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Production of Uniform Electrostatic Fields by a 
Slotted Conducting Spherical Shell 

Abstract-For some applications one desires a uniform quasi-static 
electric field. Along the already well-developed lines concerning magneto- 
static fields, in this case electric potential is specified on a spherical 
surface. Dividing the surface on lines of constant latitude (polar angle), 
the resulting bands are constrained to have particular voltages. The 
particular case of three conducting surfaces with voltages VI, 0, and - VI 
is considered in detail with optimum angles 8, and K - 8, = 63.43”. This 
makes for a very uniform electric field near the center of the sphere. 

Key Words-Uniform electric field source, slotted conducting spherical 
shell, GLOBUS. 
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I. INTRODUCTION 
UCH ATTENTION has been paid over the years to the M production of uniform magnetic fields. There are the 

well-known Helmholtz and Maxwell coils involving, respec- 
tively, two and three coaxial coils optimally positioned on a 
spherical surface with optimally specified currents for maxi- 
mum magnetic field uniformity near the center of the sphere 
[6]. This case has been extended to an arbitrary number of 
coils on a spherical surface [ 5 ] .  The optimum criterion has 
traditionally been to make the maximum number of derivatives 
of the field zero at the coordinate origin (center of the sphere). 
A recent note describes the construction of a Helmholtz coil 
for scale-model measurements [ 2 ] .  

The dual problem, which has received much less attention, 
is the production of uniform electric fields. For scale-model 
measurements of surface charge density on “perfectly con- 
ducting” objects, it would be useful to have some comparable 
kinds of electrostatic uniform-field generators. This paper 
addresses a certain kind of spherical structure which specifies 
electric potential on a spherical surface to produce a uniform 
electric field near the center of the sphere. 

11. SLOTTED SPHERE: GENERAL CONSIDERATIONS 

As in Fig. 1, consider a sphere of radius a. On this spherical 
surface, let us specify a potential V(0). As a practical matter, 
this surface is constructed of segments of ‘‘perfectly conduct- 
ing” metal with potentials V, with 
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Fig. 1. Perfectly conducting sphere with narrow slots at constant latitudes. 

eo=o 

eN= ?r. (1) 

The usual Cartesian, cylindrical, and spherical coordinate 
systems are also indicated in Fig. 1 with 

y =  sin ( e )  

z = r  cos ( e )  

\k = r sin (e). (2 )  

As a practical matter, (1) is approximate in that each 8, is 
actually the center of a narrow slot which insulates one 
conducting segment from the next. This slot is assumed to be 
sufficiently narrow that it negligibly affects the electric field 
near the center of the sphere. A particular advantage of this 
design concept is that by specifying the potential on r = a, the 
presence of conductors and insulators outside the sphere (r  > 
a) does not affect the potential and electric field for r < a. 
Such additional external items might include various electric 
equipment used to enforce the potential distribution on r = a. 

In the usual spherical coordinates, the solution for the 
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Laplace equation for the electric potential is expressed as 

= scalar spherical harmonics 

= associated Legendre functions 

1 d" 
2"n! dC;" P,,(() = Pjp'(C;) = - - [e2- 1)"l 

E Legendre functions. (3) 

Now, restricting our attention to 0 5 r 5 a,  only the 
nonnegative powers need be considered. Furthermore, noting 
that the assumed axially symmetric geometry allows only an 
axially symmetric potential, we can now write 

m 

+= a,rnP, (cos ( e ) ) .  (4) 
n = O  

Constraining the geometry (and the potential) to be antisym- 
metric with respect to the (x ,  y )  plane [3], we also have 

so that only odd n need be considered. 

sphere [4, eq. (B19)] as 
The scalar spherical harmonics are orthogonal on the unit 

27r (n+m)!  
= [ I  + [le,u- 1 0 , u l 1 0 , m l  - ~ 2n+1 ( n - m ) !  

For our case of axial symmetry we have 

c = e ,  m=O 

5 ,  S2= P,, (cos (0))Pnt (cos (0)) sin ( e )  d4 dB 

2 Si P,, (cos (0))Pnr (cos (0)) sin (0 )  de=- 
2n+ 1 'wt 

l n , n ,  = [ 1 ,  
for n=n' 

0, f o r n f n '  

= Kronecker delta. (7) 

Now solve for the a,, by noting that 

+= V ( e ) ,  for r=a. (8) 

This gives 

as the general solution for an arbitrary axially symmetric 
potential distribution on the spherical surface. 

The static electric field is given by 

For the axially symmetric case there is no 4 component. 
Consider the n = 1 term as 

= al rP, (cos (0)) = al r cos ( e )  
=alz .  (1 1 )  

For this special case we have the corresponding electric field 
as - 

(12) 
- 
El= - V G 1 =  - a l l z  

which is a uniform electric field in the z direction. 
This uniform z-directed electric field is the important term 

in our expansion. If all other terms were zero, this would be 
the ideal result. From (7) and (9), if we were to choose 

V,,,,,(I~) = -aEoPl (cos (0)) = -aEo cos ( e )  (13) 

this would give 

giving an electric field 

E = Eoiz. (15) 

Our problem is to choose V(0) in a way that approximates 
(13) in the sense of making a, = 0 for as many n # 1 as 
possible with emphasis on the values of n near 1 since they are 
most significant for r near the origin. Viewed another way, the 
terms for n = 2, 3,  give the next derivatives for the 
electric field at r = 0. 

111. TWO-SLOT CONDUCTING SPHERE 

Now consider the special case of N = 2 as illustrated in 
Fig. 2.  Evidently constraining 

02=7r-01 

VI = - v, 
V, = 0 (16) 

gives symmetry about the (x, y )  plane so that only n = odd 
terms in the potential are included as in (5). The electric field 
will scale with the single independent potential VI,  leaving 
only el to be varied so as to eliminate the n = 3 term. 
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electric field at the origin. Thus, we have 

1 
COS (e , )  = -= 0.4472 J3 

el =63.430 

1 
2 cot (e,)=-. (22) 

It may be observed that this solution is the same as that for the 
Helmholtz coils, the two coils being replaced by slots at the 
same positions on the sphere containing the two coils. 

Having found the special angle, we need 

3 .  
2a o 

a , = -  S V(B)PI (cos ( e ) )  sin (6) de 

v = -v, u 
(b) 

Side view. 
Fig. 2. Case of optimally chosen two symmetrical slots. (a) Top view. (b) 

From (9) we have 

7 .  
2 0  

a 3 = a - 3  - 1 V(0)P3 (cos (6)) sin ( e )  dB 

= a - 3 7  Vl 1:' P3 (cos (6)) sin ( e )  dB 

3 
(cos (6)) sin ( e )  dB 

a , = -  V, - 
a 2 cos (e1) 

-- - 3 Vl [i -COS* (e,) ]  =- 3 VI sin2 (e,) 
2a 2a 

This is a very convenient result which gives, when compared 
to (14) and ( 1 5 ) ,  the electric field at the origin as 

E= Eoiz 

From (3) we have With these results, the first error term corresponds to n = 5. 
The fourth derivative is the first nonzero derivative of the field 
at the origin. This also corresponds to the Helmholtz-coil case. 

Fig. 2 shows some features of how one might excite the 
structure with _+ V,. Having a differential source (with small 
common mode), one would like to distribute it in some 
uniform way (equal delays from equal-impedance sources) 
around the slot. Fig. 2 gives an example with four connections 
around the slot with a set of transmission lines with net parallel 
impedance 2 for each slot. This is similar to the feed system of 
the HSD sensor for D-dot. Other forms of feed structure are 
also possible, such as rotating the top and bottom feed 
structure with respect to each other to achieve a more uniform 
illumination with respect to 4. 

( 1 8 )  
5 3  

2 P3tt)=5 t 3 - -  t 

so that 

3 
a3=a-37 VI [ t4-4  ti] 1 . (19) 

COS (81) 

Setting this to zero gives 

5  COS^ (e,) - 6 COS* (e,) + I = o (20) 

which is solved by the usual quadratic formula to give 

1 
5 

IV. SUMMARY 
We now have our special spherical-bowl design to give 

uniform electrostatic fields. As illustrated in Fig. 2, we have 

cos2 (e,)  = 1 ,  - . (21) 

Neglect the case of 1 ,  which is a degenerate case giving no 
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something that looks like some kind of dual of the Helmholtz 
coils. Note the benefit of having most of the spherical surface 
conductors at specified potentials, thereby shielding the inside 
volume from external electrostatic disturbances. This allows 
us to place our transmission lines and other electrical 
connections on the outside of the sphere to drive the two 
spherical bowls to +- VI in a differential sense at low 
frequencies. Note also that since the ( x ,  y )  plane is a symmetry 
plane (antisymmetric) it can be replaced by a perfectly 
conducting surface so that one can use only half of this 
spherical system (with single-ended drive) if desired. In this 
single-ended form, this is a FINES type of simulator for 
illuminating small penetrations [ 11. 

Let us refer to this type of uniform-electric-field illuminator 
as the graded latitudinally open bowl uniform simulator 
(GLOBUS, the Latin word for sphere). 

Another approach to the present problem involves charged 
rings (thin strips or wires of small radius) on a spherical 
surface. Unfortunately, this case does not well shield the 

interior from exterior charges (scatterers, including leads to 
the rings). In an idealized sense, though, one can achieve 
similar uniform electric fields near the center of the sphere. 
This case is left as an exercise for the reader. 
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