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We study the production of the stable six-quark H dibaryon via the (K−,K+) reaction on a 12C target within

a covariant effective Lagrangian model. The calculations are performed within a factorization approximation, in

which the full production amplitude is written as a product of the amplitudes for the K− + p → K+ + �− and

�− + p → H processes. The K+�− production vertex is described by excitation, propagation, and decay of �

and � resonance states in the initial collision of a K− meson with a target proton in the incident channel. The

parameters of the resonance vertices are taken to be the same as those determined previously by describing

the available data on total and differential cross sections for the p(K−, K+)�− reaction within a similar model.

The �− + p → H fusion process is treated within a quark model where the H dibaryon is considered as a stable

particle. For the K+ meson angle fixed at 0◦, the H production cross section is found to be about 2.9 μb/sr for

H mass just below the �� threshold at a K− beam momentum of 1.67 GeV/c. This is an order of magnitude

larger than the value for this quantity reported earlier in calculations performed on a 3He target using a different

model for the cascade hyperon production. We have also calculated the beam momentum dependence of the H

production cross section and the energy spectrum of the emitted K+ meson.

DOI: 10.1103/PhysRevC.88.025209 PACS number(s): 13.75.Jz, 14.20.Pt, 25.80.Nv

I. INTRODUCTION

Within the quark-bag model, the H dibaryon, a six-quark

[two up (u), two down (d), and two strange (s)] state with spin-

parity J π = 0+ and isospin I = 0, was predicted to be a stable

system with a mass about 80 MeV below the �� threshold,

some 35 years ago [1]. Later calculations, which included

the center-of-mass (c.m.) [2] and pionic-cloud [3] corrections

within this model, predicted this state to be much less bound or

even unbound. Around the same time calculations performed

within a quark-cluster model also found it unbound [4]. Since

then a lot of experimental effort has gone into searching for

the H dibaryon [see, e.g., the review [5] for references up to

the year 2000 and Refs. [6,7] for more recent investigations

done by Japan’s National Laboratory for High Energy Physics

(KEK) and the STAR Collaboration at the BNL Relativistic

Heavy Ion Collider, respectively]. These studies have led to the

conclusion that the existence of this system as a deeply bound

object is highly unlikely. At the same time, the observation

of the double-� hypernucleus 6
��He (NAGARA event) and

the precise determination of its binding energy at KEK in the

experiment E373 [8] have put a lower limit of 2.224 GeV on

the H -dibaryon mass at a 90% confidence level, which is just

about 6.9 MeV below the �� threshold.

The interest in the H dibaryon has been revived by the

recent lattice quantum chromodynamics (LQCD) calculations

of different groups. The NPLQCD [9] and HAL QCD [10]

Collaborations have reported that the H particle is indeed

bound at somewhat larger than physical pion masses. However,

extrapolations of the calculations of these groups to the

physical pion mass region suggest [11–13] that this particle

is likely to be in either a very loosely bound state or an

unbound state near the �� threshold. In a very recent chiral

constituent quark model calculation [14], the value extracted

for the binding energy of the H particle has been found to

be compatible with the restrictions imposed by the NAGARA

event. These results together with the previous experiments

[6] that give an upper limit for the cross section of the H

production in the 12C(K−,K+��)X reaction have led to a

proposal to look for this particle in a future experiment [15]

at the Japan Proton Accelerator Research Complex (JPARC)

using a high-intensity K− beam. This is expected to answer the

long-standing question about the existence of the H dibaryon.

Furthermore, with the measurement of the exclusive �−

production in the γp → K+K+�− reaction at the Jefferson

Laboratory [16], a possibility has been opened for producing

the H dibaryon with a photon beam.

The (K−,K+) reaction leads to the transfer of two units

of both charge and strangeness to the target nucleus. Thus

this reaction is one of the most promising ways of studying

the production of S = −2 systems such as � hypernuclei

and the H dibaryon. Recently, the production of cascade

hypernuclei via the (K−,K+) reaction on nuclear targets

has been investigated within an effective Lagrangian model

[17,18]. This is a new approach, where the K+�− production

vertex is described by excitation, propagation, and decay of �

and � resonance intermediate states in the initial collision of

the K− meson with a target proton in the incident channel. The

�− hyperon gets captured into one of the nuclear orbits leading

to the formation of the �− hypernucleus. In calculations of the

�− hypernuclear production cross sections, one requires the

bound state spinors for the proton hole and �− particle bound

states. These were obtained by solving the Dirac equation

with vector and scalar potential fields having Woods-Saxon
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shapes. Their depths were fitted to the binding energies of the

respective states. In Ref. [17] bound state spinors obtained

in the quark-meson coupling (QMC) model [19] were also

used. The cross sections for the hypernuclear production were

found to be quite different from those calculated previously in

Ref. [20].

In Ref. [17], the parameters at the resonance vertices

were determined by describing the available data on total

and differential cross sections for the elementary process
1H(K−,K+)�−within a similar effective Lagrangian model

[17,21], where contributions were included from the s-channel

and u-channel diagrams, which have as intermediate states

� and � hyperons together with eight of their three- and

four-star resonances [�(1405), �(1520), �(1670), �(1810),

�(1890), �(1385), �(1670), and �(1750)] with masses up

to 2 GeV. It was observed that the total cross section of the
1H(K−,K+)�− reaction is dominated by the contributions

from the �(1520) (with LIJ = D03) resonance intermediate

state. The region for beam momentum (pK−) below 2.0 GeV/c
was found to be dominated by contributions from the s-channel

graphs—the u-channel terms are dominant only in the region

pK− � 2.5 GeV.

In this paper, we describe the production of the H dibaryon

by the (K−,K+) reaction on 12C as well as 3He targets using a

similar approach. The basic production mechanism considered

in our work is depicted in Fig. 1, where this reaction proceeds in

two steps. In the first step the K+�− production takes place by

following the process as described above [see Fig. 1(a)], while

in the second step the �− hyperon fuses with another proton

of the residual nucleus to form the H dibaryon. A similar

method was also used earlier in Refs. [22–24] in calculations

of the production of this particle via (K−,K+). However,

there are some differences between those calculations and the

present work. In our method the amplitude for the K− + p1 →
K+ + �− reaction is calculated by employing the same

method as that described in the previous paragraph. However,

p1 is treated as a bound particle and in the calculations of

the corresponding amplitude a bound state spinor is used for

the initial proton state (p1). Therefore, the dynamics of the

K+�− production is intimately related to the wave function

of the initial proton bound state [see Fig. 1(b)]. On the other

hand, in the procedure of Refs. [22–24], the initial state is

described by a product of the target wave function and the

amplitude of the K− + p → K+ + �− reaction. The latter is

K− K
+

−
Ξ

Λ, Σ*

Λ, Σ

p

*

(a) (b)

A

K− +
K

Ξ
−

p
2

1
p

B

H

FIG. 1. (Color online) Graphical representation of the model

used to describe the 1H(K−, K+)�− [Fig. 1(a)] and A(K−, K+)HB

reactions [Fig. 1(b)], where A represents the target nucleus while

B = (A − 2) represents the residual nucleus. In Fig. 1(a), �∗ and �∗

represent the � and � resonance states, respectively.

determined from a parametrization of the sparsely available

experimental 0◦ differential cross section for this reaction [see

Fig. 1(a)] [23]. Furthermore, while in the previous models the

numerical computations were limited to a very light 3He target

only, we have performed calculations also for a 12C target. This

makes it possible to compare our cross sections directly to the

existing experimental results and to make predictions for future

measurements.

As discussed in Ref. [23], there may be several higher-

order processes through which the H -dibaryon production

can proceed. They lead to the H dibaryon via �� or

�� fusion. The latter are produced via the following

reactions: K− + p → �(�) + π ; π + p → �(�) + K+ or

K− + p → K+ + �−; �− + p → ��(��). It is shown in

Ref. [23] that the contributions of such terms are not expected

to be large and they can be ignored. Therefore, like these

authors, we have also neglected such diagrams in our study.

In Ref. [25], an alternative scheme of H production has been

discussed in which a tagged �− hyperon is first produced on

a hydrogen target via the reaction K− + p → K+ + �−; it

is then slowed down by passing through a moderator. After

moderation, the slow �−s are captured in a second target into

an atomic orbit, and the H is subsequently produced via, e.g.,

the processes, (�− p)atom → H + γ , (�− d)atom → H + n,

and (�−4He)atom → H + t . To ensure that an H with sharply

defined mass is indeed produced, the K+ and monoenergetic

γ , neutron, or triton should be detected in coincidence. These

authors have estimated the branching ratios (R) of the three H -

formation reactions relative to the total decay widths of the �−

atoms. It has been found that R has a sizable value (in excess

of 0.5) for (�−d) and (�−4He) atoms if H mass (mH ) is very

close to the �� threshold. Therefore, these processes have

their merit for such values of mH . However, these estimates

of R are based on very poorly known amplitudes for the

transitions �N → �N , ��, and �� at low momentum and

are strongly dependent on the models chosen to calculate them.

The virtue of the A(K−,K+)HB reaction studied in this paper

is that H production occurs through a second-order process

within a single nuclear target where all the components of

the total amplitude can be calculated relatively more reliably.

Furthermore, unlike the �− atom method, there are no weak

decay losses of �− during moderation to low momentum.

II. FORMALISM

We have followed the procedure and notations of Ref. [26]

in deriving the formulas for the invariant cross section of the

K− + A → K+ + H + B reaction, which can be written as

(see, e.g., Ref. [27])

dσ =
mHmAmB

√

[

(pK−pA)2 − m2
K− − m2

A

]

1

4(2π )5
δ4(Pf − Pi)|Af i |2

×
d3pK+

EK+

d3pB

EB

d3pH

EH

, (1)

where Af i represents the total amplitude; Pi and Pf represent

the sum of all the momenta in the initial and final states,

respectively; and mH , mA, and mB represents the masses of
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the H dibaryon and nuclei A and B, respectively. The cross

sections in the laboratory or c.m. systems can be written from

this equation by imposing the relevant conditions. Summations

over final spin states and averages over initial spin states are

implied in |Af i |2.

Following the factorization approximation of Ref. [23], the

total amplitude Af i is written as the product of the amplitudes

for the processes K− + p1 → K+ + �− [M(K− + p1 →
K+ + �−)] and �− + p2 → H [F (�− + p2 → H )] [see

Fig. 1(b)]. We write

Af i =
∫

d4p1

(2π )4

∫

d4p2

(2π )4
δ(p1 + pK− − pK+ − p�− )

× δ(pH − p�− − p2)

[

∑

Y ∗

M(K− + p1

→ K+ + �−)

]

F (�− + p2 → H ), (2)

where pK− , pK+ , and p�− are the four momenta of the in-

coming and outgoing kaons and the �− hyperon, respectively.

In Eq. (2) the δ functions represent the momentum-energy

conservation at various vertices. Some of them can be used to

reduce the dimensionality of the integrations in this equation.

The amplitude M(K− + p1 → K+ + �−), where the sum-

mation is done over all the resonance intermediate states Y ∗

as described above, has been determined by following the

method discussed in Ref. [17]. The effective Lagrangians,

the corresponding coupling constants and the form fac-

tors for the resonance-kaon-baryon vertices, the propagators

for the intermediate resonances and the bound state and

free-space wave functions for the bound proton p1 and

the intermediate �− hyperon, respectively, as used in the

calculations of the amplitude M , are discussed in the following.

The effective Lagrangians for the resonance-kaon-baryon

vertices for spin- 1
2

and spin- 3
2

resonances are taken as

LKBR1/2
= −gKBR1/2

ψ̄R1/2

[

χiŴϕK +
(1 − χ )

M
Ŵγμ(∂μϕK )

]

ψB ,

(3)

LKBR3/2
=

gKBR3/2

mK

ψ̄
μ

R3/2
∂μφKψB + H.c., (4)

with M = (mR ± mB), where the upper sign corresponds to

an even-parity and the lower sign to an odd-parity resonance

with B representing either a nucleon or a � hyperon and

R representing a resonance. The spinors ψB are defined

later on. The operator Ŵ is γ5 (1) for an even-parity (odd-

parity) resonance. The parameter χ controls the admixture of

pseudoscalar and pseudovector components. The value of this

parameter is taken to be 0.5 for the �∗ and �∗ states, but 0

for the � and � states, implying pure pseudovector cou-

plings for the corresponding vertices, in agreement with

Refs. [27,28]. The Lagrangian for spin- 3
2
, as given by Eq. (4),

corresponds to that of a pure Rarita-Schwinger form that has

been used in all previous calculations of the hypernuclear

production reactions within a similar effective Lagrangian

model [28–31]. The values of the vertex parameters were taken

to be the same as those given in Ref. [17].

Similar to Refs. [17,21], we have used the following form

factor at various vertices,

Fm(s) =
λ4

λ4 + (s − m2)2
, (5)

where m is the mass of the propagating particle. The cutoff

parameter λ is taken to be 1.2 GeV, the same as that used in

Refs. [17,21].

The two interaction vertices of Fig. 1 are connected

by a resonance propagator. For the spin-1/2 and spin-3/2

resonances, the propagators are given by

DR1/2
=

i
(

γμpμ + mR1/2

)

p2 − (mR1/2
− iŴR1/2

/2)2
(6)

and

D
μν

R3/2
= −

i
(

γλp
λ + mR3/2

)

p2 −
(

mR3/2
− iŴR3/2

/2
)2

P μν, (7)

respectively. In Eq. (7) we have defined

P μν = gμν −
1

3
γ μγ ν −

2

3m2
R3/2

pμpν

+
1

3mR3/2

(pμγ ν − pνγ μ) . (8)

In Eqs. (6) and (7), ŴR1/2
and ŴR3/2

define the total widths of

the corresponding resonances. We have ignored any medium

modification of the resonance widths while calculating the

amplitude M , because information about such changes is

scarce and uncertain.

The bound proton wave function [ψ(p1)] is a four compo-

nent Dirac spinor, which is the solution of the Dirac equation

for a bound state problem in the presence of external scalar

and vector potential fields. This is written as

ψ(p1) = δ(p10 − E1)

(

f (k1)Y
mj

ℓ1/2j (p̂1)

−ig(k1)Y
mj

ℓ′1/2j (p̂1)

)

, (9)

In our notation p1 represents a four-momentum, and p1 a

three-momentum. The magnitude of p1 is represented by k1,

and its directions are represented by p̂1. p10 represents the

timelike component of momentum p1. In Eq. (9) f (k1) and

g(k1) are the radial parts of the upper and lower components

of the spinor ψ(p1),Y
mj

ℓ1/2j are the coupled spherical harmonics

Y
mj

ℓ1/2j = 〈ℓmℓ1/2μi |jmj 〉Yℓmℓ
(p̂1)χμ, (10)

and ℓ′ = 2j − ℓ, with ℓ and j being the orbital and total

angular momenta, respectively. Y represents the spherical

harmonics, and χμ the spin space wave function of a spin- 1
2

particle.

We assume that the nucleon bound state has a pure single

particle-hole configuration with the core remaining inert. To

simplify the nuclear structure problem, we assume that the

initial bound proton (p1) is picked up from the 1p3/2 orbit with

a binding energy of 15.96 MeV. Although, it is straightforward

to include also those cases where the participating proton

occupies both p and s orbits. However, picking a proton

from the s state will lead to an unstable residual nucleus in

the present case (see, e.g., Refs. [32,33]). Treatment of such

systems is beyond the scope of this work.
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The free-space spinor for the �− hyperon is written as

�(p�− ) = δ(p�−
0
− E�− )

√

E�− + m�−

2m�−

(

χμ

σ · p�−
E�−+m�−

χμ

)

,

(11)

where p�−
0

is the timelike component of the momentum p�− .

Because our calculations are carried out in momentum space,

they include all the nonlocalities in the production amplitudes

that arise from the resonance propagators.

We have used a plane wave approximation to describe the

relative motion of kaons in the incoming and outgoing chan-

nels. However, the distortion effects are partially accounted

for by introducing a reduction factor of 4 to the overall cross

sections, as described in Refs. [17,20]. It should be mentioned

that this factor corresponds to absorption effects on only the

K− and K+ wave functions. There could still be the distortion

effect on the H -B relative motion in the final channel, which

is ignored here.

For calculating the amplitude F (�− + p2 → H ), we fol-

low the same procedure as described in Ref. [23]. In this

method, the H dibaryon is treated as a bound particle with

a mass mH ; however, its six-quark structure is taken into

account. This implies that the three-quark internal structures

of the �− hyperon and the proton p2 [see Fig. 1(b)] also

have to be invoked as the formation of H is thought of in

terms of the fusion of two three-quark bags (�− and p2). The

amplitude F is calculated by taking the overlap of the internal

wave functions of H , �−, and p2, which are described by a

Gaussian approximation (see Ref. [22]). The final result for

the amplitude F is given by

F (�− + p2 → H )

= Ŵ0

(

2RpRH

R2
H + R2

p

)3(
2R�−RH

R2
H + R2

�−

)3

×
(

2R2
H

3π

)3/4

exp

[

−
R2

H

12
( p2 − p�− )2

]

, (12)

where the factor Ŵ0 arises from the color-flavor-spin recoupling

as defined in Ref. [23]. Its value is
√

1/20. The values of the

oscillator parameters Rp, R�− , and RH have been taken to

be 0.83, 0.73, and 0.95 fm, respectively. The chosen value

of Rp reproduces the root-mean-square (rms) radius of the

proton, while the value of R�− comes from the quark-bag

model relation between the proton bag radius and that of the

�−. The bag radius of the H dibaryon is about 20% larger than

that of the proton (see, e.g., Refs. [2,3]). Therefore, we have

increased the value of RH over Rp accordingly. In deriving

Eq. (12), the normalizations of the baryon wave functions

have been made consistent with those of the amplitude M .

III. RESULTS AND DISCUSSION

A. Initial bound state spinors

The initial bound state spinors in momentum space are

obtained by Fourier transformation of the corresponding

coordinate space spinors, which are the solutions of the

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

φ
(k

1
)

|f(k
1
)|

|g(k
1
)|

0 1 2 3 4

k
1
 (fm

-1
)

10
-9

10
-8

10
-7
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-6
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-5

10
-4
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-3
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-2
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-1

ρ
 (

k
1
)

ρ(k
1
) = |f(k

1
)|

2
 + |g(k

1
)|

2

(a)

(b)

FIG. 2. (Color online) (a) Momentum space spinors [φ(k1)] for

the 1p3/2 nucleon orbit in 12C. f (k1) and g(k1) are the upper and lower

components of the spinor, respectively. (b) Momentum distribution

[ρ(k1)] for the same state calculated with the wave function shown in

panel (a).

Dirac equation with potential fields consisting of an attractive

scalar part (Vs) and a repulsive vector part (Vv), both having

Woods-Saxon shapes. For fixed geometry parameters (radius

and diffuseness) we search for the depths of these potentials to

reproduce the binding energy of the respective state. With our

choice of quantum numbers and the binding energy for the p1

proton state, the resulting depths were 382.6 and −472.3 MeV,

respectively, for the fields Vv and Vs , with the radius and

diffuseness parameters of 0.983 and 0.606 fm, respectively,

for both. To show the momentum spread of the corresponding

spinors, we have displayed in Figs. 2(a) and 2(b) the

spinors |f (k1)| and |g(k1)| and the momentum distribution

ρ(k1) = |f (k1)|2 + |g(k1)|2 as a function of momentum k1,

respectively. It may be noted that spinors calculated in this

way provide a good description of the nucleon momentum

distribution for the p-shell nucleons as shown in Ref. [34]. It

should further be added here that these spinors are the same as

those used in Refs. [17,30] to describe the productions of the �

and �− hypernuclei via the (γ,K+) and (K−,K+) reactions,

respectively, on a 12C target.

B. Dibaryon production cross sections

The method discussed above has been used to study the
12C(K−,K+)H 10Be reaction. In Fig. 3, we show the results

for the differential cross section dσ/d�K+ at the K+ angle

of 0◦ and the beam momentum (plab
K− ) of 1.67 GeV/c, as a

function of the rest mass of the H dibaryon. We note that

the cross section decreases uniformly as mH approaches the

�� threshold (indicated by an arrow), where we stopped the

calculations because our method treats the H as a bound

particle. In Ref. [6], the upper limit of the production cross

025209-4
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2.12 2.16 2.20 2.24
M

H
 (GeV)

2.0

2.4

2.8

3.2

3.6

4.0

4.4

4.8

d
σ

/d
Ω

K
+
 (

μ
b

/s
r)

12
C(K

-
,K

+
)H

10
Be

p
K

-
lab

 = 1.67 GeV/c

ΛΛ ΞN

θ
K

+ = 0
o

FIG. 3. Differential cross section dσ/d�K+ at θK+ = 0◦ for

H production in the 12C(K−, K+)H 10Be reaction at the beam

momentum of 1.67 GeV/c, as a function of H -dibaryon mass. The

�� and �N thresholds are shown by arrows as indicated.

section of H with a mass range between �� and �N

thresholds (also indicated in Fig. 2 by an arrow) has been

estimated to be 2.1 ± 0.6 (stat.) ± 0.1 (syst.) μb/sr at a 90%

confidence level, in a measurement of the 12C(K−,K+)��X

reaction at the beam momentum of 1.67 GeV/c where the

K+ meson was confined mostly in the forward directions. In

Fig. 3, the cross section at the �� threshold is comparable to

this value.

In Fig. 4(a), we show the beam momentum dependence

of the cross section dσ/d�K+ for the 12C(K−,K+)H 10Be

reaction. The result in this figure mirrors the beam momentum

dependence of the same cross section in the �− hyper-

nuclear production reaction 12C(K−,K+)12
�−Be, shown in

Refs. [17,18]. The cross section peaks near the plab
K− value of

about 1.05 GeV/c, which is approximately 0.30 GeV/c away

from the production threshold for this reaction (0.735 GeV/c).

This is similar to the case of the hypernuclear production reac-

tions, as mentioned above, where the threshold is 0.761 GeV/c.

We recall that in the case of the 0◦ differential cross section for

the elementary production reaction 1H(K−,K+)�−, the peak

also occurs at about 0.35–0.40 GeV/c above the corresponding

production threshold (see Refs. [17,21]).
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FIG. 4. Differential cross section dσ/d�K+ at θK+ = 0◦ for the

reactions 12C(K−,K+)H 10Be (a) and 3He(K−, K+)H n (b) as a

function of the laboratory beam momentum plab
K− corresponding to

an H -dibaryon mass of 2.224 GeV.

The magnitude of the cross section near the peak position in

Fig. 4(a) is about an order of magnitude larger than that at the

beam momentum of 1.8 GeV/c. This is similar to that seen in

Refs. [17,18] for the 12C(K−,K+)12
�−Be reaction. Moreover,

the peak cross section of the present reaction is smaller than

that of the elementary production reaction by roughly a factor

of 2. However, it is about an order of magnitude larger than

that of the 12C(K−,K+)12
�−Be reaction. This is the conse-

quence of the extremely restricted phase space available in the

latter case that has a two-body final state involving a bound

system.

It is evident that in our model the bound state spinors

in the initial state are calculated within a mean-field ap-

proximation; therefore, its application to a lighter target like
3He should be less valid. Nevertheless, in order to have a

direct comparison with the results shown in Refs. [23,24]

for the 3He(K−,K+)Hn reaction, we have calculated the

beam momentum dependence of the cross section dσ/d�K+

at θK+ = 0◦ for this reaction within our model. The initial

bound proton in this case is from the 1s1/2 orbit with a

binding energy of 5.49 MeV. The corresponding spinors were

determined by a procedure similar to that described above

using the same geometry parameters. The depths of the fields

Vv and Vs were 210.41 and −259.76 MeV, respectively. The

spinors were normalized to reproduce the experimental rms

radius of 3He (1.88 fm). Our results for the 0◦ cross section

dσ/d�K+ for the corresponding H production reaction are

shown in Fig. 4(b). We note that the maximum of the cross

section in this case is at a plab
K− value around 1.20 GeV/c. The

shift in the peak position to a larger plab
K− as compared to that in

Fig. 4(a) can be understood from the fact that the threshold for

the 3He(K−,K+)Hn reaction (≈0.80 GeV/c) is larger than

that of the reaction on a 12C target.

It should be mentioned here that in Refs. [23,24] the

corresponding cross section peaks at plab
K− ≈ 1.75 GeV/c,

which coincides exactly with the peak position of the 0◦

dσ/d�K+ of the elementary reaction 1H(K−,K+)�− used by

these authors in their calculations. In this context two points

are worth noticing. First, the peak in the elementary production

cross section calculated in our model occurs at a lower plab
K−

(around 1.5 GeV/c) as shown in Refs. [17,18,21]. Second,

because in our calculations of the A(K−,K+)HB reactions,

the K+�− production amplitudes are obtained by considering

the initial proton as a particle bound in one of the orbits of the

target nucleus, the threshold effects pull back the peak position

in the 3He(K−,K+)Hn reaction to a plab
K− value lower than that

of the elementary reaction. This effect is not seen in results

shown in Refs. [23,24] due to their particular choice of the

initial state as discussed in the previous section.

Near plab
K− ≈ 1.75 GeV/c, the magnitude of our cross section

is about 0.95 μb/sr . This is larger than those of Refs. [23]

and [24], by factors of 2–3 and 1.5–2.0, respectively. This can

be attributed to the difference in the model used to calculate the

K+�− production amplitudes by these authors as compared

to that of ours.

Looking at the results for the H production reactions shown

in Figs. 4(a) and 4(b), we notice that the ratio (Rcs) of the

magnitudes of the cross sections for the 12C and the 3He targets

is greater than one for all the beam momenta. However, the
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FIG. 5. (Color online) Double differential cross section

dσ/d�K+dpK+ at θK+ = 0◦ for the 12C(K−,K+)H 10Be reaction

as a function of the c.m. momentum pc.m.
K+ of the K+ meson at the

plab
K− values of 1.50 GeV/c (solid line) and 1.67 GeV/c (dashed line).

The H mass is fixed at 2.224 GeV for both the cases.

point to note is that this ratio is beam momentum dependent.

While near peak positions the value of Rcs is about 10, in

the tail region (plab
K− > 1.6 GeV/c) it varies between 4 and

2. From Eq. (1), it is evident that the mass terms already

make the phase-space factor of the reaction on a 12C target

larger than that on 3He by nearly an order of magnitude. Of

course, there is a strong dependence of the product of the rest

of the phase space and the modulus square of the amplitudes

on various momenta. They combine with the mass terms of

the phase space to produce the target mass dependence seen in

Figs. 4(a) and 4(b). Results shown in Fig. 4(a) may affect some

of the conclusions of Refs. [35,36] where the cross sections

for the H production via the (K−,K+) reaction on a 12C target

have been estimated from an extrapolation of the results on the
3He target reported in Ref. [23].

In Fig. 5, we show the double differential cross sections

dσ/d�K+dpK+ for the same reaction as in Fig. 4(a) at plab
K−

values of 1.5 and 1.67 GeV/c and at the K+ c.m. angle θK+ =
0◦, as a function of the c.m. momentum of K+ meson (pc.m.

K+ ).

The c.m. frame refers to that of the K−+12C system. The

H -dibaryon mass was taken to be 2.224 GeV in both cases. It is

seen that these cross sections are peaked very close to the kine-

matically allowed maximum of pc.m.
K+ (p

c.m.,max
K+ ) and have nar-

row widths of about 90 MeV. The peaking of the cross section

near p
c.m.,max
K+ can be understood from the fact that the quark-

fusion amplitude is largest for smallest values of �− momenta,

which happens for the maximum value of the K+ momentum.

In Fig. 6, dσ/d�K+dpK+ is shown for several beam

momenta (plab
K−) for the same reaction as in Fig. 5. It is

observed that the peaking in the K+ momentum spectra very

close to p
c.m.,max
K+ is found in all the cases. As plab

K− increases

p
c.m.,max
K+ shifts to higher values and so does the peak position

in the corresponding cross section. However, the widths of

the distributions remain unaltered. Nevertheless, at very large

values of the plab
K− [in Fig. 6(b)] the distributions tend to

become more symmetric and the peak positions are at relatively

somewhat lower values of pc.m.
K− as compared to those at lower
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FIG. 6. (Color online) (a) Double differential cross section

dσ/d�K+dpK+ at θK+ = 0◦ for the 12C(K−, K+)H 10Be reaction

as a function of the c.m. momentum pc.m.
K+ of the K+ meson for plab

K−

values of 0.9 GeV/c (solid line), 1.0 GeV/c (dashed line), 1.1 GeV/c

(dashed-dotted line), and 1.2 GeV/c (dashed-dashed-dotted line).

(b) The same as in panel (a) for plab
K− values of 1.6 GeV/c (solid line),

1.7 GeV/c (dashed line), and 1.8 GeV/c (dashed-dotted line). The

H mass is fixed at 2.224 GeV for all the cases.

plab
K− . This is mainly due to more dominant role of the phase

space component of the cross section at these higher values

of plab
K− . The magnitudes of the peak cross sections at various

values of plab
K− have a trend that is consistent with that seen in

Fig. 4(a).

To understand more clearly the cause for the narrow width

of the K+ momentum spectra, we display in Fig. 7 decomposi-

tion of the cross section dσ/d�K+dpK+ into phase-space-only

(dotted line), �−-production-only (dashed line), and quark-

fusion-only (solid line) components. The plab
K− is chosen to be

1.67 GeV/c and various curves in this figure are normalized

to the same maximum value. The three-body phase-space

component is broad and has a peak at K+ momentum much

below the corresponding p
c.m.,max
K+ (∼1.05 GeV). Therefore, if

the shape of the K+ momentum spectrum were estimated from

the pure phase space, it would have a much more spread-out

distribution. Although the �−-production-only component is

narrower than the phase-space-only component, it is still

broader than the cross sections shown in Fig. 5. On the other

hand, the quark-fusion-only component has a narrower width

that is similar to that of the final cross section. Because of

the domination of this component in the cross section near

the peak position, the shape of the K+ spectrum is governed

by it in the region of interest. The magnitude of the width

of the K+ momentum spectrum obtained by us can be

understood from simple kinematical arguments as discussed

in the Appendix.

It is important to compare the narrow peak in the K+

spectrum for the H production reaction with that in the
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FIG. 7. (Color online) The phase-space-only (dotted line), �−-

production-only (dashed line), and �− + p → H fusion-only (solid

line) components of the differential cross section dσ/d�K+dpK+

at θK+ = 0◦ for the 12C(K−, K+)H 10Be reaction as a function of

momentum pc.m.
K+ at the plab

K− value of 1.67 GeV/c. The H mass is

fixed at 2.224 GeV. All the curves are normalized to the same peak

cross section.

momentum spectrum of the K+ for background processes

like the 12C(K−,K+)10Be �−p reaction. The results of the

calculations for this type of background reaction on a 3He

target are discussed in Refs. [23,24]. It is shown there that

such processes have a relatively larger magnitude and a much

broader width of the K+ momentum spectrum. Therefore,

it should be possible to separate the H production from the

�−p background as the peak of the K+ spectrum in the latter

reaction would be well separated from that for H production.

There is another potential source of background, namely, the

possible production of two � hyperons in the interaction of

the �− with proton p2. The probability for such processes,

initiated by the �− particle in a nuclear bound state, has been

calculated in Refs. [37–39]. These calculations suggest that the

relative probability for the �− + p → �� reaction involving

a free �− particle may not be more than 10–20%.

IV. SUMMARY AND CONCLUSIONS

In summary, we have studied the production of the stable

six-quark H dibaryon, via the (K−,K+) reaction on a 12C

target within an effective Lagrangian model. We have also

made some calculations for this reaction on a 3He target. The

model assumes this reaction to proceed in two steps. In the

first step, a �− hyperon and a K+ meson are produced in

the initial collision of the K− meson with a proton bound

in the target. In the second step, the �− hyperon fuses with

another target proton to produce the H dibaryon. Our method

differs from the previous calculations of this reaction, which

use a similar two-step approach, in several ways. In our

work the �− + K+ production amplitude has been calculated

by excitation, propagation, and decay of � and � hyperon

resonance intermediate states in the initial collision of the

K− meson with a target proton. The vertex parameters (the

coupling constants and the form factors) at the resonance

vertices have been taken to be the same as those fixed earlier

by describing both the total and the differential cross sections

of the elementary 1H(K−,K+)�− reaction within a similar

model. The same parameters were also used recently in the

calculations of the � hypernuclei. The bound proton spinors

have been obtained by solving the Dirac equation with vector

and scalar potential fields having Woods-Saxon shapes. Their

depths are fitted to the binding energies of the respective

states. In the previous studies of this reaction, the �− + K+

production amplitudes were obtained from a parametrization

of the scantily known experimental differential cross sections

of the 1H(K−,K+)�− reaction at 0◦. Moreover, while we have

applied our model to compute cross sections for the (K−,K+)

reaction on 12C as well as 3He targets, in the previous models

the numerical calculations were limited only to a 3He target.

In our study, the H -dibaryon production cross section in the
12C(K−,K+) H 10Be reaction at the K− beam momentum

of 1.67 GeV/c, and for an H mass very close to the ��

threshold, is found to be comparable to the upper limit of

the H production cross section estimated just above this

threshold with a 90% confidence level in a study of the
12C(K−,K+)��X reaction at the same beam momentum.

We notice that the differential cross section of the
12C(K−,K+)H 10Be reaction for observing K+ at 0◦ peaks

around the beam momentum of 1.05 GeV/c. This mir-

rors the beam momentum dependence of the corresponding

cross section in the �− hypernuclear production reaction
12C(K−,K+)12

�−Be. In case of the 3He target the peak position

shifts to a higher beam momentum of 1.20 GeV/c because the

threshold of the reaction on this target is larger than that on
12C. The peak positions in these cross sections are above the

production thresholds of the corresponding reactions by almost

the same amount as the position of the maximum is above the

corresponding threshold in the 0◦ differential cross section

of the elementary 1H(K−,K+)�−reaction. In our model, the

magnitudes of cross sections of the reaction on a 12C target are

larger than those on 3He by an order of magnitude for beam

momenta around the respective peak positions. However, in

the tail region (for plab
K− larger than 1.6 GeV/c) the difference

between the two is within factors of 4–2.

The K+ momentum spectrum has a peak very close to the

kinematically allowed maximum K+ momentum and its width

is narrow (about 90 MeV/c). This feature is independent of the

K− beam momentum. It is also shown here that a larger H

production cross section is expected in experiments performed

at beam momenta around 1 GeV/c. The background process

such as the K+ recoiling against the continuum �−p pair

[23,24] has a relatively larger magnitude and broader width

of the K+ momentum spectrum and therefore can be rather

cleanly separated from the H signal.
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APPENDIX: KINEMATICS OF H-DIBARYON

PRODUCTION

To obtain more insight into the kinematical factors that

determine the structure of the spectrum we have performed a

very simple calculation where the focus is on the kinematics.

We use a convention where the incoming K− momentum

(pK−), is taken in the z direction like that of the outgoing

K+ (pK+ ). Simplifying the reaction dynamics to a minimum

the expression for the cross section can be expressed as an

integral over the longitudinal (z) component, pl
r , of the recoil

momentum, pr , of the (A − 2) residual nucleus,

σr (pK+) =
∫

dpl
rρr (pr )p⊥

r , (A1)

where p⊥
r is the perpendicular (x) component of the recoil

momentum, thus pr =
√

(pl
r )2 + (p⊥

r )2. In Eq. (A1) the

overlap integral is written as

ρr (pr ) =
∫

d3 p1 ρ1(k1) ρ2(k2) ρH (�pH ), (A2)

where p2 = p1 − pr by momentum conservation. We have

followed the notations for momenta of bound protons as

described after Eq. (9) in the main text. The probability

density for a proton with momentum ki in the nucleus A is

parametrized as

ρi(ki) = kie
−(ki/w1)2

/w2
1, (A3)

which fits reasonably well the probability distribution given

in Fig. 2 for w1 ≈ 0.16 GeV/c. The H -dibaryon vertex, is

parametrized as

ρH (�pH ) = e−(�pH /wH )2

/w2
H , (A4)

with wH = 0.73 GeV/c, where the difference between the

cascade momentum and that of the second proton, p2, is

given by �pH =
√

(pl
H − 2 pz

2)2 + (p⊥
H − 2 px

2 )2 + (−2 p
y

2 )2.

The total energy of the recoiling nucleus is ǫ = [(pl
r )2 +

(p⊥
r )2]/(2 B mp) + β, where β is the binding energy, which

is taken to be 0.008 GeV and B = A − 2. The H -dibaryon

energy, EH , is obtained from total energy conservation, EH =
EK− − EK+ + 2 mp − ǫ. The longitudinal and perpendicular

components of pH are labeled as pl
H and p⊥

H , respectively,

and are calculated from the total momentum conservation,

pl
H = pK− − pK+ − pl

r , p⊥
H = −p⊥

r . The H -dibaryon mass

FIG. 8. (Color online) Cross sections calculated with simplified

expressions given by Eqs. (A1) and (A5) for K+ angles of 0◦ as a

function of K+ momentum in the laboratory system at plab
K− values of

1.4 and 1.8 GeV/c. The solid lines represent the results obtained with

Eq. (A1) while the dashed and dotted lines represent those obtained

with Eq. (A5) for W = 0.1 and 0.2 GeV, respectively. The absolute

magnitudes of the cross section are arbitrary.

is set at mH = 2.2 GeV. The perpendicular component of the

recoil is obtained by solving the “on-shell” condition m2
H =

E2
H − p2

H .

In Fig. 8 the cross section obtained from Eq. (A1) is

compared with that obtained from an even simpler expression,

σs(pK+) =
∫

dpl
rρs(pr ) p⊥

r , (A5)

where the overlap integral is simplified to the extreme as

ρs(pr ) = e−(pr/w)2

/w2. (A6)

In Fig. 8, we show the cross sections as a function of K+

momentum in the laboratory system for plab
K− values of 1.4

and 1.8 GeV/c. The solid lines show the results obtained by

using Eq. (A1) while dashed and dotted lines those obtained

with Eq. (A5) for W = 0.1 and 0.2 GeV, respectively.

First of all we note that the widths of the cross sections

σR are very close to those of the cross sections shown in

Figs 5–7. Furthermore, for W = 0.2 GeV, the cross sections

σS are very close to the cross sections σR . Thus this provides an

excellent simple parametrization of the cross sections shown

in Figs. 5–7. The width of the K+ momentum distribution is

narrower for smaller values of W . This is expected to be the

case for the bound proton states in heavier targets.
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