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ABSTRACT 

We describe the PCN programming system, focusing on those features designed to 

improve the productivity of scientists and engineers using parallel supercomputers. 

These features include a simple notation for the concise specification of concurrent 

algorithms, the ability to incorporate existing Fortran and C code into parallel applica

tions, facilities for reusing parallel program components, a portable toolkit that allows 

applications to be developed on a workstation or small parallel computer and run 

unchanged on supercomputers, and integrated debugging and performance analysis 

tools. We survey representative scientific applications and identify problem classes for 

which PCN has proved particularly useful.© 1992 by John Wiley & Sons, Inc. 

1 INTRODUCTION 

After many years as academic curiosities, com

puters combining hundreds or thousands of pow

erful microprocessors have overtaken vector pro

cessors and become essential tools for scientists 

and engineers. Unfortunately, the programming of 

these parallel supercomputers is still immensely 

time consuming. Frequently, many months of ef

fort are required to develop, validate, and tune 

parallel codes; apparently minor algorithmic 

changes can take weeks. These factors severely 

limit the productivity and creativity of those using 

these advanced machines. 

A clear need exists for tools that reduce the cost 

of program development to more manageable lev

els. Good software engineering practice tells us 

that these tools should possess three characteris-
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tics: (1) a notation that permits us to program 

smarter, by lessening the gap between our con

ception of a problem solution and its eventual im

plementation; (2) support for code reuse that al

lows us to program less, by reusing old code when 

solving new problems; and (3) a toolkit that per

mits us to program faster, by reducing the effort 

required to find errors, adapt programs to differ

ent architectures, etc. 

In this article, we introduce PCN, a parallel 

programming system with these characteristics. 

PCN has been developed over the past 3 years at 

Argonne National Laboratory and the California 

Institute of Technology (Caltech). It features a 

simple concurrent language (Program Composi

tion Notation), facilities for reuse of sequential 

and parallel code, and a toolkit supporting compi

lation, debugging, and performance analysis. Im

portant benefits of the approach include the 

ability to rapidly prototype complex concurrent 

algorithms, particularly those involving dynamic 

communication or computation structures; appli

cation portability, which permits programs devel

oped on a workstation to move to networks of 
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workstations and to parallel supercomputers with 

little change; the ability to incorporate existing 

Fortran and C code into parallel programs; and 

support for the reuse of parallel program struc

tures in different applications. 

PCN is not the solution to all programming 

problems. A disadvantage for some programmers 

is the need to learn a new programming language. 

Others are uncomfortable with a high-level ap

proach, preferring to program parallel computers 

at the lowest level possible. In addition, the PCN 

system is research software and, as such, not yet 

as sophisticated as conventional sequential pro

gramming systems. Nevertheless, it has already 

been used successfully to develop applications 

and to teach parallel programming to undergrad

uates. We expect it to prove useful to many users 

and for many purposes. 

Rather than an academic exposition of PCN, 

this article provides an informal introduction to its 

capabilities and an analysis of the experiences of 

those using it to address substantial programming 

problems. By conveying the flavor of the approach 

and indicating the classes of problems for which it 

appears particularly appropriate, we hope to stim

ulate our readers to experiment with PCN in their 

own applications. The latest version of both the 

software and detailed documentation can be ob

tained by anonymous FTP from the directory 

pub/pen at info. mcs. anl. gov. 

The rest of this article is divided into five parts. 

These provide an overview of the approach, a de

scription of the programming language, a discus

sion of the techniques used to reuse existing code, 

a description of the programming tools, and a sur

vey of representative applications. 

2APPROACH 

The focus of the PC:l\' approach to parallel pro

gramming is the development of programs by the 

parallel composition of simpler components, in 

such a way that the resulting programs preserve 

properties of the components that they compose. 

In particular, deterministic compositions of deter

ministic components should themselves be deter

ministic: the result of such computations should 

never depend on the order in which components 

are scheduled for execution. Similarly, the result 

computed by a program should be independent of 

how its components are mapped to processors. 

This compositional property is critical to both the 

development of robust applications and the reuse 

of existing code. 

The PCN language is carefully designed to real

ize compositionality. In particular, it requires that 

concurrently executing components interact by 

reading and writing special single-assignment or 

definitional variables. A definitional variable is 

initially undefined and can be assigned at most a 

single value. If a component attempts to read an 

undefined variable, execution of that component 

is suspended until the variable is defined. Hence, 

the result of a computation can never depend on 

the time at which read and write operations occur. 

This focus on parallel composition and defini

tional variables leads to the following approach to 

parallel program design. A problem is decom

posed into a large number of subproblems and a 

process is created for each subproblem. PCN code 

is written to organize the exchange of data be

tween these processes and to coordinate their exe

cution. Existing software cells and templates may 

be integrated into the program; these define sets 

of processes that implement commonly used oper

ations such as parallel reductions or transforms. 

Finally, the mapping of the processes to the 

processors of a parallel computer is specified; 

this can alter performance but not the result 

computed. 

The PCJ\" compiler is optimized for efficient ex

ecution of programs that create many processes 

and that communicate and synchronize via defi

nitional variables. It ensures that process creation, 

scheduling, termination, and migration are 

extremely inexpensive operations: typically a few 

tens of instructions. (Process migration incurs an 

additional cost proportional to the size of a pro

cess's data.) Read and write operations on defini

tional variables are implemented in terms of 

pointer operations within a single address space 

and message passing between address spaces. 

Processes are scheduled for execution so as to 

overlap computation and communication. Data 

structures are created dynamically and deallo

cated either when the process in which they are 

defined terminates (in the case of local variables) 

or when they are no longer accessible (in the case 

of definitional variables shared by several pro

cesses). 

Components composed by PCN programs can 

be written in PCN or in sequential languages such 

as Fortran and C. In the latter case, existing code 

and compiler technology can be reused. Programs 

that do not use Fortran common or C global data 



can be composed in exactly the same way as PCJ\' 

programs. If programs do use common/ global 

data, then certain restrictions apply, as the use 

of common/ global data violates the requirement 

that programs only communicate via definitional 

variables. This issue is discussed in Section 4.1. 

3 NOTATION 

Programming is rarely easy, but an appropriate 

notation can make it less difficult. As Whitehead 

[ 1] observed of mathematics: "By relieving the 

brain of all unnecessary work, a good notation sets 

it free to concentrate on more advanced prob

lems." In parallel programming, a good notation 

should express concurrency, communication, 

synchronization, and mapping straightforwardly 

and clearly. It should also discourage nondeter

minism, just as a mathematical notation avoids 

ambiguity. 

The programming notation used in the PCN 

system is Program Composition Notation (PCN). 

PCN extends sequential programming with two 

simple ideas-concurrent composition and sin

gle-assignment variables-and defines how these 

ideas interact with conventional sequential con

structs [2, 3]. The PCN system also incorporates 

two additional constructs-virtual topologies and 

port arrays-that allow the definition and reuse of 

parallel program structures called cells and tern

plates [ 4]. 

Our description of the PCN language is divided 

into five parts. These describe in turn the con

structs used to specify concurrency, communica

tion and synchronization, nondeterminism, map

ping, and composition of process ensembles. 

3.1 Concurrency 

Syntax is similar to that of the C programming 

language. A program is a set of procedures, each 

with the following general form (k,l ~ 0). 

name (argl, 

declaration1 ; 

block 

, argk) 

; declaration1 ; 

A block is a call to a PCN procedure (or to a 

procedure in a sequential language such as For

tran or C), a composition, or a primitive operation 

such as assignment. A compositiOn is written 

{ op block1 , , blockJ, m > 0, 
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where op is one of "II" (parallel), ";" (sequential), 

or "?" (choice), indicating that the blocks 

block1 , . . . , blockm are to be executed con

currently, in sequence, or as a set of guarded com

mands (a sort of parallel case statement, with each 

block being a condition/ action pair), respectively. 

A parallel composition specifies opportunities 

for parallel execution but does not indicate how 

the composed blocks (which can be thought of as 

lightweight processes) are to be mapped to proces

sors. The techniques used to specify mapping are 

described below. 

3.2 Communication and Synchronization 

Statements in a parallel composition communi

cate and synchronize by reading and writing spe

cial single-assignment or definitional variables. 

(Conventional, or mutable, variables are also sup

ported, but can be used only within sequential 

blocks.) Definitional variables are distinguished 

by a lack of declaration, are initially undefined, 

can be written (defined) once using the primitive 

operator =, and once written cannot be modified. 

(An attempt to overwrite a definitional variable is 

flagged as a runtime error.) A process that re

quires the value of an undefined variable sus

pends until the required data are available. This 

provides a dataflow model of computation, with 

execution order within parallel compositions de

termined by availability of data. 

Processes that share a definitional variable can 

communicate regardless of their location in a par

allel computer. For example, in the parallel com

position {II producer (x) , consumer (x) }, the 

two procedure calls producer (x) and consu

mer (X) can use x to communicate, whether they 

are executing concurrently on one processor or in 

parallel on two processors. 

Consider the following definitions for pro

ducer and consumer. The producer defines its 

parameter to be the string 1 1 hello, 1 1 hence 

communicating this value to any process that 

shares that variable (in the composition in the pre

vious paragraph, this is consumer). The con

sumer is defined in terms of a choice composition. 

The two guarded commands define tests on the 

parameter v (v == 1 1 hello 1 1 and v ! = 
1 1 hello 1 1 

) and the actions that are to be per

formed if these tests succeed (calls to the proce

dures greet() or ignore (v) , respectively). 

Hence, the procedure consumer suspends until v 
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has a value and then executes one of the two pro

cedures. 

producer(u) 

{II u = ' 'hello' '} 

consumer(v) 

{ ? v ' 'hello' ' -> greet () , 

v ! = ''hello'' -> ignore(v) 

} 

Stream Communication 

A shared definitional variable would not be very 

useful if it could only be used to exchange a single 

value. Fortunately, simple techniques allow a sin

gle variable to be used to communicate a stream of 

values [ 5 J. A stream acts like a queue: the pro

ducer places elements on one end, and the con

sumer(s) take them off the other. 

Stream communication is achieved by the in

cremental construction of linked list structures. 

The technique makes use of a data type called the 

tuple. A tuple is represented by zero or more terms 

enclosed in parentheses, for example {} (the 

empty tuple) or {head, tail} (a two-tuple). The 

match operator ? = is used to access a tuple's 

components. For example, x ? = {msg, xt} 

checks whether xis a two-tuple and, if so, defines 

msg and xt to be references to its two compo

nents. 

Imagine a producer and a consumer sharing a 

variable x. The producer defines x to be a two

tuple containing a message and a new definitional 

variable (x = {msg, xt}). The consumer 

matches x ? = {msg, xt} to access both the 

message and the new variable. These operations 

both communicate msg to the consumer and cre

ate a new shared variable xt that can be used for 

further communication. This process can be re

peated arbitrarily often to communicate a stream 

of messages from the producer to the consumer. 

The stream is closed by defining the shared vari

able to be the empty tuple. 

The following program implements this proto

col. The stream_producer generates n mes

sages, calling produce to generate each message, 

and then closes the stream. The stream_consu

mer consumes messages until the stream is 

closed, calling greet or ignore to process each 

incoming message. Note that both procedures are 

defined recursively. For example, the producer 

generates one message (by defining u to be the 

tuple {msg, ul}) and then calls itself recursively 

to produce further messages. Recursion is often 

used in PCN because it allows the introduction of 

an unbounded number of new definitional vari

ables; the PCN compiler is designed to compile 

such programs efficiently, and in fact translates 

recursive procedures into iterative code. Explicit 

iterative constructs are also available; these are 

described in a subsequent section. 

stream_producer(n, u) 

{ ? n > 0 -> 
{II produce (n, msg) , 

}, 

u = {msg, ul}, 
stream_producer(n-1, ul) 

n == 0 -> u = {} 

stream_consumer(v) 

{? v ? = {msg, vl} -> 
{II\{? msg ''hello'' ->greet(), 

msg ! = ''hello'' -> ignore(msg) 

}, 

stream_consumer(vl) 

3.3 Nondeterminism 

The use of definitional variables as a communica

tion mechanism avoids errors due to time-depen

dent interactions. Race conditions, in which the 

result of a computation depends on the time at 

which a process reads a variable, cannot occur: a 

consumer of a variable always suspends until the 

variable has a value, and then computes with a 

value that cannot change. 

Nevertheless, it is sometimes useful to be able 

to specify nondeterministic execution, particularly 

in reactive applications. PCJ'\ also allows the spec

ification of nondeterministic actions, but in a 

tightly controlled manner. Only if the conditions 

associated with two or more actions in a guarded 

command are not mutually exclusive is execution 

nondeterministic. For example, the following pro

cedure merges two input streams (in_streaml 

and in_stream2) into a single output stream 

(out_stream). Note that the two streams are not 

mutually exclusive: as guards are executed con

currently, messages can be received from either 

input stream, in a time-dependent manner. 

merge(in_streaml, in_stream2, out_stream) 

{ ? 



in_streaml ? = {msg, more_inl} -> 

{II 
out_stream = {msg, more_out}, 

merge(more_inl, in_stream2, more_out) 

in_stream2 ?= {msg, more_in2}-> 

{II 
out_stream = {msg, more_out}, 

merge(in_streaml, more_in2, more_out) 

PCN programs in which conditions are mutu

ally exclusive are guaranteed to be deterministic. 

This is an important property that greatly simpli

fies parallel programming. (The reader might be 

concerned about the possibility of writing condi

tions which are mistakenly not mutually exclusive. 

In practice, this has not proved to be a problem.) 

Two potential sources of nondeterminism that 

are not prevented by PCN are concurrent 110 op

erations and concurrent access to Fortran com

mon or C global data by Fortran or C procedures 

composed by PCN. The latter issue is discussed in 

Section 4. 1. 

3.4 Mapping 

Parallel compositions define concurrent pro

cesses; shared definitional variables define how 

these processes communicate and synchronize. 

Together with the sequential code executed by the 

different processes, these components define a 

concurrent algorithm that can be executed and 

debugged on a uniprocessor computer. However, 

we do not yet have a parallel program: we must 

first specify how these processes are to be mapped 

to the processors of a parallel computer. Impor

tant features of PCN are that the mapping can be 

specified by the programmer, and that the choice 

of mapping affects only the performance, not the 

correctness, of the program. The following lan

guage features are used when writing code to de

fine mappings. 

Information Functions 

When defining mappings, we sometimes require 

information about the computer on which a pro

cess is executing. This information is provided by 

the primitive functions topology (), nodes (), 

and location (). 

topology () : Returns a tuple describing the type of 

the computer, for example, {''mesh'', 16, 32} or 
{''array'', 512}. 
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nodes ( ) : Returns the number of nodes in the com
puter. 

location () : Returns the location of the process on 

the computer. 

Location Functions 

Mapping is specified by annotating procedure 

calls with system- or user-defined location func

tions, using the infix operator ' ' @ 1 1 
• These 

functions are evaluated to identify the node on 

which an annotated call is to execute; unanno

tated calls execute on the same node as the proce

dure that called them. For example, the following 

two procedures implement the location functions 

node ( i) and rnesh_node ( i, j ) , which compute 

the location of a procedure that is to be mapped to 

the i th node of an array and the ( i , j )th node of 

a mesh, respectively. Note the use of a match 

(? =) to access the components of the mesh to

pology type. The percent character, 1 1 %1 1
, is the 

modulus operator. 

function node (i) 

{II return ( i %nodes ( ) } 

function rnesh_node(i, j) 

{ ? topology () ? = { 1 •mesh 1 1
, rows, 

cols} -> 

return( (i*rows + j)%nodes() ), 

default ->error() 

} 

The following compositiOn uses the function 

node ( i) to locate the procedure calls p (X) and 

C (X). 

{II p (x) @ node (10), c (x) @ node (20)} 

Location functions are often used in an itera

tive construct called a quantification to create a 

computation that executes on many processors. A 

quantification has the general form 

{ op i over low .. high : : block}, 

and specifies that block should be executed once 

for each i in the range 1 ow .. high, either con

currently (if op =II) or sequentially (if op = ;). 
The following two procedures use quantifica

tions and the location functions defined previ

ously to execute the procedure work in every node 

of an array and mesh, respectively. For example, 

a call to array on a 1024-processor computer 

will create 1024 instances of work(), one per 
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processor. (In practice, we may choose to use a 

more efficient tree-based spawning algorithm on a 

large machine.) 

array() 

{II i over 0 .. nodes () -1 : : 

work () @ node (i) 

} 

mesh() 

{ ? topology () ? = {' 'mesh' ' , rows, 

cols} -> 

} 

{II i over 0 .. rows-1 :: 

}, 

{llj over 0 .. cols-1 

} 

work() @ 

mesh_node(i, j) 

default-> error() 

Virtual Topologies and Map Functions 

The ability to specify mapping by means of loca

tion functions would be of limited value if these 

mappings had to be specified with respect to a 

specific computer. Not only might this computer 

have a topology that was inconvenient for our ap

plication, but the resulting program would not be 

portable. 

PCl'\ overcomes this difficulty by allowing the 

programmer to define mappings with respect to 

convenient virtual topologies rather than a partic

ular physical topology. A virtual topology consists 

of one or more virtual processors or nodes, plus a 

type indicating how these nodes are organized. 

For example, 512 nodes may be organized as a 

one-dimensional array, a 32 X 16 mesh, etc. 

The embedding of a virtual topology in another 

physical or virtual topology is specified by a sys

tem- or user-defined map function. A map func

tion is evaluated in the context of an existing to

pology; it returns a tuple containing three values: 

the type of the new embedded topology, the size of 

the new topology, and the function that is to be 

used to locate each new topology node in the ex

isting topology. For example, the following func

tion embeds a mesh of size rowsxcols in an ar

ray topology; the mapping will be performed with 

the location function node provided previously. 

(The location function is quoted to indicate that it 

should not be evaluated.) Note that the map func-

tion does not check whether the new topology 

"fits" in the old topology. It is quite feasible to 

create a virtual topology with more nodes than the 

physical topology on which it will execute. 

function mesh_in_array(rows, cols) 

{? topology ?= {''array'', n} -> 

} 

{II type = { 'mesh'', rows, cols}, 

size = rows*cols, 

map_fn = 'node()', 

return ( {type, size, map_fn} ) 

}, 
default-> error() 

We use the annotation submc to specify the 

map functions that will generate the virtual topol

ogies used in different components of a program. 

For example, if the mesh procedure specified pre

viously is to be executed on an array computer, we 

may invoke it as follows. 

mesh () 
@ submc(mesh_in_array(rows,cols)) 

Virtual topologies and map functions allow us 

to develop applications with respect to a conven

ient and portable virtual topology. When moving 

to a new machine, it is frequently possible to get 

adequate performance with just a naive embed

ding of this virtual topology. For example, our ap

plications invariably treat all computers as linear 

arrays, regardless of their actual topology, and 

nevertheless achieve good performance. If com

munication locality were important (e.g., if we 

moved to a machine without cut-through routing), 

we would probably have to develop a map func

tion that provides a more specialized embedding. 

This can generally be achieved without changing 

the application code. 

3.5 Port Arrays 

Recall that individual processes communicate by 

reading and writing shared definitional variables, 

as in the composition {II producer (x) , consu

mer (x) }. The port array provides a similar mech

anism for use when composing sets of processes. 

A port array is an array of definitional variables 

that has been distributed evenly across the nodes 

of a virtual topology. A declaration ' 'port 

P [N] ; ' ' creates a port array P with N elements, 

distributed blockwise across the nodes of the vir-
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FIGURE 1. Ring pipeline cell. 

tual topology in which the port array is declared. 

Elements of a port array are accessed by indexing, 

in the same way as ordinary arrays; the elements 

can be used as ordinary definitional variables. 

The following procedure, a variant of the 

array procedure given earlier, uses port arrays 

for two purposes: first, to provide each 

r ing_node ( ) process with definitional variables 

for use as input and output streams; and second, 

to establish internal communication streams be

tween neighboring processes, so that each process 

has two streams, one shared with each neighbor. 

The i th node of this structure is given elements 

I [i] and 0 [i] of the two port arrays I and 0 

passed as parameters, so as to allow communica

tion with the outside world, and two elements of 

the local port array S. As in the C programming 

language, the dimension of an array passed as an 

argument is not specified. 

ring(!, 0) 

port S [nodes ( ) ] , I [ ] , 0 [ ] ; 

{II i over 0 .. nodes () -1 :: 

} 

ring_node(I[i], O[i], S[i], 

s [ ( i + 1) %nodes ( ) ] ) @ node ( i) 

The process structure created by a call to this 

procedure in a four-processor virtual topology can 

be represented as follows, with the solid lines indi

cating external port connections and the dotted 

lines internal streams. The box separates the in

ternals of the process structure from what is visible 

to other processes. The ring_node procedure 

executed by each process can use the four defini

tional variables passed as arguments to communi

cate with other processes (see Fig. 1 ). 

4 REUSE 

The ability to reuse existing code is vital to pro

ductive programming. The PCN system supports 

two forms of reuse: reuse of sequential code writ-
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ten in C or Fortran, and reuse of parallel code 

written in PCN. The former is important when mi

grating existing sequential applications to parallel 

computers; the latter is becoming increasingly im

portant as our parallel code base grows. 

4.1 Sequential Code: 
Multilingual Programming 

A simple interface allows sequential code (cur

rently, Fortran and C are supported) to be in~e

grated into PCN programs as procedure calls, In

distinguishable for most purposes from calls to 

PCN procedures. Sequential procedures can be 

passed definitional and mutable data, but sus

pend until definitional data is available and hence 

never deal with incomplete information. Sequen

tial procedures can modify only mutable vari

ables. 

A deficiency of the Fortran interface is that no 
. df" "dt special allowance IS rna e or common a a. 

Each physical processor has a single copy of all 

common data declared in an application's For

tran code, and every process on a processor has 

access to that data. Hence, while PCN data struc

tures are encapsulated in processes to prevent 

concurrent access, the same protection is not pro

vided for common data. It is the programmer's 

responsibility to avoid errors due to concurrent 

access. Experience shows that programmers deal 

with this problem in one of two ways. (1) If an 

application is of moderate size, or is being devel

oped from scratch, they often choose to eliminate 

common data altogether. This may be achieved by 

allocating arrays in PCN and passing them to the 

different Fortran programs. Although this ap

proach requires substantial changes to the appli

cation, the bulk of the existing Fortran can be re

tained, and the full flexibility of PCN is available 

to the programmer. (2) If substantial rewriting of 

an application is not possible, programmers 

maintain common data in its usual form and use 

PCN to organize operations on this data in a way 

that avoids nondeterminate interactions. Al

though certain operations are then more difficult 

(e.g., process migration is complicat~~' and the 

programmer must check for race conditiOns man

ually), other benefits of the PCN approach still 

apply. . 
The interface to sequential programmmg lan

guages means that we do not need to throw away 

the many years of investment in sequential code 

and compiler development when moving to paral-
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lel computers. Fortran and C are good sequential 

languages but are less well suited to parallel pro

gramming. Experience suggests that PCJ:\" is a 

good parallel language; nevertheless, it cannot 

compete with Fortran and C in code base and 

compiler technology. Multilingual programming 

permits us to take the best from each approach, 

using PCN for mapping, communication, and 

scheduling, and Fortran and C for sequential 

computation. 

4.2 Parallel Code: Cells and Templates 

Cells 

Our approach to the reuse of parallel code is 

based on what we term a software cell: a set of 

processes created within a virtual topology to per

form some distinct function such as a reduction or 

a mesh computation, and provided with one or 

more port arrays for communication with other 

program components.4 We have already seen sev

eral examples of cells: for instance, the procedure 

ring in the preceding section implements a cell 

that performs ring pipeline computations. 

The interface to a PCK cell consists simply of 

the port arrays and definitional variables that are 

its arguments. A cell definition does not name the 

processors on which it will execute, the processes 

with which it will communicate, or the time at 

which it expects to execute. These decisions are 

encapsulated in the code that composes cells to 

create parallel programs: a virtual topology speci

fies the number and identity of processors, port 

arrays specify communication partners, and the 

PCN compiler handles scheduling. As we will see 

in subsequent examples, the simplicity of this in

terface allows cells to be reused in many different 

contexts. 

Templates 

The ring cell would be more useful if the code to 

be executed at each node could be specified as a 

parameter. This is possible, and in this case we 

refer to the cell definition as a template, as it en

codes a whole family of similar cells. For example, 

the following is a template version of ring. The 

procedure to be executed is passed as the param

eter op, which is quoted in the body to indicate 

that it is used as a variable. 

ring (op, I, 0) 

port S [nodes () ] , I [ ] , 0 [ l ; 
{IIi over 0 .. nodes () -1 

'op'(I[i], O[i], S[(i+l)%nodes()], 

S [i]) @ node (i) 

This template invokes the supplied procedure 

with four definitional variables as additional 

arguments. For example, if op has the value 

nbody (p) , then a procedure call nbody (p, d1, 

d2, d3, d4) ( d1 .. d4 being the variables from the 

port array) is invoked on each node of the virtual 

topology. All parameters to op must be defini

tional variables; it is the programmer's responsi

bility to ensure that the number and type of these 

parameters match op's definition. 

Example 

We illustrate how cells and templates are com

posed to construct complete applications. We 

make use of the ring template and also the follow

ing simple input and output cells: load reads val

ues from a file and sends them to successive ele

ments of the port array P; store writes to a file 

values received on successive elements of port ar

ray Q. Both use the sequential composition opera

tor to sequence I I 0 operations. 

load(file, P) 

port P []; 

{; i over 0 .. nodes()-1 

read(file, stuff), 

P [i] = stuff 

} 

store(file, Q) 

port Q []; 

{; i over 0 .. nodes()-1 

write(file, Q[i]) 

} 

FIGURE 2. :\'-body program. 



We compose the three cells to obtain a program 

main that reads data from infile, executes a 

user-supplied function in the ring pipeline (e.g., a 

naive N-body algorithm), and finally writes results 

to outfile. Note that although we use a parallel 

composition, data dependencies will force the 

three stages to execute in sequence. However, if 
load were to output a stream of values rather 

than a single value per node, then the three stages 

could execute concurrently, as a pipeline. 

main(param,infile, outfile) 

port Pl[nodes()], P2[nodes()]; 

{II load (infile, Pl), 

} 

ring(nbody(param), Pl, P2), 

store(outfile, P2) 

Data flows from load to ring via port array Pl 

and from ring to store via port array P2. This is 

illustrated in Figure 2, which shows the process 

structure created in a four-node topology. 

The complete program executes in an array to

pology (''main (if, of) in array () (''))and 

will create a ring with one process per node of that 

topology. 

5 TOOLS 

The high-level nature of the PC]'~; language re

quires a sophisticated compiler (to achieve effi

cient execution on sequential and parallel com

puters) and a specialized debugger (to keep track 

of multiple concurrent processes). These tools are 

integrated with other components to form a toolkit 

that supports debugging, performance tuning, 

and integration of Fortran and C code, and that 

allows programs to be executed on a wide variety 

of parallel computers and workstation networks.'! 

In this section, we describe four components of 

this toolkit: compiler, network implementation, 

parallel debugger, and performance analysis 

tools. 

5.1 Portable Compiler and 
Runtime System 

We summarize the techniques used to translate 

PCJ'\ programs into executable code, so as to pro

vide some insights into the efficiency of the PCN 

implementation. 
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The PCN compiler implements both the PCN 

language and the constructs introduced to sup

port reuse of parallel code. It translates PCJ'\ pro

grams to a machine-independent. low-level form 

that is linked with both object code for sequential 

language procedures and a small runtime system, 

to produce an executable program. The compiler 

is responsible for generating code to perform spe

cialized operations such as creating processes, 

suspending processes, terminating processes. and 

generating messages; the runtime system routes 

incoming messages, schedules executable pro

cesses, and manages the heap on which are allo

cated process records. program data. etc. 

The compiler and runtime system have been 

carefully designed to optimize the creation, sched

uling, migration, and termination of lightweight 

processes. A process with n arguments is repre

sented by a process record that occupies n + 2 

words of memory, with n of these words contain

ing pointers to arguments; hence. processes can 

be created, scheduled, or descheduled in a few 

tens of instructions. A process is migrated to an

other processor by communicating the process 

record and the data structures accessible from this 

process record. Thus, the cost of migration is pri

marily the cost of transferring its data, and pro

cesses with little data can be migrated extremely 

cheaply. The low cost of scheduling means that 

the runtime svstem is able to schedule idle tasks 

when waiting for the results of remote communi

cation operations. That is, it automatically over

laps computation and communication operations. 

The compiler does not currently optimize the 

performance of pure PCN code, which may exe

cute 5 to 10 times slower than equivalent Fortran 

or C code. As PCJ'\ applications typically spend 

much of their time executing Fortran or C. this has 

not been a serious difficulty. (The profiling tools 

described below can be used to identify bottle

necks; if necessary, PCJ\' procedures can be re

written in Fortran or C to improve performance.) 

Future compilers will improve PCJ'\ performance. 

allowing a larger proportion of applications to be 

written in PCN. 

A novel aspect of the compiler is a program

mable source transformation system. incorpo

rated as an optional stage in the compiler pipeline. 

after the parser and before the encoder. Program

mers can use this facility to implement applica

tion-specific extensions to the PCJ\' language. For 

example, the transformation system has been 

used to implement specialized composition opera

tors that generate self-scheduling computa

tions [6]. 
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5.2 Network Implementation 

The network implementation of PCN (net-PCN) 

allows users to treat a set of workstations as a 

parallel computer. Programs developed for multi

processors and multicomputers can be run with

out modification on networks, although because 

of higher communication costs, algorithms must 

normally be more coarse-grained to execute effi

ciently. 

Net-PCN can run on any machine that sup

ports the TCP communication protocol. Hence, a 

single computation can in principle run on several 

workstations of a particular type, several worksta

tions of differing types, several processors of a 

multiprocessor, or a mix of workstations and 

multiprocessor nodes. Currently, we require that 

all processors involved in a computation employ 

common representations for the basic PCN data 

types (characters, integers, and double-precision 

floats). In the future, type conversions will be per

formed automatically, allowing PCN programs to 

run transparently on arbitrary networks. 

A useful component of net-PCN is a utility pro

gram called host-control, which provides fa

cilities for managing a network computation. This 

utility allows the user to inquire about the status of 

nodes available to net-PCN, add and delete 

nodes, and execute programs [7]. 

5.3 PDB: A Parallel Debugger 

Debugging tools that assist in the location of logi

cal errors are, of course, a critical component of 

any programming system. PCN's unconventional 

language constructs, in particular its lightweight 

processes and dataflow synchronization, require 

specialized debugging support. This is provided 

by the PCN symbolic debugger, PDB. 

The major difference between PCN and con

ventional sequential programming languages is 

that in PCN programs, many threads of control 

(processes) can be active at one time. Hence, PDB 

not only provides conventional debugger features, 

such as the ability to interrupt execution and ex

amine program arguments, but also permits the 

user to examine enabled and suspended pro

cesses, identify definitional variables for which 

values have yet to be produced, and control the 

order in which processes are scheduled for 

execution. 

A common error in PCN programming is for 

one program component not to produce a value 

required by another component. This results in a 

deadlock situation, in which all processes are sus

pended waiting for data. This situation can be de

tected by PDB. The programmer can examine the 

set of suspended processes and identify variables 

for which no values have been produced. 

5.4 Understanding Performance 

In parallel computing, where performance is criti

cal and often nonintuitive, it is important to pro

vide tools to assist in the identification of perfor

mance errors. Two such tools, Gauge and Upshot, 

have been integrated into PCN. 

Gauge 

Gauge is an execution profiler: it collects informa

tion about the amount of time that each processor 

spends in different parts of a program [8]. It also 

collects procedure call counts, message counts, 

and idle time information. Three properties of 

Gauge make it particularly useful: profiling infor

mation is collected automatically, without any 

programmer intervention; the overhead incurred 

to collect this information is small, typically much 

less than 1%; and the volume of data does not 

increase with execution time. A powerful data ex

ploration tool permits graphical exploration of 

profile data. The use of Gauge is illustrated in a 

subsequent section. 

Upshot 

Upshot is a trace analysis tool that can provide 

insights into the fine-grained operation of parallel 

programs [9]. Upshot requires that the program

mer instrument a program with calls to event log

ging primitives. These events are automatically re

corded and written to a file when a program runs. 

A graphical trace analysis tool allows the pro

grammer to examine temporal dependencies be

tween events. Like any trace-based tool, Cpshot 

suffers from scaling problems. However, it can be 

useful when used in a controlled manner, to ex

amine local phenomena identified as problematic 

by Gauge. 

6 APPLICATIONS 

PCJ\" has been used in substantial programming 

projects that have produced programs used to fur

ther scientific research on the world's fastest com

puters. For example, the first two applications op

erational on the 528-processor, 30 Gflops Intel 



FIGURE 3 Icosahedral mesh domain decomposition. 

Touchstone Delta system-a geophysical model

ing code and a fluid dynamics code-were both 

PCN programs [ 10, 11 J. Here, we describe one of 

those programs, survey other representative appli

cations, and identify factors that appear to favor 

the use of PCN for programming projects. 

6.1 Icosahedral Climate Modeling Code 

This application implements a numerical method 

proposed for use in climate models, a second

order, conservative control volume method on an 

icosahedral-hexagonal grid. The code was devel

oped to permit detailed studies of both the meth

od's accuracy and the long-term behavior of fun

damental modes of the atmospheric circulation. 

The code integrates existing Fortran and C code 

into a parallel framework implemented in PCN. 10 

An icosahedral-hexagonal grid can be struc

tured as 10 n X n meshes plus two separate polar 

points. The parallel algorithm decomposes each 

mesh into c 2 submeshes, giving 10 c 2 + 2 sub

domains, two with one point and the rest with 

(n I c) 2 points. Communication must be per

formed to obtain values from neighboring subdo

mains during integration. The design of an effi

cient mapping is complicated by the irregular 

domain. On some parallel computers, it may be 

desirable to place two or more subdomains on the 

same processor. 

Implementation 

The development of the parallel code is simplified 

if mapping is specified with respect to a virtual 

topology with the same shape as the problem do

main [4]. We define an ico_mesh topology con

taining 10 c X c meshes and two polar processors 

(Fig. 3) and map functions rhombus (i) and 

pole (i) that embed subtopologies correspond

ing to a single mesh or pole in an ico_mesh. 

These functions are defined as follows. They lo-
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cate rhombus i on nodes i c 2
. • ( i + 1) c 2 -1 and 

pole j on node 10c2 + j of an ico_mesh topology. 

function rhombus(i) 

{?topology()?= {"ico_mesh", c}, i >= 0, 

i < 10 -> 
{lltype = {''mesh'',c,c}, 

size = c*c, 

}, 

map_fn = 'add_ offset <i*c*c) ', 

return( {type, size, map_fn} ) 

default ->error() 

function pole(i) 

{?topology() ?={"ico_mesh", c}, i>=O, 

i < 2 -> 
{II type = {''mesh'', 1, 1}, 

size = 1, 

} ' 

map_fn = 'add_offset (10*C*c+i) ', 

return ( {type, size, map_fn} ) 

default-> error() 

function add_offset(offset,i) 

{II return ( i + offset ) } 

The following sketch of the top-level code for 

this application shows how mapping is expressed 

in terms of the icosahedral topology. Ten calls to a 

mesh template are used to set up a mesh cell 

inside each rhombus, two calls to poleop set up 

the polar computations, a call to a reduce cell 

establishes a global reduction structure (used for 

computing global minimums), and the inter

connect procedure establishes communication 

streams between the various cells. For brevity, we 

omit the definitional variables representing com

munication streams. 

sphere () 

{II {II i over 0 .. 9 : : 
mesh( ... ) ~ submc(rhombus(i)) 

} ' 
poleop ( ... ) ~ submc (pole (0)), 

poleop( ... ) ~ submc(pole(1)), 

reduce( ... ), 

interconnect( ... ) 

The mesh procedure used to create a single 

mesh is essentially the same as that outlined in 

Section 3.4 .. As the code executed within a subdo

main is derived from the original Fortran and C, 

and a global reduction library is available, the 

only code that must be developed specifically for 

this application is the interconnect procedure 

and some interface code. To give an impression of 
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step(args,tau,tmax,dt,subrhombus,streams,to_r) 

double subrhombus[]; 

{ ? 

tau < tmax -> 
{ ; 

{II I• Compute 1 1 locaLdt' ' •I 
find_local_dt(subrhombus,local_dt), 

I• Check old 1 1 dt'' ok for this time step •I 
{ ? locaLdt < dt -> error () }, 
I• Initiate computation of 1 1 new-dt'' •I 

to_r = {{ 1 1 min' ', locaLdt, new_dt}, to_rl} 

I• Exchange data with neighbors •I 
communications(streams,subrhombus,streamsl) 

}, 
pre_filter(args,subrhombus), 

I• Compute on grid, using old 1 1 dt'' •I 
update_grid(args,dt,tau,subrhombus), 

post_filter(args,subrhombus), 
I• Proceed to next time step, passing 1 1 new_dt'' •I 

step(args,tau+dt,tmax,new_dt,subrhombus,streamsl,to_rl) 

}, 
default-> terminate(args,subrhombus) 

} 

FIGURE 4. Main driver program. 

what the interface code looks like, we include in 

Figure 4 the main driver executed for each sub

rhombus. Conceptually, this alternates communi

cation and computation. However, there are some 

subtleties. For example, the code communicates 

with a reduction cell to determine a global time 

step (d t) consistent with the CFL condition. The 

use of the new d t is delayed for one iteration so as 

to permit overlapping of the communication re

quired for the reduction with other computation. 

This is achieved by using dt as dt in the current 

step, and passing new_dt to the recursive call to 

step for use as dt in the next step. 

Experiences 

The parallel code was developed in collaboration 

with the mathematician who wrote the original 

sequential code. He provided advice to the under

graduate intern who wrote the parallel program, 

and assisted with various enhancements to the 

numerical method. We were fortunate in that the 

Fortran code used common storage only for con

stants; storage for program data was allocated by 

a C driver. This meant that we could reuse much 

of the Fortran without change. In addition, once 

we had set up the constants in the common stor-

age on each processor, we were free to map pro

cesses to processors in any way we wanted. The 

complete code totals 1,400 lines Fortran, 870 

lines C, and 750 lines of PCK. The relatively large 

amount of PCN code reflects the fact that anum

ber of enhancements to the sequential code were 

implemented in PCK rather than Fortran, due to 

the greater ease of programming in the higher

level language. 

The parallel program was developed, de

bugged, and refined on a Sun workstation. The 

resulting code was moved to a 26-node Sequent 

Symmetry shared-memory computer for perfor

mance studies and from there was ported with 

only minor changes to a 192-node Symult s201 0 

mesh, 64-node Intel iPSC/860 hypercube, and 

528-node i860-based Intel Touchstone Delta 

mesh. The changes were due primarily to use of a 

different II 0 structure on the Delta, and a need to 

work around certain deficiencies in the Delta's file 

system (since corrected). This portability allowed 

us to obtain scientific results within 1 week of the 

Delta's being installed at Caltech in May 1991; 

applications developed with other technologies 

were not operational until weeks or even months 

later. 

Profile and trace data provided by Gauge and 

C pshot allowed us to identify mapping and load 
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FIGURE 5 Gauge performance display: time breakdown. 

balancing problems in early versions of our pro

gram. One problem was that a too-coarse-grained 

decomposition of the Fortran code gave the PCN 

compiler too little opportunity to overlap compu

tation and communication. The result was much 

idle time. A more fine-grained implementation 

was easily achieved in a few hours' work; this gave 

the good performance results reported below. 

An example of a load imbalance is illustrated in 

Figure 5. This is a Gauge histogram display of 

summary data for a run on 492 Delta processors, 

with each pixel in the vertical dimension repre

senting a processor and shading distinguishing 

time spent idle (light) and busy (dark). (About 260 

processors are visible.) A slight load imbalance is 

evident: it appears that the processors handling 

location (0,0) in each rhombus are spending more 

time computing than other processors. Other 

Gauge facilities allowed us to isolate the Fortran 

routine in which the load imbalance occurs, at 

which point it was easily corrected by modifying 

the Fortran code. We claim that without Gauge it 

would have been difficult to correct this load im

balance (or even, perhaps, to suspect its exis

tence). 

Good parallel efficiencies are achieved on ail 

four parallel computers. On the Delta, we obtain 

approximately 2.5 Gflops (5 Mflops per processor) 

and 80% efficiency relative to the pure Fortran 

code running on a single i860 processor, for a 

problem size of N = 56 (approximately 150-km 

resolution). This compares favorably with other 

applications, which have typically achieved 3 to 6 

~flops/processor. Tuning of the sequential For

tran and improvements to the Delta compiler are 

expected to further improve overall performance. 

The parallel code uses a simple embedding of 

the icosahedral mesh that is not specialized for 

either hypercube or mesh topologies. This map

ping does not attempt to cluster neighboring ico

sahedral mesh nodes but simply allocates nodes 

in the icosahedral mesh to consecutive nodes in 

the underlying computer. It is specified as follows. 

function icosahedron(c) 

{II type = {' 'ico_mesh' ', c}, 

size = 10*C*c+2, 

map_fn = 'node()', 

return ( {type, size, map_fn} ) 

} 
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Because parallel efficiency is so good, we have 

not been motivated to explore alternative map

pings of the icosahedral mesh. (Some tinkering 

with the mapping did not appear to generate sig

nificant improvements: this is probably to be 

expected, given that cut-through routing in the 

Symult and Delta reduces the importance of com

munication locality.) I\evertheless, the use of the 

icosahedral virtual topology leaves us with the op

tion of exploring alternatives in the future, if either 

improvements in per-node performance increase 

relative communication costs, or the code is 

ported to a machine on which locality is more im

portant. One potentially interesting mapping 

would fold the whole icosahedral mesh structure 

(locating two or more nodes per processor) so as 

to reduce message latency. Of course, this can 

be achieved without changing the application 

code. 

6.2 Application Survey 

Most applications developed to date are, like the 

icosahedral code, scientific in nature; almost all 

use PCN to organize the parallel execution of pre

existing Fortran or C code. Although they solve a 

wide variety of problems, many can be structured 

in terms of one or more of a small number of basic 

cells and templates. We describe some represen

tative examples, indicating the structures used in 

the implementations. We also give code sizes 

when this information is available to us. 

Mesh Structures 

The structure of many different mesh-based ap

plications can be captured in one- or two-dimen

sional mesh templates. A two-dimensional mesh 

template forms a building block for both the ico

sahedral code and another climate modeling code 

based on overlapping stereographic meshes 

(3,800 lines C, 640 lines PCN) [10]. Other mesh

based applications include a computational fluid 

dynamics code developed by Harrar et al. for 

computing Taylor-vortex flows, based on a torus 

structure [11] (5,300 lines Fortran, 900 lines 

PCN); a finite-element code for simulating flow in 

Titan rocket engines (9,000 lines Fortran, 180 

lines PCN); and a parallel implementation of the 

mesoscale weather model MM4 (15,000 lines For

tran, 250 lines PCN). Work is under way to build a 

version of MM4 in which the mesh template per

forms dynamic load balancing. 

Ring Structures 

Cells similar to the ring structure presented in Sec

tion 4.2 form the basis for several applications. A 

code for computing nonlinear dynamics proper

ties of extended climate simulations uses an algo

rithm similar to that used for naive N-body simu

lations of molecular dvnamics (250 lines Fortran, 

170 lines PCN). Essentially the same algorithm 

and structure have also been used in programs for 

computing molecular interactions and covari

ances between bases in genetic sequences (the lat

ter is 500 lines C, 800 lines PCN). Similar struc

tures are used in a parallel implementation of the 

spectral transform method used in climate model

ing (7,400 lines Fortran, 370 lines PCI\). 

Tree Structures 

Tree and butterfly structures are used in many 

codes to perform parallel reductions. A good ex

ample of a code based entirely on a tree structure 

is one developed by Wright to solve two-point 

boundary value problems [12] (700 lines Fortran, 

50 lines PCI\). This algorithm dynamically creates 

a process tree; data is produced at the leaves, 

flows up the tree to the root (being reduced at each 

node), and then back down to the leaves to yield 

the final solution [3]. The code is defined with 

respect to a tree virtual topology; the map function 

that defines this topology specifies how the com

plete structure is embedded in a parallel com

puter. Note that it is the low cost of process crea

tion and migration in PCN which makes this 

dynamic formulation of the algorithm (which 

proved to be particularly convenient) feasible. 

Self-Scheduling Structures 

A self-scheduling program incorporates code to 

dynamically map tasks to idle processors; al

though this approach introduces additional over

head relative to a static schedule, it is essential for 

some very dynamic problems. Self-scheduling 

programs can be constructed easily in PCN be

cause of the simplicity of process migration [ 6]. 

(The global address space provided by the com

piler means that processes can be migrated as 

data structures.) Self-scheduling applications in

clude codes for aligning genetic sequences, com

puting phylogenetic trees, and predicting protein 

structure. (Computational biology is a rich source 

of applications for self-scheduling techniques be

cause of the frequent use of heuristics.) An appli

cation under development at Argonne schedules 



tasks to ring structures (each involving several 

processors) rather than to individual processors. 

An interesting aspect of all these codes is that the 

scheduling code can be separated from the appli

cation-specific code in a distinct scheduling cell. 

Alternative scheduling cells can be substituted 

without changing the application; typically the 

scheduling structure is specified in 20 to 100 lines 

of code. 

Genetic Algorithms 

Genetic optimization algorithms maintain a popu

lation of candidate solution vectors and apply 

simulated natural selection to improve the quality 

of this population. One approach to parallelizing 

these algorithms is to maintain multiple popula

tions, with periodic exchanges of individual vec

tors. Our PCN implementation of a parallel 

genetic algorithm is parameterized with the initial

ization, mutation, and mating operators that de

fine a genetic algorithm. The PCN code handles 

all aspects of execution on a parallel computer, 

using a router cell for asynchronous communica

tion of selected individuals between populations 

and a reduction cell for computing global values 

when checking for termination. The PCN code to

tals 500 lines; applications developed with this 

code have added anything from a few hundred 

lines of C to 6,000 lines of Fortran. 

6.3 Discussion 

As this brief survey shows, PCN applications span 

a wide range, from the simple and straightforward 

to the sophisticated and complex. The amount of 

PCN code incorporated in the various programs 

depends both on the complexity of the parallel 

algorithms and the extent to which PCN was used 

for algorithm development in addition to porting. 

It is probably too early to draw firm conclusions 

regarding the merits of the approach. However, we 

can make a few observations concerning user re

actions. We find that programmers perceive a 

substantial benefit from the use of PCN (and fre

quently become ardent advocates of the technol

ogy) when their programming problem has one or 

more of the following characteristics. 

1. A complex communication structure, or a 

need to overlap computation and communi

cation. 

2. A need for load balancing. 

3. Dynamic computation, communication, or 

mapping structures. 

PRODUCTIVE PARALLEL PROGRAMMING 65 

4. A need for portability and scalability. 

5. Initial performance errors that are corrected 

by using Gauge. 

6. An interest in exploring algorithmic alterna

tives: e.g., different stencils, reduction strat

egies, communication algorithms, or map

pings. 

7. An ability to reuse existing cells and tern

plates. 

In contrast, programmers working with simple, 

regular problems (such as one-dimensional de

compositions with static mapping) find it hard to 

justify the inevitable learning curve associated 

with a new approach to programming. 

7 CONCLUSIONS 

The ability to develop parallel programs quickly 

and easily is becoming increasingly important to 

many scientists and engineers. Although we can

not expect parallel programming to become easy, 

we can avoid unnecessary difficulties by using ap

propriate tools. In this article, we have described 

tools that take us several steps beyond the low 

level facilities commonly available on parallel su

percomputers. A simple concurrent programming 

notation allows us to express complex parallel al

gorithms without unnecessary contortions. Inter

faces to sequential languages allow us to reuse ex

isting Fortran and C code. Support for cells and 

templates allows us to define and reuse parallel 

program structures. Compiler, debugging, and 

performance analysis tools reduce the labor asso

ciated with program development and provide 

portability over a wide range of machines. 

PCN has already been used to develop sub

stantial applications; other application projects 

are under way. Optimizing compilers are being 

developed, with particular emphasis on the re

quirements of fine-grained computers. Libraries 

of software cells and templates are being devel

oped to support fluid dynamics, geophysical mod

eling, and computational chemistry; similar li

braries can and should be developed for other 

areas of computational science. 
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