusive charm and Υ cross-sections, and σeff is an effective

cross-section, which provides the proper normalization of the DPS cross-section estimate.

The latter is related to the transverse overlap function between partons in the proton.

Equation (1.3) can be used to calculate the ratio RDPS as

RDPS =
σΥcc

σΥ
=
σcc

σeff
. (1.4)

Using the measured production cross-section for inclusive charm in pp collisions at the

centre-of-mass energy 7 TeV [41] in the forward region and σeff ∼ 14.5 mb [42, 43], one ob-

tains RDPS ∼ 10%, which is significantly larger than RSPS from eq. (1.1). The production

cross-sections for Υ(1S)D0 and Υ(1S)D+ at
√
s = 7 TeV are calculated using the meas-

ured prompt charm production cross-section from ref. [41] and the Υ(1S) cross-section

from ref. [44]. In the LHCb kinematic region, covering transverse momenta pT and

rapidity y of Υ(1S) and D0,+ mesons of pT(Υ(1S)) < 15 GeV/c, 1 < pT(D0,+) < 20 GeV/c,

2.0 < y(Υ(1S)) < 4.5 and 2.0 < y(D0,+) < 4.5, the expected production cross-sections are

Bµ+µ− × σ
Υ(1S)D0

√
s=7TeV

∣

∣

∣

DPS
= 206 ± 17 pb, (1.5a)

Bµ+µ− × σ
Υ(1S)D+

√
s=7TeV

∣

∣

∣

DPS
= 86 ± 10 pb, (1.5b)

where Bµ+µ− is the branching fraction of Υ(1S) → µ+µ− [45], σeff = 14.5 mb is used with

no associated uncertainty included [42, 43]. The basic DPS formula, eq. (1.3), leads to
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the following predictions for the ratios of production cross-sections RD0/D+

and R
Υ(2S)/Υ(1S)
C

RD0/D+

=
σΥD0

σΥD+
=
σD

0

σD
+

= 2.41 ± 0.18 , (1.6a)

R
Υ(2S)/Υ(1S)
C

= B2/1
σΥ(2S)D0

σΥ(1S)D0
= B2/1

σΥ(2S)D+

σΥ(1S)D+
= B2/1

σΥ(2S)

σΥ(1S)
= 0.249 ± 0.033 , (1.6b)

where σD
0

, σD
+

and σΥ stand for the measured production cross-sections of D0, D+ and

Υ mesons [41, 44], and B2/1 is the ratio of dimuon branching fractions of Υ(2S) and

Υ(1S) mesons.

Here we report the first observation of associated production of bottomonia and open

charm hadrons. The production cross-sections and the differential distributions are meas-

ured. The latter provide crucial information for understanding the production mechanism.

The analysis is performed using the Run 1 data set recorded by the LHCb detector, consist-

ing of 1 fb−1 of integrated luminosity accumulated at
√
s = 7 TeV and 2 fb−1 accumulated

at 8 TeV.

2 Detector and data sample

The LHCb detector [46, 47] is a single-arm forward spectrometer covering the pseudorapid-

ity range 2 < η < 5, designed for the study of particles containing b or c quarks. The de-

tector includes a high-precision tracking system consisting of a silicon-strip vertex detector

surrounding the pp interaction region, a large-area silicon-strip detector located upstream

of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-

strip detectors and straw drift tubes placed downstream of the magnet. The tracking

system provides a measurement of the momentum, p, of charged particles with a relative

uncertainty that varies from 0.5% at low momentum to 1.0% at 200 GeV/c. The minimum

distance of a track to a primary vertex, the impact parameter, is measured with a res-

olution of (15 + 29/pT)µm, where pT is the component of the momentum transverse to

the beam, in GeV/c. Different types of charged hadrons are distinguished using information

from two ring-imaging Cherenkov detectors. Photons, electrons and hadrons are identi-

fied by a calorimeter system consisting of scintillating-pad and preshower detectors, an

electromagnetic calorimeter and a hadronic calorimeter. Muons are identified by a system

composed of alternating layers of iron and multiwire proportional chambers. The online

event selection is performed by a trigger [48], which consists of a hardware stage, based on

information from the calorimeter and muon systems, followed by a software stage, which

applies a full event reconstruction. At the hardware stage, events for this analysis are

selected requiring dimuon candidates with a product of their transverse momenta pT lar-

ger than 1.7 (2.6) GeV2/c2 for data collected at
√
s = 7 (8) TeV. In the subsequent software

trigger, two well reconstructed tracks are required to have hits in the muon system, to have

pT > 500 MeV/c and p > 6 GeV/c and to form a common vertex. Only events with a dimuon

candidate with a mass mµ+µ− larger than 4.7 GeV/c2 are retained for further analysis.
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The simulation is performed using the LHCb configuration [49] of the Pythia 6

event generator [50]. Decays of hadronic particles are described by EvtGen [51] in

which final-state photons are generated using Photos [52]. The interaction of the gen-

erated particles with the detector, and its response, are implemented using the Geant4

toolkit [53, 54] as described in ref. [55].

3 Event selection

The event selection strategy is based on the independent selection of Υ(1S), Υ(2S) and

Υ(3S) mesons (jointly referred to by the symbol Υ throughout the paper) and charmed

hadrons, namely D0, D+ and D+
s mesons and Λ+

c baryons (jointly referred to by the sym-

bol C herafter) originating from the same pp collision vertex. The Υ candidates are recon-

structed via their dimuon decays, and the D0 → K−π+, D+ → K−π+π+, D+
s → K+K−π+

and Λ+
c → pK−π+ decay modes are used for the reconstruction of charm hadrons. Charge

conjugate processes are implied throughout the paper. The fiducial region for this analysis

is defined in terms of the pT and the rapidity y of Υ and C hadrons to be pΥT < 15 GeV/c,

2.0 < yΥ < 4.5, 1 < pCT < 20 GeV/c and 2.0 < yC < 4.5.

The event selection for Υ → µ+µ− candidates follows previous LHCb studies [44],

and the selection of C hadrons follows refs. [15, 56]. Only good quality tracks [57], iden-

tified as muons [58], kaons, pions or protons [59] are used in the analysis. A good qual-

ity vertex is required for Υ → µ+µ−, D0 → K−π+, D+ → K−π+π+, D+
s → K+K−π+ and

Λ+
c → pK−π+ candidates. For D+

s → K+K−π+ candidates, the mass of the K+K− pair is

required to be in the region mK+K− < 1.04 GeV/c2, which is dominated by the D+
s → φπ+

decay. To suppress combinatorial background the decay time of C hadrons is required to

exceed 100µm/c. Full decay chain fits are applied separately for selected Υ and C can-

didates [60]. For Υ mesons it is required that the vertex is compatible with one of the re-

constructed pp collision vertices. In the case of long-lived charm hadrons, the momentum

direction is required to be consistent with the flight direction calculated from the locations

of the primary and secondary vertices. The reduced χ2 of these fits, both χ2
fit (Υ) /ndf and

χ2
fit (C) /ndf, are required to be less than 5, where ndf is the number of degrees of freedom

in the fit. The requirements favour the selection of charm hadrons produced promptly at

the pp collision vertex and significantly suppress the feed down from charm hadrons pro-

duced in decays of beauty hadrons. The contamination of such C hadrons in the selected

sample varies between (0.4 ± 0.2)% for D+ mesons to (1.5 ± 0.5)% for Λ+
c baryons.

The selected Υ and C candidates are paired to form ΥC candidates. A global fit to

the ΥC candidates is performed [60], similar to that described above, which requires both

hadrons to be consistent with originating from a common vertex. The reduced χ2 of this fit,

χ2
fit (ΥC) /ndf, is required to be less than 5. This reduces the background from the pile-up

of two independent pp interactions producing separately a Υ meson and C hadron to

a negligible level, keeping 100% of the signal Υ mesons and C hadrons from the same

primary vertex. The two-dimensional mass distributions for ΥC pairs after the selection

are displayed in figure 1.
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Figure 1. Invariant mass distributions for selected combination of Υ mesons and C hadrons:

a) ΥD0, b) ΥD+, c) ΥD+
s and d) ΥΛ+

c .

4 Signal extraction and cross-section determination

The event yields are determined using unbinned extended maximum likelihood fits to

the two-dimensional ΥC mass distributions of the selected candidates. The fit model is

a sum of several components, each of which is the product of a dimuon mass distribution,

corresponding to an individual Υ state or combinatorial background, and a C candid-

ate mass distribution, corresponding to a C signal or combinatorial background compon-

ent. The Υ(1S) → µ+µ−, Υ(2S) → µ+µ− and Υ(3S) → µ+µ− signals are each modelled

by a double-sided Crystal Ball function [4, 61, 62] and referred to as SΥ in this section.

A modified Novosibirsk function [63] (referred to as SC) is used to describe the D0 → K−π+,

D+ → K−π+π+, D+
s → K+K−π+ and Λ+

c → pK−π+ signals. All shape parameters and

signal peak positions are fixed from fits to large inclusive Υ → µ+µ− and C hadron

data samples. Combinatorial background components Bµ+µ− and BC are modelled with

a product of exponential and polynomial functions

B(m) ∝ e−βm × Pn(m), (4.1)
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with a slope parameter β and a polynomial function Pn, which is represented as a Bézier

sum of basic Bernstein polynomials of order n with non-negative coefficients [64]. For the

large yield ΥD0 and ΥD+ samples, the second-order polynomials (n = 2) are used in the fit,

while n = 1 is used for the ΥD+
s and ΥΛ+

c cases.

These basic functions are used to build the components of the two dimensional mass

fit following ref. [15]. For each C hadron the reconstructed signal sample consists of the fol-

lowing components:

– Three ΥC signal components: each is modelled by a product of the individual sig-

nal Υ components, SΥ(1S)(mµ+µ−), SΥ(2S)(mµ+µ−) or SΥ(3S)(mµ+µ−), and signal C

hadron component, SC(mC).

– Three components describing the production of single Υ mesons together with com-

binatorial background for the C signal: each component is modelled by a product of

the signal Υ component, SΥ(mµ+µ−) and the background component BC(mC).

– Single production of C hadrons together with combinatorial background for the Υ

component: this is modelled by a product of the signal C component, SC(mC), and

the background component Bµ+µ−(mµ+µ−).

– Combinatorial background: this is modelled by a product of the individual back-

ground components Bµ+µ−(mµ+µ−) and BC(mC).

For each C hadron the complete fit function F(mµ+µ− ,mC) is

F(mµ+µ− ,mC) = NΥ(1S)C × SΥ(1S)(mµ+µ−) × SC(mC)

+NΥ(2S)C × SΥ(2S)(mµ+µ−) × SC(mC)

+NΥ(3S)C × SΥ(3S)(mµ+µ−) × SC(mC)

+NΥ(1S)B × SΥ(1S)(mµ+µ−) ×BC(mC)

+NΥ(2S)B × SΥ(2S)(mµ+µ−) ×BC(mC)

+NΥ(3S)B × SΥ(3S)(mµ+µ−) ×BC(mC)

+NBC ×Bµ+µ−(mµ+µ−) × SC(mC)

+NBB ×Bµ+µ−(mµ+µ−) ×BC(mC),

(4.2)

where the different coefficients NΥC, NΥB, NBC and NBB are the yields of the eight

components described above.

The fit results are summarized in table 1, and the fit projections are presented in

figures 2, 3, 4 and 5. The statistical significances of the signal components are determ-

ined using a Monte-Carlo technique with a large number of pseudoexperiments. They

are presented in table 2. For the five modes, Υ(1S)D0, Υ(2S)D0, Υ(1S)D+, Υ(2S)D+ and

Υ(1S)D+
s , the significances exceed five standard deviations. No significant signals are found

for the associated production of Υ mesons and Λ+
c baryons.

The possible contribution from pile-up events is estimated from data following the

method from refs. [15, 56] by relaxing the requirement on χ2
fit (ΥC) /ndf. Due to the re-

quirements χ2
fit (Υ) /ndf < 5 and χ2

fit (C) /ndf < 5, the value of χ2
fit (ΥC) /ndf does not

exceed 5 units for signal events with Υ and C hadron from the same pp collision vertex.
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Υ(1S) Υ(2S) Υ(3S)

D0 980 ± 50 184 ± 27 60 ± 22

D+ 556 ± 35 116 ± 20 55 ± 17

D+
s 31 ± 7 9 ± 5 6 ± 4

Λ+
c 11 ± 6 1 ± 4 1 ± 3

Table 1. Signal yields NΥC for ΥC production, determined with two-dimensional extended un-

binned maximum likelihood fits to the candidate ΥC samples.

Υ(1S) Υ(2S) Υ(3S)

D0 > 5 (26) > 5 (7.7) 3.1

D+ > 5 (19) > 5 (6.4) 4.0

D+
s > 5 (6) 2.5 1.9

Λ+
c 2.5 0.9 0.9

Table 2. Statistical significances of the observed ΥC signals in units of standard deviations de-

termined using pseudoexperiments. The values in parentheses indicate the statistical significance

calculated using Wilks’ theorem [65].

The background is subtracted using the sPlot technique [66]. The χ2
fit (ΥC) /ndf distri-

butions are shown in figure 6. The distributions exhibit two components: the peak at

low χ2 is attributed to associated ΥC production, and the broad structure at large values

of χ2 corresponds to the contribution from pile-up events. The distributions are fitted

with a function that has two components, each described by a Γ-distribution. The shape is

motivated by the observation that χ2
fit/ndf should follow a scaled-χ2 distribution. The pos-

sible contribution from pile-up events is estimated by integrating the pile-up component in

the region χ2
fit (ΥC) /ndf < 5. It does not exceed 1.5% for all four cases and is neglected.

The production cross-section is determined for the four modes with the largest yield:

Υ(1S)D0, Υ(2S)D0, Υ(1S)D+ and Υ(2S)D+. The cross-section is calculated using a sub-

sample of events where the reconstructed Υ candidate is explicitly matched to the dimuon

candidate that triggers the event. This requirement reduces signal yields by approxim-

ately 20%, but allows a robust determination of trigger efficiencies. The cross-section for

the associated production of Υ mesons with C hadrons in the kinematic range of LHCb is

calculated as

Bµ+µ− × σΥC =
1

L × BC

NΥC

corr, (4.3)

where L is the integrated luminosity [67], Bµ+µ− and BC are the world average branching

fractions of Υ → µ+µ− and the charm decay modes [45], and NΥC
corr is the efficiency-

corrected yield of the signal ΥC events in the kinematic range of this analysis. Production

cross-sections are determined separately for data sets accumulated at
√
s = 7 and 8 TeV.

The efficiency-corrected signal yields NΥC
corr are determined using an extended unbinned

maximum likelihood fit to the weighted two-dimensional invariant mass distributions of

the selected ΥC candidates. The weight ω for each event is calculated as ω = 1/εtot,

where εtot is the total efficiency for the given event.
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Figure 2. Projections from two-dimensional extended unbinned maximum likeli-

hood fits in bands a) 1.844 < mK−π+ < 1.887 MeV/c2, b) 9.332 < mµ+µ− < 9.575 GeV/c2,

c) 9.889 < mµ+µ− < 10.145 GeV/c2 and d) 10.216 < mµ+µ− < 10.481 GeV/c2. The total fit

function is shown by a solid thick (red) curve; three individual ΥD0 signal components are shown

by solid thin (red) curves; three components describing Υ signals and combinatorial background

in K−π+ mass are shown with short-dashed (blue) curves; the component modelling the true

D0 signal and combinatorial background in µ+µ− mass is shown with a long-dashed (green) curve

and the component describing combinatorial background is shown with a thin dotted (black) line.

The effective DPS cross-section and the ratios RΥC are calculated as

σeff =
σΥ × σC
σΥC

, (4.4a)

RΥC =
σΥC

σΥ
, (4.4b)

where σΥ is the production cross-section of Υ mesons taken from ref. [44]. The double-

differential production cross-sections of charm mesons has been measured at
√
s = 7 TeV in

the region 2.0 < yC < 4.5, pCT < 8 GeV/c [41]. According to FONLL calculations [68–70], the

contribution from the region 8 < pCT < 20 GeV/c is significantly smaller than the uncertainty

for the measured cross-section in the region 1 < pCT < 8 GeV/c. It allows to estimate the pro-
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Figure 3. Projections from two-dimensional extended unbinned maximum likelihood

fits in bands a) 1.848 < mK−π+π+ < 1.891 MeV/c2, b) 9.332 < mµ+µ− < 9.575 GeV/c2 ,

c) 9.889 < mµ+µ− < 10.145 GeV/c2 and d) 10.216 < mµ+µ− < 10.481 GeV/c2. The total fit

function is shown by a solid thick (red) curve; three individual ΥD+ signal components are shown

by solid thin (red) curves; three components describing Υ signals and combinatorial background

in K−π+π+ mass are shown with short-dashed (blue) curves; the component modelling the true

D+ signal and combinatorial background in µ+µ− mass is shown with a long-dashed (green) curve

and the component describing combinatorial background is shown with a thin dotted (black) line.

duction cross-section of charm mesons in the region 2.0 < yC < 4.5, 1 < pCT < 20 GeV/c,

used in eq. (4.4a). For the production cross-section of charm mesons at
√
s = 8 TeV,

the measured cross-section at
√
s = 7 TeV is rescaled by the ratio RFONLL

8/7 (pT, y) of the

double-differential cross-sections, as calculated with FONLL [68–70] at
√
s = 8 and 7 TeV.

The ratios RD0/D+

and R
Υ(2S)/Υ(1S)
C

, defined in eq. (1.6), are calculated as

RD0/D+

=
σΥD0

σΥD+
=
NΥD0

corr

NΥD+

corr

, (4.5a)

R
Υ(2S)/Υ(1S)
C

= B2/1
σΥ(2S)C

σΥ(1S)C
=
NΥ(2S)C

NΥ(1S)C
×

〈

εΥ(1S)C

〉

〈

εΥ(2S)C

〉 , (4.5b)
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Figure 4. Projections from two-dimensional extended unbinned maximum likelihood

fits in bands a) 1.952 < m(K−K+)
φ
π+ < 1.988 MeV/c2, b) 9.332 < mµ+µ− < 9.575 GeV/c2 ,

c) 9.889 < mµ+µ− < 10.145 GeV/c2 and d) 10.216 < mµ+µ− < 10.481 GeV/c2. The total fit func-

tion is shown by a solid thick (red) curve; three individual ΥD+
s signal components are shown by

solid thin (red) curves; three components describing Υ signals and combinatorial background in

(K−K+)φ π
+ mass are shown with short-dashed (blue) curves; the component modelling the true

D+
s signal and combinatorial background in µ+µ− mass is shown with a long-dashed (green) curve

and the component describing combinatorial background is shown with a thin dotted (black) line.

where 〈εΥC〉 denotes the average efficiency. Within the DPS mechanism, the transverse

momenta and rapidity spectra of C mesons for the signal Υ(1S)C and Υ(2S)C events are

expected to be the same. This allows to express the ratio of the average 〈εΥC〉 efficiencies

in terms of ratio of average efficiencies for inclusive Υ mesons

〈

εΥ(1S)C

〉

〈

εΥ(2S)C

〉 =

〈

εΥ(1S)

〉

〈

εΥ(2S)

〉 , (4.6)

and the latter is taken from ref. [44].
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Figure 5. Projections from two-dimensional extended unbinned maximum likelihood

fits in bands a) 2.273 < mpK−π+ < 2.304 MeV/c2 , b) 9.332 < mµ+µ− < 9.575 GeV/c2 ,

c) 9.889 < mµ+µ− < 10.145 GeV/c2 and d) 10.216 < mµ+µ− < 10.481 GeV/c2 . The total fit

function is shown by a solid thick (red) curve; three individual ΥΛ+
c signal components are shown

by solid thin (red) curves; three components describing Υ signals and combinatorial background

in pK−π+ mass are shown with short-dashed (blue) curves; the component modelling the true

Λ+
c signal and combinatorial background in µ+µ− mass is shown with a long-dashed green curve

and the component describing combinatorial background is shown with a thin dotted (black) line.

The total efficiency εtot, for each ΥC candidate is calculated following ref. [15] as

εtotΥC = εtotΥ × εtotC , (4.7)

and applied individually an on event-by-event basis, where εtotΥ and εtot
C

are the total

efficiencies for Υ and charm hadrons respectively. These efficiencies are calculated as

εtotΥ = εrecΥ × εtrgΥ × εµIDΥ , (4.8a)

εtotC = εrecC × εhIDC , (4.8b)

where εrec is the detector acceptance, reconstruction and event selection efficiency and

εtrg is the trigger efficiency for selected events. The particle identification efficiencies for
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Figure 6. Background-subtracted distributions of χ2
fit (C) /ndf for a) ΥD0, b) ΥD+, c) ΥD+

s and

d) ΥΛ+
c cases. A thin vertical (green) line indicates the requirement χ2

fit (ΥC) /ndf < 5 used in the

analysis. The solid (red) curves indicate a fit to a sum of two components, each described by

Γ-distribution shape. The pileup component is shown with a dashed (blue) line.

Υ and C candidates εµIDΥ and εhID
C

are calculated as

εµIDΥ = εIDµ+ × εIDµ− , (4.9a)

εhIDC =
∏

K

εIDK ×
∏

π

εIDπ (4.9b)

where εID
µ±

, εIDK and εIDπ are the efficiencies for the single muon, kaon and pion identification,

respectively.

The efficiencies εrec and εtrg are determined using simulated samples of Υ, D0 and

D+ events as a function of pT and y of the Υ and the C hadron. The differential treatment

results in a robust determination of the efficiency-corrected signal yields, with no depend-

ence on the particle spectra in the simulated samples. The derived values of the efficiencies

are corrected to account for small discrepancies in the detector response between data and

simulation. These corrections are obtained using data-driven techniques [57, 58].
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The efficiencies for muon, kaon and pion identification are determined directly from

data using large samples of low-background J/ψ → µ+µ− and D∗+ →
(

D0 → K−π+
)

π+ de-

cays. The identification efficiencies are evaluated as a function of the kinematic parameters

of the final-state particles, and the track multiplicity in the event [59].

The efficiency is dependent on the polarisation of the Υ mesons [44, 62, 71, 72] The po-

larisation of the Υ mesons produced in pp collisions at
√
s = 7 TeV at high pΥT and central

rapidity has been studied by the CMS collaboration [73] in the centre-of-mass helicity,

Collins-Soper [74] and the perpendicular helicity frames. No evidence of significant trans-

verse or longitudinal polarisation has been observed for the region 10 < pΥT < 50 GeV/c,
∣

∣yΥ
∣

∣ < 1.2. Therefore, the efficiencies are calculated under the assumption of unpolar-

ised production of Υ mesons and no corresponding systematic uncertainty is assigned on

the cross-section.

Under the assumption of transversely polarised Υ mesons with λϑ = 0.2 in the LHCb

kinematic region,1 the total efficiency would result in an decrease of 3% [44].

5 Kinematic distributions of ΥC events

The differential distributions are important for the determination of the production mech-

anism. In this section, the shapes of differential distributions for Υ(1S)D0 and Υ(1S)D+

events are studied. Assuming that the production mechanism of ΥC events is essentially

the same at
√
s = 7 and 8 TeV, both samples are treated together in this section.

The normalized differential distribution for each variable v is calculated as

1

σ

dσ

dv
=

1

NΥC
corr

NΥC
corr,i

∆v
, (5.1)

where NΥC
corr,i is the number of efficiency-corrected signal events in bin i of width ∆v, and

NΥC
corr is the total number of efficiency-corrected events. The differential distributions are

presented for the following variables

– p
Υ(1S)
T , the transverse momentum of the Υ(1S) meson;

– pCT, the transverse momentum of the D0(D+) meson;

– yΥ(1S), the rapidity of the Υ(1S) meson;

– yC, the rapidity of the D0(D+) meson;

– ∆φ = φΥ(1S) − φC, the difference in azimuthal angles between the Υ(1S) and the

C mesons;

– ∆y = yΥ(1S) − yC, the difference in rapidity between the Υ(1S) and the C mesons;

– p
Υ(1S)C
T , the transverse momentum of the Υ(1S)C system;

1The CMS measurements for Υ(1S) mesons are consistent with small transverse polarisation in the heli-

city frame with the central values for the polarisation parameter 0 . λϑ . 0.2 [73].
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Figure 7. Background-subtracted and efficiency-corrected pΥT (top) and pCT (bottom) distribu-

tions for Υ(1S)D0 events (left) and Υ(1S)D+ event (right). The transverse momentum spectra,

derived within the DPS mechanism using the measurements from refs. [41, 44], are shown with

the open (blue) squares. The SPS predictions [75] for the pΥT spectra are shown with dashed (orange)

and long-dashed (magenta) curves for calculations based on the kT-factorization and the collinear

approximation, respectively. All distributions are normalized to unity.

– yΥ(1S)C, the rapidity of the Υ(1S)C system;

– AT =
p
Υ(1S)
T − pCT

p
Υ(1S)
T + pCT

, the pT asymmetry for the Υ(1S) and the C mesons;

– mΥ(1S)C, the mass of the Υ(1S)C system.

The distributions are shown in figures 7, 8, 9, 10 and 11. Only statistical uncertainties are

displayed on these figures, as the systematic uncertainities discussed in section 6 are small.

For all variables the width of the resolution function is much smaller than the bin width,

i.e. the results are not affected by bin-to-bin migration.

The shapes of the measured differential distributions are compared with the SPS

and DPS predictions. The DPS predictions are deduced from the measurements given in

refs. [41, 44], using a simplified simulation assuming uncorrelated production of the Υ(1S)
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Figure 8. Background-subtracted and efficiency-corrected yΥ (top) and yC (bottom) distributions

for Υ(1S)D0 (left) and Υ(1S)D+ (right) events. The rapidity spectra, derived within the DPS mech-

anism using the measurements from refs. [41, 44], are shown with the open (blue) squares. The SPS

predictions [75] for the yΥ spectra are shown with dashed (orange) and long-dashed (magenta) curves

for calculations based on the kT-factorization and the collinear approximation, respectively. All dis-

tributions are normalized to unity.

and charm hadron. The agreement between all measured distributions and the DPS predic-

tions is good. For the SPS mechanism, the predictions [75] based on kT-factorization [17,

27–34] using the transverse momentum dependent gluon density from refs. [35–37] are used

along with the collinear approximation [26] with the leading-order gluon density taken from

ref. [76]. The transverse momentum and rapidity distributions of Υ(1S) mesons also agree

well with SPS predictions based on kT-factorization, while the shape of the transverse

momentum spectra of Υ mesons disfavours the SPS predictions obtained using the col-

linear approximation. The shapes of the yΥ distribution have very limited sensitivity to

the underlying production mechanism.

The distribution |∆φ| is presented in figure 9(a,b). The DPS mechanism predicts a flat

distribution in ∆φ, while for SPS a prominent enhancement at |∆φ| ∼ π is expected in

collinear approximation. The enhancement is partly reduced taking into account transverse

momenta of collinding partons [33, 77] and it is expected to be further smeared out at
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Figure 9. Background-subtracted and efficiency-corrected distributions for |∆φ| /π (top) and

∆y (bottom) for Υ(1S)D0 (left) and Υ(1S)D+ (right) events. Straight lines in the |∆φ| /π plots show

the result of the fit with a constant function. The SPS predictions [75] for the shapes of ∆φ dis-

tribution are shown with dashed (orange) and long-dashed (magenta) curves for calculations based

on the kT-factorization and the collinear approximation, respectively. The solid (blue) curves in

the ∆y plots show the spectra obtained using a simplified simulation based on data from refs. [41, 44].

The dashed (green) lines show the triangle function expected for totally uncorrelated production of

two particles, uniformly distributed in rapidity. All distributions are normalized to unity.

next-to-leading order. The measured distributions for Υ(1S)D0 and Υ(1S)D+ events, shown

in figure 9(a,b) agree with a flat distribution. The fit result with a constant function

gives a p-value of 6% (12%) for the Υ(1S)D0 (Υ(1S)D+) case, indicating that the SPS

contribution to the data is small. The shape of ∆y distribution is defined primarily by

the acceptance of LHCb experiment 2 < y < 4.5 and has no sensitivity to the underlying

production mechanism, in the limit of current statistics.

6 Systematic uncertainties

The systematic uncertainties related to the measurement of the production cross-section

for ΥC pairs are summarized in table 3 and discussed in detail in the following.
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Figure 10. Background-subtracted and efficiency-corrected p
Υ(1S)C
T (top) and yΥ(1S)C (bottom) dis-

tributions for Υ(1S)D0 (left) and Υ(1S)D+ (right) events. The blue curves show the spectra obtained

using a simplified simulation based on data from refs. [41, 44]. All distributions are normalized

to unity.

The signal shapes and parameters are taken from fits to large low-background inclus-

ive Υ → µ+µ− and charm samples. The parameters, signal peak positions and resolutions

and the tail parameters for the double-sided Crystal Ball and the modified Novosibirsk

functions, are varied within their uncertainties as determined from the calibration samples.

The small difference in parameters between the data sets obtained at
√
s = 7 and 8 TeV is

also used to assign the systematic uncertainty. For D0 and D+ signal peaks alternative fit

models have been used, namely a double-sided asymmetric variant of an Apolonious func-

tion [78] without power-law tail, a double-sided Crystal Ball function and an asymmetric

Student-t shape. The systematic uncertainty related to the parameterization of the com-

binatorial background is determined by varying the order of the polynomial function in

eq. (4.1) between zeroth and second order. For the purely combinatorial background com-

ponent (last line in eq. (4.2)), a non-factorizable function is used

FBB(mµ+µ− ,mC) ∝ e−β1mµ+µ−−β2mC ×





n
∑

i=0

k
∑

j=0

κ2ijP
i
n

(

mµ+µ−
)

P j
k (mC)



 , (6.1)
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Figure 11. Background-subtracted and efficiency-corrected AT (top) and mΥ(1S)C (bottom) distri-

butions for Υ(1S)D0 (left) and Υ(1S)D+ (right) events. The blue curves show the spectra obtained

using a simplified simulation based on data from refs. [41, 44]. All distributions are normalized

to unity.

where the parameters β1, β2 and κi,j are allowed to float in the fit, and P i
n and P j

k are

basic Bernstein polynomials, and the order of these polynomials, n and k, is varied between

zero and two. The corresponding variations of ΥC signal yields are taken as the systematic

uncertainty related to the description of the signal and background components.

Other systematic uncertainties are related to the imperfection of the Photos gener-

ator [52] to describe the radiative tails in Υ → µ+µ− decays. This systematic is studied in

ref. [79] and taken to be 1%.

The systematic uncertainty related to efficiency correction is estimated using an al-

ternative technique for the determination of NΥC
corr, where the efficiency-corrected yields are

obtained via

NΥC

corr =
∑

i

wi

εtot
, (6.2)

where wi is the signal event weight, obtained with the sPlot technique [66] using fits

to the efficiency-uncorrected data sets, and εtot is a total efficiency for the given event,

defined with eq. (4.7). The difference in the efficiency-corrected yields with respect to
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Source σΥD0

σΥD+

Signal ΥC extraction

Υ and C signal shapes 0.1 ⊕ 0.3 0.1 ⊕ 0.5

2D fit model 0.4 0.7

Υ radiative tail 1.0 1.0

Efficiency corrections 0.1 1.3

Efficiency calculation

muon identification 0.2 0.2

hadron identification 0.5 0.8

simulated samples size 0.2 0.2

tracking 0.4 ⊕ 4 × 0.4 0.5 ⊕ 5 × 0.4

hadronic interactions 2 × 1.4 3 × 1.4

trigger 2.0 2.0

data-simulation agreement 1.0 1.0

BC 1.3 2.1

Total 4.3 5.9

Table 3. Summary of relative systematic uncertainties for σΥC (in %). The total systematic

uncertainty does not include the systematic uncertainty related to the knowledge of integrated

luminosity [67]. The symbol ⊕ denotes the sum in quadrature.

the baseline approach of 0.1 (1.3)% for ΥD0 (ΥD+), is assigned as the corresponding sys-

tematic uncertainty.

The systematic uncertainty related to the particle identification is estimated to be 0.2%

for muons and 0.5 (0.8)% for hadrons for the Υ(1S)D0 (Υ(1S)D+) case and is obtained from

the uncertainties for the single particle identification efficiencies using an error propagation

technique with a large number of pseudoexperiments. The same approach is used to propag-

ate the uncertainties in εacc, εrec and εtrg related to the limited simulation sample size.

The efficiency is corrected using data-driven techniques to account for small differ-

ences in the tracking efficiency between data and simulation [57, 58]. The uncertainty in

the correction factor is propagated to the cross-section measurement using pseudoexperi-

ments resulting in a global 0.4 (0.5)% systematic uncertainty for the ΥD0 (ΥD+) cases plus

an additional uncertainty of 0.4% per track. The knowledge of the hadronic interaction

length of the detector results in an uncertainty of 1.4% per final-state hadron [57].

The systematic uncertainty associated with the trigger requirements is assessed by

studying the performance of the dimuon trigger for Υ(1S) events selected using the single

muon high-pT trigger [48] in data and simulation. The comparison is performed in bins of

the Υ(1S) meson transverse momentum and rapidity and the largest observed difference of

2.0% is assigned as the systematic uncertainty associated with the imperfection of trigger

simulation [44].

Using large samples of low-background inclusive Υ → µ+µ−, D0 → K−π+ and

D+ → K−π+π+ events, good agreement between data and simulation is observed for the se-
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lection variables used in this analysis, in particular for dimuon and charm vertex quality

and χ2
fit(Υ)/ndf. The small differences seen would affect the efficiencies by less than 1.0%,

which is conservatively taken as a systematic uncertainty accounting for the disagreement

between data and simulation.

The systematic uncertainty related to the uncertainties of the branching fractions of

D0 and D+ mesons is 1.3% and 2.1% [45]. The integrated luminosity is measured using

a beam-gas imaging method [80, 81]. The absolute luminosity scale is determined with

1.7 (1.2)% uncertainty for the sample collected at
√
s = 7 (8) TeV, dominated by the vertex

resolution for beam-gas interactions, the spread of the measurements and the detector

alignment [67, 81, 82].

The selection criteria favour the selection of charm hadrons produced promptly at

the pp collision vertex and significantly suppress the feed down from charm hadrons pro-

duced in decays of beauty hadrons. The remaining feed down is estimated separately for

DPS and SPS processes with the simultaneous production of an Υ meson and a bb-pair.

The former is estimated using simulation, normalized to the measured bb and cc pro-

duction cross-sections [41, 83] and validated using a data-driven technique. It is found

to be smaller than 1.5% of the observed signal and is neglected. The contribution from

SPS processes with the associated production of Υ meson and bb pairs is estimated using

the prediction for the ratio of production cross-sections,

σΥbb

σΥcc
= (2–5)% , (6.3)

obtained using the kT-factorization approach with the transverse momentum dependent

gluon density taken from refs. [35–37]. The uncertainty reflects the variation of scale and

the difference with results obtained using the collinear approximation with the gluon density

from ref. [76]. Combining the estimates from eqs. (6.3), (1.1) and (1.2) with the probability

for a charm hadron from the decay of beauty hadron to pass the selection criteria, this feed

down is found to be totally negligible.

The effect of possible extreme polarization scenarios for Υ mesons from SPS processes

is proportional to the SPS contamination, αSPS, and could lead to +0.08 (−0.16)αSPS cor-

rection [71] to the cross-sections σΥC and the ratios RΥC for totally transverse (longitudinal)

polarizations of Υ mesons in centre-of-mass helicity frame. It is very small for small

SPS contamination. The corresponding corrections to ratios RD0/D+

are non-zero only

if SPS has different contributions to ΥD0 and ΥD+ production processes and accouts for

+0.08 (−0.16)∆αSPS, where ∆αSPS is the difference in SPS contaminations to the con-

sidered processes. The same estimate is valid also for the ratios RΥ(1S)/Υ(2S).

A large part of the systematic uncertainties cancels in the ratio RΥC and in the vari-

able σeff . The systematic uncertainties for σeff , RΥC and RD0/D+

are summarized in tables 4

and 5. For the production cross-section of charm mesons at
√
s = 8 TeV the measured

cross-section at
√
s = 7 TeV is extrapolated using FONLL calculations [68–70]. The uncer-

tainty related to the imperfection of the extrapolation is estimated from the comparison of

the measured ratio σC√
s=13TeV

/σC√
s=7TeV

[41, 84] and the corresponding FONLL estimate.

As a result of this comparison the C hadron production cross-section is scaled up by 2.7%
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Source σeff |ΥD0 σeff |ΥD+

Signal ΥC extraction

Υ and C signal shapes 0.1 ⊕ 0.3 0.1 ⊕ 0.5

2D fit model 0.4 0.7

Efficiency corrections 0.1 1.3

Efficiency calculation

hadron identification 0.5 0.8

simulated samples size 0.2 0.2

δ(σC) 6.7 9.7

FONLL extrapolation (
√
s = 8 TeV only) 2.1 2.1

Total

√
s = 7 TeV√
s = 8 TeV

6.7

7.0

9.9

10.1

Table 4. Summary of relative systematic uncertainties for σeff (in %). The reduced uncertainty

for C hadron production cross-section, denoted as δ(σC), is recalculated from ref. [41] taking into

account the cancellation of correlated systematic uncertainties.

Source RΥD0

RΥD+

RD0/D+

Signal extraction

Υ and C signal shapes 0.1 ⊕ 0.3 0.1 ⊕ 0.5 0.3 ⊕ 0.5

2D fit model 0.4 0.7 0.4 ⊕ 0.7

Efficiency corrections 0.1 1.3 0.1 ⊕ 1.3

Efficiency calculation:

hadron identification 0.5 0.8 0.5 ⊕ 0.8

tracking 0.4 ⊕ 4 × 0.4 0.5 ⊕ 5 × 0.4 0.6 ⊕ 1 × 0.4

hadronic interactions 2 × 1.4 3 × 1.4 1 × 1.4

data-simulation agreement 1.0 1.0 1.0 ⊕ 1.0

simulated samples size 0.2 0.2 0.2 ⊕ 0.2

BC 1.3 2.1 1.3 ⊕ 2.1

Total 3.4 5.3 3.8

Table 5. Summary of relative systematic uncertainties for the ratios RΥC and RD0/D+

(in %).

and a systematic uncertainty of 2.1% is assigned. The systematic uncertainty for the ratios

R
Υ(2S)/Υ(1S)
C

is small compared to the statistical uncertainty and is neglected.

7 Results and discussion

The associated production of Υ and charm mesons is studied. Pair production of Υ(1S)D0,

Υ(2S)D0, Υ(1S)D+, Υ(2S)D+ and Υ(1S)D+
s states is observed with significances exceeding

five standard deviations. The production cross-sections in the fiducial region 2.0<yΥ<4.5,
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pΥT < 15 GeV/c, 2.0 < yC < 4.5 and 1 < pCT < 20 GeV/c are measured for Υ(1S)D0 and

Υ(1S)D+ final states at
√
s = 7 and 8 TeV as:

Bµ+µ− × σΥ(1S)D0

√
s=7TeV

= 155 ± 21 (stat) ± 7 (syst) pb ,

Bµ+µ− × σΥ(1S)D+

√
s=7TeV

= 82 ± 19 (stat) ± 5 (syst) pb ,

Bµ+µ− × σΥ(1S)D0

√
s=8TeV

= 250 ± 28 (stat) ± 11 (syst) pb ,

Bµ+µ− × σΥ(1S)D+

√
s=8TeV

= 80 ± 16 (stat) ± 5 (syst) pb ,

where the first uncertainty is statistical, and the second is the systematic uncertainty

from table 3, combined with the uncertainty related to the knowledge of the luminosity.

All these measurements are statistically limited. The measured cross-sections are in agree-

ment with the DPS expectations from eq. (1.5), and significantly exceed the expectations

from the SPS mechanism in eqs. (1.1) and (1.2). Differential kinematic distributions are

studied for ΥD0 and ΥD+ final states. All of them are in good agreement with DPS ex-

pectations as the main production mechanism.

The ratios of the cross-sections for Υ(1S)D0 and Υ(1S)D+ are

R
D0/D+

√
s=7TeV

=
σ
Υ(1S)D0

√
s=7TeV

σ
Υ(1S)D+

√
s=7TeV

= 1.9 ± 0.5 (stat) ± 0.1 (syst) ,

R
D0/D+

√
s=8TeV

=
σ
Υ(1S)D0

√
s=8TeV

σ
Υ(1S)D+

√
s=8TeV

= 3.1 ± 0.7 (stat) ± 0.1 (syst) ,

where the systematic uncertainty is discussed in detail in section 6. The results are com-

patible with the DPS expectation of 2.41 ± 0.18 from eq. (1.6a).

The cross-section ratios RΥC are measured to be

R
Υ(1S)D0

√
s=7TeV

=
σΥ(1S)D0

σΥ(1S)

∣

∣

∣

∣

∣√
s=7TeV

= (6.3 ± 0.8 (stat) ± 0.2 (syst)) % ,

R
Υ(1S)D+

√
s=7TeV

=
σΥ(1S)D+

σΥ(1S)

∣

∣

∣

∣

∣√
s=7TeV

= (3.4 ± 0.8 (stat) ± 0.2 (syst)) % ,

R
Υ(1S)D0

√
s=8TeV

=
σΥ(1S)D0

σΥ(1S)

∣

∣

∣

∣

∣√
s=8TeV

= (7.8 ± 0.9 (stat) ± 0.3 (syst)) % ,

R
Υ(1S)D+

√
s=8TeV

=
σΥ(1S)D+

σΥ(1S)

∣

∣

∣

∣

∣√
s=8TeV

= (2.5 ± 0.5 (stat) ± 0.1 (syst)) % .

Extrapolating the ratios RΥC down to pCT = 0 using the measured transverse momentum

spectra of D0 and D+ mesons from ref. [41], and using the fragmentation fractions

f(c → D0) = 0.565 ± 0.032 and f(c → D+) = 0.246 ± 0.020, measured at e+e− colliders
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operating at a centre-of-mass energy close to the Υ(4S) resonance [85], the ratios RΥcc

are calculated to be

R
Υ(1S)cc√
s=7TeV

=
σΥ(1S)cc

σΥ(1S)

∣

∣

∣

∣

∣√
s=7TeV

= (7.7 ± 1.0) % ,

R
Υ(1S)cc√
s=8TeV

=
σΥ(1S)cc

σΥ(1S)

∣

∣

∣

∣

∣√
s=8TeV

= (8.0 ± 0.9) % ,

which significantly exceed SPS expectations from eqs. (1.1) and (1.2).

The large statistical uncertainty for the other ΥC modes does not allow to obtain a nu-

merical model-independent measurement, but, assuming similar kinematics for Υ(2S) and

charm mesons to the prompt production, the following ratios are measured

R
Υ(2S)/Υ(1S)
D0 = B2/1 ×

σ
Υ(2S)D0

√
s=7TeV

σ
Υ(1S)D0

√
s=7TeV

= (13 ± 5)% ,

R
Υ(2S)/Υ(1S)
D0 = B2/1 ×

σ
Υ(2S)D0

√
s=8TeV

σ
Υ(1S)D0

√
s=8TeV

= (20 ± 4)% ,

where B2/1 is the ratio of dimuon branching fractions of Υ(2S) and Υ(1S) mesons and

where the systematic uncertainties are negligible compared to statistical uncertainties.

These values are smaller than, but compatible with the DPS expectations from eq. (1.6b).

For the ΥD+ production one obtains

R
Υ(2S)/Υ(1S)
D+ = B2/1 ×

σ
Υ(2S)D+

√
s=7TeV

σ
Υ(1S)D+

√
s=7TeV

= (22 ± 7)% ,

R
Υ(2S)/Υ(1S)
D+ = B2/1 ×

σ
Υ(2S)D+

√
s=8TeV

σ
Υ(1S)D+

√
s=8TeV

= (22 ± 6)% ,

where again the systematic uncertainties are negligible with respect to the statistical ones

and are ignored. These values are compatible with the DPS expectation of 25% from

eq. (1.6b).

Neglecting the contributions from SPS mechanism, the effective cross-section σeff is

determined using eq. (4.4a) for the
√
s = 7 TeV data as

σeff |Υ(1S)D0 = 19.4 ± 2.6 (stat) ± 1.3 (syst) mb ,

σeff |Υ(1S)D+ = 15.2 ± 3.6 (stat) ± 1.5 (syst) mb .

The central values of σeff increase by up to 10% if SPS contribution exceeds by a factor of

two the central value from eq. (1.1). Both values are consistent with previous measurements

of σeff [11, 15, 43, 86–91], and their average is

σeff |Υ(1S)D0,+,
√
s=7TeV = 18.0 ± 2.1 (stat) ± 1.2 (syst) = 18.0 ± 2.4 mb .
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For the
√
s = 8 TeV data the effective cross-section σeff is estimated using the meas-

ured Υ(1S) cross-section at
√
s = 8 TeV [44] combined with σC, extrapolated from√

s = 7 TeV [41] to
√
s = 8 TeV using FONLL calculations [68–70]. The obtained effect-

ive DPS cross-sections are:

σeff |Υ(1S)D0 = 17.2 ± 1.9 (stat) ± 1.2 (syst) mb ,

σeff |Υ(1S)D+ = 22.3 ± 4.4 (stat) ± 2.2 (syst) mb .

The mean value of

σeff |Υ(1S)D0,+,
√
s=8TeV = 17.9 ± 1.8 (stat) ± 1.2 (syst) = 17.9 ± 2.1 mb , (7.1)

is in good agreement with those obtained for
√
s = 7 TeV data. Averaging these values,

σeff is found to be

σeff |Υ(1S)D0,+ = 18.0 ± 1.3 (stat) ± 1.2 (syst) = 18.0 ± 1.8 mb .

The large value of the cross-section for the associated production of Υ and open charm

hadrons, compatible with the DPS estimate of eq. (1.4), has important consequences for

the interpretation of heavy-flavor production measurements, especially inclusive meas-

urements and possibly for b-flavor tagging [92–95], where the production of uncorrel-

ated charm hadrons could affect the right assignment of the initial flavour of the studied

beauty hadron.

8 Summary

The associated production of Υ mesons with open charm hadrons is observed in pp collisions

at centre-of-mass energies of 7 and 8 TeV using data samples corresponding to integrated

luminosities of 1 fb−1 and 2 fb−1 respectively, collected with the LHCb detector. The pro-

duction of Υ(1S)D0, Υ(2S)D0, Υ(1S)D+, Υ(2S)D+ and Υ(1S)D+
s pairs is observed with

significances larger than 5 standard deviations. The production cross-sections in the fidu-

cial region 2.0 < yΥ < 4.5, pΥT < 15 GeV/c, 2.0 < yC < 4.5 and 1 < pCT < 20 GeV/c are

measured for Υ(1S)D0 and Υ(1S)D+ final states at
√
s = 7 and 8 TeV. The measured cross-

sections are in agreement with DPS expectations and significantly exceed the expectations

from the SPS mechanism. The differential kinematic distributions for ΥD0 and ΥD+ are

studied and all are found to be in good agreement with the DPS expectations as the main

production mechanism. The measured effective cross-section σeff is in agreement with most

previous measurements.
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