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ABSTRACT

Electrochemical reduction of CO2 provides an opportunity to produce fuels 

and chemicals in a carbon-neutral manner, assuming that CO2 can be 

captured from the atmosphere. To do so, requires efficient, selective, and 

stable catalysts. In this study, we report a highly mesoporous metallic Cu 

catalyst prepared by electrochemical reduction of thermally nitrided Cu foil. 

Under aqueous saturated CO2 reduction conditions, the Cu3N-derived Cu 

electrocatalyst produces virtually no CH4, very little CO, and exhibits a 

Faradaic efficiency of 68% to C2+ products (C2H4, C2H5OH, and C3H7OH) at a 

current density of ~18.5 mA cm-2 and a cathode potential of -1.0 V vs. the 

reversible hydrogen electrode (RHE). Under these conditions, the catalyst 

produces more oxygenated products than hydrocarbons. We show that 

surface roughness is a good descriptor of catalytic performance. The 

roughest surface reached 98% CO utilization efficiency for C2+ product 

formation from CO2 reduction and the ratio of oxygenated to hydrocarbon 

products correlates with the degree of surface roughness. These effects of 

surface roughness are attributed to the high population of under-coordinated

sites as well as a high pH environment within the mesopores and adjacent to

the surface of the catalyst. 
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INTRODUCTION

Anthropogenic emissions of greenhouse gases are responsible for the

increase  in  global  mean  temperature,  which  is  threatening  the  Earth’s

ecosystem and its  inhabitants.1,  2 Therefore,  there  is  a  strong  interest  in

exploring  strategies  for  using  atmospheric  CO2  as  a  renewable  source  of

carbon  to  produce  transportation  fuels  and  chemicals.  A  possible  route

towards achieving this goal is electrochemical reduction of CO2. Successful

development of this concept into a technology requires the discovery and

development of energy-efficient, stable, and selective catalysts for producing

hydrocarbons and alcohols. Though various transition metals,3 metal alloys,4

and chalcogenides5,  6 have been reported to promote the electrochemical

CO2 reduction reaction (CO2RR), Cu remains the only electrocatalyst capable

of  generating  multi-carbon  products  from  CO2/CO  with  high  Faradaic

efficiency (FE).7-14 

Different  strategies  have  been  explored  to  improve  the  selectivity

towards multi-carbon products on Cu. Roughening Cu surfaces by the in-situ

reduction of Cu2O10, 11, 15 or Cu3N16 during CO2 reduction has been found to be

the most efficient way to achieve a high selectivity C2+ products in aqueous

electrolytes.  Such  modified  Cu  surfaces  have  been  reported  to  generate

catalytically  active sites by the creation of  intrinsic defects such as  grain

boundaries, stepped sites, and other surface defects, which can bind CO and

other  intermediates  strongly  and  promote  C-C bond formation.17,  18 Other

factors such as local pH,19 temporal intermediates trapping by nano-/meso-

cavities20,21 and  cation-induced  electric  fields22 have  also  been  found  to

enhance  the  formation  of  multi-carbon  products.  The  relatively  low

selectivity to products involving more than two carbon atoms, in particular C3

products (allyl alcohol and n-propanol), also remains an issue for virtually all

Cu-based catalysts.16, 23-25 Although surface roughening has contributed to the

selective formation of multi-carbon products on Cu, there remains a need for

novel ways to produce Cu surfaces with a more controlled roughness in order
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to  clearly  investigate  the  structure-activity  relationship  of  CO2RR

performances. 

Herein  we  report  a  novel  method  to  produce  highly  roughened

mesoporous Cu catalyst that significantly differs from the single crystalline

Cu  electrodes  produced  by  Bridgeman  method10 or  metal  ion  battery

cycling11 as well as the electrochemically deposited Cu2O oriented films on

Cu  substrates15.  This mesoporous  Cu  catalyst  delivers  state-of-the-art

performance  for  aqueous  CO2RR.  At  -1.0  V  vs.  the  reversible  hydrogen

electrode  (RHE),  the  Faradaic  efficiency  to  multi-carbon  products  (C2+)

exceeds 68%, and ~35% of this amount is in the form of C2+ oxygenates of

which ~10% is n-propanol (C3). Only 1.1% CO and no detectable methane

are formed at a current density of ~18.5 mA.cm-2. Uniform Cu3N films are

produced by thermal nitriding of Cu foil at atmospheric pressure in a stream

of  NH3/O2.  These  materials  are  characterized  in-situ by  X-ray  diffraction

(XRD)  and  ex-situ by  high-resolution  scanning  transmission  electron

microscopy  (HR-STEM),  X-ray  absorption  spectroscopy  (XAS),  and  X-ray

photoelectron  spectroscopy  (XPS).  Under  CO2RR  conditions,  the  Cu3N

precursor is reduced to a highly porous metallic Cu structure, exhibiting an

electrochemical surface roughness > 17 compared to an electro-polished Cu

foil.  The  outstanding  CO2RR  performance  of  such  Cu3N-derived  Cu  is

attributed to a high population of under-coordinated Cu sites as well as an

increase in surface pH from local reaction environment.

EXPERIMENTAL SECTION

Cu3N CVD fabrication.  Polycrystalline Cu foils (Alfa Aesar; 0.1 mm thick,

Puratronic, 99.999% metals basis) were first rinsed with Milli-Q water, dried

with nitrogen, and then electrochemically polished in phosphoric acid (85%

in  water)  by  applying  +2.1  V  versus  a  graphite  rod  for  5  min.  For  the

synthesis  of  the  Cu3N  layer,  the  pre-cleaned  Cu  foil  was  loaded  into  a

horizontal  quartz  tube  reactor  and  heated  by  a  two-zone  Mellen  furnace

equipped with clamshell heating elements. Quartz tube and gas lines were

4



carefully evacuated prior to the introduction of the reactive gases. The Cu

foil was then annealed at 550 °C in an NH3/O2 mixture for a period of 15 to

60 min at atmospheric pressure. The flows of NH3 and O2 were introduced

through calibrated mass flow controllers in order to achieve a total flow rate

of 75 sccm, with a nominal concentration of 2 vol% O2. The annealed Cu foils

were  slowly  cooled  down  to  room  temperature  under  the  same  gas

environment before they were taken out of the reactor.

Physical characterization. In-situ XRD diffraction patterns were obtained

using  a  Rigaku  Smartlab  X-ray  diffractometer  equipped  with  a  ReactorX

attachment;  a  corrosion  resistant  high-temperature  reactor,  and a  HyPix-

3000  high-energy-resolution  2D  multidimensional  semiconductor  detector.

The incident X-ray beam was filtered using a double-crystal high-resolution

PB-Ge  (220)x2  monochromator.  The  surface  morphology  was  visualized

using SEM (Quanta FEG 250, FEI). The microstructures were investigated by

cross-sectional HAADF-STEM using a probe-corrected FEI Titan Themis 300 S/

TEM  with  ChemiSTEM  technology  operated  at  300  kV.  TEM  sample

preparation was performed using the standard lift-out procedure with an FEI

Scios  Dual-Beam  focused  ion  beam  (FIB)-SEM  system.  EDS  analysis  was

performed at 300kv using a Super-X EDS system. The surface compositions

were investigated using XPS acquired by a Kratos Axis Ultra spectrometer

using  an  Al  Kα  source  (hν  =  1486.69  eV)  operated  at  225  W  and  a

hemispherical  electron  energy  analyzer.  XPS  binding  energies  were

calibrated using adventitious alkyl carbon signals by shifting the C 1s peak to

284.8 eV. The XAS data were acquired at beamline 9-3 (BL9-3) at Stanford

Synchrotron  Radiation  Lightsource  (SSRL),  SLAC  National  Accelerator

Laboratory. The SPEAR3 storage ring operated at 500 mA and 3.0 GeV. BL9-3

is equipped with a rhodium-coated vertical collimating mirror upstream of

the Si(220) monochromator and an additional downstream rhodium-coated

bent-cylindrical  focusing  mirror.  Harmonic  rejection  was  accomplished  by

setting the cut-off angle of the mirrors to an appropriate energy. Incident and

transmitted X-rays were monitored using gas ionization chambers and X-ray
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absorption was measured as the primary fluorescence excitation spectrum

using an array of 100-element Ge detector.

Electrochemical  measurements. All  electrochemical  experiments  were

conducted in a gas-tight electrochemical cell machined from polyether ether

ketone (PEEK).[27] A graphite rod (99.995%, Sigma Aldrich) was used as the

counter electrode, placed parallel to the working electrode and separated by

an anion conducting membrane (Selemion AMV AGC Inc.).  Gas dispersion

frits  were  incorporated  into  both  electrode  chambers  to  provide  ample

electrolyte mixing. The exposed geometric surface area of each electrode

was 1 cm2 and the electrolyte volume of each electrode chamber was 1.8

cm3. A leak-free Ag/AgCl electrode (Innovative Instruments Inc.) was used as

the reference electrode, all potentials were measured against Ag/AgCl and

then converted to the RHE scale using the relationship E (vs RHE) = E (vs Ag/

AgCl)  +  0.197  V  +  0.0591×pH,  where  pH  values  of  electrolytes  were

determined by an Orion Dual Star Benchtop Meter (Thermo Scientific). A 0.05

M M2CO3 (99.995%, Sigma Aldrich) solution prepared using Milli-Q water was

used as  the  electrolyte.  Metallic  impurities  in  the  as-prepared electrolyte

were removed before electrolysis by chelating the solution with Chelex 100

(Na form, Sigma Aldrich). Both electrode chambers were sparged with CO2

(99.999%,  Praxair  Inc.)  at  a  rate  of  20  sccm  for  40  min  prior  to  and

throughout CO2 electrolysis. Prior to CO2RR measurements, a pre-reduction

step  was  carried  out  for  90  min  chronoamperometry  at  -0.6  V  in  CO2-

saturated 0.1  M CsHCO3.  Electrochemistry  was  performed with  a  Biologic

VSP-300  potentiostat.  Potentiostatic  electrochemical  impedance

spectroscopy  (PEIS)  and  current  interrupt  (CI)  methods  were  used  to

determine the uncompensated resistance (Ru)  of  the electrochemical  cell.

The potentiostat compensated for 85% of Ru in situ. The roughness factors of

Cu foil electrodes were determined relative to the electrochemically polished

one, by taking the ratio of their double layer capacitances measured after 1-

h electrolysis.
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CO2RR products quantification. The effluent from the electrochemical cell

was analyzed using an Agilent 7890B gas chromatograph (GC) equipped with

a  pulsed-discharge  helium  ionization  detector  (PDHID).  He  (99.9999%,

Praxair Inc.) was used as the carrier gas. The constituents of the gaseous

sample  were  separated  using  a  Hayesep-Q  capillary  column  (Agilent)

connected in series with a packed ShinCarbon ST column (Restek Co.). The

signal response of the PDHID was calibrated by analyzing a series of NIST-

traceable standard gas mixtures (Airgas Inc.). The partial current density for

a given gas product  was calculated as  ji=xi ×v ×
ni F p0

RT
× (electrodearea )−1,

where x i is the volume fraction of certain product determined by online GC, v

is the flow rate, ni is the number of electrons required to form product i, p0 =

101.3  kPa,  F is  the  Faradaic  constant  and  R is  the  gas  constant.  The

corresponding  FE  at  each  potential  is  calculated  using  the  relationship

FE= j i / itotal ×100%. The electrolyte from cathodic chamber was collected after

electrolysis  and  analyzed  using  a  Thermo  Scientific  UltiMate  3000  liquid

chromatography (HPLC) equipped with a refractive index detector (RID). The

electrolyte  samples  were  stored  in  a  refrigerated  autosampler  at  10  °C

before analysis to minimize the evaporation of volatile products. The liquid-

phase  products  contained  in  a  20  µL  aliquot  were  separated  using  two

Aminex HPX 87-H columns (Bio-Rad Inc.) connected in series and a 1 mM

sulfuric  acid  eluent  (99.999%,  Sigma  Aldrich).  The  column  oven  was

maintained at 60 °C for the duration of the analysis. The signal response of

the RID was calibrated by analyzing standard solutions of each product at a

concentration of 1, 10, and 50 mM.

RESULTS AND DISCUSSION

Cu3N was prepared by thermal annealing of an electropolished Cu foil at

atmospheric pressure in a NH3/O2 mixture for 15 to 60 min at a temperature

of 550°C which resulted in formation of a film of Cu3N on the surface of the
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Cu foil. The growth of Cu3N proceeds from top to bottom. It starts with the

formation  of  a  surface  copper  oxide  that  serves  to  activate  the

dehydrogenation of NH3 producing water and copper nitride.26,  27,28,  29 After

thermal nitriding, the resulting film has a green color and is confirmed by

XRD to be Cu3N, which has an anti-ReO3 (anti-perovskite)  cubic  structure

built up of eight corner-sharing NCu6 octahedra (Figure 1A).  

The  relatively  smooth  surface  of  the  electropolished  Cu  foil  was

significantly roughened as a result of the formation of Cu3N, as revealed by

scanning  electron  microscopy  (SEM)  (Figure  1B  and  1C).  This  can  be

attributed to the crystallographic transformation of the Cu crystal lattice to

accommodate the nitrogen atoms.30 The Cu molar density is 0.141 and 0.09

mol cm-3 for Cu and Cu3N, respectively. As such, a volumetric expansion of

the Cu atomic density by a factor of 1.6 is necessary to accommodate the

inclusion  of  the  N  atoms  into  the  crystal.  Considering  the  process

temperature is well below the melting point of either material, the resulting

film is significantly roughening by the transformation from Cu to Cu3N. The

degree of surface roughness was controlled by adjusting the nitriding time

(Supporting Information, Figure S1); increasing the nitriding time increased

the surface roughness.

To  gain  further  insight  into  the  mechanism  of  Cu3N  formation,  the

evolution  of  crystalline  phase  was  monitored  as  a  function  of  time  and

temperature  by  in-situ out-of-plane  XRD  using  a  temperature-controlled

reactor  (ReactorX,  Rigaku-Smartlab).  This  leak-tight  reactor  enables  real-

time  XRD  measurements  while  keeping  the  sample  at  well-controlled

temperature and in a well-controlled atmosphere. To reproduce the same

conditions as those in the nitridation furnace, the same flow rates of NH3 and

O2 but diluted by Ar (to reduce the NH3 concentration to acceptable levels for

the ReactorX)  were fed to the XRD reactor  through calibrated mass flow

controllers. The Cu foil was heated to and maintained at 550°C for 1 h, after

which it was slowly cooled down to room temperature under the same gas

composition (Supporting Information, Figure S2). As shown in Figure 1D, the
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formation of Cu3N begins during heating at 400°C and is characterized by the

appearance  of  diffraction  peaks  centered  at  23.27° and  47.18°.  These

features are assigned to the (100) and (200) crystallographic planes of Cu3N,

respectively.  The  Cu3N  formed  exhibits  a  preferential  orientation  around

(100)-planes with weak contributions from (111) and (210). The underlying

Cu crystal exhibits a temperature-dependent lattice constant due to thermal

expansion (Supporting Information, Figure S3).30 The crystalline quality of the

Cu3N was found to depend critically on the cooling rate. Rapid cooling led to

poor Cu3N crystallinity. These observations indicate that Cu3N can be grown

by activating NH3  at a temperature as low as 400°C, a temperature that is

much lower than that reported for similar growth techniques using nitrogen-

based  gas  phase  precursors.27,  31 The  mechanism of  Cu3N formation  and

growth by this technique will be discussed in a separate study.
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Figure  1.  In-situ growth  and  surface  morphology  of  Cu3N.  (A) Cu3N

primitive unit cell structure (space group Pm-3m)) with a lattice parameter of
3.81Å. Opposite to perovskites, N anion is located in Cu3N at the octahedron
center, whereas six Cu cations form a regular octahedron. Tilted-view SEM
surface morphology of  (B) electro-polished Cu foil  and  (C)  Cu3N (30 min

annealing). Insets, micrographs of the Cu foil  before  (B) and after  (C) the
thermal annealing. (D)  Temperature-dependent crystalline phase evolutions
obtained by in-situ XRD.

To  determine the differences in  the  elemental  composition  and the

oxidation state of  Cu before and after the Cu-to-Cu3N transformation,  the

electronic structure of the Cu3N was investigated by X-ray absorption near-

edge structure (XANES) at the Cu K-edge. As shown in Figure 2A, the XANES

spectrum of Cu3N is distinct from that of metallic Cu due to the incorporation
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of  N atoms.  The pre-edge peak of  Cu3N appears  at  8983 eV,  which is  a

slightly higher than the binding energy for metallic Cu. This difference is a

consequence of the difference in the oxidation states of the Cu ions in Cu3N

and  metallic  Cu.  The  Cu  K-edge  XANES  spectrum  of  the  Cu3N was  also

compared with the spectra collected for Cu2O, CuO, and Cu(OH)2 (Supporting

Information, Figure S4). The absorption edge of the Cu3N is located between

those of the metallic Cu and the CuO, indicating that the oxidation state of

copper  ions  in  Cu3N  to  be  1+,  consistent  with  expectations.32-34 The

assignment of the 1+ oxidation state is also supported by XPS (Figure S5)

which demonstrates  no satellite  peaks in  the  Cu 2p spectrum of  the as-

prepared Cu3N.

The  local  coordination  environment  of  Cu  atoms  in  Cu3N was  also

probed by extended X-ray absorption fine structure (EXAFS) at the Cu K-edge

(Figure 2B).  The coordination structure of Cu in Cu3N is observed to have a

strong peak due backscattering from atoms in the first coordination shell at a

radial  distance of  1.5 Å,  in  good agreement with the expected first  shell

scatting path of 1.45 Å. A second smaller peak at 2.1 Å was also observed.

Since the expected second shell of Cu3N is at 2.35 Å, this feature is more

likely  related to underlying metallic  copper.32,  35-37 The combined XAS and

EXAFS results demonstrates the successful incorporation of N atoms into Cu

to form Cu3N.
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Figure 2. Fine structure and electronic states of Cu3N. (A) Cu K-edge XANES

spectra of the phase-pure Cu3N compared to the Cu foil. Inset, a magnified

view for the absorption edge shift.  (B) Local coordination structure of the
phase-pure Cu3N and the Cu foil.

The nanostructure for the 30-min nitrided Cu3N film was characterized

by cross-sectional high-angle annular dark-field (HAADF)-STEM. A relatively

uniform layer of Cu3N was observed with a thickness of approximately 600

nm (Figure 3A). The formation of Cu3N was accompanied by the appearance

of a number of micro-voids at the interface between Cu3N film and Cu foil

bulk region (Supporting Information, Figure S6). The formation of these voids

could be attributed to strain related defects formed during the growth of

Cu3N by the insertion of nitrogen atoms into the Cu lattice. They can also be

due to oxygen impurities in the Cu foil such as native oxygen or due to the

formation of  surface oxide layers during thermal annealing which tend to

form  micro-voids  at  elevated  temperatures.38,  39 Both  the  high-resolution
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transmission  electron  microscopy  (HR-TEM)  (Figure  3B)  and  the  selective

area electron diffraction (SAED) pattern (Figure 3C) are indicative of highly

ordered cubic crystalline structure of phase-pure Cu3N and the absence of

any metallic Cu or Cu oxide phases within the Cu3N layer. Elemental mapping

by  energy-dispersive  X-ray  spectroscopy  (EDS)  (Figure  3D)  demonstrates

that  nitrogen  is  uniformly  distributed within  the  Cu3N film with  a  distinct

termination at the Cu3N/Cu foil interface (Supporting Information, Figure S7). 

Prior to the electrochemical CO2RR measurements, as-prepared Cu3N

was pre-treated by electrochemical reduction at -0.6 V vs. RHE in 0.1 M CO2-

saturated CsHCO3 electrolyte for 90 min in the same manner as that done for

oxide-derived Cu.10, 11, 15 Figure S8 shows the pre-treatment current of the 30-

min annealed Cu3N. During the first 8 min a current transient was observed

which amounted to 1.2 C equating to 4.15  μmol Cu3N reduced;  over the

entire 90 min, 8.13 C or 28.1 μmol equivalent of Cu3N was passed. Given the

layer thickness (~600 nm) and the geometric area of the electrode, only 1.8

μmol  of  Cu3N  was  expected.  These  observations  indicate  that  the  pre-

treatment  was  sufficient  to  convert  the  Cu3N layer  to  metallic  Cu.  After

electrochemical  pre-treatment,  cross-section  imaging  shows  the  uniform

Cu3N layer is converted into a highly porous interconnected network (Figure

3E and Figure S9). Both HR-TEM (Figure 3F) and the SAED pattern (Figure

3G) demonstrate that Cu3N is converted back to metallic Cu during the pre-

treatment.  The  SAED  shows  a  cubic  pattern  with  0.18  nm  d-spacing,

corresponding to exposed Cu (200) square lattice.  This  finding is in good

agreement  with  out-of-plane  XRD  (Figure  3J),  which  showed  a  strong

diffraction peak centered at 50.8° corresponding to metallic Cu (200).  The

formation of (200)-oriented Cu after the electrochemical  reduction can be

attributed to the lower work function and higher surface energy of the (200)

facet than those for the (111) facet, which can lead to a higher etching rate

in  this  direction.40,  41 Furthermore,  the  exposure  of  Cu  (200)  planes  was

reported  to  promote  the  evolution  of  C2 products  such  as  ethylene  and

suppress the formation of methane.10,  11 Moreover, no nitrogen signal was
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detected by EDS mapping (Figure 3H), selective area EDS (Figure 3I), or XPS

(Figure  S5),  further  supporting  the  complete  transformation  of Cu3N into

metallic Cu during the pre-treatment step. An oxygen signal was evident in

the EDS spectrum of the reduced Cu3N sample  (Figure 3I),  which is most

likely related to sample transfer and air exposure of the sample. 

The formation of  the highly porous metallic  Cu film during the pre-

treatment  electrochemical  reduction  of  Cu3N  is  the  result  of  removal  of

nitrogen from the lattice. As discussed, the molar densities of Cu atoms in

Cu3N and Cu is 0.141 and 0.090 mol cm-3, respectively. Densification of the

Cu atoms by a factor of 1.6 through removal of nitrogen produces a highly

porous structure, which we attribute to film strain-induced void formation.

The  electrochemical  reduction  done  at  room  temperature  may  be

responsible for maintaining a high degree of porosity in the layer during its

transformation.  Further  roughening  might  be  possible  by  lowering  the

temperature with an ice bath or in non-aqueous electrolytes but confirmation

of this hypothesis will require further investigations. We also note that CuP10

would have a densification factor of 19.6 potentially providing access to even

greater volume contraction and further roughening.
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Figure 3. Microstructure and elemental composition of Cu3N-derived Cu. (A)
Cross-sectional  HAADF-STEM view of the 30-min annealed Cu3N layer.  (B)
Atomic-scale HR-TEM of the as-prepared Cu3N layer (scale bar is 5 nm). (C)
SAED pattern  of  the  as-prepared  Cu3N layer.  (D)  STEM-EDS  maps  of  as-
prepared Cu3N. (E) Cross-sectional HAADF-STEM view of the Cu3N layer after
90 min electrochemical reduction.  (F)  Atomic-scale HR-TEM of the reduced
Cu3N layer (scale bar is 5 nm). (G) SAED pattern of the reduced Cu3N layer.
(H) STEM-EDS maps of the reduced Cu3N layer. (I) Selective area EDS of the
Cu3N layer before and after the electrochemical reduction compared to the
electrochemically polished Cu foil. (J) Out-of-plane XRD of the same samples
shown in (I).

The  CO2 reduction activity of  30-min annealed  Cu3N-derived Cu was

evaluated  by  chronoamperometric  electrolysis  in  CO2-saturated  0.1  M

CsHCO3 electrolyte.42, 43 CsHCO3 was selected because Cs+ has the smallest

hydrated cation radius compared to other alkali metal cations, which lead to

a higher concentration of cations at the cathode and a larger surface charge

density.  This  latter  creates  a  stronger  double  layer  field,  which,  in  turn,

enhances the adsorption of CO2 and stabilizes the formation of *OCCO, an
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intermediate in the formation of C2 products.44 Figure 4A shows the steady-

state current densities averaged over 1-h electrolysis at each potential, with

the H2, C1, C2, and C3 product distributions plotted in Figure 4B. A portion of

missing FE observed at -0.6 V, probably arisen from the reduction current of

CuxO formed during electrolyte switch after the pre-reduction step.45, 46 The

potential-dependence of  each product  is  plotted  in  Figure  4C.  The H2 FE

gradually decreases as the potential is reduced from -0.6 to -0.9 V vs. RHE,

then increases slightly again when the potential reaches -1.0 V vs. RHE due

to  mass-transport  limited  current  of  dissolved  CO2.43 Formate  is  another

dominant  product  at  low  overpotentials.  The  FE  for  formate  reaches  a

maximum  FE  of  35.2%  at  -0.7  V  and  then  decreases  with  decreasing

potential.  Notably,  no  CH4 was  observed  throughout  the  investigated

potential  region.  The  FE  for  CO,  a  vital  intermediate  for  multi-carbon

products, decreases monotonically from -0.6 V vs. RHE (FE = 21.3%) to -1.0

V vs. RHE (FE = 1.1%), whereas the FEs for C2 (ethylene and ethanol) and C3

products  (allyl  alcohol  and  n-propanol)  increase  correspondingly.  C2H4

evolution  starts  at  -0.7  V  vs. RHE  and  the  generation  of  oxygenates,

involving  >2e,  starts  at  ~ -0.8  V,  for  which  the  overall  C2+ FE  gradually

increases with decreasing applied potential. At -1.0V, this nitride-derived Cu

electrode delivers a geometric current density of  ~18.5 mA cm-2  (see also

Figure S10 of partial current densities for each product at different applied

potentials), reaching a maximum C2+ FE above 68% of which ~35% is due to

oxygenates. Taking H2 and C2H4 as representative CO2RR products, we find

that the FEs for these products remains stable with prolonged electrolysis

(Figure S11). To the best of our knowledge, this is one of the most selective

catalyst for  producing multi-carbon products  reported to date (Supporting

Information, Table S1).11, 24, 47-52

We have recently proposed that the Cu surface roughness factor (RF) is

a  good  descriptor  for  selectivity  to  multi-carbon  product  formed  via  the

CO2RR over Cu.53 Higher surface roughness increases the exposure of under-

coordinated  Cu  surface  sites  that  strongly  bind  adsorbed  CO,  thereby
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promoting  the  reduction  of  adsorbed  CO rather  than  its  desorption,  and

creating square sites next to steps that stabilize intermediates (e.g., OC-CO,

OC-CHO) involved in the formation of C2 products (C2H4 and C2H5OH).21, 54 

Figure 4.  Electrocatalytic CO2RR performance of electrochemical reduced

Cu3N catalyst within 0.1 M CO2-saturated CsHCO3 electrolyte.  (A)  steady-

state current density averaged from 1-h electrolysis, together with potential-
dependence of  (B) Faradaic  efficiencies for H2, C1, C2, and C3 products, and
(C) detailed  distribution  of  major  CO2RR  products  for  a  30-min  thermal

annealed Cu3N electrode (RF = 17.67).

The electrochemical surface area (ECSA), representative of  the RF, of

Cu3N-derived Cu after 1-h CO2RR electrolysis was determined by referencing

to the double-layer capacitance of electro-polished Cu foil (RF = 1.00). The
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surface RF of Cu3N-derived Cu was altered by varying the thermal annealing

time (see Figure S12). For 15-, 30-, and 60-min annealed samples the RF was

16.78, 17.67 and 19.78, respectively. The ratio of C2+/C1 products increased

with increasing RF from 1.00 to 17.67 then leveled off to 19.78, as shown in

Figure 5A.  The CO2 consumption rate is ca. ~ 30.45 nmol s-1 cm-2 on the

most roughened Cu surface. This  rate is close to the CO2 mass transport

limitation over a planar electrode in aqueous solution43 suggesting a balance

between RF and C2+ efficiency due to limitations of adsorbed CO availability

for further C-C bond formation. 

To compare the role of RF on the multi-carbon products selectivity in

CO2RR further, we examined roughened Cu foil electrodes produced by Ar+

plasma bombardment for which the RF ranged from 1.42 to 3.64. Figure 5B

shows the roughness dependence of the ratio of C2+ to overall CO2 reduction

products.  Both  Cu3N-derived  Cu  catalysts  and  Ar+ ion-roughened  Cu  foils

follow a clear trend in RF; the C2+ selectivity increases with increasing Cu

surface  roughness  independent  of  how  the  surfaces  is  roughened.  This

observation  reinforces  our  earlier  interpretation  that  controlled  RF  is  of

critical  importance  for  improving  CO2RR  efficiencies  and  selectivity.

Increasing  under-coordinated  Cu  sites  improves  multi-carbon  product

efficiency by binding adsorbed CO more strongly as compared to low-index

Cu  facets  (e.g.,  Cu(111)  and  Cu(100)).  Furthermore,  an  increased

concentration  of  surface  sites  which  having  strong  binding  of  CO  also

suppress the competitive adsorption of H (Figure S13), thus leading to an

increased oxygenate/hydrocarbon ratio (Figure 5C). We also note that the

high density of nanoscale-voids in the porous structure of the electrodes is

expected to lead to an increase in the local pH at the electrode-electrolyte

interface and, in turn, on the C2+/C1 selectivity. Hori et al. has reported that

high local pH can largely suppress CH4 generation.19 We also note that the

high density of nanoscale-voids in the electrode porous structure is expected

to increase the local pH at the electrode-electrolyte interface and, in turn,

suppressing methane generation with an increase on the C2+/C1+ selectivity.  
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Figure 5.  Surface Roughness dependence of CO2RR products distribution.

(A)  Faradaic efficiency ratio of C2+ products versus C1 products generated

on Cu3N-derived catalysts, with electro-polished Cu foil as reference (RF =

1.0), as a function of the surface roughness measured at a cathode potential
of –1.0 V vs RHE.  (B) C2+ products selectivity and (C) Faradaic efficiency

ratio  of  oxygenate  versus  hydrocarbon  products  illustrated  for  physically
roughened Cu foils obtained by Ar-plasma pretreatment and Cu3N-derived

Cu electrodes  prepared  with different  annealing  times;  all  measurements
were  made at  a  cathode  potential  of  –  1  V  vs  RHE,  within  0.1  M  CO2-
saturated CsHCO3.

CONCLUSIONS

In conclusion, we have developed an efficient Cu3N-derived Cu catalyst

that exhibits an exceptionally high Faradaic efficiency to C2+ products for CO2

reduction in an aqueous solution of CsHCO3 (0.1 M).  The Cu3N was formed

by annealing a Cu-foil at temperatures as low as 400 °C in a mixture of NH3/

O2. The active catalyst is produced by 90 min of electrochemical reduction of

the Cu3N covered Cu-foil in 0.1 M CO2-saturated CsHCO3 electrolyte. Analysis

shows that all of the nitrogen in the as-prepared Cu3N was eliminated leaving

behind a mesoporous Cu structure that has ~ 17 times the roughness of the

electro-polished  Cu  foil.  The  resulting  Cu  catalysts  exhibits  a  Faradaic

efficiency to C2+ products exceeding 68%, of which ~35% is C2+ oxygenates,

when operated at a cathode potential of -1.0 V vs. RHE and a current density
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of ~18.5 mA.cm-2. The results of the present study extend those we reported

recently  for  Cu roughened by Ar+ bombardment  in  an Ar  plasma and by

oxidation in an O2 plasma. In both cases, the Cu surface was roughened by

up to a factor of four relative that of the starting electro-polished Cu surface.

The performance of these catalysts demonstrated to be independent of the

method of roughening and the active catalyst in all cases is metallic Cu. As

illustrated  in  Fig.  5B,  the  ratio  of  C2+/(C1+C2+C3)  products  increases

monotonically with increasing roughness.
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