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Abstract Even though lots of �-hypernuclei have been
found and measured, multi-strangeness hypernuclei con-
sisting of � are not yet discovered. The studies of multi-
strangeness hypernuclei help us further understand the inter-
action between hyperons and nucleons. Recently the �N and
�� interactions as well as binding energies were calculated
by the HAL-QCD’s lattice Quantum Chromo-Dynamics
(LQCD) simulations and production rates of �-dibaryon in
Au + Au collisions at RHIC and Pb + Pb collisions at LHC
energies were estimated by a coalescence model. The present
work discusses the production of more exotic triple-baryons
including �, namely �NN and ��N as well as their decay
channels. A variation method is used in calculations of bound
states and binding energy of �NN and ��N with the poten-
tials from the HAL-QCD’s results. The productions of �NN
and ��N are predicted by using a blast-wave model plus
coalescence model in ultra-relativistic heavy-ion collisions
at

√
sNN = 200 GeV and 2.76 TeV. Furthermore, plots for

baryon number dependent yields of different baryons (N and
�), their dibaryons and hypernuclei are made and the produc-
tion rate of a more exotic tetra-baryon (��NN ) is extrapo-
lated.

1 Introduction

Hypernucleus consisting of hyperons and nucleons is described
by not only mass and charge but also hypercharge. Danysz
and Pniewski first discovered the 3

�H from cosmic rays in
1952 [1]. Since then more attention has been paid to hyper-
nuleus research and many �-hypernuclei were discovered in
cosmic rays as well as by accelerator beams [2,3]. Recently

a e-mail: song_zhang@fudan.edu.cn
b e-mail: mayugang@fudan.edu.cn (corresponding author)

the observation of �−-14N was also reported by the J-PARC
laboratory [4]. Nowadays, relativistic heavy-ion collisions
can produce a large number of strange hyperons [5–8], which
provides a venue to discover the hypernucleus even anti-
hypernucleus. The research on hypernuclei is becoming an
important direction in heavy-ion collision experiments [9].
On the other hand, multi-quark exotic hadrons or hadronic
molecules are also in current focus in particle and heavy-ion
physics [10–16]. The HAL-QCD Collaboration reported the
most strangeness dibaryon candidates, �N and �� [17,18]
by the Lattice Quantum Chromo-Dynamics (LQCD) simula-
tions. Based on their results, our previous work calculated the
production of �� and �N dibaryons and gave the yields of
�-dibaryon by the blast-wave model or A Multiphase Trans-
port (AMPT) model coupling with a coalescence model in
relativistic heavy-ion collisions at

√
sNN = 200 GeV and

2.76 TeV [19].
The attractive nature of the �N interaction leads to the

possible existence of an �N dibaryon with strangeness = −3,
spin = 2, and isospin = 1/2, which was first proposed in Ref.
[20]. Later on the HAL-QCD Collaboration calculated the
�-N and �-� interaction by the LQCD simulations near the
physical point and the LQCD potentials are fitted by Gaus-
sians and (Yukawa)2. The results lead to the binding energy
Bn� = 1.54 MeV, Bp� = 2.46 MeV and B�� = 1.6 MeV
[17,18]. The STAR Collaboration made a first measurement
of momentum correlation functions of p�− for Au + Au
collisions at

√
sNN = 200 GeV [21] which indicates that

the scattering length is positive for the proton-� interaction
and favors the proton-� bound state hypothesis by compar-
ing with the predictions based on the proton-� interaction
extracted from (2 + 1)-flavor LQCD simulations [22]. Later
on the ALICE collaboration measured the momentum cor-
relation function of p�− in pp collision at

√
s = 13 TeV

[23] which supports the HAL-QCD result [17]. The poten-
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tials given by the HAL-QCD [17] are also used to calcu-
late the binding energy of �-hypernuclei with A = 3. Gar-
cilazo and Valcarce [24] calculated the bound states of three-
body �-hypernuclei, namely �NN and ��N , by solving
the Faddeev equations [25] with the HAL-QCD potentials
and obtained their binding energies ranging from 2 MeV to
20 MeV.

In this work the productions of �NN and ��N are cal-
culated by a coalescence model in which the nucleon and
hyperon phase space distributions are given by a blast-wave
model [19,26–28]. The potentials from the LQCD are taken
into account to obtain the relative wave functions and binding
energies of�NN and��N by solving Schrödinger equation
via a variation method. The estimation of the yields of �NN
and ��N will shed light on searching for �-hypernuclei in
experiment, such as at LHC-ALICE.

The calculation of production is introduced in Sect. 2,
which includes the brief introductions of the blast-wave
model and the coalescence model [19,26–28], simplifica-
tion of Wigner function as well as the variation calculation
method of three-body bound state. It is compared with the
results from the Faddeev equations used by Garcilazo and
Valcarce [24]. In Sect. 3, productions of �NN and ��N are
reported for Au + Au collisions at

√
sNN = 200 GeV and Pb

+ Pb collisions at
√
sNN = 2.76 TeV. The decay channels of

�NN and ��N are also discussed in this section.

2 Method

2.1 Blast-wave model and coalescence model

Cluster formation in heavy-ion collision can be realized by
the coalescence model [27,29–32] or other methods like
kinetic approaches [33–35]. In this work, a coalescence
model constructed by the particle emission distribution and
the Wigner density distribution is used to calculate few-body
system production in heavy-ion collisions. The multiplicity
of three-constituent-cluster is given by,

N3b = g3

∫ 3∏
i=1

(
d4xi Si (xi , pi )

d3 pi
Ei

)

× ρW
3 (x1, x2, x3; p1, p2, p3) ,

(1)

where ρW
3 (x1, x2, x3; p1, p2, p3) is the Wigner density func-

tion which describes the coalescence probability, and g3 =
(2S + 1)/ ((2s1 + 1)(2s2 + 1)(2s3 + 1)) is the coalescence
statistical factor [36–40], S is the total spin for the three-body
system and si is the spin for each constituent particle. Table 1
lists the g3 used in this paper for each �-hypernucleus (A =
3) and triton.

In this work the particle emission distribution, Si (xi , pi ),
is given by the blast-wave model [19,26–28] which can

describe the particle phase-space distribution in heavy-ion
collisions. It assumes that in the rest frame the distribution of
momenta is described by either a Bose or Fermi distribution
of single particle and then the distribution is boosted into
the center-of-mass frame of the total number of particles to
describe the probability of finding a particle [41]. In heavy-
ion collisions, the freeze-out time is considered following a
Gaussian distribution [19,26–28,42]. The blast-wave model
is formalized as,

S(x, p)d4x = MT cosh
(
ηs − yp

)
f (x, p)

× J (τ )τdτdηsrdrdϕs,
(2)

where MT and yp are the transverse mass and the rapidity
of a single particle, r and ϕs are the radius and azimuthal
angle of coordinate space, τ and ηs are proper time and

space pseudorapidity. J (τ ) = 1
	τ

√
2π

exp
[
− (τ−τ0)2

2(	τ)2

]
is the

Gaussian distribution of freeze-out proper time, where τ0 and
	τ are the mean value and dispersion of this distribution.
f (x, p) = 2s+1

(2π)3

[
exp

(
pμuμ/Tkin

) ± 1
]−1 is the Fermi or

Bose distribution of a single particle boosted into the center-
of-mass frame, where s is the spin of the particle, uμ is the
four-velocity of a fluid element in the fireball of the particle
source and Tkin is the freeze-out temperature. The Lorentz
invariant can be expressed as,

pμuμ = MT cosh ρ⊥ cosh(ηs − yp)

− pT sinh ρ⊥ cos
(
ϕp − ϕs

)
,

(3)

where ϕp is the azimuthal angle in momentum space and ρ⊥
is the transverse rapidity of fireball with a transverse radius
R0, defined as ρ⊥ = vρ0⊥

r
R0

. If the parameters (τ0, 	τ , ρ0⊥ ,
R0 and Tkin) are fixed, the transverse momentum distribution
is given as [19]:

dN

2πpT dpT dyp
=

∫
S(x, p)d4x . (4)

2.2 Solving three-body bound state

In order to obtain the Wigner function, bound state wave
functions of �NN and ��N need to be calculated. The
non-relativistic Schrödinger equations of �NN and ��N ’s
bound state can be written as,

Ĥψ(x1, x2, x3) = Ebψ(x1, x2, x3), (5)

Ĥ =
3∑

i=1

− ∇2
i

2Mi
+

∑
j>i

Vi j
(
r i j

)
, (6)

where ψ(x1, x2, x3) =
3∑

i=1

ψi (xi ) is total wave function

of three-body system, ψi (xi ) and xi are the wave function
and coordinate of i-th particle, respectively, r i j is relative
coordinate between i th and j th particle defined as r i j =
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Table 1 g3 for 3H , �NN and ��N

Nuclei 3H �pn �nn �pp ��n ��p

g3 1/4 3/8 1/4 1/4 1/16 1/16

xi − x j . The potentials between �-N and �-� are the fit
results from the HAL-QCD simulation [17,18], and the N -
N potential is taken as the Malfliet–Tjon potential [43]:

VNN (r) =
2∑

i=1

Ci
e−μi r

r
,

VN�(r) = b1e
−b2r2 + b3

(
1 − e−b4r2

) (
e−Mπ r

r

)2

,

V��(r) =
3∑

i=1

Cie
−(r/di )2

, (7)

where Mπ is taken as 146 MeV (near the physical mass 140
MeV). The parameters are listed in Table 2.

There are many methods to solve this kind of three-
body equations, such as the Faddeev equation [25,44,45]
and the variation method. One kind of the variation meth-
ods is mainly based on the hyperspherical-harmonics (HH)
method [46–49], in which the coordinates are transformed
into center-of-mass frame by using the Jacobi transform,

⎛
⎝ R
r1

r2

⎞
⎠ = J ·

⎛
⎝ x1

x2

x3,

⎞
⎠

⎛
⎝ P
q1
q2

⎞
⎠ = (

J−1
)T ·

⎛
⎝ p1

p2
p3,

⎞
⎠

(8)

where J is the Jacobi matrix, it reads

J =

⎛
⎜⎜⎜⎝

M1
Mtot

M2
Mtot

M3
Mtot

0 −
√

M2M3
M23Q

√
M2M3
M23Q

−
√

M1M23
Mtot Q

√
M2

2 M1
Mtot M23Q

√
M2

3 M1
Mtot M23Q

⎞
⎟⎟⎟⎠ , (9)

where Mi is the mass of i th particle, Mtot = M1 + M2 +
M3 is the total mass, M23 = M2 + M3 is the total mass of
particles 2 and 3, Q = √

(M1M2M3)/Mtot is the reduced
mass which normalizes the Jacobi matrix. For simplicity, the
indexes of particles are chosen as symmetric as possible. In
this article, the particles 2 and 3 prefer to be identical and
particle 1 is different for a three-body nucleus. Sequentially
the three-body Schrödinger equation separates into the center
of mass motion (no effect on binding energy and relative wave
function) and the relative motion [50,51],

T̂ψ(�r) +
∑
j>i

Vi j
(
r i j

)
ψ(�r) = Ebψ(�r), (10)

where �r = (r1, r2) = (ρ, α, θ1, φ1, θ2, φ2) is defined in

a six-dimensional hypersphere coordinate, ρ =
√
r2

1 + r2
2

is the hyperradius, α = arctan (r2/r1) is the hyperpo-
lar angle which ranges from 0 to π/2 [50–52], θi , φi

are the azimuth angles of r i , and the volume element
is d6�r = ρ5 sin2 α cos2 α sin θ1 sin θ2dρdαdθ1dφ1dθ2dφ2.
The momentum and angular momentum operators are defined
as [46,47,50–52],

T̂ = 1

2Q

(
− ∂2

∂ρ2 − 5

ρ

∂

∂ρ
+ L̂2

ρ2

)
, (11)

where

L̂2 = − ∂2

∂α2 − 4 cot 2α
∂

∂α
+ l̂21

cos2 α
+ l̂22

sin2 α
. (12)

The eigen function of L̂2 is a hyperspherical harmonic func-
tion [46–49]:

YK ,κ (α, θ1, φ1, θ2, φ2)

= Nkl1l2 cos(α)l1 sin(α)l2 Pl2+1/2, l1+1/2
k (cos(2α))

×
{{

Yl1 (θ1, φ1) Yl2 (θ2, φ2)
}
L

{
si s jk

}
Sa

}
J Jz

{
ti t jk

}
T Tz

,

(13)

and

L̂2YK ,κ = (K + 4)K YK ,κ , (14)

where K = 2k + l1 + l2 is the total hyperangular
momentum number, q is a nonnegative integer, li and
mi is the orbital angular momentum number of r i direc-
tion, κ represents the L-spin-isospin state defined as κ =
{J Jz(L(l1l2)Sa(si s jk))T Tz(ti t jk)}, Nkl1l2 is a normalization
factor [45],

Nkl1l2 =
√

2 k! (K + 2) (k + l1 + l2 + 1)!
�(k + l1 + 3/2) �(k + l2 + 3/2))

(15)

and Pa,b
k (x) is the Jacobi polynomial and Y l

m(θ, φ) is the
Spherical Harmonic function. The orthogonal basis radial
function can be chosen as

u[λ]
n (ρ) =

√(
2λ

n

)3
(n − 2)!

2n (n + 1)!e
−λρ/n

(
2λρ

n

)
L3
n−2

(
2λρ

n

)
ρ− 5

2 (n ≥ 2),

(16)

in which λ is a variation parameter, n is the radial basis
index, Lb

a(ρ) is the associated Laguerre polynomial. Then
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Table 2 Parameters of potentials VNN (r) [43], VN�(r), V��(r) [17,18]

VNN (r) C1 (MeV) C2 (MeV) μ1 ( f m−1) μ2 ( f m−1)
3S1 −636.36 1460.47 1.55 3.11
1S0 −521.74 1460.47 1.55 3.11

VN�(r) b1 (MeV) b2 ( f m−2) b3 (MeV· f m2) b4 ( f m−2)
5S2 −313.0 (5.3) 81.7 (5.4) −252.0 (27.) 0.85 (10)

V��(r) C1 (MeV) C2 (MeV) C3 (MeV)
1S0 914.0 (52) 305.0 (44) −112.0 (13)

d1 ( f m) d2 ( f m) d3 ( f m)

0.143 (5) 0.305 (29) 0.949 (58)

the orthogonal basis function can be constructed as,

〈�r |n, K , κ〉 = u[λ]
n (ρ)YK ,κ (α, θ1, φ1, θ2, φ2). (17)

Then the relative motion Hamiltonian Ĥ can be expanded

into matrix form
〈
n, K , κ

∣∣∣Ĥ
∣∣∣ n′, K ′, κ ′

〉
. The following

assumptions are taken to reduce the dimensions of the matrix:
(1) assume that the nucleus is spherical by setting the total
L = 0, corresponding to the ground state; (2) the (I )J P is
fixed as the same as Garcilazo and Valcarce used [24]; (3) if
particle 2 and 3 are identical, the parity between them must
be odd [46]; (4) l1, l2 ≤ 6 is enough for required precision
[48], and the number n ranges from 2 to 11 and k up to 45.
The matrix elements have been calculated numerically by a
Laguerre-Gauss quadrature for the integrals in the hyperra-
dius ρ and a Legendre–Gauss quadrature for the hyperangle
α [53].

But the elements of Hamiltonian matrix need six dimen-
sional integral and the complex expressions of r12 and r31 for
the hypersphere coordinate are based on the transforms of (8)

and (9), where r2 = −
√

M2M3
(M2+M3)Q

r23. In order to simplify

the calculation, Raynal and Revai [54] put forward the RR
coefficient which is similar to Clebsch–Gordan coefficient.
For example as shown in Fig. 1, it is convenient to calculate
V23(r23) when the hypersphere is based on r I1 and r I2 in Coor-
dinate I but hard to calculate V12(r12) and V31(r31) for the
complex expressions of r12 and r31. By using RR coefficient,
the hyperspherical harmonic function |I ; n, K , κ〉, defined in
the coordinate I, can be expanded by

∣∣I I (I I I ); n, K , κ ′〉 in
coordinate II (III),

|I ; n, K , κ〉 =
∑
κk

〈
l I1 l

I
2

∣∣l j1 l j2
〉
K ,L

〈
s1s23; S

∣∣s1 j s23 j ; S
〉

× 〈
t1t23; T

∣∣t1 j t23 j ; T
〉 ∣∣ j; n, K , κ j

〉
, (18)

where
〈
l I1 l

I
2 |l j1 l j2

〉
K ,L

is the RR coefficient which requires

that K and L are same in transformation,
〈
s1s23; S|s1 j s23 j ; S

〉
and

〈
t1t23; T |t1 j t23 j ; T

〉
are Clebsch-Gordan coefficients, j

represents the coordinate II or III, 1 j and 23 j represent the
particle 2 (3) and the pair of particle 3 (1) and 1 (2) when

j = I I (I I I ). It is clear that the definition of ρ is same in
all coordinates, so the index n does not need to change in the
transform (18). After the transformation, r23 j only relates to
the ρ and α j , which means the six dimensional integral is
simplified into a double integral and a sum of κ j .

After the calculation of Hamiltonian matrix, it is natural to
calculate the minimum eigenvalue of the matrix as the bind-
ing energy B[λ] of the three-body system and the correspond-
ing eigenvector is the list of coefficients for the basis func-
tions. And the binding energy B[λ] requires δB[λ]/δλ = 0,
which means that the binding energy is also the minimum
point of variation parameter λ.

Garcilazo and Valcarce [55] solved three-body amplitudes
by the Faddeev equations [25] with considering the spin and
isospin freedom. They assumed that three particles were in
S-wave by which the spin-isospin state was constructed and
two-body amplitudes with the Legendre polynomials were
expanded to solve the Faddeev equations.

Table 3 shows the calculated binding energy of 3H , 3
�H

and �pn and the comparison with other theoretical results as
well as experimental results. The potential between N and �

used in 3
�H binding energy calculation is YNG-ND interac-

tions [56,57] with kF = 0.84 fm−1 [58]. It can be seen that
this calculation of �pn is consistent with the results from
Garcilazo and Valcarce’s results [24]. The error of pn� bind-
ing energy is estimated from the fitting errors of the N − �

potential. The results of 3H and 3
�H are close to experimen-

tal results [59,60] and theoretical calculations as well [61].
Like 3

�H consisting of spin 3
2 and 1

2 , one is the ground state
(spin 1

2 ) and one is thought as a virtual state (spin 3
2 ) near the

�d threshold [62], �pn can also be mix of spin 5
2 , 3

2 and 1
2 .

According to the HAL QCD’s calculation [18], the 3S1 �N
interaction is too weak to form a bound �N with spin 1. So
the ratio of lower spin in �pn is small. In this paper �pn is
considered as spin 5

2 .
There is another method for few-body system interaction

by which the system is not deeply bound, called as the folding
model [64,65]. The folding model assumes that nucleus is
bound as a molecular state like dibaryon-baryon state. For
the 3S1 �N interaction, it is not as strong as 5S2 �N , the
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Fig. 1 Diagrams of three coordinate frames. From left to right, the coordinate is numbered as I, II and III, respectively, where ci1 =
√

Mjk Q
Mj Mk

and

ci2 = −
√

Mtot Q
Mi M jk

(i, j, k = I (1), I I (2), I I I (3) and εi jk = 1.)

Table 3 The binding energies
of 3H , 3

�H and �pn calculated
by a variation method. Results
of this work are consistent with
other’s work and experimental
results. The unit is in MeV

Nuclei This work Reference Experiment result

3H 8.69 8.4 [43] 8.481 (Exp.)
3
�H 2.68 2.37 [61] 2.35 (emulsion) [59]

2.63 (STAR) [60]

2.36 (ALICE) [63]

�pn 22.0 (2.2) 21.3 [24] –

Table 4 Comparison of binding energies between folding model cal-
culation (this work) and the work of Garcilazo and Valcarce (Ref. [24]).
It seems that �NN and ��N whose spin is smaller than 5/2 is weakly
bound to the third baryon

Nuclei Dibaryon–baryon This work Reference [24]

�nn �n + n 2.81 (1.26) 2.35

�pp �p + p 4.02 (1.26) 3.04

��n �n + � 6.77 (3.17) 5.1

�� + n 4.83 (3.13)

��p �p + � 10.2 (3.2) 6.5

�� + p 6.22 (3.32)

folding model can be applied in �nn, �pp, ��n and ��p,
which softens the 5S2 �N interaction. The model uses the
free dibaryon wave function to average the potential between
dibaryon and baryon,

UF (RF ) =
∫

d3rd ψ∗
d (rd ) ψd (rd )

×
[
V12

(
RF − M3 rd

M2 + M3

)
+ V13

(
RF + M2 rd

M2 + M3

)]
,

(19)

where ψd is the dibaryon wave function which is consisted
of particle 2 and 3, UF (RF ) is average potential and the RF

is relative coordinate between the dibaryon and baryon. This
method also simplifies the three-body bound state into two
two-body bound states (dibaryon and dibaryon–baryon). The
total wave function is �(RF , rd) = ψd(r) ψmole(RF ) and
total binding energy is E = Ed +Emole, where ψmole(RF ) is
the molecular state wave function calculated with the average
potential UF (RF ) and Emole is the binding energy of molec-

ular state. The binding energies of �nn, �pp, ��n and ��p
are calculated by the folding model and their errors are esti-
mated from the fitting error of N − � and � − � potential.
The results are listed in Table 4. It can be found that different
combinations of dibaryon in three-body systems result in dif-
ferent binding energies which are corresponding to different
decay channels and will be discussed later.

2.3 Wigner function

The Wigner function introduced in Eq. (1) is written as [27,
31,32],

ρW (�r , �q) =
∫

ψ

(
�r + �R

2

)
ψ∗

(
�r − �R

2

)

× exp(−i �q · �R)d6 �R,

(20)

where �r = (r1, r2), �q = (q1, q2) are the relative coordinate
and momentum, and ψ(�x) is the relative wave function. For
the three-body system it is expressed in six dimensions, the
Wigner function will be 12 dimensions, which is impossible
to draw a picture and hardly calculated. After performing the
calculation of eigenvector of Hamiltonian matrix, the major
contribution of total wave function comes from a few bases
which contribute more than 94% to total amplitude for the
parameters of them are large (larger than 0.08). With consid-
ering the fitting errors of potential, the total relative errors of
such simplified wave functions are about 10%. So this kind of
simplification retains most information of origin wave func-
tion. If the selected bases are only radial related, the total
wave function can be simplified as the sum of these bases
with weights of their parameters. And then the simplified
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wave function is only radial related. The Wigner function
can be simplified as,

ρW
3 (r, q, θ) =

∫
ψ

⎛
⎝

√
r2 + R2

4
+ r R cos θ1

⎞
⎠

×ψ∗
⎛
⎝

√
r2 + R2

4
− r R cos θ1

⎞
⎠

× exp (−iq R cos θ cos θ1)

× exp (−iq R sin θ sin θ1 cos θ2)

×2π2R5 sin4 θ1 sin3 θ2dRdθ1dθ2. (21)

A Laguerre–Gauss quadrature is applied for the integrals
of hyperradius R and θ1, θ2 is integrated by a Legendre–
Gauss quadrature [53]. The coordinate is defined in a six-
dimensional spherical coordinate as �R = (R, θ1, θ2, θ3, θ4, θ5),
which can be transformed into the six-dimensional Cartesian
coordinate:

�R = (R1, R2) = (R1x , R1y, R1z, R2x , R2y, R2z)

= (R cos θ1, R sin θ1 cos θ2, R sin θ1 sin θ2 cos θ3,

R sin θ1 sin θ2 sin θ3 cos θ4,

R sin θ1 sin θ2 sin θ3 sin θ4 cos θ5,

R sin θ1 sin θ2 sin θ3 sin θ4 sin θ5), (22)

and 0 ≤ θi ≤ π (i = 1, 2, 3, 4), 0 ≤ θ5 ≤ 2π , the volume
element is d6 �R = R5dR

∏5
i=1 sin5−i θi dθi . The �r in Eq. (21)

is set at (r, 0, 0, 0, 0, 0), the �q is set at (q, θ, 0, 0, 0, 0). By
integrating out the angle, the probability to find the pn�

ground bound state can be obtained at six-dimensional hyper-
spherical radius r and at six-dimensional hyperspherical
momentum q [52],

P(r, q) = 1

24π
r5q5

∫ π

0
ρW

3 (r, q, θ) sin4 θdθ, (23)

which is shown in Fig. 2. The Wigner probability is simi-
lar to a Gaussian distribution with tails in both coordinate
and momentum space. The most probable position in the
coordinate-momentum phase space is located at (r, q) ∼
(2 fm, 200 MeV). And the normalization of the probability,
∫ ∞

0
P(r, q)drdq = 1. (24)

If the wave function relates to not only ρ but also α,
in other word, the wave function relates to both r1 and
r2 which are defined in Fig. 1. Wigner transformation is
more complex. ψ(ρ, α) = 〈ρα| ψ〉 can be simplified
into

∑
n1,n2

〈r1r2| n1n2〉 〈n1n2 |ψ〉 . 〈ri |ni 〉 is a 3-dimension
radial orthogonal basis which is the same as (16) but the last
term is r−1/2

i with the same variation parameter λ for differ-
ent ni . Here ni ranges from 2 to 26 with λ = 10000. By this
way, Wigner transformation can be rewritten as:

0 1 2 3 4 5r(fm) 0 100 200 300 400 500 600 700

q(MeV)

0
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(r
,q

)
P
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0.15
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0.25

0.3

0.35

0.4

0.45

Fig. 2 Wigner probability P(r, q) of pn�, which represents the proba-
bility to find the pn� ground bound state at binding energy 21.7 MeV at
six-dimensional hyperspherical radius r and at six-dimensional hyper-
spherical momentum q

ρW (�r , �q) =
∫

d6 �R
〈
ψ

∣∣∣∣∣�r − �R
2

〉 〈
�r + �R

2

∣∣∣∣∣ ψ
〉
e−i �q· �R

=
∑

n1,n2,n′
1,n′

2

〈ψ | n1n2〉
〈
n′

1n
′
2 |ψ〉

×
∏
i=1,2

∫
d3Ri

〈
ni

∣∣∣∣ri − Ri

2

〉 〈
ri + Ri

2

∣∣∣∣ n′
i

〉
e−iqi ·Ri .

(25)

A complex Wigner transformation is simplified by a series
of three-dimension Wigner transform.

For the folding model, ρW
3 = ρW

di × ρW
di−b, where ρW

di is
the Wigner density function for dibaryon and ρW

di−b is the
Wigner density function for the pair of dibaryon and third
baryon. Both of these two Wigner density functions can be
calculated as did in our previous work [19] for two-body
systems.

The main errors of Wigner function are from the errors
of wave functions. From the relationship between Wigner
function and the wave function, the errors of Wigner function
are estimated to be about 20%.

3 Result and discussion

In blast-wave model, the parameters (τ0, 	τ , ρ0⊥ , R0

and Tkin) are fitted with experimental transverse momen-
tum spectra of proton and � by Eq. (4) and adjusted with the
results of triton for different collisions, as shown in Fig. 3.
Table 5 listed the parameters used in this work.

The transverse momentum spectra of �pn is calcu-
lated by using the blast-wave model coupled with coales-
cence model (BLWC) as Eq. (1) and shown in Fig. 3a for
Au+Au collisions at

√
sNN = 200 GeV and Fig. 3b for

Pb + Pb collisions at
√
sNN = 2.76 TeV. The results of

�nn, �pp, ��n and ��p with the relative wave function
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Table 5 The blast-wave model parameters for proton (�) in Au + Au collisions at
√
sNN = 200 GeV [66], which is fitted from the RHIC data

[67,68] as well as in Pb+Pb collisions at
√
sNN = 2.76 TeV [19] fitted from the ALICE data [69–71]

T (MeV) ρ0 R0 (fm) τ0 (fm/c) 	τ (fm/c)

200 GeV 111.6 0.98 (0.9) 15.6 10.55 3.5

2.76 TeV 122 1.2 (1.07) 19.7 15.5 1
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Fig. 3 Transverse momentum pT spectra of p, �, 3
�H, and �pn in

Au + Au collisions at
√
sNN = 200 GeV (a) and Pb + Pb collisions

at
√
sNN = 2.76 TeV (b). The open markers for p, � and � directly

fit to the experiments, and the open makers for triton, hypertriton and
�pn are the results of BLWC model. Full makers are the data from the
RHIC [67,72,73] and ALICE [69–71,74]
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Fig. 4 Transverse momentum pT spectra of proton calculated by the
folding model, the open makers for �nn, �pp, ��n and ��p are the
results of the BLWC model and the folding model. The full makers are

the data from the RHIC [67,72,73] and ALICE [69–71]. The lines are
calculated by our previous work [19]

from the folding model are shown in Fig. 4. The pT spectra
of p� and �� from our previous work [19] as well as this
work are also presented in Fig. 4. The pT spectra of n� is
not shown here because it is almost as same as p�.

To further investigate the productions of �-dibaryons and
hypernuclei, the pT integrated yields dN/dy at midrapid-
ity are given in Tables 6 and 7. The predicted results show

N� ∼ ×10−4 [19], �� ∼ ×10−7, �NN ∼ ×10−7 and
N�� ∼ ×10−9. The uncertainties of the integrated yields
are directly from the Wigner functions, whose relative errors
are about 20%. So the relative errors of yields are considered
as 20%. Though the uncertainties from the blast-wave param-
eters are also important, which have been discussed by other
model work [28], it will not be discussed in this paper. And
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Table 6 dN/dy for
�-dibaryons and hypernuclei at
midrapidity. The values of
dN/dy for �-dibaryons are
taken from Ref. [19]

n� p� �� �pn

200 GeV 7.51 × 10−4 7.39 × 10−4 3.1 × 10−7 3.56 × 10−6

2.76 TeV 1.31 × 10−3 1.27 × 10−3 7.9 × 10−7 7.36 × 10−6

Table 7 dN/dy for �-dibaryon and hypernuclei at midrapidity calculated by the folding model. The values of dN/dy for �-dibaryons are
re-calculated in this work

p� �� n� − n p� − p

200 GeV 6.84 × 10−4 2.51 × 10−7 6.95 × 10−7 2.78 × 10−7

2.76 TeV 1.95 × 10−3 8.87 × 10−6 2.37 × 10−6 9.00 × 10−7

n� − � �� − n p� − � �� − p

200 GeV 1.87 × 10−9 1.69 × 10−9 2.03 × 10−9 1.76 × 10−9

2.76 TeV 8.11 × 10−9 7.29 × 10−9 9.12 × 10−9 7.62 × 10−9

while, the corresponding values in Pb + Pb collisions at 2.76
TeV are larger than those in Au + Au collisions at 200 GeV.
With the growing of constituents number A such as � →
N� → NN� and N → N� → ��N , the production rates
appear to follow the exponential function exp(−bA), here b
is the so-called reduction factor [75–77], as shown in Fig. 5
for Pb + Pb collisions at 2.76 TeV. This A-dependent trend is
similar to that for light nuclei of p → d → t (3

�H) in Fig. 5.
However, it can be seen that n�-n (p�-p) slightly deviate
from the trend in � → N� → NN�. Keep in mind that
the treatment of interaction is slightly different between pn�

and dibaryon-baryon via the folding method, which results
in the slight deviation. In general, we have two classes for
these production chains. One is for N → d → t (3

�H),
� → N� → NN� and �� → N�� (solid lines), they
are almost parallel with the increase of N constituent num-
ber. Another is for N → N� → N��, � → �� and
d → NN� chains (dash lines), they are almost parallel with
the increase of � number. Obviously much larger reduction
factor b for the second class than the first class, indicating
that much less yield for adding one more � than one more
nucleon. The different reduction factor b results from the dif-
ferent interactions between N − � and � − � as well as the
difference of productions of N and �. Inspired by this, the
production of hypernuclei NnHm (N for nucleons and H for
one kind of hyperons) can be estimated by the intersection of
Ni Hm and NnHj chains (i( j) is smaller than n(m)). Even if
there is one point on the chain of NnHj , the reduction factor
b of this chain is similar to the chain of Hj or other chains
whose b is known in the same class with NnHj . From Fig. 5,
the prediction of the NN�� production is about 10−10. It
implies that the production of hypernuclei is sensitive to the
interaction among the constituents in the coalescence frame-
work and then the systematic measurement of hypernuclei
can shed light on the production mechanism and the baryon
interaction.
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Ω

Λ

d

Ωp
Ωn

ΩΩ

t
HΛ

3a

Ωpn

Ω-ΩN
-NΩΩ

-pΩp
-nΩn

ΩΩNN

Fig. 5 The exponential decay relation of dN/dy versus the constituent
mass number (A) for Pb + Pb collisions at 2.76 TeV. There are basically
two-class production chains, namely the first class: N → d → t (3

�H)

(red), � → N� → NN� (blue), �� → N�� (pink), and the
second class: N → N� → N�� (green), � → �� (brown) and
d → N�N → NN�� (light green) chains. These lines show the
relation dN/dy ∼ exp(−bA), where b = 5.78 (red), 5.68 (blue), and
4.70 (pink) for the first class, and 11.1 (green), 13.3 (brown) and 10.7
(light green)

�NN can weak decay through an � decay, which decays
into �-hypernuclei (A = 3) or �-hypernuclei (A = 3), note
that �-hypernuclei (A = 3) can not be formed according
to the HAL-QCD’s results but might be formed under the
ESC08c potential [78]. �NN can also strong decay into
��N or ��N which is based on the interaction �N − ��

and �N−�� reported by the HAL-QCD [79]. As for ��N ,
it can decay into N�� or N�� and mesons from the weak
decay of �. It can also decay into ��� or ��� by strong
interaction. All here mentioned three-baryon group, such as
��N and N��, may not be bounded.

From Fig. 4, it is hard to figure out the difference between
��-N and �N -�. Although the pT spectra of ��-N and
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�N -� are almost the same, the strong decay channels are
different in the folding model. For �N -�, it would decay
into a �� or �� through the �N − �� or �N − ��

channel and an �, while the ��-N can hardly decay into
��� or ���, since the N and � are not bound directly in
this folding model.

4 Summary

The three-body bound state problem can be solved through
a variation method coupled with an eigenvalue problem. For
weakly-bounded triple-particle system, the folding model is
applied. The N -� and �-� potentials used in this work are
fitted from the lattice QCD’s simulation near the physical
point, which was reported by HAL-QCD collaboration. In
coalescence model, the phase-space information of nucleons
and � are generated by the blast-wave model and the parti-
cles are coalesced into �NN and ��N by using the Wigner
density function from the simplified three-body wave func-
tion. The production of NN� is about 10−7 and N�� is
about 10−9. There are also A-dependent trends similar with
that for p → d → t (3

�H). The production rates follow
the exponential function exp(−bA). With adding different
baryon, the reduction factor b is different. Due to different
factor b, two classes of hypernuclei chains will intersect at
certain points where the production rate of new hypernucleus
could be estimated. And the decay modes of �NN and ��N
are briefly discussed in order to search for such exotic triple-
baryons (hypernuclei) in future experiments, which could
provide a method to understand the Y N and YY interactions
for multi-strangeness hadrons. The systematic measurements
of hypernuclei can definitely shed light on the production
mechanism and baryon interactions.
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