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Abstract

Aspergillus fumigatus is the most important airborne fungal pathogen causing life-threatening infections in
immunocompromised patients. Macrophages and neutrophils are known to kill conidia, whereas hyphae are killed mainly
by neutrophils. Since hyphae are too large to be engulfed, neutrophils possess an array of extracellular killing mechanisms
including the formation of neutrophil extracellular traps (NETs) consisting of nuclear DNA decorated with fungicidal
proteins. However, until now NET formation in response to A. fumigatus has only been demonstrated in vitro, the
importance of neutrophils for their production in vivo is unclear and the molecular mechanisms of the fungus to defend
against NET formation are unknown. Here, we show that human neutrophils produce NETs in vitro when encountering A.
fumigatus. In time-lapse movies NET production was a highly dynamic process which, however, was only exhibited by a sub-
population of cells. NETosis was maximal against hyphae, but reduced against resting and swollen conidia. In a newly
developed mouse model we could then demonstrate the existence and measure the kinetics of NET formation in vivo by 2-
photon microscopy of Aspergillus-infected lungs. We also observed the enormous dynamics of neutrophils within the lung
and their ability to interact with and phagocytose fungal elements in situ. Furthermore, systemic neutrophil depletion in
mice almost completely inhibited NET formation in lungs, thus directly linking the immigration of neutrophils with NET
formation in vivo. By using fungal mutants and purified proteins we demonstrate that hydrophobin RodA, a surface protein
making conidia immunologically inert, led to reduced NET formation of neutrophils encountering Aspergillus fungal
elements. NET-dependent killing of Aspergillus-hyphae could be demonstrated at later time-points, but was only moderate.
Thus, these data establish that NET formation occurs in vivo during host defence against A. fumigatus, but suggest that it
does not play a major role in killing this fungus. Instead, NETs may have a fungistatic effect and may prevent further
spreading.
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Introduction

Aspergillus fumigatus is the most important airborne fungal

pathogen causing life-threatening infections in immunocompro-

mised patients. Conidia, the asexually produced small fungal

spores, are inhaled and reach the lung alveoli, where they are

confronted with the first line of defence which is built up of

resident alveolar macrophages and newly recruited neutrophil

granulocytes (neutrophils). Conidia are thought to be killed by

macrophages whereas hyphae are mainly attacked by neutrophils

(reviewed in: [1–3]). However, recruited neutrophils are also able

to phagocytose conidia directly [4,5] or prevent their germination

as shown by Bonnett et al. [6]. Furthermore, the essential role of

neutrophils in preventing invasive growth of A. fumigatus has

recently been proven [7]. Nevertheless, the detailed mechanisms

how these immune effector cells protect the human host against A.

fumigatus are still a matter of debate.

The NAD(P)H oxidase in phagocytes is regarded to be essential

for host defence against aspergillosis. This idea is supported by the

fact that patients with chronic granulomatous disease are highly
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susceptible to fungal diseases, especially Aspergillus infections.

Neutrophils of these patients show markedly deficient NAD(P)H

oxidase activity [8]. The activation of NAD(P)H oxidase results in

the formation of superoxide anions and other reactive oxygen

intermediates (ROI) (reviewed in [1]). However although the

catalase or yap1 and skn7 mutants display an increased sensitivity

to ROIs in vitro, these detoxifying systems of A. fumigatus do not play

any role in controlling the killing of A. fumigatus conidia by

phagocytes in vivo [9].

Consequently, the production of ROI by the host may be

important for control of Aspergillus on a level distinct from direct

killing. This result is in agreement with recent findings that the

granule proteins in neutrophils are primarily responsible for the

killing process of microbes while ROI only function by activating

vacuolar enzymes [10,11]. The contribution of NAD(P)H oxidase

in killing conidia in macrophages, as shown for A. fumigatus [12],

may be indirect by depolarising the phagocytic vacuole, leading to

an influx of ions which results in the activation of digestion

enzymes, as proposed by Segal [11]. The importance of vacuolar

enzymes for fungal defence is also supported by the finding that

knock-out mice lacking cathepsin G and elastase were found to be

susceptible to Aspergillus infection [13].

Hence, the mechanism how the innate immune systems

effectively counteracts spores and germlings of A. fumigatus has to

be further elucidated with a focus on killing mechanisms

independent of direct ROI-mediated destruction. In the light of

these observations the identification of extracellular fibres called

neutrophil extracellular traps (NETs), which are produced as a

final act of defence by dying neutrophils may be of major

importance [14]. NETs are composed of chromatin covered with

granular proteins which express antimicrobial activity. The

process of NET formation depends on the induction of a ROI-

mediated signaling cascade in neutrophils that ends up in the

disintegration of the nuclear envelope and granular membranes

[15]. After membrane rupture the NETs are formed by

intracellular mixture of nuclear DNA with granular contents and

then explosively released in a matter of seconds, a process that is

associated with cell death. This unique sequence of events is also

called NETosis (reviewed in [16]). NETs may mediate the

trapping of conidia of A. fumigatus [17], as it has been shown for

the yeast form and hyphal cells of C. albicans [18] and for A. nidulans

[19].

Although NETs are an attractive model to explain defence

against A. fumigatus, direct proof of their existence and importance

in vivo is still lacking. The restoration of NAD(P)H oxidase activity

in hematopoietic stem cells of a human CGD patient by gene

transfer has been shown to re-establish NETosis in neutrophils

derived from these cells in vitro and restore fungal defence against

A. nidulans in the treated patient. However, the re-establishment of

NET formation in this patient in vivo as basis for successful fungal

defence could not be demonstrated directly and thus remained a

matter of speculation [19]. Furthermore, the importance of

NETosis for the defence against the clinically much more relevant

A. fumigatus still lacks experimental proof. Finally, molecular

determinants of fungal pathogens that control or induce the

production of NETs by binding neutrophils are so far entirely

unknown.

To get a better understanding of these issues, we set out to

comprehensively study whether the different morphotypes of A.

fumigatus have the potential to induce NETs in vitro. Furthermore,

we aimed at shedding light on molecular mechanisms involved.

Finally we wanted to clarify, whether NETs are really formed in

Aspergillus-infected lungs and whether this is dependent on newly

arriving neutrophils.

Results

Human neutrophils produce extracellular traps when
encountering different A. fumigatus morphotypes
To analyse whether A. fumigatus induced the production of

NETs by human neutrophils, different morphotypes of A.

fumigatus, i.e. resting or swollen conidia and hyphae, were co-

incubated with human neutrophils for different time periods.

Confocal images of cultures stained with propidium iodide and

calcofluor white during co-incubation showed, that freshly

isolated non-prestimulated neutrophils produced typical NET

structures against all morphotypes within three hours (Figure 1

and Figure S1). NET formation started with a rapid enlargement

of the neutrophils followed by their final burst. NET formation

was visible after 120 min and increased during the following hour

of co-incubation (Figure 1, 3A and Video S1). Activation of

neutrophils in vitro using phorbol-12-myristate-13-acetate (PMA)

enhanced this effect (data not shown). Neutrophils alone without

fungi or during co-incubation with latex beads did not produce

NETs (Figure S1).

Scanning electron microscopy further revealed the intimate

contact between neutrophils and the three morphotypes (Figure 2).

Furthermore, it showed the formation of typical NET structures

with the different morphological characteristics defined by

Brinkmann and Zychlinsky [16], i.e., cables, threads and globular

domains (Figure 2C3). The architecture of NETs was thus similar

to that seen for NETs induced by other pathogens like Shigella

flexneri [19]. This suggested, that the overall architecture of NETs

is fixed, irrespective of the pathogenic microorganism which was

encountered by neutrophils.

Since the static images did not reveal the cell movements and

fungal contacts of neutrophils before final NET formation, we also

Author Summary

The fungus Aspergillus fumigatus grows on decaying
organic matter and produces large numbers of spores,
called conidia, which are constantly inhaled by humans.
This is harmless, because we have a functioning defence
system of immune cells called neutrophil granulocytes, but
people with too few or non-functioning neutrophils can
die of Aspergillus infections. Neutrophils invade the lung,
engulf/phagocytose and thereby kill conidia. Dying
neutrophils can also throw their nuclear DNA on hyphal
elements as NETs (Neutrophil Extracellular Traps) that are
decorated with antimicrobial proteins. Thus, larger fungal
amounts, including tissue-invading hyphae, can still be
controlled. However, until today the formation of NETs has
not been demonstrated in Aspergillus-infected lungs, the
role of neutrophils for this process was unknown and
whether the fungus has anti-NET defence strategies on its
own was not clear. We demonstrate here the existence of
NETs in Aspergillus-infected lungs, show that neutrophils
produce these structures and that they phagocytose
fungal elements within the lung tissue. Furthermore, we
show that Aspergillus camouflages its spores by means of
the surface protein hydrophobin RodA, which is able to
strongly prevent NET formation by neutrophils. These
studies shed new light on the dynamics and molecular
mechanisms of this key process of host-pathogen interac-
tion. Although these data establish that NET formation
occurs in vivo during host defence against A. fumigatus, we
suggest that NET formation does not play a major role in
killing this fungus.

NETs against A. fumigatus In Vivo
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investigated the process by live cell fluorescence imaging. These

analyses allowed to precisely reconstruct the kinetics of the

reaction (Figure 3A and Video S1). Normally, neutrophils rapidly

phagocytosed conidia, as described [4]. Interestingly, the large

hyphal structures, that could not be internalised, were covered and

ensheathed by multiple neutrophils. The rate of NET production

was dependent on the chosen ratio between neutrophils and fungal

elements (data not shown). At a ratio of 1:1 only a minority of cells

in a population (12.469.5%) were finally observed to disintegrate

and undergo NETosis, which was clearly visible by rapid staining

of externalised DNA by the nucleic acid dye propidium iodide in

the supernatant (Figure 3A and Video S1). Thus, NETosis was not

Figure 1. NET formation by human neutrophils co-incubated with resting and swollen conidia or hyphae of A. fumigatus. CLSM
fluorescence, bright field and overlay images showing NET formation of human neutrophils after co-incubation with A. fumigatus. Extracellular DNA
was stained with propidium iodide (red), conidia and hyphae with calcofluor white (blue). Microscopic pictures were taken after 3 hours. Neutrophils
were co-incubated with resting conidia (A), swollen conidia (B) and hyphae (C). All scale bars represent 20 mm length.
doi:10.1371/journal.ppat.1000873.g001

NETs against A. fumigatus In Vivo
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an invariant response pathway of dying neutrophils and its

frequency was further influenced by the E/T ratio. Often only a

sub-fraction of neutrophils was able to generate NETs, while the

majority of cells remained alive. Nevertheless, even when only few

cells were observed to undergo NETosis these could produce

NETs of considerable size. A minority of cells died without signs of

NET formation (data not shown). The latter was evident from

bright red nuclear staining of condensed cells (Figure 3B, black

arrows) or swollen cells with dilute cytoplasmic staining (Figure 3B,

white arrows).

Figure 2. Scanning electron microscopy (SEM) micrographs of conidia and hyphae trapped in NETs. NET formation of human
neutrophils after co-incubation with A. fumigatus. Microscopic pictures were taken after 3 hours. Neutrophils were co-incubated with resting conidia
(A), swollen conidia (B) and hyphae (C). All scale bars represent 5 mm length. Morphological structures are indicated by labelled arrows.
doi:10.1371/journal.ppat.1000873.g002

NETs against A. fumigatus In Vivo
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Figure 3. Time-lapse widefield microscopy of NET formation by neutrophils co-incubated with swollen conidia of A. fumigatus. (A)
Time series of NET formation by human neutrophils upon contact to swollen A. fumigatus conidia. Extracellular DNA was stained with propidium
iodide (red), conidia and germ tubes with calcofluor white (blue-pink). Microscopy was carried out for 5 h after onset of co-incubation while single
pictures were taken every 30 seconds (Video S1). (B) Co-incubation after 150 minutes. Black arrowheads indicate cells which had died without
releasing DNA, white arrowheads point to cells undergoing preparation for NET release. The colours are the same as in (A). (C) DNase digestion of
NETs after 180 minutes of co-incubation. White arrowheads indicate the preformed NET structures right before destruction by the enzyme (Video S2).
The colours are the same as in (A). Where appropriate, real time is indicated in minutes. The DNase was added 7 min before onset of the visible NET
digestion to the border of the microscopy chamber right before sealing. The size of scale bars is indicated directly. These movies are representative
for at least 6 independent experiments that were performed.
doi:10.1371/journal.ppat.1000873.g003

NETs against A. fumigatus In Vivo
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To further confirm that NETs produced against A. fumigatus

consisted of DNA, we added DNase I to neutrophil-Aspergillus co-

cultures containing prominent NET-structures (Figure 3C and

Video S2). Within minutes after addition of DNase I NETs were

completely disrupted, indicating that NETs observed in these

systems were indeed composed of DNA (Figure 3C and Video S2).

Phagocytosis and NET production by invading
neutrophils in the lungs of Aspergillus-infected mice
The data above suggested, that contact to A. fumigatus elements,

especially growing hyphae, triggered NET formation by human

neutrophils, as previously described for conidia alone [17].

However, like with the study by Jaillon [17] this observation was

purely based on in vitro experiments. Thus, although NET-

structures have been observed in tissue wounds in vivo before

[14,20] or in lungs infected with Candida albicans [21], it is not

known, whether they also exist in lungs recently infected with A.

fumigatus and also the kinetics of NET formation in vivo has not

been characterised, yet [19]. As direct imaging of NETs in the

lungs of humans is not possible [19], we newly developed a mouse

model of early invasive aspergillosis (Figure 4A, and Video S3)

allowing us to clarify, whether NETs really occur during defence

against an acute Aspergillus infection in vivo.

We intratracheally injected swollen conidia, that were stained

with calcofluor white, into wild type C57/BL6 mice or mice with a

targeted insertion of EGFP into the lysozyme locus (Lys-EGFP),

thus harboring green neutrophils [22]. Pilot experiments had

demonstrated that swollen conidia, which represent the Aspergillus

morphotype associated with the onset of invasive growth,

produced prominent NET-structures in vitro. After 7–10 h, mice

were killed and their lungs were analysed for fluorescent cells,

fungal elements as well as NETs by 2-photon microscopy (Video

S3). These analyses demonstrated the formation of large fungal

clusters with outgrowing hyphae and attached host cells associated

with alveoli (Figure 4B and Video S8). Clearly also structures

closely resembling the NETs we had observed before in vitro

(Figure 1 and 3) were present within infected lung tissue

(Figure 4B–D). The structures were especially enriched in areas

with bulk associations of multiple fungal elements (Figure 4C and

D) while in control animals, which only received PBS we did not

observe these structures (Figure 4E). DNase digestion of these

structures was possible.

Neutrophils could be observed to be highly motile within these

lung-slice preparations (Figure 5A and Video S4) and we

measured average migration velocities of almost 10 mm/min with

more than 50% of cells migrating (data not shown). Such

migration parameters are very similar to values measured for

neutrophils in vivo [23,24], suggesting that our approach allowed

the measurement of near natural neutrophil motility in vital lung

tissue. Importantly, we could also observe neutrophils phagocy-

tosing individual conidia in those living lung slices (Figure 5B,

arrowheads and Video S5) leading to the localisation of conidia

inside of neutrophils (Figure 5C and Video S9) and their

transportation with the migrating cells over larger distances.

Neutrophils could also be observed carrying swollen conidia with

small hyphal segments over large distances in a collective effort

(Figure 5C, arrowhead, Video S6), similar to what we had

observed before in vitro (Figure 3 and Video S10). This was also

highly reminiscent of the pattern of 2-D phagocytosis which we

previously described in an in vitro system [4]. Sometimes individual

motile neutrophils were observed migrating along the curvature of

alveoli, potentially scanning the environment (Figure 5E, arrow-

head, Video S7) for infection.

These data strongly suggested the rapid production of NETs

against an infection with A. fumigatus in vivo. However an important

question was, whether neutrophils were required for NET

formation. It could be clearly shown that neutrophils massively

invaded the lung shortly after infection with A. fumigatus

(Figure 6A). To address their importance for NET formation,

we depleted neutrophils in mice by injection of anti Gr-1

monoclonal antibodies as reported [25]. 24 h later, animals were

infected with A. fumigatus and investigated as described above. The

depletion of neutrophils strongly inhibited their immigration into

the lungs of infected mice. When the Gr-1 depletion was done in

Lys-EGFP mice there were hardly any NET-structures detectable

by staining with the DNA-specific dye Sytox Orange and no green

neutrophils were patrolling the tissue (Figure 6B) despite the

presence of prominent fungal clusters in the lung. A quantification

of NETs in neutrophil-depleted compared to untreated mice

further underscored this finding (Figure 6C). Since, however, the

natural infectious particles are not swollen but rather resting

conidia, we also quantified the NET formation in response to an

infection with this airborne form of the fungus in untreated mice.

Here, NET formation was less prominent than with swollen

conidia, but still clearly detectable (Figure 6C). The almost

complete lack of NET structures in neutrophil-depleted mice

despite the presence of large fungal masses was prominent, thus

showing for the first time a direct connection between the

availability of infiltrating neutrophils in the lung and the local

development of NET structures.

The frequency of NET formation is morphotype- and
strain dependent
To further characterise NET formation quantitatively, we

analysed the DNA content of the supernatant of co-cultures of A.

fumigatus with freshly isolated, unstimulated neutrophils using

propidium iodide. Further confirming our imaging data (Figures 1

and 2), NET production in the supernatants was highest when

hyphae were co-incubated with neutrophils and considerably

lower with swollen and in particular resting conidia (Figure 7A).

The addition of both DNase I or the NADP(H) oxidase inhibitor

DPI (diphenyliodonium) led to a reduced amount of fluorescence

indicating reduction in the generation of NETs (Figure 7A). Even

more, the addition of DPI abolished NET formation completely

which supports the finding that NET formation depends on the

production of ROI [15]. The relative decrease of the number of

neutrophils during the co-incubation experiments (E/T ratios of

1:10 instead of 1:5) with resting or swollen conidia and hyphae

resulted in less NET formation, whereas ratios of 1:1 resulted in

higher fluorescence signals and thus increased NET formation

(data not shown). Furthermore, NET formation also depended on

the surface structure of the pathogen because latex beads did not

trigger significant NET formation (Figure 7A and Figure S1E) and

the measured low background fluorescence was obviously caused

by neutrophils which had undergone lysis after 3 h of incubation.

To further study the ability of different fungal strains to trigger

NET formation, we employed different mutant and wild type

strains of A. fumigatus in NET-forming assays in vitro. As shown in

Figure 7B, NET formation also depended, at least in part, on the

strain analysed. NET induction triggered by the DAL wild type

strain was lower than that observed with the ATCC46645 wild

type strain. Interestingly, a polyketide synthase (pksP) mutant strain

did not trigger significantly different fluorescence and thus NET

production by neutrophils compared with the respective wild type

strain ATCC46645. This indicated that dihydroxynaphthalene

melanin, which is lacking in the pksP mutant, does not influence

NETs against A. fumigatus In Vivo
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NET formation, although this cell wall component is able to

suppress ROI-production in neutrophils [26,27].

Hydrophobin RodA influences NET formation
Nevertheless, cell wall components are the first structures of the

fungal pathogen encountered by invading phagocytes and thus

they should play a role in shaping the immune response against A.

fumigatus. Since it has recently been shown that hydrophobin

RodA, the major surface component of A. fumigatus conidia,

renders them immunologically inert, thus not triggering adaptive

immune responses [28], we raised the question whether RodA was

able to suppress NET formation as key antifungal immune

response of the innate arm of cellular immunity. Hydrophobin

RodA is present on resting conidia, in reduced amounts on swollen

conidia and lacking on hyphae [29]. Therefore, we analysed the

DrodA mutant lacking the hydrophobin RodA surface layer of

swollen and resting conidia [30]. Confirming an important role of

hydrophobin RodA for this process, NET formation was

significantly increased when neutrophils encountered swollen

and resting rodA mutant conidia as compared to wild type conidia

(Figure 7B). NET formation induced by resting conidia of the

DrodA mutant was even stronger than the increased NET

formation induced by any of the hyphal forms investigated in

parallel which suggested, that hydrophobin RodA was a major

factor for silencing the NET-function of neutrophils. This also

indicated, that resting conidia do express a NET-inducing element

that is shielded by hydrophobin RodA, as described before for the

induction of adaptive immune responses [28]. NET formation was

almost identical when hyphae of wild type and rodA mutant

hyphae were compared suggesting, that a potentially strong NET-

inducer that is present on resting conidia and normally shielded by

RodA is lost during hyphal development. Consistently, addition of

purified hydrophobin RodA to rodA mutant conidia reduced the

NET formation (Figure 7B). Furthermore the chemical removal of

the rodlet layer of DAL wild type resting conidia by hydrofluoric

acid (HF) treatment, which also kills conidia, lead to a significant

increase of NET formation (Figure 7B), whereas the level of NET

formation stayed the same after HF treatment of resting conidia of

the DrodA mutant. Obviously also dead conidia trigger NET

formation and thus it appears unlikely that an actively secreted

product rather than a fixed surface structure mainly activates NET

formation. In addition, when RodA was already genetically

removed in the DrodA mutant, HF-treatment did not further

enhance NET formation by resting conidia. Taken together, these

data indicate that RodA helps Aspergillus to evade NET induction

thus constituting the first molecularly defined pathway in A.

fumigatus for escape from this central response of neutrophils to

fungal infection.

Killing of A. fumigatus by neutrophils
Despite the clear induction of NET formation we did not

observe an influence of NET formation on killing of A. fumigatus

resting and swollen conidia in vitro. A. fumigatus conidia were co-

incubated with freshly isolated, unstimulated human neutrophils

and CFUs of the fungus were determined at different time points.

As shown in Figure 8A, after 180 min about 35% of both swollen

and resting conidia were killed. This killing rate was in the range

found in previous studies, in which killing rates of around 50% of

all conidia were observed after 160 min [9]. Addition of DNase I

and DPI did not affect the killing of conidia (Figure 8B).

Therefore, it seems unlikely that NET formation contributes to

killing of conidia in this system. To elucidate whether killing can

mainly be explained by phagocytosis, we added cytochalasin D,

which disrupts actin filaments and thus inhibits phagocytosis, to

conidia-neutrophil co-incubation experiments. Cytochalasin D

effectively inhibited the killing of A. fumigatus conidia by naı̈ve

neutrophils (Figure 8B). So we suggest that the killing of conidia is

mainly caused by phagocytosis and thus not by NET formation.

Consistently, the DrodA conidia were killed at almost the same

rate as the parental wild type conidia (DAL strain), although the

induction of NET formation differed significantly between the two

strains. The addition of 0.07 mg hydrophobin RodA did not

influence the killing of DrodA in comparison to untreated DrodA

conidia (Figure 8C) significantly. Taken together, these data

indicate that NET formation does not directly affect killing of

conidia in this system in vitro.

To unravel the role of NETs in killing A. fumigatus hyphae we

measured the respiration rate of hyphae after different time

periods of co-incubation with neutrophils. Since conventional

CFU determination is almost impossible for the hyphal growth

form of filamentous fungi, the analysis of the oxygen consumption

rate served as an indirect parameter for cell viability. The first

significant differences in oxygen consumption of hyphae after co-

incubation with neutrophils were detected after 9 h and increased

further at later time points (up to 12 h) (Figure 9) in comparison to

untreated controls. The addition of DNaseI or DPI almost

completely abolished the detrimental effect of the neutrophils.

These findings suggest that NETs do reveal antifungal activity

against fungal hyphae, which, however, occurs with a certain time

lag at later stages.

Discussion

Here, we demonstrate that both human and murine neutro-

phils produce neutrophil extracellular traps (NETs) in response to

the human-pathogenic fungus A. fumigatus. Typical NET-struc-

tures which have already been described for other pathogens

were observed by fluorescence and electron microscopy during

co-incubation of neutrophils with A. fumigatus mycelium and

conidia. Both fungal morphotypes were embedded in NETs

consisting of smooth fibres and globular domains as first

described by Brinkmann et al. [14] and others (reviewed in

[16]). The DNA intercalating dye propidium iodide stained

NETs strongly. EM revealed that neutrophils engulf A. fumigatus

Figure 4. In situ 2-Photon microscopy of NET-like structures formed in a murine A. fumigatus infection model. (A) Model system used to
demonstrate NET formation and -structure in living lung-slices. 7–10 hours after infection of live mice the right lung lobe was prepared, dissected and
NETs were stained with a specific DNA dye. In situ 2-photon microscopy was carried out in PBS pre-warmed to 37uC (Video S3). (B) High resolution
image of a fungal mass with outgrowing hyphae (blue colour, arrowheads) within the infected lung. Red staining (DNA) shows NET-structures as well
as the intact nuclei of host cells within the lung. Please also note the fine blue curvature of alveoli (white arrows). The same image is 3-D rendered in
Video S8. (C) A In lungs of infected mice multiple of such large accumulations of fungal masses were visible (blue colour, white arrowheads). At
higher magnification B these fungal masses were surrounded by fine, red fibres demonstrating NET formation in these areas (D) In low A and
especially high magnification B such structures often strongly resembled NETs observed before in vitro (red) and were mostly associated with
swollen A. fumigatus conidia (blue) in lung slices freshly prepared from infected lungs (‘‘acute lung slices’’). (E) In mice treated i.t. with PBS NET
formation was absent (A overview, B higher magnification). Blue: SHG signal of the lung tissue and fungal masses, red: nuclei of cells cut open during
processing. The images are representative of more than 20 individual mice, which were analysed.
doi:10.1371/journal.ppat.1000873.g004
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hyphae, a phenomenon which has also been described for C.

albicans hyphae [21,31]. NET formation started after 2 hours of

co-incubation and increased rapidly within the next hour. A

similar time span of 180–240 minutes for the release of NETs

after stimulation of naı̈ve neutrophils with Staphylococcus aureus was

reported by Fuchs et al. [15]. Remarkably, NETs were induced

relatively quickly by A. fumigatus conidia and mycelium in naı̈ve

neutrophils without prior stimulation, but also other eukaryotic

pathogens are able to trigger NET formation in vitro, such as the

protozoan Leishmania [32].

Besides experimental in vitro data, we provide the first direct

observation of NETs or at least NET-like structures in lung tissue

infected with A. fumigatus and show that these structures form

within 3–4 hours after exposure to the first immigrating

neutrophils. The recent paper by Urban et al. identified NETs

in lungs fixed 24 h after infection with C. albicans, thus not allowing

to investigate the early kinetics of this response and also precluding

analysis of cell migration in the infected site. Also the role of

immigrating neutrophils was not addressed in this study [21]. Our

study is thus an important step forward in being the first to

demonstrate the existence of NETs in Aspergillus-infected lungs and

highlighting the importance of newly arriving neutrophils for their

generation. This information is critical for a complete under-

standing of neutrophil defence during fungal attack. A recent study

impressively demonstrated that the lack of functional NAD(P)H

oxidase in neutrophils of a patient suffering from chronic

granulomatous disease inhibited the production of NETs in

response to Aspergillus nidulans in vitro. Re-introduction of a

functional enzyme by gene therapy rescued the NET-phenotype

in vitro and enabled the patient to eradicate a therapy-resistant

invasive aspergillosis [19]. However, due to technical limitations

the study did not directly demonstrate the existence of NETs in the

infected patient lung nor could it demonstrate that the infiltration

of functional neutrophils was essential for their formation. Our

study closes this gap in our knowledge and provides the first direct

hint to neutrophil-derived NET formation in response to A.

fumigatus infection in vivo.

Our data also show the explosive release of the NET DNA,

which occurs within a few seconds, while the preceding process,

that prepares a neutrophil for the final NET-release, lasts up to

3 hours. The release kinetic and the fact that the structures we

observe in vitro are highly sensitive to DNase I-mediated

destruction well agree with recently published data [15] and

further confirm that we were visualising true NETosis. It is

interesting to note that only a subpopulation of neutrophils

actually ended up producing NETs, although this was also

dependent on the chosen E/T ratio. Often, a majority of cells

either stayed alive or underwent normal necrotic or apoptotic cell

death as detected by entry and permanent residence of nuclear

dyes in cells but not the explosive release of DNA. This was despite

the fact that most if not all neutrophils briefly touched or stayed in

close contact with fungal elements in these assays. Also our

analyses of neutrophils migrating in live lung-tissue underscored,

that only a minority of neutrophils secrete NETs. Although we

frequently observed NET structures closely associated with fungal

masses in lung-slices, we also observed large numbers of highly

motile neutrophils in between.

What ultimately decides, whether a neutrophil performs

NETosis or other types of responses after contacting fungal

elements, remains unclear. It is, however, conceivable, that control

mechanisms exist that limit the production of NETs because

external DNA, especially in the form of nucleosomes as present in

the NET structures [14,21], is potentially harmful. Nucleosomes

can be taken up by DNA-specific B cells that can then make anti-

nuclear-antibodies (ANAs) because they get help from T cells

specific for the histone component of nucleosomes [33]. ANAs are

found in many autoimmune diseases such as systemic lupus

erythematosus [33,34] and often mediate the pathologies associ-

ated with the disease. A NET-inhibiting mechanism driven by the

amount of external DNA is an attractive concept. This would,

however, imply that neutrophils possess a mechanism that allows

them to measure the amount of external DNA, inhibiting their

further production of NETs if this amount is too high. Indeed, Toll

Like Receptor 9 is a well known receptor for dsDNA [35] and very

recently, new receptors for intracellular DNA have been identified

[36–38] that might serve such a function. It would thus be

interesting to study animals mutant for such proteins for their

ability to generate NETs.

The novel mouse model for investigating NETs and invading

neutrophils in live lung tissue introduced here proved to be a very

helpful approach. We can demonstrate structures in living lung

tissue that closely resemble the NETs observed before in vitro by

confocal microscopy and scanning electron microscopy. As we

show, the migration parameters of cells in our experiments are in

accordance with previously published data on neutrophils

observed in true intravital setups in various organs [23,24,39]

and also our own experience for neutrophil migration in vivo. This

supports, that the tissue slice approach maintains near-natural

cellular behaviour. As it is currently not foreseeable, how true

intravital 2-photon microscopy deeply within the breathing lung

can be technically achieved, this new approach opens a promising

new avenue for the investigation of lung-associated immune

responses.

Moreover, we have identified here a novel molecular mecha-

nism by which A. fumigatus conidia escape neutrophil attacks via

NETs. Fungal hydrophobin RodA, which very recently was

identified as being important to protect conidia from recognition

by the adaptive immune response [28], now also shows its potency

in protecting conidia from triggering NET formation. However,

the molecular mechanisms how hydrophobin RodA achieves this

Figure 5. Neutrophil motility and interaction with fungal elements in living lung slices. Lys-EGFP mice were infected and acute lung slices
were prepared as described in Figure 4. Subsequently, time-lapse 2-photon microscopy was used to generate movies of cells migrating in these lung
slices. (A) A A still image of a movie showing individual neutrophils (green), DNA (red) and tissue/fungal elements (blue). Tracks of migrating cells are
shown in white. B Image of the tracks alone (Video S4). (B) Many neutrophils (green) can be seen migrating within the tissue and internalising conidia
in slices. The red square is shown as a magnification on the right (white arrowheads denote phagocytosis events). Tissue (dark blue) fungal elements
(light blue), DNA (red, Video S5). (C) A still image from the middle of a Z-stack of an infected lung in a Lys-EGFP animal. The area boxed in white is
shown enlarged from the bottom and as 3-D rendering from the side to demonstrate the internalisation of a conidium (light blue) within a neutrophil
(green). See also Video S9. (D) Multiple neutrophils (green) cooperate to transport a hypha (White arrowhead, hypha is light blue. The area of the red
square is shown as a magnification below.), that is too big to be engulfed, to an area with more neutrophils (Video S6). Red: DNA from nuclei and
NETs. Similar events can also be observed in vitro (Video S10). (E) An individual neutrophil (green, arrowhead) enters the alveolar space and migrates
along the alveolar surface (Dark blue structure. The white track is the migration path of the neutrophil.). The border of the alveolus is depicted with a
broken blue line in the magnification of the area identified by the red square (Video S7). The images are representative of 8 individual mice that were
analysed.
doi:10.1371/journal.ppat.1000873.g005
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Figure 6. NET formation in vivo is dependent on the presence of newly immigrating neutrophils. (A) Mice were intratracheally injected
with either swollen A. fumigatus conidia or PBS. 7 h after infection, the number of neutrophils in the bronchoalveolar lavage of these mice was
measured by FACS. (B) Lys-EGFP mice were treated with the neutrophil depleting anti Gr-1 antibody RB6-8C5 24 h before infection with A. fumigatus.
A lung slice of such a mouse analysed 10 h after infection shows almost no green cells (arrowhead in the magnification of the area boxed in green
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reduction of NET formation still remain enigmatic. Presumably,

the rodlet layer hides the immunologically active protein or

carbohydrate components of the cell wall. This would also explain

the significantly higher induction of NETs by hyphae in

comparison to resting and swollen conidia, which apparently

expose fewer immunogenic molecules. By contrast, the fungal

pigment DHN-melanin appears not to be involved in evading

neutrophil killing. Although the pksP mutant possesses a smooth,

modified conidial surface layer and is not able to synthesise DHN-

melanin [40], it did not induce more NET formation and it was

not killed at a higher rate. The surface cell wall components

responsible for the induction of NETs are presently under

investigation. Also the question which phagocyte receptor is

involved in the triggering of NET formation remains to be

answered.

In addition, we showed that ROI are important for triggering

the release of NETs by A. fumigatus, because the specific

NADP(P)H oxidase inhibitor DPI drastically reduced NET

formation, as previously shown for Staphylococcus aureus [15].

Furthermore, DNase I disintegrated NETs as known from other

studies [14]. Surprisingly, a reduced amount of NETs was not

accompanied by a reduced killing rate of conidia in vitro. These

data propose that A. fumigatus conidia are killed in a NET-

independent fashion. This is further supported by the fact that

the phagocytosis inhibitor cytochalasin D abolished conidial

killing, suggesting that phagocytosis might probably by the most

important antifungal mechanism for the clearance of A. fumigatus

conidia. However, NETs revealed slightly detrimental effects on

hyphal viability demonstrated by reduced respiration rates.

Killing might also be mediated by antimicrobial peptides [41]

but probably also by a so far unknown mechanisms. Taken

together, NETs may be involved in disarming A. fumigatus, e.g. by

binding secreted proteins and surface structures, and may

prevent further spreading, but apparently do not represent the

major factor for killing. These results are in marked contrast to

the clear cytotoxic effect of NETs described for C. albicans [21].

Thus, released granular antimicrobials may not have a

fungicidal, but a fungistatic effect against A. fumigatus. Candidates

could be the fungal growth suppressing granule protein

lactoferrin, which is able to sequester iron [8,21] or the calcium

binding heterodimer calprotectin, which was recently shown to

be associated with NETs [21]. Clarification of these mechanisms

in the future might be instrumental in elucidating the entire

molecular signalling complex that leads to NET formation and

fungal damage.

Materials and Methods

Ethics statement
All animal experiments were in compliance with the German

animal protection law in a protocol approved by the Land-

esverwaltungsamt Sachsen-Anhalt (file number: 203.h-42502-2-

881 University of Magdeburg). The ethics committee of the

University Hospital Jena did not raise any concerns and approved

our study (file reference 2395-10/08). All healthy voluntary donors

gave written, informed consent.

Strains and media
Aspergillus fumigatus wild type strains ATCC 46645 (ATCC),

DAL [42] as well as the mutant strains pksP [26], and DrodA [30]

were employed. The strains were cultivated in RPMI 1640 w/o

glutamine (Lonza, Wuppertal, Germany) medium with 5% (v/v)

heat inactivated FCS (PAA, Cölbe, Germany).

Cultivation conditions
For microscopical analysis by both fluorescence microscopy and

scanning electron microscopy (SEM) analysis A. fumigatus was

cultivated over night in RPMI with 5% (v/v) heat inactivated FCS

at 37uC on cover slips in a wet chamber. For determining colony

forming units (CFUs) and the quantification of extracellular DNA,

hyphae (16 h), swollen conidia (2 h) and resting conidia were

incubated in 96 well plates (Brand) in 100 ml RPMI with 5% (v/v)

heat inactivated FCS at 37uC.

Isolation of neutrophils
Human neutrophils were isolated from peripheral blood of

healthy donors according to the protocol of Wozniok et al. [43].

After a gradient centrifugation of the blood in ‘‘PolymorphprepR’’

(Axis Shield, UK) at 5506g, neutrophils were collected and

purified by erythrocyte lysis with ACK buffer. Then, the

granulocytes were washed with HBSS buffer and diluted in RPMI

media with 5% (v/v) heat inactivated FCS.

Scanning electron microscopy
Starting with 16106 conidia, A. fumigatus was grown on cover

slips in 100 ml RPMI media with 5% (v/v) heat inactivated FCS

for 16 h. To generate swollen conidia, resting conidia were

preincubated in RPMI media for 2 h before. Resting conidia and

swollen conidia were co-incubated with 26105 neutrophils. The

cell culture/conidia mixture was incubated at 37uC. After 180 min

co-incubation, a sample was drawn and washed with 0.1 M

cacodylate buffer pH 7.2 (Serva, Germany) and then fixed with

2.5% (v/v) glutaraldehyde cacodylate buffer three times for

45 min. The samples were again washed with cacodylate buffer,

dehydrated in a graduated ethanol series, critical-point dried

(BAL-TEC CPD030, Balzer, Liechtenstein), coated (BAL-TEC

SCD 005) and analysed with a Carl Zeiss SMT (Oberkochen,

Germany) scanning electron microscope. Due to the fragility of the

NET-structures, disturbance of the media in each step were kept

to a minimum to preserve the cellular structures.

Immunofluorescence and confocal laser scanning
microscopy (CLSM)
100 ml RPMI media with 5% (v/v) heat inactivated FCS on

cover slips were inoculated with 16106 A. fumigatus conidia. Then,

26105 neutrophils were added and the cover slips were incubated

at 37uC. After different time points (0, 60, 120 and 180 min) the

media were extracted and 10 ml of a solution containing 1 mg/ml

propidium iodide / 100 mg/ml calcofluor white (Sigma, Deisen-

hofen, Germany) were added to the cover slips and inverted on a

microscopic slide. Fluorescence microscopic analysis was per-

formed with an Axiovert 200 M/LSM 5 live confocal laser

scanning microscope (Carl Zeiss, Jena, Germany). Fluorescence

shows one of the very rare cells in this slice) and no NET-like structures (note only punctate red staining for DNA of nuclei) in areas of fungal masses
(blue). (The area of the red square is magnified on the right) The image is representative for 3 animals that were analysed. (C) Quantification of NET
formation in Gr-1- and mock-depleted mice infected with swollen conidia as well as untreated mice infected with resting conidia. Shown is a
representative result of 3 independent experiments performed. For each condition 20 fungal clouds .20 mm were scored for the presence of NET
structures. The 3 images are reference pictures for the type of structure scored with 2/+/++.
doi:10.1371/journal.ppat.1000873.g006
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signals were detected using a 415–480 nm band pass filter for

calcofluor white and a 560–675 nm band pass filter for

propidium iodide. Images were obtained using the ZEN 2008

software (Zeiss).

Live imaging of NETosis and NET-destruction
After 3–4 h of pre-incubation in RPMI 1640 (Biochrom,

Germany) supplemented with 5% (v/v) FCS at 37uC a total of

16106 swollen A. fumigatus conidia were stained with calcofluor

Figure 7. Detection of extracellular DNA by propidium iodide-staining after co-incubation of neutrophils with Aspergillus
morphotypes. The different morphotypes of A. fumigatus were co-incubated for 180 min with neutrophils and the release of extracellular DNA was
determined by measuring the fluorescence intensity of propidium iodide. Hyphae (black bars), swollen conidia (grey bars) and resting conidia (white
bars) of A. fumigatus were used. (A) A. fumigatus ATTC 46445 wild type strain after co-incubation with human neutrophils. DNase I or DPI were added
from the beginning of the co-incubation. Asterisks indicate significant differences (*p,0.05 or **p,0.01) based on Student’s t-test. (*1) Indicates
comparison of each morphotype of the wild type (ATCC 46645) strain with the DNase I treated wild type strain; and (*2) with the DPI treated wild type
strain. (B) Analysis of different A. fumigatus wild type and mutant strains. In some experiments, 0.07 mg RodA protein was added to the A. fumigatus
mutant strain DrodA just 15 min prior to the co-incubation with neutrophils. Asterisks indicate significant difference (*p,0.05 or **p,0.01) in the
formation of extracellular DNA by neutrophils during (*1) co-incubation of HF treated resting conidia of the DAL wild type strain in comparison to
untreated resting conidia as a control, during (*2) co-incubation with the DAL wild type strain in comparison to the mutant strain DrodA, and (*3)
during co-incubation with the mutant strain DrodA in comparison to DrodA supplemented with the spore surface protein RodA. Only the single
morphotypes were compared with each other.
doi:10.1371/journal.ppat.1000873.g007
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Figure 8. Survival of resting and swollen conidia of A. fumigatus strains after co-incubation with neutrophils. The number of CFU
determined for conidia without co-incubation (T0) was set as 100% survival. CFUs of A. fumigatus conidia were determined as described in materials
and methods. Survival of swollen (grey bars) and resting conidia (white bars) are depicted. (A) Survival of A. fumigatus strain ATCC46645 during co-
incubation with neutrophils over time (T0, T60, T120 and T180). Asterisks indicate significant difference (*p,0.05 or **p,0.01) in survival in
comparison to the time point T0 for each morphotype. (B) Survival of A. fumigatus strain ATCC46645 after co-incubation with neutrophils and in the
presence of DNase I or DPI. Asterisks indicate significant difference (*p,0.05 or **p,0.01) in survival in comparison to the time point T180 after
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white (Sigma) for 15 min at a final concentration of 50 mg/ml.

These conidia were then co-incubated with 26105 freshly isolated

human neutrophils in a laboratory-made microscopy chamber

containing 200 ml RPMI 1640 supplemented with 5% (v/v) FCS

and 10 ml of a 10 mg/ml propidium iodide solution as described

before [4]. Fluorescence and cell behaviour were monitored

simultaneously at 37uC at two frames per minute using an

Olympus BX61 microscope with a 606LUMPLFL W/IR(NA 0.9)

lens, together with the cell̂R software (version 2.1) from Olympus

Biosystems (Munich, Germany). For the DNAse assay, the co-

incubation of neutrophils and Aspergillus was carried out in a 96

well cell culture plate for three hours followed by calcofluor white

and propidium iodide staining. After this time the co-incubation

was pipetted into a laboratory made microscopy chamber and

immediately before start of the time lapse microscopy 10 ml of a

DNase I solution ([1 U/ml] Qiagen, Germany) were added to the

medium at the border of the chamber.

Kill assay based on colony forming units
The co-incubation of 16106 swollen and resting conidia with

26105 freshly isolated human neutrophils was carried out in

100 ml RPMI in 96 well microtiter plates (Brand, Germany).

When indicated, NAD(P)H oxidase inhibitor DPI (16 mM) or

DNase I (100 U/ml) were added. For inhibiting phagocytosis the

neutrophils were preincubated with 10 mg/ml cytochalasin D

(Sigma Aldrich, Taufkirchen) for 20 min and then added to A.

fumigatus conidia. After 180 min, 2 ml 50 U/ml DNase I were

added to destroy the NET fibres. After 10 min of incubation the

sample volume was adjusted to 1 ml with ice-cold water

containing 0.002% (v/v) Tween 80. The samples were vortexed

and diluted 1:100 with PBS /Tween 80 (0.002% (v/v)) solution.

10 ml of the sample was plated on Sabouraud agar plates. After

24 h of incubation at 37uC, colonies were counted.

Viability assay based on the determination of the oxygen
consumption rate
Determination of the respiration rates of A. fumigatus hyphae

were routinely performed with an oxygen monitor (YSI 5300, YSI

Life Sciences, USA) equipped with polarographic Clark-type

electrodes. The depletion of dissolved oxygen in RPMI medium

with 5% heat inactivated FCS was measured for 10 minutes at

37uC under continuous stirring.

Samples were prepared as follows: 16107 A. fumigatus conidia

were grown for 16 h in 3 ml RPMI with 5% heat inactivated FCS

(v/v) at 37uC and 200 rpm. After centrifugation, the supernatant

was discarded and 1 ml fresh RPMI with 5% heat inactivated FCS

was added. The co-incubation experiment was started with 26107

fresh isolated, unstimulated neutrophils. After two different time

points (from 3 to 12 h) 10 ml ice-cold water and 10 ml PBS were

added, mixed for 60 s using a Vortex mixer and centrifuged for

15 min at 4000 rpm at 21uC (Centrifuge 5810R, Eppendorf,

Hamburg). The pelleted mycelium was resuspended in 3 ml fresh

RPMI with 5% (v/v) heat inactivated FCS and applied to the

sample chamber. Pure RPMI medium was set as 100% oxygen

saturation.

Quantification of extracellular DNA
The co-incubation experiments of A. fumigatus conidia or

mycelium with neutrophils in black 96 well plates for 3 h was

carried out as described above. In some experiments, 16 mM DPI,

100 U/ml DNase I, and 0.07 mg purified RodA was added to the

neutrophil co-incubation. The survival rate did not increase significantly by the addition of DNase I or the NAD(P)H-oxidase inhibitor DPI. Only the
addition of cytochalasin D increased the survival of A. fumigatus conidia. (C) Analysis of the survival of the A. fumigatus strain pksP and its parental
wild type strain ATCC46645 showed no significant differences in killing. Also the deletion mutant DrodA and its parental wild type strain DAL revealed
no difference in killing. The addition of the conidial hydrophobin RodA (0.07 mg [w/well]) did not influence the survival of the Aspergillus fumigatus
mutant strain DrodA and the wild type strain DAL during co-incubation with neutrophils.
doi:10.1371/journal.ppat.1000873.g008

Figure 9. Determination of the atmospheric molecular oxygen consumption of A. fumigatus hyphae after co-incubation with
neutrophils for 3 to 12 h. Hyphae (black bars) were co-incubated with neutrophils for different periods of time. Untreated, hyphae not co-
incubated with neutrophils served as controls (stipled bars). The change of the oxygen saturation in the medium (in %) over time (h) was plotted.
Asterisks indicate significant difference (*p,0.05 or **p,0.01) in the change of oxygen saturation in comparison to the control. In some experiments
DNase I or DPI was added to the co-incubation and the control.
doi:10.1371/journal.ppat.1000873.g009
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wells. The ratio of A. fumigatus hyphae or conidia to neutrophils

was 5:1. Two mg of propidium iodide were added and fluorescence

was measured (excitation filter 544 nm, emission filter 612 nm,

1300 gain) in a microtiter plate reader (Fluostar optima, BMG

Labtech, Germany).

2-Photon microscopy in infected lungs
Swelling leading to the onset of germination in conidia was

carried out by a 7 h pre-incubation step in RPMI 1640 (Biochrom)

supplemented with 5% FCS (v/v) at 37uC. A total of 56106

swollen A. fumigatus conidia were stained with calcofluor white

(Sigma) for 15 min at a final concentration of 50 mg/ml. For

infection these conidia were applied intratracheally into female

C57/Bl.6 mice (8–10 weeks old, Harlan, Germany) resuspended

in total volume of 100 ml PBS after filtration through a 70 mm cell

strainer. 7–10 h later the infected animals were sacrificed by an

overdose of isofluran and the lungs were filled in situ with

prewarmed low-melting agarose (2% w/v, Promega, Germany).

After solidification for 30 minutes at 4uC the right lung lobe was

prepared and cut horizontally along the midline with a vibratome

(752M Vibroslice, Campden Instruments, UK). The upper half of

the lung was then transferred into a Petri dish filled with PBS

heated to 37uC and supplemented with Sytox Orange (Invitrogen,

Germany) at a final concentration of 5 mM. 2-photon microscopy

was performed using a Zeiss LSM 710 NLO microscope on an

upright Axio Examiner stage equipped with a 206NA1.0 water

dipping lens (Zeiss). For imaging, different areas along the

dissection were scanned down to 400 mm depth using an

illumination wavelength of 800 nm detecting green (530 nm)

and red (580 nm) fluorescence, as well as the Second harmonic

generation (SHG)-signal and the blue calcofluor fluorescence (at

400–470 nm emission) with the external non descanned detectors

(NDD). SHG detects fibrillar structures such as proteins of the

extracellular matrix by their emission of light at half of the

wavelength used for illumination. The frame rate for movies was

up to 12 fs/minute at a fixed focal depth. See also Video S3 for an

explanation of the method. The movie was made based on the 3-D

structure of a real mouse lung using the GNU-licensed software

Blender (www.blender.org).

Quantification of NET formation in infected lungs
To estimate the importance of neutrophils in in vivo NET

formation animals were treated i.p. with 100 mg anti-Gr-1

antibody (clone RB6-8C5) 24 hours prior to i.t. infection with

108 calcofluor white stained WT conidia. 7 hours later the infected

lungs were prepared, stained with Sytox Orange (5 mM in PBS)

and observed for fungal masses with a diameter $20 mm by 2-

photon microscopy. These structures were microscopically scored

for NET formation in 3 categories: (2) no NETs detectable, (+)

single NET fibres attached to the fungal cloud and (++) distinct

NETs surrounding the fungal material. 20 fungal clouds were

checked for NET appearance per investigated lung.

Statistics
The Student’s t-test was used for significance testing of two

groups. For the measurement of NET formation (Figure 7A) we

compared the fluorescence values for hyphae of ATCC46645 with

hyphae treated with DNase I as well as with DPI. In addition, the

values of swollen and resting conidia were tested for significant

difference. All significant differences are labeled with an asterisk

(*p,0.05; **p,0.01). For the investigation of the strain-dependent

difference in NET formation (Figure 7B) resting conidia of the

DAL strain were compared with resting conidia after HF

treatment. In all killing experiments (Figure 8) a Student’s t-test

was applied.

For all in vitro experiments blood samples of four different

donors were used: two female and two male donors. For the

determination of CFU five technical replicates were applied, for

quantification of NET formation eight technical repetitions were

used. For the quantification of respiration rates, all experiments

were repeated three times.

Supporting Information

Figure S1 NET formation by human neutrophils co-incubated

with resting conidia, swollen conidia and hyphae of A. fumigatus at

indicated time points and controls. CLSM overlay pictures

showing NET formation of human neutrophils at indicated time

points. Extracellular DNA was stained with propidium iodide

(red), conidia and hyphae with calcofluor white (blue). Microscopic

pictures were taken after 0, 60 and 120 min. Neutrophils were co-

incubated with resting conidia (A), swollen conidia (B) and hyphae

(C). For control only neutrophils in RPMI media were tested after

180 min (D). Also control co-incubation with latex beads showed

no NET formation (E).

Found at: doi:10.1371/journal.ppat.1000873.s001 (2.61 MB TIF)

Video S1 Kinetic of NET formation by human neutrophils in

vitro. Freshly isolated human neutrophils were co-incubated with

conidia of Aspergillus fumigatus, that had before been swollen in

RPMI for 150 min. Extracellular DNA was stained with

propidium iodide (red), conidia and germ tubes with calcofluor

white (blue-pink). Microscopy was carried out for 5 h after onset of

co-incubation while single pictures were taken every 30 seconds.

Indicated is a scale bar and real time in minutes. Please note the

explosive release of a NET (intensive red colour around a central

neutrophil) between 189–191 minutes into the experiment.

Found at: doi:10.1371/journal.ppat.1000873.s002 (3.59 MB

MOV)

Video S2 Kinetic of NET degradation by DNase I in vitro. After

180 minutes of neutrophil-Aspergillus co-incubation a well estab-

lished NET is visible. At the beginning of the movie (0 min) DNase

I was added to the medium. At 7 minutes digestion of the NET

started and was finished (no NET structure detectable) by

9.5 minutes into the experiment. Indicated is a scale bar and real

time in minutes.

Found at: doi:10.1371/journal.ppat.1000873.s003 (0.84 MB

MOV)

Video S3 Investigating NET formation in the murine lung. A

movie showing the sequence of events leading to the formation of

NETs in murine lungs and their analysis by time-lapse 2-photon

microscopy in situ.

Found at: doi:10.1371/journal.ppat.1000873.s004 (4.97 MB

MOV)

Video S4 Neutrophils migrate through an Aspergillus-infected

lung slice. A Lys-EGFP mouse was infected with swollen A.

fumigatus conidia and 7 h later the lung was prepared as described

in movie 3. The sequence shows several neutrophils (green)

migrating within lung tissue (blue). Red staining is from the DNA-

specific dye Sytox Orange showing cell nuclei cut open by the

preparation. Please note the active motility of cells within the

tissue. Indicated is a scale bar and real time in minutes.

Found at: doi:10.1371/journal.ppat.1000873.s005 (3.99 MB

MOV)

Video S5 Neutrophils phagocytose conidia of Aspergillus fumi-

gatus in an infected lung slice. A Lys-EGFP mouse was treated as
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PLoS Pathogens | www.plospathogens.org 16 April 2010 | Volume 6 | Issue 4 | e1000873



described for movie 4. The sequence shows highly active

neutrophils (green) migrating through the lung tissue (blue)

either carrying engulfed conidia (light blue) or being caught in

the act of phagocytosis. Nuclei and NETs in the area are stained

red (Sytox Orange). The average velocity of neutrophils in this

experiment was 9.8 mm/min and 54% of cells were migrating at

any time point (activity). Indicated is a scale bar and real time in

minutes.

Found at: doi:10.1371/journal.ppat.1000873.s006 (3.62 MB

MOV)

Video S6 Neutrophils transport hyphae of Aspergillus fumigatus

within an infected lung slice. A Lys-EGFP mouse was treated as

described for movie 4. The sequence shows several neutrophils

(green) cooperating in the transport of a hypha (light blue) from

the centre part (starting at minute 9 of the movie) to the left, where

a larger accumulation of other neutrophils is located. Please also

note the general accumulation of large numbers of neutrophils in a

swarm-like manner into the entire area, which is a typical feature

of these cells in vivo. The dark blue colour indicates lung tissue and

red indicates DNA (Sytox Orange). Indicated is a scale bar and

real time in minutes.

Found at: doi:10.1371/journal.ppat.1000873.s007 (3.35 MB

MOV)

Video S7 Neutrophils cross epithelial borders and migrate on

the alveolar surface an infected lung slice. A Lys-EGFP mouse was

treated as described for movie 4. The sequence shows several

neutrophils (green) migrating within the lung slice. At 12 minutes

into the movie a single cell is seen (at 5 o’ clock) crossing the

epithelial border of an alveolus (blue) and migrating on its surface.

Red shows DNA of nuclei (Sytox Orange). Indicated is a scale bar

and real time in minutes.

Found at: doi:10.1371/journal.ppat.1000873.s008 (1.41 MB

MOV)

Video S8 Neutrophils internalise conidia in living lung slices. A

Lys-EGFP mouse was treated as described for movie 4. The movie

shows a single neutrophil (green) with a conidium (light blue) inside

of the cell. To demonstrate that the conidium is really inside, the

entire cell has been reconstructed from a Z-stack and is rotated.

Found at: doi:10.1371/journal.ppat.1000873.s009 (7.96 MB

MOV)

Video S9 Swollen hyphae germinate in the lung and induce

NET formation. A wild type mouse was treated as described for

Video S4. The movie shows a series of Z-slices through a large

fungal mass with clearly detectable outgrowing hyphae as well as

NET-structures at the periphery of the mass and the borders of

alveoli. Afterwards, the whole Z-stack is 3-D rendered and rotated

to demonstrate the 3-D appearance of the fungal ball relative to

the lung structures. Dimensions of the stack are given at the

bottom.

Found at: doi:10.1371/journal.ppat.1000873.s010 (4.38 MB

MOV)

Video S10 Neutrophils cooperate to transport hyphal fragments

into larger accumulations. Isolated neutrophils were incubated

together with hyphae in the presence of the blue DNA dye

Hoechst in a laboratory made incubation chamber and analysed

by live cell microscopy. The movie shows how a number of free

neutrophils associate with a small hyphal fragment and transport it

to an area, where a larger hypha is already associated with many

other neutrophils. Similar phenomena can be observed in acute

lung slices. Real time is given at the bottom of the movie.

Found at: doi:10.1371/journal.ppat.1000873.s011 (6.55 MB

MOV)
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