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Abstract

Capital-labor substitution and TFP estimates are essential features of many economic

models. Such models typically embody a balanced growth path. This often leads re-

searchers to estimate models imposing stringent prior choices on technical change.

We demonstrate that estimation of the substitution elasticity and TFP growth can

be substantially biased if technical progress is thereby mis-specified. We obtain ana-

lytical and simulation results in the context of a model consistent with balanced and

near-balanced growth (i.e., departures from balanced growth but broadly stable factor

shares). Given this evidence, a Constant Elasticity of Substitution production func-

tion system is then estimated for the US economy. Results show that the estimated

substitution elasticity tends to be significantly lower using a factor-augmenting spec-

ification (well below one). We are also able to reject conventional neutrality forms in

favor of general factor augmentation with a non-negligible capital-augmenting com-

ponent. Our work thus provides insights into production and supply-side estimation

in balanced-growth frameworks.
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I Introduction

A balanced growth path (BGP) defines an equilibrium in which macroeconomic vari-

ables such as output, consumption, etc., tend to a common growth rate, whilst key

underlying ratios (e.g., factor income shares, capital-output ratio, and the real inter-

est rate) are constant, Kaldor (1961). In terms of neoclassical growth theory (Uzawa

(1961)), it requires that either, technical progress be labor-augmenting (i.e., Harrod

Neutral), or production is Cobb Douglas (i.e., exhibits a unitary elasticity of substi-

tution between input factors).

Although balanced growth looks a reasonable description of many economies and

is a common and tractable modelling narrative, these two explanations are widely

disputed.1 For instance, there is now mounting evidence in favor of a below-unity

aggregate substitution elasticity (e.g., Chirinko (2008)). Likewise, that all technical

change is labor augmenting appears unduly restrictive. Recent theoretical litera-

ture (Acemoglu (2007)) also argues that while technical progress is asymptotically

labor-augmenting, it may become capital-biased in transition reflecting incentives for

factor-saving innovations.2 Despite these concerns, researchers, guided by tractabil-

ity and the apparent “stylized facts”, invariably impose balanced growth path (BGP)

conditions for estimating key supply side parameters such as the elasticity of capital-

labor substitution and total factor productivity (TFP).

Arguably, though, the costs of doing so are unknown. To fill this important gap

we hence analyze the potential consequences of imposing prior beliefs on the form of

technical progress for such estimates. In particular, we study how estimates of the

elasticity of substitution and TFP are affected by imposing a priori restrictions on

the direction of technical change where the economy may depart to a large or small

extent from BGP. To motivate matters, we first use some theory to highlight a set of

(potential) pitfalls related to parameter inference and TFP approximations. Then we

analyze the practical importance of these biases in a simulation experiment. Finally,

in light of our analysis, we estimate a production-technology system of the US econ-

omy over 1952-2009 under different technical progress specifications and compare the

resulting estimates of the substitution elasticity and TFP. Our reference point is the

flexible “factor-augmenting” Constant Elasticity of Substitution (CES) production

function.

Following our earlier contribution, León-Ledesma et al. (2010), we exploit Monte-

1See Attfield and Temple (2010) for an empirical assessment of the BGP conditions and a dis-
cussion of previous studies of the empirical validity of the BGP.

2Other perspectives draw on the distributional form of technical change over time, Jones (2005),
Growiec (2008), or the endogenous choice of production technology, León-Ledesma and Satchi (2011).
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Carlo methods. Compared to that paper, though, the set up and motivation are

quite different. León-Ledesma et al. (2010) analyzed means to estimate production-

technology parameters (linear, non-linear, single and multi-equation) and showed that

the normalized (or indexed) non-linear system estimation allowed for identification

of the key technology parameters. Here, we take that approach as given but use it

to explore the more applied and more specific topic of econometric mis-specification

and the robustness of balanced growth and particular neutrality assumptions.

Our analysis shows that, generally, when the true nature of technical progress is

factor-augmenting, imposing Hicks-neutrality leads to biases towards Cobb-Douglas

(unit elasticity). Imposing Harrod-neutrality would generally lead to upward biases

in the estimated elasticity if the true elasticity is below unity and downward biases if

it is above unity. We rationalize these various biases as attempts by the estimator to

control for trends in the data (e.g., in capital deepening) otherwise incompatible with

the presumed neutrality concept. We also show that TFP growth approximations

from CES estimates crucially depend on the elasticity of substitution, which governs

the transmission of capital deepening and technical progress components into the

evolution of TFP. Hence, biases in the estimated elasticity will be reflected in biases

in estimated TFP growth.

When we estimate using US data, many of the previous lessons find an echo

in empirical estimates. Although results yield different values for the substitution

elasticity for different a priori technical progress restrictions. In all cases, our tests

support the general factor-augmenting specification with a capital-labor substitution

elasticity well below one. We also find a non-negligible capital-augmenting technical

progress component.

The paper is organized as follows. In section II we present some relevant back-

ground on the CES production function and in section III discuss the potential biases

arising from mis-specification of technical change. In Section IV we present the sim-

ulation setup and discuss the results. Section V presents empirical results using US

data. Finally, Section VI concludes.

II Background

The CES production function was formally introduced in economics by Arrow et al.

(1961) and spawned a vast literature.3 Following the work of La Grandville (1989)

and Klump and de La Grandville (2000), the function is often now expressed in

“normalized” (or indexed) form since its parameters then have a direct economic

3See Klump et al. (2012) for a survey.
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interpretation:

Yt = F
(
ΓK
t Kt, Γ

N
t Nt

)
= Y0

[
π0

(
ΓK
t Kt

ΓK
0 K0

)σ−1

σ

+ (1− π0)

(
ΓN
t Nt

ΓN
0 N0

)σ−1

σ

] σ
σ−1

(1)

where the point of time t = 0 represents the point of normalization, Yt represents real

output, Kt is the real capital stock and Nt is the labor input.

Terms ΓK
t and ΓN

t capture capital and labor-augmenting technical progress. To

circumvent problems related to the Diamond-McFadden impossibility theorem, re-

searchers usually assume specific functional forms for technical progress, e.g., ΓK
t =

ΓK
0 e

γK t and ΓN
t = ΓN

0 e
γN t where γi denotes growth in technical progress associated to

factor i, t = 1, 2, . . . , T represents a time trend. Technical progress can be Hicks neu-

tral (γK = γN > 0), Harrod neutral (γK = 0,γN > 0) or, more seldom, Solow-Neutral

(γK > 0,γN = 0). A general factor-augmenting case (γK > 0 6= γN > 0), though, is

typically by-passed.

The capital income share at the point of normalization is π0 =
r0K0

Y0
(r denotes the

real user cost of capital) and the elasticity of substitution between capital and labor

inputs is given by the percentage change in factor proportions due to a change in the

factor price ratio along an isoquant:

σ ∈ [0,∞) =
d log (K/N)

d log (FN/FK)
(2)

CES production function (1) nests Cobb Douglas when σ = 1; the Leontief func-

tion (i.e., fixed factor proportions) when σ = 0; and a linear production function

(i.e., perfect factor substitutes) when σ → ∞. The higher is σ, the greater the sim-

ilarity between capital and labor: when σ < 1, factors are gross complements in

production and gross substitutes otherwise. It can be shown that with gross sub-

stitutes, substitutability between factors allows both the augmentation and bias of

technological change to “favor” the same factor.4 For gross complements, however,

a capital-augmenting technological change, to be specific, increases demand for labor

(the complementary input) more than it does capital, and vice versa. By contrast,

when σ → 1 an increase in technology does not produce a bias towards either factor

(factor shares will always be constant since any change in factor proportions will be

offset by a change in factor prices). Thus, as we shall soon appreciate, the question

of whether σ is above or below unity is possibly as important as its numerical value.

4In other words, if σ > 1 and γi > γj this implies that Fi > Fj plus that there is a relative rise
in the income share of factor i . Hence we can say that technical change related to factor i “favors”
factor i in the gross substitutes case.
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III Mis-specified technical change: two examples

We now discuss the general issues at stake and analytically derive some potential

estimation problems. In Sections III and III, we consider the particular impact of mis-

specification of technical progress on the estimation of the elasticity of substitution,

and then on TFP estimates and its decompositions.

These examples, note, are meant to be primarily motivational: they usefully high-

light many of the issues that will become apparent in both the simulation and data

estimation sections.

Mis-specified technical change: parameter inference

The relative capital-to-labor income share, given competitive factor markets and profit

maximization, can be expressed as,

Θt =
rt
wt

Kt

Nt

=
π0

1− π0

(
ΓK
t Kt/K0

ΓN
t Nt/N0

)σ−1

σ

(3)

Whilst Θt is observed, neither the substitution elasticity nor technical change

are. For Θ to be constant requires the familiar balanced growth cases of σ = 1 or

Harrod neutrality. But can dΘ ≈ 0 (i.e., a near balanced growth path) arise when

we purposefully depart form these two restrictive assumptions? And what would be

the consequences?:

(i). Equation (3) shows that if we assume Hicks neutrality, stable factor shares

require σ̂ → 1 to offset any trend in capital deepening. Antràs (2004) uses this

argument to rationalize Berndt (1976)’s widely-cited finding of Cobb-Douglas

for US manufacturing.

(ii). The same is true of Solow neutrality.

(iii). Another possibility, for factor-augmenting technical progress, is that stable fac-

tor shares hold if the bias in technical change exactly offsets that of capital

deepening. In this case, factor shares are stable independently of the value of

the substitution elasticity.

(iv). More intriguingly, however, and independent from the size of σ, Θ would remain

broadly constant outside the balanced growth path if rt “absorbs” some of the

trend in capital augmentation. This, though, violates our priors that the real
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interest rate is stable.5 However, we can show that this trend absorption need

only be modest.6 If the user cost only partially absorbs the capital-augmenting

technical progress, there will also be trends in the factor income shares, but these

may be weak when coupled with a moderate pace of capital augmentation.7

Hence, the broad stability of factor income shares is not a sufficient condition

for the correctness of either Cobb-Douglas or Harrod neutrality.

We have seen that the assumption of Hicks neutrality can bias σ towards unity.

We can also show that quite generally (although not universally) the Harrod-neutral

specification can result in σ estimates that are either upwards or downwards biased

when the true DGP contains capital-augmenting technical progress.

Assume the lhs of equation (4) below corresponds to the “true” DGP for the

observed capital income share and the rhs corresponds to the mis-specified Harrod-

neutral (h) version:

π0

(
ΓK
t Kt

K0Yt

)σ−1
σ

= π0

(
Kt

K0Yt

) σ̂h
−1

σ̂h

(4)

Taking logs and rearranging,

σ − 1

σ
log ΓK

t =
σ̂h−σ

σ̂hσ
log

(
Kt

K0Yt

)
(5)

In the true data, Kt

K0Yt
=
(
ΓK
t

)σ−1
(

r0
rt

)σ
. Assume rt = r0

(
ΓK
t

)α
, α ∈ (0, 1]

which implies that the real user cost partly absorbs the trend in capital-augmenting

technology. It can be shown that with values of α > σ−1
σ
, the negative trend in the

capital-output ratio corresponds to the positive trend of ΓK
t . When this condition

holds, then in the interval α ∈ (0, 1], σ̂h > σ and with σ > 1, in turn, σ̂h < σ.

However, when α = 0 and σ > 1, then the capital-output ratio has a positive trend

and σ̂h > σ > 1.

5However, rather than exhibiting global stability, real interest rates are commonly thought of as
regime-wise stationary. Also, depreciation rates (another component of the user cost) have trended
upwards over this sample – see Whelan (2002). This is compatible with the commonly-held view
that the share of equipment in capital has increased while the share of structures has decreased and
hence investment is characterized by shorter mean lives.

6Assuming capital augmenting-technical progress is 0.5% annually and even where that is fully
absorbed by the real user cost, then the latter would rise from, for instance, 0.05 to 0.064 within 50
years.

7Jones (2003) also reports evidence showing capital shares for OECD countries frequently exhibit
large variation and medium-run trends. These trends are certainly relevant for typical sample sizes.
See also McAdam and Willman (2013).
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Mis-specified technical change: TFP calculations

The calculation of TFP is a key application of production function estimates. Pred-

icated on Cobb Douglas, TFP calculations are invariably derived imposing Hicks

Neutrality (the “Solow Residual”). However, even if estimates of the size of TFP

growth are robust to mis-specification, an accurate decomposition of TFP growth of-

fers insights on the mechanisms underlining economic performance and may usefully

inform policy.

An exact (or residual) method to calculate the contribution of log(TFP) to output

is given by,

log

[
F
(
ΓK
t Kt, Γ

N
t Nt

)

F (ΓK
0 Kt, Γ

N
0 Nt)

]
=

σ

σ − 1
log



π0

(
ΓK
t Kt

ΓK
0
K0

)σ−1

σ

+ (1− π0)
(

ΓN
t Nt

ΓN
0
N0

)σ−1

σ

π0

(
Kt

K0

)σ−1

σ

+ (1− π0)
(

Nt

N0

)σ−1

σ


 (6)

For illustrative purposes, it is also useful to present a closed-form approximation

for log(TFP) separable from factor inputs. We follow Kmenta (1967) and Klump et al.

(2007), by applying an expansion of the normalized log CES production function (1)

around σ = 1:

yt = π0kt + ak2
t (7)

+ π0

[
1 +

2a

π0
kt

]
γK · t̃+ (1− π0)

[
1−

2a

(1− π0)
kt

]
γN · t̃+ a [γK − γN ]

2 · t̃2

︸ ︷︷ ︸
Φ=log (TFP )

where t̃ = t− t0, yt = log[(Yt/Y0) / (Nt/N0)], kt = log[(Kt/K0) / (Nt/N0)], and where

a = (σ−1)π0(1−π0)
2σ

.

Equation (7) shows that the output-labor ratio can be decomposed into (linear and

quadratic) capital deepening and technical change weighted by factor shares and the

substitution elasticity – where sgn (a) = sgn (σ − 1) and lim
σ∈[0,∞)

a ∈
[
−∞, 1

2
π0 (1− π0)

)
.

In addition, (7) shows that, when σ 6= 1 and γK 6= γN > 0, additional (quadratic)

curvature is introduced into the production function: ak2
t and a [γK − γN ]

2 · t̃2.

The effect of capital deepening on log(TFP ) – given by 2at̃ (γK − γN) – switches

sign depending on whether factors are gross substitutes or complements. However,

although the transmission of individual technology changes to TFP is also a function

of σ, generally its sign (and, in particular, the importance of gross substitutes or

complements) is ambiguous.8

8Except in two cases, when γK − γN > 0:
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The effect of σ on TFP through capital deepening can be given an economic

interpretation, though. When σ 6= 1, capital deepening will be biased in favor of

one factor of production (changing its income share). Hence, with factor augmenting

technical change, an acceleration of capital deepening changes the estimated TFP

growth simply because technical progress is biased in favor of one of the factors. If, for

instance, σ < 1, capital deepening would increase the labor share. If (γK − γN) < 0,

capital deepening would lead to an acceleration of the estimated TFP growth.

The expressions for log(TFP) for the restricted neutrality cases are:9

Harrod : (1− π0)

[
1−

2a

(1− π0)
kt

]
γN · t̃+ aγ2

N · t̃2 (8)

Solow : π0

[
1 +

2a

π0

kt

]
γK · t̃+ aγ2

K · t̃2 (9)

Hicks : γ · t̃, where γ = γK = γN (10)

The comparisons of (7) with variants (8)-(10) are self evident. For instance, in the

Hicks case all improvements in TFP would be attributed to a single factor-neutral

component, γ, excluding also any role for capital deepening.

For values of Kt and Nt close to their normalization points, kt ≈ 0, one can also

obtain two simpler approximation for log(TFP):

ΦSimple = π0γK · t̃ + (1− π0) γN · t̃ + a [γK − γN ]
2 · t̃2 (11)

ΦLinearWeight = π0γK · t̃ + (1− π0) γN · t̃ (12)

The first abstracts from capital deepening. This may be considered informative re-

garding the contribution of capital deepening in TFP estimates based on (6) and (7)

- especially so given the rapid capital deepening in the US towards the end of our

sample. The second form, which is a simple linear weight of the two constant progress

terms, discards all nonlinearities in TFP.

Although all cases coincide at the point of normalization, equation (11) by exclud-

ing capital deepening, runs the risk that the nonlinearity in the TFP is not correctly

captured. For instance, if the economy is characterized by Harrod neutrality, ΦSimple

implies the wrong sign for the quadratic effect term (being positive rather than neg-

ative).10

∂Φ
∂γN |σ<1,t̃,k>0

= (1− π0) t̃
[{

1− ktπ0(σ−1)
σ

}
− (σ − 1) (γK − γN ) t̃

]
> 0,

∂Φ
∂γK |σ>1,t̃,k>0

= t̃
[
π0

{
1 + kt(1−π0)(σ−1)

σ

}
+ (1− π0) (σ − 1) (γK − γN ) t̃

]
> 0.

9Individual technical change cannot be identified in the Cobb-Douglas case.
10In the Harrod neutral case kt = γN · t̃. Substituting this into (8) results in the following form of
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IV The specification bias: simulation evidence

Following our earlier discussion, we now use a simulation exercise for a variety of

parameter values of the supply side to quantitatively analyze the bias arising from

mis-specified technical progress. We first simulate a consistent DGP for factor in-

puts, output, and factor payments, and then estimate the relevant parameters using

the normalized system approach imposing particular forms of factor neutrality. The

simulation follows León-Ledesma et al. (2010), but differs in terms of the stochastic

process for factor inputs and, crucially, the way the growth of the capital stock is

specified. This will precisely allow us to focus on questions of whether the simulated

data is plausible in terms of balanced or near balanced growth trajectories, which is

of special relevance in our context.11

The normalized system estimator of the parameters consists of the joint estimation

of (log-version of) CES function (1) and the first order conditions for K and N .

Normalization allows us to fix parameter π0 to its observed value (capital income

share in the baseline period) also simplifying the estimation problem. The 3-equation

system of equations is then jointly estimated using a Nonlinear SUR system estimator

(which we also use, among several alternative methods, for estimation with US data in

section V).12 In this case, of course, within a system setting, consistent cross-equation

parameter restrictions are imposed.

The simulation experiment

We generate data in a consistent way corresponding to a particular evolution of factor

inputs, technical progress and output. This Monte Carlo (MC) data is estimated

under both correctly specified and mis-specified systems.

We draw M simulated stochastic processes of sample size T for labor, capital,

labor- and capital-augmenting technology. Using these, we then derive “potential”

or “equilibrium” output (Y∗
t ), observed output (Yt) and real factor payments (wt and

rt), for a range of parameter values and shock variances. The simulated system is

consistent with the normalized approach, so that we ensure our parameters are deep,

i.e. can be given an economic interpretation and are not a combination of other

the log(TFP): π0γK · t̃+ (1− π0) γN · t̃− aγ2
N · t̃2 and hence ΦSimple implies the wrong sign for the

quadratic term.
11We do not focus here on comparison of estimation methods as in León-Ledesma et al. (2010),

but on model (mis-) specification and in which direction it affects estimated parameters.
12We also considered GMM, 3SLS, and FIML estimators that take into account potential endo-

geneity bias, but the results remained very similar and are not reported here. In the empirical
section, however, we show all these methods.
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parameters.

We now describe the full DGP for the MC simulations. Capital and labor evolve

as non-stationary stochastic processes with drift:

Kt = e(κ+lnKt−1+εKt ) , Nt = e(η+lnNt−1+εNt ) (13)

where κ and η are the drift terms. The initial values are N0 = 1, and K0 = π0/r0,

with the real user cost at r0 = 0.05.13

The technical progress functions, as described before, are also assumed to be

exponential with a deterministic and stochastic component (around a suitable nor-

malization point):

ΓK
t = ΓK

0 e

(
γ
K
t̃+εΓ

K

t

)

, ΓN
t = ΓN

0 e

(
γN t̃+εΓ

N

t

)

(14)

where ΓK
0 and ΓN

0 are initial values for technology which we also set to unity.

We then obtain equilibrium output from the normalized CES function:

Y ∗
t = Y ∗

0

[
π0

(
Kt

K0

e

(
γK t̃+εΓ

K

t

))σ−1

σ

+ (1− π0)

(
Nt

N0

e

(
γN t̃+εΓ

N

t

))σ−1

σ

] σ
σ−1

(15)

with Y ∗
0 = 1. This “equilibrium” output is then used to derive the real factor pay-

ments from the FOCs, to which we add a multiplicative shock:

rt =
∂Y ∗

t

∂Kt

= π0

(
Y ∗
0

K0
e

(
γK t̃+εΓ

K

t

))σ−1

σ
(
Y ∗
t

Kt

) 1

σ

eε
r
t (16)

wt =
∂Y ∗

t

∂Nt

= (1− π0)

(
Y ∗
0

N0
e

(
γN t̃+εΓ

N

t

))σ−1

σ
(
Y ∗
t

Nt

) 1

σ

eε
w
t (17)

Equations (16) and (17) imply that real factor returns equal their marginal product

times a multiplicative shock that temporarily deviate factor payments from equi-

librium. All shocks are assumed normally distributed iid: εΛt
iid
∼ N (0, σεΛ) ,Λ =

[K,N,ΓK ,ΓN , r, w]. These shocks are to be interpreted as unexpected factor mar-

ket shocks that lead to temporary deviations between marginal products and factor

prices. These unobserved shocks do not enter the first order conditions for profit

maximization and are hence uncorrelated with factor demands.

13For all the experiments we also simulated Kt and Nt such that they displayed deterministic
rather than stochastic trends. The main conclusions of the analysis did not change and the results
are available on request. Also, initial values for r0 and K0 do not affect the results if the system is
appropriately normalized.
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Because we need to ensure that our artificial data is consistent with national

accounts identities, we then obtain the “observed” output series using the identity:

Yt ≡ rtKt + wtNt (18)

Observed and equilibrium outputs differ because of these unobserved factor market

shocks introducing a temporary wedge between factor prices and marginal products.

We use the “observed” output series for estimation purposes. This ensures that,

regardless of the shocks, factor shares sum to unity, which has to be the case in this

artificial setting with absent markups.

Hence, the experiment consists of, first, simulating a time series of sample size

T for factor inputs, technical progress, and equilibrium output. Second, from these

we obtain factor payments and observed output. Finally, we estimate the normal-

ized system, (15)-(17), imposing Hicks-, Harrod- and Solow neutrality in technical

progress. We repeat these steps M times and analyze the possible biases arising from

mis-specification by looking at the difference between the true and estimated σ.14

Table 1 lists the parameters used to generate the simulated series. We fixed the

distribution parameter to 0.4.15 The substitution elasticity is set to a neighborhood

around Cobb-Douglas (0.9) and 0.9±0.4 (thus accommodating gross substitute and

complements). The labor supply drift (η) is set to 1.5% per year. The values for

capital stock drift (κ) will be discussed further below. We use values for technical

progress assuming a plausible summation of 2% per year; γN = 2% and γK = 0%

(Harrod-neutral case); γN = 0%, γK = 2% (Solow neutral); and γN = γK = γ =

1% (Hicks-neutral). Finally, we have two cases where technical progress is of the

general factor augmenting form.

The standard errors of the shocks are chosen so that they also generate series

with realistic behavior. We chose a value of 0.05 for the capital and labor stochastic

shocks. For the technical-progress parameters, we used a value of 0.01 when the tech-

nical progress parameter is set to zero, so that the stochastic component of technical

progress does not dominate. When technical progress exceeds zero we used a value of

0.05 so when technical progress is present it is also more volatile.16 Finally, for shocks

14Note, a slightly different way of setting up the Monte Carlo would have been to assume that a
constant fraction of output is devoted to investment, with the capital stock then being determined
by this investment as well as the assumed rate of depreciation. But this makes controlling and
isolating the different growth rates of technical progress (which is a key component of our exercise)
somewhat less transparent, and essentially imposes balanced growth from the outset.

15In practice, setting different values for π0 did not affect the results.
16For robustness purposes, we also replicated the results assuming no shock when technical

progress is zero and also equal shocks for both components. The results were not affected by
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to factor payments, we used the standard deviation of the de-trended real wages and

the standard deviation of demeaned user cost of capital for the US economy. These

take values of 0.05 and 0.1 respectively, reflecting the larger volatility of the real user

cost.

We used a sample size T = 50 (years).17 Also, the nonlinear system estimator used

requires initial guesses for the parameters, which we set to their true value following

Thursby (1980).18

The choice of the drift parameter for capital, κ, is important given our emphasis

on settings where the economy does not deviate in an evident way from the case

of stable factor income shares. Hence, κ is chosen such that we exclude unrealistic

income share trends. We can do this by looking again at the expression for the

capital-to-labor income share under competitive profit maximization,

Θt =
rtKt

wtNt

=
π0

1− π0

(
ΓK
t Kt/K0

ΓN
t Nt/N0

)σ−1

σ

Accordingly, if σ 6= 1, capital- and labor-augmenting technical change can lead to

ever increasing or decreasing factor shares for given factor proportions. Hence, for

given rates of technical progress, to obtain approximately constant shares, we set the

drift in K in such a way that we avoid any counter-factual trends in shares.

One simple mechanism to achieve this, following our earlier discussion, is to allow

r to absorb some fraction, α, of the trend in capital augmentation (assuming ΓK
0 =

ΓN
0 = 1). Hence, we use the following deterministic rule for r:

rdett = r0e
α(γK ·t̃) (19)

Now with (19), the FOC of capital results in the following relation for the capital

income share,

rdett Kt

Yt

= π0e
(1−α)(σ−1)(γK ·t̃) (20)

Equation (20) shows that, with the constant user cost, i.e. when α = 0, the

capital augmenting technical change coupled with non-unitary substitution elasticity

results in continuously changing factor income shares. However, with α → 1 the

these changes.
17Using values of 100 and 30 led to very similar results, although, as expected, the range of

estimated values for the parameters increased as we decreased the sample size.
18This facilitates comparisons across specifications since we eliminate the effect of arbitrary start-

ing values on results.
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larger part of this trend is absorbed by the trend in the user cost. With α = 1 factor

income shares remain constant independently from the sizes of σ and γK . Hence, we

can choose α in the unit interval so that factor shares and the real user cost do not

display trends that are grossly counter factual.

Once α is chosen, for given technology parameters, we obtain rdett from (19).

Given an exogenous law of motion for N , the CES function and (20) solve for K

and Y . Using the value of K from this recursive system, we obtain the average rate

of growth of K that we then use as the value for κ in our stochastic DGP. This is

the value compatible with factor shares and real interest rates that do not display

counter-factual trends. Given that parameter α controls the rate of change of rdett , a

sufficiently small value can be set to mimic empirically-relevant paths for r and hence

K/Y and Θ. In our experiments, we set α = 0.5.

The functional construct of (19) is not without an empirical counterpart. As

we know, the real user cost comprises the nominal interest rate (i.e., the risk-free

government bond rate or firms’ market rates), inflation, capital depreciation, taxes,

capital gains etc. All these are time-varying (Figure 5 plots our measure of the user

cost series for the US). Thus, if there is technical change which is not solely Harrod

neutral alongside approximately constant factor shares, factor payments must be

compensating.

Simulation results

Median estimates

Tables 2 to 4 report the Monte Carlo results when the data are generated according

to the {γK , γN } and {σ} combinations given in Table 1 but then estimated for the

respective cases of Hicks-, Harrod- and Solow neutrality. In the tables, we report

the median parameter estimates across the 5,000 draws for the substitution elasticity

(and its percentiles) and γi.

Where the imposed technical change corresponds to the true DGP (labeled “bench-

mark” in the tables), the parameters are very precisely estimated, reflecting the power

of the normalized system. However, in non-benchmark gross complements cases (i.e.,

the first two columns in each table), systematic upwards bias is always found, i.e.,:

σm − σ {0.5, 0.9} > 0

The gross-substitute, non-benchmarks cases are less clear cut. Whilst, in all but

one case (relating to Harrod neutrality, Table 3) a gross substitutes production func-

tion is correctly identified, in all cases but two (corresponding to Hicks neutrality)
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there is a downward bias:

σm − σ {1.3} < 0, with σm ≈ 1

The technical progress parameters also display substantial biases in non-benchmark

cases. These biases tend to be upwards for the Solow neutral specification, and down-

wards for the other two cases.

Distributions

The distribution of the substitution elasticities across the 5,000 draws shed further

light on these results (Figures 1, 2 and 3). Regarding the σ = 0.5 case, we see that

the general factor augmenting specification is always tightly distributed around the

true value of the substitution elasticity. The Solow neutral specification, though,

yields a bimodal distribution for the two cases in which technical progress is net

labor-augmenting. To a smaller degree, the Harrod-neutral specification also shows

bimodality in two cases. The Hicks neutral specification is almost flat except in the

benchmark case of Hicks-neutral augmentation. This is reflected in Table 2, where

the 10% and 90% percentiles show a very considerable variation. The distributions

also tend to be more skewed when the specified model differs from the true DGP.

The σ = 0.9 case is interesting given its proximity to Cobb-Douglas, and thus the

heightened relevance of the issues raised in Section III. Note that the densities are

now more symmetric and display limited dispersion, and in several cases there is a

clear bias towards Cobb-Douglas at the median. Consistent with the σ = 0.5 case

above, most median estimates exhibit upward biases. As discussed earlier, a unitary

substitution elasticity is a strong attractor: pulling estimates to the log-linear form

captures the broadly balanced growth characteristics of the simulated data minimizing

the cost of the imprecise technical change component. Recalling approximation (7),

σ̂ → 1, neutralizes the effect of quadratic curvature in capital deepening and technical

bias, and minimizes the weight given to the individual technical progress components.

Furthermore, bi- or multi-modality is more severe than in the σ = 0.5 (or indeed σ =

1.3) case, even so for the cases where both forms of technical change are permitted;

thus, even the factor-augmenting specification shows a (second) peak around unity in

all cases.

For σ = 1.3 the distributions are, by contrast, much flatter. The factor augmenting

specification, despite capturing very well the true values of σ, also tend to display a

small local maximum around a value of one. Overall there is always one specification

for which there is a clear bias towards unity. The only case of an upwards bias happens
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with the Harrod-neutral specification for the pure capital augmenting case.

Our simulation exercises were necessarily stylized. In particular, we analyzed an

environment of balanced or near balanced growth. This has several advantages. First,

it corresponds to situation common to many developed countries (over reasonably-

sized samples). Second, it places our exercises within a familiar context, making

the interpretation and motivation of results more transparent. However, third, it

in fact makes for a particularly challenging exercise since estimates – framed in the

neighborhood of a balanced growth path – may degenerate to unitary elasticities

and overlook or strongly bias the nature of technical change. Our next step is to

analyze how these potential biases affect estimates of the supply-side parameters and

estimates of TFP growth for the US economy.

V Supply Side Estimation of the US Economy

Data

We use the U.S. annual national income and product accounts (NIPA) data released

by the Bureau of Economy analysis (BEA) for the private non-residential sector over

the period 1952 to 2009. Output (at current and constant prices) is evaluated at

factor cost, i.e. net of indirect taxes minus subsidies. Hence, current price private

non-residential output equals gross domestic product minus taxes on production and

imports less subsidies, general government value added and gross housing value added.

In calculating the (chained dollars) constant price output the constant price gross

domestic product is scaled down in proportion of to the base year’s (2005) indirect

tax content, of which constant price general government and gross housing value

added are subtracted.

Employment is defined as the sum of self-employed persons and the private sector

full-time equivalent employees (both from NIPA tables). NIPA tables do not re-

port the income of proprietors (self-employed) divided into labor and capital income.

Therefore, in calculating labor income we follow a common practice (e.g., Klump et al.

(2007)), use the private sector compensation of employees as a shadow price of labor

of self-employed workers. Accordingly, total labor income equals the private sector

compensation of employees scaled up by the labor share of self-employed workers.

For capital we use the quantity index of net stock of non-residential private cap-

ital from the BEA fixed asset tables. Capital income and the implied measure of

the user cost are calculated from the accounting identity of non-residential private

sector conditional for an assumed 10% markup (which is a common benchmark in
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macroeconomic models, e.g., Clarida et al. (1999)).19

Figure 4 presents some variables of interest. Against the balanced-growth path

hypothesis the capital-output ratio appears to show a trend over the sample period.

An ADF test does not reject the null of non stationarity of the capital-output ratio.

This trend expresses itself also in a trend difference between average labor productiv-

ity (output-labor ratio) and capital intensity (capital-labor ratio). The share of labor

income shows sizeable annual variation. Although a sort of inverted U (or double U)

trend profile cannot be observed, an ADF test rejects the null of non stationarity of

the labor income share. Over the whole sample, the trends of real wages and labor

productivity are quite close to each other although, most of the time, the real wage

index exceeds the labor productivity index. The real user cost looks stationary until

early 1990s but thereafter is shows a clear upward trend reflecting the return of the

labor (and capital) income share back to the level where it was in the early part of the

sample period. Hence, in terms of an ADF test the real user cost is non-stationary.

We also discover that, in line with our discussion in section 4.1, the actual data evo-

lution of the real user cost contributes towards retaining the stationarity of factor

income shares.

Specification

Given the practical existence of a markup over factor costs in the data, the estimated

model includes an extra parameter µ = 0.1. This captures an average markup which,

consistent with our data construction, we restrict to 10%.

Also, with real data, to diminish the size of stochastic component in the point of

normalization we prefer to define the normalization point in terms of sample averages

(geometric averages for growing variables and arithmetic ones otherwise). The non-

linearity of the CES function, in turn, implies that the sample average of production

need not exactly coincide with the level of production implied by the production func-

tion with sample averages of the right hand variables. Following Klump et al. (2007),

we therefore introduce an additional parameter ζ whose expected value is around

unity. Hence, we define Y0 = ζȲ , K0 = K̄, N0 = N̄ ; t0 = t̄ and π0 = π where the

bar refers to the appropriate type of sample average. The estimated system, allowing

for factor augmentation, is then,

19The benefit of this approach is that we do not have to explicitly calculate the user cost, which
has long been recognized as being a complex exercise and with scope for large measurement error.
E.g., Jorgensen and Yun (1991). However, for robustness, we also used a user cost calculation and
let the average markup to be freely estimated. This did not change substantially the results.
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(
eγN (t−t̄)N

N̄

)σ−1

σ

]
(23)

For the estimation of the system we fix parameter π̄ to its sample average, which

is one of the empirical advantages of normalization. We also obtained the results

estimating π̄ freely, but it made minimal difference to the other relevant parameters.

The system is then estimated using a variety of methods to account for cross-

equation error correlation and regressor endogeneity. We used Nonlinear Seemingly

Unrelated Regression (NLSUR) methods, Nonlinear 3-Stage Least Squares (NL3SLS),

Fully Information Maximum Likelihood (FIML), and Generalized Method of Moments

(GMM) methods. All of these four estimations are implemented accounting for cross-

equation parameter restrictions.

Estimation results

The results of the four estimation methods for the factor augmenting specification

of the system are reported in Table 5.20 Table 6 reports the results of the Hicks-,

Harrod-, and Solow-neutral specifications for the case of the NLSUR estimator. We

report only this case to save space as the rest of the estimation methods encoun-

tered essentially the same patterns. Table 5 also reports p-values for tests of the

null hypothesis of a unitary σ. The following rows display p-values for Wald tests

of restrictions on technical progress to statistically discriminate between the different

nested specifications. We also report ADF and Phillips-Perron (PP) unit root resid-

ual tests.21 Given that we do not know the distribution of the statistic under the

null, we use bootstrapped p-values following and Chang and Park (2003). For the

20Note we conducted a number of robustness and sensitivity exercises. Initial conditions of all
parameters were varied around plausible supports with practically no impact on final results in every
case. Plus, for the HAC standard errors we tried both Bartlett and Quadratic kernel options and
various choices for bandwidth selections, again with negligible difference on results. Details available.

21The PP tests are robust to serial correlation by using a heteroskedasticity- and autocorrelation-
consistent covariance matrix estimator. We used the Zρ version of this test. We also used KPSS
residual tests for stationarity. The results (not reported) supported stationarity in the majority of
the cases.
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instruments-based estimators, we used first lags of the log of the user cost and real

wage, normalized employment, capital stock and log-output, and the time trend.

The results in Table 5 show similar results for the estimated value of σ that

ranges from 0.4 (FIML) to 0.7 (3SLS). Manifestly, these estimates are well below and

significantly different from unity. Estimates of technical progress coefficients are very

stable across estimation methods. Labor-augmenting technical progress is estimated

to be around 2% per year, whereas capital-augmenting technical progress is 0.4%

per year in most of the cases.22 However, we can appreciate the large value for the

Solow-augmenting specification: since capital attracts a below half weight in capital

share the value of γK must be suitably high to match movements in TFP. Overall,

technical progress is net labor-saving, but with non-negligible capital-augmenting

technical progress. The scale parameter, ζ , is practically indistinguishable from unity

as expected. In all cases, the null of non-stationarity for the residuals of each equation

is rejected according to the bootstrapped p-values.

Regarding other specifications, we see that the σ estimates are substantially dif-

ferent from those obtained with general factor augmentation. The point estimate of

σ with Hicks and Solow neutrality is indistinguishable from one. The Harrod-neutral

specification also yields a higher estimate for σ, although still significantly below

unity. These findings are consistent with those from the simulation experiment and

our previous analytical results.

The Hicks specification biases the estimate of the substitution elasticity towards

one. The Solow neutral specification also leads to a sharp bias towards Cobb-Douglas.

Again, looking back at the results in Table 4 this is consistent with our simulations,

which showed that the more the DGP deviates from Solow neutrality, the stronger

the bias towards unity. In the case of the Harrod-neutral specification which, together

with Hicks-neutral, is most commonly used for estimation, we observe that the results

are biased upwards. This bias is consistent with that found in the simulation experi-

22One of our referees suggested that we consider the capital input series used by the BLS in its
multifactor productivity release, rather than the BEA non-residential private capital stock. Doing
so, generates relatively similar results: we find an elasticity of 0.71 rather than 0.69, and a labour
augmenting term of 0.02 which is as before. The difference lies in the rate of growth of capital
augmentation. We find this to be 0.004; under this alternative capital stock definition now we find it
to be -0.011. The difference can be related to the greater weight of capital equipment (particularly
IT equipment) and smaller weight of long-lived structures in the BLS series compared to ours. This
resulted in (relative to our series) a faster growth rate of capital stock, especially in the later part of
the sample and an associated slower development of capital rental price. A negative rate of technical
progress therefore is by no means un-interpretable in the context of this alternative series. Given
the reduction in user cost, capital becomes - to use the language of the directed technical change
literature - the less scarce factor and accordingly, with such factor abundance, leaves firms with little
incentive to focus technical improvements on the abundant factor.
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ment with positive values for capital-augmenting technical progress. As discussed in

section III, the Harrod-neutral specification could results in upward biases if the true

σ is below one.

Finally, the Wald tests for the restrictions implied by specific forms of factor

augmentation, always reject the restrictions in favor of the general factor augmenting

specification. Hence, our results support the use of a more general specification for

technical progress and confirm our claim that mis-specification of technical progress

can lead to important biases in the estimated substitution elasticity.

Figure 5 plots the model residuals for the four specifications for the NLSUR esti-

mator. For the user cost, the four models yield similar fit except towards the end of

the sample where both the factor augmenting and the Harrod-neutral specifications

capture better the increase in the user cost. Importantly, the fit for output appears

to be almost identical for the four specifications. The main difference emerges in the

way the models fit wages, with the factor augmenting specification displaying larger

fluctuations.23 Of course, even if the three models yield similar fit for variables such

as output, the implications of the different estimates of the substitution elasticity and

technical progress to explain the evolution of factor shares are still different. As we

will now see this is also true for TFP growth.

TFP estimates

We obtained estimates of TFP growth arising from (6) and the simplified approxi-

mations (11) and (12).24 Figure 6 plots the NLSUR estimates of TFP separately for

each specification (alongside capital deepening). Results using the other estimators

yielded similar conclusions. The Hicks-neutral specification, necessarily yields con-

stant growth of TFP and, hence, is not plotted separately. The rest of specifications

will always yield increasing or decreasing TFP growth (except when linear weight,

(12), is used). This can be seen in expressions (7) and (11), whose rate of growth is

going to be trended owing to the quadratic component. Whether the trend is positive

or negative depends on parameter “a”, whose sign is a function of whether σ ≷ 1

(except in the Hicks case when the trend is zero).

The simple form excluding capital deepening applies wrong trends to the growth

rate in TFP in the context of factor-augmenting and Harrod-neutral specifications.

23Interestingly, this is a result that Fisher et al. (1977) also obtained in a simulation experiment
analyzing production function aggregation. Despite many specifications providing a good fit for
output, wages proved much more sensitive to the estimated values of σ.

24The Kmenta approximations (7)-(10) and the exact residual method (6) yield practically iden-
tical TFP and are not reported for brevity.
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Under the Solow neutral specification, however, it works quite satisfactorily. We may

conclude that the inclusion of capital deepening is important to capture correctly

nonlinearities in TFP growth rates. It is interesting to see that especially our favored

factor-augmenting case implies an acceleration in TFP growth from the second half

of the 1990s until the mid-2000s.25 This is compatible with the then observed accel-

eration of productivity growth (e.g., Basu et al. (2003) and Jorgenson (2001)). The

TFP growth spike at the end of the sample simply reflects the rapid cyclical drop

in employment due to the financial crisis. Both the factor augmenting and Harrod

neutral specifications display very similar TFP growth patterns. However, because

of the lower estimate of σ, the residual based estimate in the factor-augmenting case

displays more pronounced fluctuations and a sharper trend increase. From our per-

spective of specification bias, it is worth noting that the differences in annualized

TFP growth towards the end of the sample are substantial.

Progress: what have we learnt?

Pulling together the salient points arising from the analytical, simulation, and em-

pirical estimates, we can extract a series of important lessons about estimation and

analysis of supply-side systems:

Implications of a priori choices on the nature of technical change

Estimation of the substitution elasticity can be substantially biased if the form of

technical progress is mis-specified. For some parameter values, when factor shares

are relatively constant, there could be an inherent bias towards Cobb-Douglas, but

this is not the only possible direction of bias.

Our empirical results show that the estimated substitution elasticity tends to be

significantly lower using a factor augmenting specification and is well below one. We

were able to reject Hicks-, Harrod- and Solow-neutral specifications in favor of general

factor augmentation with a non-negligible capital-augmenting component.

Beware Cobb-Douglas

Situations of near balanced growth may lead to estimation erroneously favoring the

unitary elasticity case. This is clear in some cases such as Hicks Neutrality where

25This is consistent with the idea that investment in IT led to an economy-wide productivity
increase. In our model, however, we do not separate types of capital and so cannot infer anything
about the specific source of this acceleration. However, as far as this capital deepening is related
with investment in new technologies, our results seem to support the contention that there was a
productivity acceleration in the US from the mid-1990s until the early 2000s.
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a unitary bias shrinks the importance of trended capital deepening. Similarly, when

seen through the lens of the augmented Kmenta approximation, a unitary elasticity

shrinks the impact of quadratic curvature in capital deepening and biased technical

change. Furthermore, the MC distributions tended to show a separate mode for the

unitary elasticity case, particularly if initial conditions were set within that neighbor-

hood.

There is no simple solution to degenerate Cobb-Douglas estimates, other than

some of the practices followed here: discriminating on the basis of global statisti-

cal criterion among competing specifications; varying initial conditions and checking

for local maxima; inspecting the great ratios to check for stationarity; and hints in

the data for the potential presence of capital-augmenting or non-constant technical

progress components (e.g., see the discussion in Klump et al. (2007)).

Aggregate studies favoring Cobb-Douglas, though, are far rarer than its theoret-

ical dominance might suggest.26 But there is still a tendency in the literature to

report high near-unity substitution elasticities and neglect the role of biases in tech-

nical change. Given how useful the analysis of biased technical change has proved

(Acemoglu (2009)) in accounting for growth experiences, this is clearly an error of

non-trivial proportion.

The fit of the production function vs. the fit of factor returns

Our empirical results implicitly make an important, even startling, point. The quite

similar production-function residuals suggest that the goodness of fit of production

functions appears relatively robust to mis-specified technical neutrality assumptions

(an early indication of this was given by Willman (2002)). The reason is that mis-

specification of technical change under a CES production function implies compen-

sating bias in the estimate of the elasticity of substitution.

However, an important qualification (echoing that of Fisher et al. (1977)) is that

using an “incorrect” production function may simply shift estimation failures else-

where. In our case, this arose most clearly in factor returns equations where there is

considerable variation in the fit across specifications.27

26See, for instance, Table 1 of León-Ledesma et al. (2010).
27This is what Christoffel et al. (2011) report for their macro-econometric forecasting and sim-

ulation model, the NAWM which employs an aggregate Cobb-Douglas production function: good
forecasting performance for many real variables (including the output gap) but large, persistent
errors in forecasting real wages and the labor share.
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TFP growth

The dispersion of TFP estimates mirrors that of the real wage. Monitoring the level

and sources of TFP growth is a key application of the production function literature

and a key input into policy debates. Recalling Figure 4, we see an acceleration

in US labor productivity from the mid-1990s until the mid-2000s driven by capital

deepening in combination with technical change. And yet (Figure 6) these patterns

are obscured under Harrod- and Solow-neutral specification – and disappear under

Hicks-neutrality –.

There is an important lesson to be drawn here. Given the discussions in Sections II

and V, we know that whether the substitution elasticity is above or below unity mat-

ters for the transmission of capital deepening and factor-augmenting technical change

for TFP’s evolution. Getting the substitution elasticity right is hence necessary to

correctly estimate TFP growth.

VI Conclusions

Balanced growth requires stringent conditions on the structural parameters driving

the production function and factor payments. Given that, we studied the effect of

imposing specific forms of technical progress neutrality for estimates of key supply

side parameters, such as the substitution elasticity.

Specifically, we studied how estimates of the elasticity of factor substitution and

TFP growth are affected by imposing mis-specified a priori restrictions on the factor

saving nature of technical change in a context where an economy may depart from

a BGP. We showed analytically that, when the true nature of technical progress is

factor-augmenting, imposing Hicks-neutrality leads to biases towards Cobb-Douglas.

Imposing Harrod-neutrality would generally lead to upward biases in the estimated

elasticity if the true elasticity is below unity and downward biases if above unity.

Because TFP growth approximations from CES production function estimates depend

on the substitution elasticity, these biases will also be reflected in biases in estimated

TFP growth. We carried out an extensive simulation exercise that supports these

conclusions and showed that the biases can be substantial in terms of magnitude.

We then estimated a CES supply side system for the US economy and found that

many of the previous lessons found an echo in empirical estimates. Furthermore,

we could reject the Hicks-, Harrod- and Solow-neutral specifications in favor of a

general factor augmenting one. We found that capital-augmenting technical progress

is non-negligible (0.4% per year). Importantly, the substitution elasticity is found to

be substantially below one, emphatically rejecting Cobb-Douglas. We also provide
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evidence that the implied TFP growth estimates for the various specifications used is

substantially different. Our work thus provides insights into production and supply-

side estimation and design in balanced-growth based macroeconomic frameworks.
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Tables and Figures

Table 1

Parameter values for the Monte Carlo

Parameter Description Values

π0 Distribution parameter 0.4
σ Substitution elasticity 0.5, 0.9, 1.3
γK K-Augmenting Technical Progress* 0.00, 0.005, 0.01, 0.015, 0.02
γN N-Augmenting Technical Progress* 0.02, 0.015, 0.01, 0.005, 0.00
η Labor growth rate 0.015
κ Capital growth rate See text

Y ∗
0 = N0 Normalization values for Y and N 1
K0 Normalization value for K π0/r0
r0 Normalization value for the user cost 0.05
α Capital Trend Absorption in r 0.5

σεNt
, σεKt

Std. Error, N and K DGP Shock 0.05

σ
εΓ

K,N

t

Std. Error, N and K-Augmenting 0.01 for γK,N = 0;

technical progress shock 0.05 for γK,N 6= 0
σεwt

Std. Error, Real Wage shock 0.05
σεrt

Std. Error, Real Interest Rate shock 0.1
T Sample Size 50
M Monte Carlo Draws 5,000

Notes: “*” γN + γK = 0.02.
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Table 2

Monte Carlo results. Hicks-neutral specification

σ = 0.5 σ = 0.9 σ = 1.3
γK = 0.00, γN = 0.02

σm 0.840 0.976 1.061
10% : 90% 0.656 : 1.316 0.894 : 1.099 0.897 : 1.1946

γm 0.012 0.012 0.012
γK = 0.005, γN = 0.015

σm 0.647 0.942 1.173
10% : 90% 0.484 : 0.848 0.840 : 1.065 1.008 : 1.360

γm 0.011 0.011 0.011
Benchmark γK = γN = 0.01

σm 0.511 0.909 1.300
10% : 90% 0.465 : 0.585 0.806 : 1.042 1.091 : 1.549

γm 0.010 0.010 0.010
γK = 0.015, γN = 0.005

σm 0.614 0.901 1.424
10% : 90% 0.375 : 0.823 0.786 : 1.058 1.050 : 1.902

γm 0.008 0.009 0.009
γK = 0.02, γN = 0.00

σm 0.849 0.945 1.444
10% : 90% 0.491 : 1.460 0.782 : 1.097 0.909 : 2.400

γm 0.008 0.008 0.008

Notes: Superscript m denotes median values.
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Table 3

Monte Carlo results. Harrod-neutral specification

σ = 0.5 σ = 0.9 σ = 1.3
Benchmark γK = 0.00, γN = 0.02

σm 0.511 0.900 1.288
10% : 90% 0.477 : 0.553 0.813 : 1.009 1.097 : 1.555

γm 0.020 0.020 0.020
γK = 0.005, γN = 0.015

σm 0.572 0.912 1.260
10% : 90% 0.432 : 0.722 0.810 : 1.020 1.026 : 1.666

γm 0.017 0.019 0.018
γK = γN = 0.01

σm 0.709 0.947 1.161
10% : 90% 0.426 : 0.904 0.815 : 1.068 0.917 : 1.829

γm 0.016 0.017 0.016
γK = 0.015, γN = 0.005

σm 0.850 0.987 1.023
10% : 90% 0.552 : 1.225 0.857 : 1.112 0.812 : 1.888

γm 0.015 0.015 0.015
γK = 0.02, γN = 0.00

σm 0.970 1.013 0.940
10% : 90% 0.750 : 1.997 0.922 : 1.154 0.756 : 1.776

γm 0.013 0.013 0.013
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Table 4

Monte Carlo results. Solow-neutral specification

σ = 0.5 σ = 0.9 σ = 1.3
γK = 0.00, γN = 0.02

σm 0.805 1.005 1.004
10% : 90% 0.710 : 0.966 0.962 : 1.061 0.929 : 1.062

γm 0.022 0.030 0.030
γK = 0.005, γN = 0.015

σm 0.799 0.994 1.039
10% : 90% 0.676 : 0.958 0.946 : 1.059 0.945 : 1.107

γm 0.026 0.028 0.027
γK = γN = 0.01

σm 0.750 0.977 1.089
10% : 90% 0.569 : 0.929 0.917 : 1.047 0.990 : 1.167

γm 0.025 0.025 0.024
γK = 0.015, γN = 0.005

σm 0.621 0.950 1.174
10% : 90% 0.490 : 0.768 0.876 : 1.042 1.057 : 1.271

γm 0.020 0.023 0.022
Benchmark γK = 0.02, γN = 0.00

σm 0.517 0.914 1.307
10% : 90% 0.467 : 0.576 0.822 : 1.022 1.179 : 1.462

γm 0.020 0.020 0.020
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Table 5

Estimates of Factor-Augmenting Production Technology System, 1952-2009

NLSUR FIML GMM 3SLS

ζ 1.001∗∗∗ 0.999∗∗∗ 1.003∗∗∗ 0.999∗∗∗

σ 0.694∗∗∗ 0.439∗∗∗ 0.720∗∗∗ 0.721∗∗∗

γK 0.004∗∗∗ 0.005∗∗∗ 0.004∗∗∗ 0.002∗∗

γN 0.020∗∗∗ 0.020∗∗∗ 0.020∗∗∗ 0.020∗∗∗

Tests & Restrictions

σ = 1 [0.000] [0.000] [0.000] [0.000]
Hicks : γK = γN [0.000] [0.000] [0.000] [0.000]
Harrod : γN = 0 [0.000] [0.000] [0.000] [0.030]
Solow : γK = 0 [0.000] [0.000] [0.000] [0.000]
J − test – – [0.239] [0.499]
ADFr, PPr [0.005], [0.001] [0.006], [0.000] [0.006], [0.001] [0.004], [0.001]
ADFw, PPw [0.006], [0.003] [0.013], [0.017] [0.008], [0.002] [0.007], [0.002]
ADFY , PPY [0.009], [0.031] [0.010], [0.030] [0.010], [0.022] [0.012], [0.024]

Notes: ***, ** and * respectively indicate the 1%, 5%, and 10% level of
significance using robust standard errors. “–” denotes not applicable. The p-values for
the residual ADF and Phillips-Perron (PP) tests were obtained from 2,500 bootstrap
draws.
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Table 6

Estimates by Neutrality Assumption, 1952-2009

Factor-Aug. Hicks Harrod Solow

ζ 1.001∗∗∗ 1.001∗∗∗ 1.001∗∗∗ 1.000∗∗∗

σ 0.694∗∗∗ 0.997∗∗∗ 0.841∗∗∗ 1.004∗∗∗

γ – 0.017∗∗∗ – –
γK 0.004∗∗∗ – – 0.087∗∗∗

γN 0.020∗∗∗ – 0.021∗∗∗ –
Tests & Restrictions

σ = 1 [0.000] [0.258] [0.000] [0.186]
ADFr, PPr [0.005], [0.001] [0.005], [0.002] [0.005], [0.000] [0.004], [0.002]
ADFw, PPw [0.006], [0.003] [0.010], [0.037] [0.004], [0.001] [0.004], [0.002]
ADFY , PPY [0.009], [0.031] [0.013], [0.002] [0.008], [0.032] [0.014], [0.027]

Notes: All estimations reported using NLSUR. See also notes to Table 5.
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Figure 1. Distribution of estimated σ. True σ = 0.5

30



FACTORAUG HICKS HARROD SOLOW

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

0.0

2.5

5.0

7.5

10.0

12.5

(a) γk = 0.00, γN = 0.02

FACTORAUG HICKS HARROD SOLOW

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

0.0

2.5

5.0

7.5

10.0

(b) γk = 0.05, γN = 0.015

FACTORAUG HICKS HARROD SOLOW

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

0

1

2

3

4

5

6

7

8

9

(c) γk = 0.01, γN = 0.01

FACTORAUG HICKS HARROD SOLOW

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

0

1

2

3

4

5

6

(d) γk = 0.02, γN = 0.00

Figure 2. Distribution of estimated σ. True σ = 0.9
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Figure 4. Key variables for the US economy
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Figure 5. Residuals for the user cost, Wage and Output equations: four specifications
(NLSUR)
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Figure 6. Total Factor Productivity and K/N Ratio Growth (NLSUR)
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