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We have measured the ratio of prompt production rates of the charmonium states y.; and y., in
110 pb~! of pp collisions at /s = 1.8 TeV. The photon from their decay into J/4y is reconstructed
through conversion into e* e~ pairs. The energy resolution this technique provides makes the resolution
of the two states possible. We find the ratio of production cross sections X2 = 0.96 *+ 0.27(stat) *+

Oy,

0.11(syst) for events with pr(J/¢) > 4.0 GeV/c, In(J/¢)| < 0.6, and pT(';X/L)] > 1.0 GeV/c.

DOI: 10.1103/PhysRevLett.86.3963

The production of charmonium in pp collisions occurs
promptly, or through the decay of hadrons containing the b
quark. Prompt charmonium production can be easily sepa-
rated from B hadron decay backgrounds using the life-
time distributions. The cross section of prompt J/i’s
can be described by calculations based on the nonrelativis-
tic QCD factorization formalism [1,2] that includes both
color singlet and color octet contributions [3,4]. However,
these QCD calculations of charmonium production predict
a large transverse polarization of the J /i and ¢(2S) which
is not seen in the data [5]. This discrepancy between the
experimental observations and theoretical understanding of
prompt charmonium production heightens the importance
of exploring such processes as completely as possible.

In this paper, we contribute to the study of the char-
monium system by measuring the relative cross sections
of the y.; and y., promptly produced in pp collisions
at /s = 1.8 TeV using the Collider Detector at Fermilab
(CDF). Knowledge of this ratio is needed for any model
that calculates J /i production through radiative y. decay,
and can be an important standard for comparing production
models. We study the process pp — xes X, xes — J/¥y,
J/¥ — putu”, where y.; is taken to represent y or xc2.
The final state photons are reconstructed through conver-
sion into e e~ pairs, which provide excellent energy reso-
lution for the photons from y.; decay. The resulting J /¢y
mass resolution allows us to distinguish the y.; and .2,
and thereby perform the measurement using 110 pb~! of
data taken during the 1992-1995 operation of the Teva-
tron. The low efficiency of the photon conversion process
precludes a refinement of previous measurement of the to-
tal y.s cross section [4].

The CDF detector has been described in detail elsewhere
[6]. Charged particles emerging from the pp interaction
point are detected in a silicon vertex detector (SVX), a time
projection chamber (VTX), and a central tracking chamber
(CTC). These tracking detectors are located in a 1.4 Tesla
solenoidal field. Our coordinate system defines the z
axis to be the proton beam direction, with ¢ and r being
the azimuthal angle and transverse distance, respectively.
The CTC, an 84 layer drift chamber, covers the pseudo-
rapidity interval |n| < 1 (where n = — In[tan(6/2)] and
0 is the angle with respect to the proton beam direc-
tion) and provides information in both the r — z and
r — ¢ views. The efficiency for track reconstruction

PACS numbers: 13.85.Ni, 14.40.Gx

in the CTC cuts off for tracks with py < 0.2 GeV/c,
rises over the range 0.2 GeV/c < pr < 0.4 GeV/c, and
reaches =93% for tracks with pr > 0.4 GeV/c, where
pr is the track transverse momentum. The SVX extends
over approximately 60% of the interaction region. This de-
tector provides track impact parameter measurements for
the muons from J /¢ decay in the r — ¢ view with a reso-
lution of (13 + 40/pr) um, where pr is in GeV/c. The
combined momentum resolution of the tracking chambers
is 8 pr/pr = [(0.0009p7)% + (0.0066)2]'/2, where pr is
in GeV/c. The beam pipe, SVX, VTX, and inner support
cylinder of the CTC contribute to an average thickness of
6.02 £ 0.33% radiation lengths of material [7], as mea-
sured perpendicular to the beam line.

Muons from the decay J/i# — u™ u~ are identified
by drift chambers located outside the electromagnetic and
hadron calorimeters. The central muon chambers used in
this analysis cover the region |n| < 0.6, and are used in a
three level trigger system to require a pair of muons in the
event. The first trigger level identifies muon candidates by
requiring a coincidence between two radially aligned muon
chambers. Two such coincidences are required for this trig-
ger. The second dimuon trigger level combines the muon
candidates with information from the fast track processor
in the CTC. For the first 19.4 pb~! of data collected, a
single match between a muon chamber coincidence and a
CTC track with py > 2.8 GeV/c was required. For the re-
mainder of the data, this trigger required two such matches
with track pr > 2.0 GeV/c. The final level of the trigger
was performed in software, and required events to contain
oppositely charged muon candidate pairs with an invariant
mass within approximately 300 MeV/c? of the world av-
erage J /i mass of 3096.9 MeV/c? [8].

The J/i — pu* ™ candidates are selected by requir-
ing events that satisfy all trigger requirements after offline
reconstruction, and have pr(J/¢) > 4.0 GeV/c. A si-
multaneous mass and vertex constrained fit is performed
on the muon tracks, where the dimuon mass is constrained
to the J /iy mass. We find ~151 000 events have a good fit
to the J/i¢ mass. A subset of ~88000 events have both
decay muons measured within the SVX, which provides
vertex resolution sufficient for determining the fraction of
events due to B hadron decay.

The search for photon conversion candidates begins
with a scan of all additional tracks found in each J /i
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event. Pairs of oppositely charged tracks are chosen with
cos(f.—.) > 0.995, where 6._., is the opening angle
between the tracks at the point of intersection. These pairs
have their track parameters recalculated by using a least
squares fit, with constraints consistent with the photon
conversion hypothesis. Specifically, the two tracks are
constrained to be parallel at their point of intersection, and
the momentum of the pair is constrained to pass through
the dimuon vertex. The radial distance from the dimuon
vertex to the intersection point is required to be 1.0 cm or
more in order to reduce the background due to particles
originating from the primary vertex. Also, we require
pr(y) > 1.0 GeV/c and pr(e™) > 0.4 GeV/c. A final
fit on all four particle trajectories is then performed that
simultaneously constrains the muon momenta to form the
world average J/i mass [8] and the y momentum to
point to the dimuon vertex.

Relative acceptance and reconstruction efficiencies for
J/y final states of different invariant mass have been
studied with simulated events generated with a pr(x.,)
distribution that was tuned to match the distribution of
events seen in the data [4]. Monte Carlo generated y.; —
J /¥y events are used as input to the detector and trigger
simulations, to provide a measure of our acceptance for
the y.; states. The larger mass of the y.» gives a higher

efficiency at low pr(x.s) than for the y.; this difference

vanishes for [,Z(())((”)) > 1. The overall efficiency ratio is

found to be ¢ Sel = (.85 + 0.014, where the uncertainty is
due to the s1mu1ated event sample size and uncertainty in
the pr(x.s) distribution used in the simulation.

Systematic effects that might change the reconstruction
efficiency ratio ¢ “xL would have to affect one spin state dif-
ferently from the E)ther The decay angle distribution is one
such possibility, and an estimate of our sensitivity to differ-
ences between the two states is made by convoluting a dis-
tribution of the form 1 + a,-, cos*(6,-,), where a,-,
is a constant and 6,-, is the angle between the photon
and u~ measured in the J /iy rest frame, with the effi-
ciency distribution. The results of this calculation indicate
that values of «,-, over the range —1 to +1 correspond
to a variation in the y.; reconstruction efficiency of *7%.
We have taken half of this variation as the systematic un-
certainty on the relative efficiency ratio Z; due to possible
decay angle distributions.

Any differences in the production of the two states asso-
ciated with the polarization or p7(x.s) distributions would
require different production mechanisms for the y.; and
Xc2, and is therefore considered to be unlikely. The data
are too sparse to provide much guidance. Therefore, we
have assigned no systematic uncertainty on Z; due to pos-
sible differences in the y.1 and y2 productioﬁ kinematics.

The predominant y.; background is due to photons re-
sulting from the decay of 7, 7, and K® mesons produced
in association with the J/i. To model this background,
charged tracks that originate from the J /¢ vertex in the

3966

data are used to define the momentum of simulated 70, n,
and K?’s produced in the ratio 4:2:1, respectively, as was
done in [4]. The simulated decay of these particles pro-
vides a photon spectrum that, taken with the J /i, yields
a J /iy mass spectrum whose shape is used to model the
background under the y.; states. Our sensitivity to the
%:m:K? ratio is negligible since the background variation
is small over the range of J/y mass combinations used
in this analysis.

Although the production of h.(1P) mesons is poorly
established [8], we nonetheless consider it a second
source of background to the y.;, due to its mass (3526 *
0.24 MeV/c?) and the partial reconstruction, h. —
J/pw°, 7% — yy. A Monte Carlo simulation of %, pro-
duction and decay, along with reconstruction of only one
final state photon, provided a J/¢7y mass spectrum for
this background component. We find the overall %, accep-

2= = 0.523 = 0.005.
The cross sections for s, and x.; are predicted to be
comparable [10], and the h. branching ratio to J /"
is predicted to be 0.5-1.0% [11]. Taken together, these
predictions and our efficiency suggest that the number
of h. events in our data should be 0.01-0.02 times the
number of y.; events.

The decay of hadrons containing b quarks provides
another background to prompt y.; production. We use
the decay length measured in the SVX to discriminate
between y. events produced promptly and through B
decay processes. Since any J /¢y combination that origi-
nates from B decay provides only a partial reconstruction
of the B hadron, the proper decay length is not directly
measurable. We therefore use the effective decay length
Aetf = ny% where M(J/) and pr(J /)
are the mass and transverse momentum, respectively, of
the J/i, Ly, is the measured displacement of the dimuon
vertex in the direction of its transverse momentum, and
Feon pr(Ji)] is a correction factor between the B and
J/¢# momentum, which is obtained by Monte Carlo
simulation of B hadron decay [9].

The J /4y mass spectrum is shown in Fig. 1. The y;
and y.; are clearly resolved, although no evidence for the
Xco 1s seen in this distribution. The effective decay length
distribution for events measured in the SVX is shown in
Fig. 2. The mass and decay length distributions are fit
simultaneously using the maximum likelihood method to
obtain the number of y.; events due to prompt production.
The likelihood function used is given by

N
L = l_[[fiF)(l + fary, T (U= fi = fD)Fpe], (1)
i=1
where f1, f, are the fractions of the events in the y.i,
Xc2 signals, Fj(], F j(z are the products of the mass and
effective decay length distributions for the signals, Fj is
the product of mass and effective decay length distributions
for the background, and N is the total number of events.
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FIG. 1. The J/i¢y mass spectrum. The background estimate

is indicated by the shaded area, and the solid line histogram
shows the result of the likelihood fit for the y.; signals.

The function representing the signal shape consists of
two Gaussians whose characteristic width is given by the
measured mass uncertainty for each event, times a scale
factor. The mass is allowed to vary in the fit, but the differ-
ence in mass between the two signals is constrained to the

Entries/20 um
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-0.05 0 0.05 01 0.15
cm
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FIG. 2. The J/¢y effective decay length spectrum for events
measured in the SVX. (A) The decay length distribution for can-
didates having 3350 MeV/c> < M(J/yy) < 3470 MeV/c?
and 3590 MeV/c> < M(J/¢y) < 3710 MeV/c2.  (B) The
decay length distribution for the x., 3492 MeV/c? <
M(J/¢y) < 3528 MeV/c?. (C) The decay length distribution
for the ye, 3538 MeV/c2 < M(J/yy) < 3574 MeV/c2.
The fit to the data points is shown in each distribution. The
shaded functions in (B,C) indicate the effective decay length
distribution due to background sources.

known .1/ x> mass difference of 46 MeV/c? [8]. The
background function shape was determined by the Monte
Carlo method described above, and its normalization was
allowed to vary in the fit.

The decay length distributions used for both signals and
the background consist of a sum of prompt and B de-
cay components. The prompt contribution is a Gaussian
centered at the beam position, with a characteristic width
that is given by the decay length uncertainty calculated
for each event. The B decay contribution is a convolu-
tion between an exponential distribution with a character-
istic decay length and the decay length uncertainty for each
event. The relative contribution between the prompt and B
decay components is allowed to vary for each signal and
the background independently. The characteristic proper
decay length is constrained to 470 wm, the average de-
cay length for B hadron mixtures [8], for both signals and
background. Although all events were subjected to the
same likelihood fit, only the events measured in the SVX
have the decay length resolution to contribute significantly
to separating the prompt and B decay components.

The fit gives 118.7 £ 13.5 total y.; events, and a x.i
mass of 3508.3 + 0.7 MeV/c2. The ratio of events be-
tween the y.; and y., is measured to be ﬁ = 0.63 =
0.15 for the full data sample, where N, , is the number
of events obtained for each y.;. Decays of B hadrons
are found to contribute (8 * 5%), (18 * 9%), and (25 =
3%) to the y.1, xc2, and background, respectively. The
ratio of events in the prompt subset of the data is then

¥ =42 = 0.56 + 0.16, where N, is the number of
events measured, and f}; are the fractions of events due
to B decay. Variation of the characteristic decay length
by =50 um corresponded to a change in the prompt yield
ratio of less than 1073, so no systematic uncertainty has
been attributed to the choice of decay length used in the
fit. Variation of the 4, contribution to the background by
+0.01N,,, produced a +0.4% change in the measurement
of the prompt event ratio, which is used as a systematic
uncertainty.
The ratio of prompt cross sections for the y.; and y.»

is given by

Txe _ N/\/l.z(l - be)E,\/mB(XCl - J/¢7)

Ty NX(,](l - fbl)f)(sz(XCZ - J/l//’)/) ’
where o, , is the production cross section, €,  is the
reconstruction acceptance and efficiency, and B(y.; —

J/y) is the branching ratio into the J /¢y final state for
each of the y.; states.

2)

The ratio of decay branching ratios is % =

273+1.6% )
WMWZ = (2.02 = 0.20), assuming the two values are

uncorrelated [8]. Consequently, we are left with a relative
systematic uncertainty on the ratio of cross sections of
+10% due to the branching ratio uncertainties.

The systematic uncertainties for the relative rate of pro-
duction are summarized in Table I. The individual un-
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TABLE I. Systematic uncertainties for the relative rate of y,.;
production.

Effect Uncertainty

Possible 4. background +0.4%, —0
Efficiency ratio uncertainty *1.4%
Decay angular distribution *3.5%
Branching ratios *+10%
Total *+11%

certainties are combined in quadrature to give the total
systematic uncertainty on the cross section ratio. Our final
result on the relative rate of prompt production is then

—= = 0.96 = 0.27(stat) = 0.11(syst). 3)

Previous measurements of the y.»/x.1 ratio have been at
fixed target experiments [12], operating at lower energies
than those obtained at the Tevatron. Despite significant
theoretical efforts to understand charmonium production
in that environment [13,14], the comparison between this
result and those is not straightforward. The present mea-
surement provides a similar constraint on theoretical un-
derstanding of charmonium production at the Tevatron.
This result appears to prefer an approximately equal pro-
duction of the two y.; states, although it is consistent with
the expectation that the cross sections are proportional to
(2J + 1) at high p,(xcs) [14]. A recent NRQCD predic-
tion for the cross section ratio is 1.1 = 0.2 [15], in good
agreement with this measurement.
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