
Productive Parallel Programming:

The PCN Approach

IAN FOSTER, ROBERT OLSON, AND STEVEN TUECKE

Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439

ABSTRACT

We describe the PCN programming system, focusing on those features designed to

improve the productivity of scientists and engineers using parallel supercomputers.

These features include a simple notation for the concise specification of concurrent

algorithms, the ability to incorporate existing Fortran and C code into parallel applica

tions, facilities for reusing parallel program components, a portable toolkit that allows

applications to be developed on a workstation or small parallel computer and run

unchanged on supercomputers, and integrated debugging and performance analysis

tools. We survey representative scientific applications and identify problem classes for

which PCN has proved particularly useful.© 1992 by John Wiley & Sons, Inc.

1 INTRODUCTION

After many years as academic curiosities, com

puters combining hundreds or thousands of pow

erful microprocessors have overtaken vector pro

cessors and become essential tools for scientists

and engineers. Unfortunately, the programming of

these parallel supercomputers is still immensely

time consuming. Frequently, many months of ef

fort are required to develop, validate, and tune

parallel codes; apparently minor algorithmic

changes can take weeks. These factors severely

limit the productivity and creativity of those using

these advanced machines.

A clear need exists for tools that reduce the cost

of program development to more manageable lev

els. Good software engineering practice tells us

that these tools should possess three characteris-

Received February 1992
Revised March 1992

© 1992 by John Wiley & Sons, Inc.

Scientific Programming, Vol. 1, pp. 51-66 (1992)

CCC 10.58-9244/92/010051-16804.00

tics: (1) a notation that permits us to program

smarter, by lessening the gap between our con

ception of a problem solution and its eventual im

plementation; (2) support for code reuse that al

lows us to program less, by reusing old code when

solving new problems; and (3) a toolkit that per

mits us to program faster, by reducing the effort

required to find errors, adapt programs to differ

ent architectures, etc.

In this article, we introduce PCN, a parallel

programming system with these characteristics.

PCN has been developed over the past 3 years at

Argonne National Laboratory and the California

Institute of Technology (Caltech). It features a

simple concurrent language (Program Composi

tion Notation), facilities for reuse of sequential

and parallel code, and a toolkit supporting compi

lation, debugging, and performance analysis. Im

portant benefits of the approach include the

ability to rapidly prototype complex concurrent

algorithms, particularly those involving dynamic

communication or computation structures; appli

cation portability, which permits programs devel

oped on a workstation to move to networks of

51

52 FOSTER, OLSON, AND TUECKE

workstations and to parallel supercomputers with

little change; the ability to incorporate existing

Fortran and C code into parallel programs; and

support for the reuse of parallel program struc

tures in different applications.

PCN is not the solution to all programming

problems. A disadvantage for some programmers

is the need to learn a new programming language.

Others are uncomfortable with a high-level ap

proach, preferring to program parallel computers

at the lowest level possible. In addition, the PCN

system is research software and, as such, not yet

as sophisticated as conventional sequential pro

gramming systems. Nevertheless, it has already

been used successfully to develop applications

and to teach parallel programming to undergrad

uates. We expect it to prove useful to many users

and for many purposes.

Rather than an academic exposition of PCN,

this article provides an informal introduction to its

capabilities and an analysis of the experiences of

those using it to address substantial programming

problems. By conveying the flavor of the approach

and indicating the classes of problems for which it

appears particularly appropriate, we hope to stim

ulate our readers to experiment with PCN in their

own applications. The latest version of both the

software and detailed documentation can be ob

tained by anonymous FTP from the directory

pub/pen at info. mcs. anl. gov.

The rest of this article is divided into five parts.

These provide an overview of the approach, a de

scription of the programming language, a discus

sion of the techniques used to reuse existing code,

a description of the programming tools, and a sur

vey of representative applications.

2APPROACH

The focus of the PC:l\' approach to parallel pro

gramming is the development of programs by the

parallel composition of simpler components, in

such a way that the resulting programs preserve

properties of the components that they compose.

In particular, deterministic compositions of deter

ministic components should themselves be deter

ministic: the result of such computations should

never depend on the order in which components

are scheduled for execution. Similarly, the result

computed by a program should be independent of

how its components are mapped to processors.

This compositional property is critical to both the

development of robust applications and the reuse

of existing code.

The PCN language is carefully designed to real

ize compositionality. In particular, it requires that

concurrently executing components interact by

reading and writing special single-assignment or

definitional variables. A definitional variable is

initially undefined and can be assigned at most a

single value. If a component attempts to read an

undefined variable, execution of that component

is suspended until the variable is defined. Hence,

the result of a computation can never depend on

the time at which read and write operations occur.

This focus on parallel composition and defini

tional variables leads to the following approach to

parallel program design. A problem is decom

posed into a large number of subproblems and a

process is created for each subproblem. PCN code

is written to organize the exchange of data be

tween these processes and to coordinate their exe

cution. Existing software cells and templates may

be integrated into the program; these define sets

of processes that implement commonly used oper

ations such as parallel reductions or transforms.

Finally, the mapping of the processes to the

processors of a parallel computer is specified;

this can alter performance but not the result

computed.

The PCJ\" compiler is optimized for efficient ex

ecution of programs that create many processes

and that communicate and synchronize via defi

nitional variables. It ensures that process creation,

scheduling, termination, and migration are

extremely inexpensive operations: typically a few

tens of instructions. (Process migration incurs an

additional cost proportional to the size of a pro

cess's data.) Read and write operations on defini

tional variables are implemented in terms of

pointer operations within a single address space

and message passing between address spaces.

Processes are scheduled for execution so as to

overlap computation and communication. Data

structures are created dynamically and deallo

cated either when the process in which they are

defined terminates (in the case of local variables)

or when they are no longer accessible (in the case

of definitional variables shared by several pro

cesses).

Components composed by PCN programs can

be written in PCN or in sequential languages such

as Fortran and C. In the latter case, existing code

and compiler technology can be reused. Programs

that do not use Fortran common or C global data

can be composed in exactly the same way as PCJ\'

programs. If programs do use common/ global

data, then certain restrictions apply, as the use

of common/ global data violates the requirement

that programs only communicate via definitional

variables. This issue is discussed in Section 4.1.

3 NOTATION

Programming is rarely easy, but an appropriate

notation can make it less difficult. As Whitehead

[1] observed of mathematics: "By relieving the

brain of all unnecessary work, a good notation sets

it free to concentrate on more advanced prob

lems." In parallel programming, a good notation

should express concurrency, communication,

synchronization, and mapping straightforwardly

and clearly. It should also discourage nondeter

minism, just as a mathematical notation avoids

ambiguity.

The programming notation used in the PCN

system is Program Composition Notation (PCN).

PCN extends sequential programming with two

simple ideas-concurrent composition and sin

gle-assignment variables-and defines how these

ideas interact with conventional sequential con

structs [2, 3]. The PCN system also incorporates

two additional constructs-virtual topologies and

port arrays-that allow the definition and reuse of

parallel program structures called cells and tern

plates [4].

Our description of the PCN language is divided

into five parts. These describe in turn the con

structs used to specify concurrency, communica

tion and synchronization, nondeterminism, map

ping, and composition of process ensembles.

3.1 Concurrency

Syntax is similar to that of the C programming

language. A program is a set of procedures, each

with the following general form (k,l ~ 0).

name (argl,

declaration1 ;

block

, argk)

; declaration1 ;

A block is a call to a PCN procedure (or to a

procedure in a sequential language such as For

tran or C), a composition, or a primitive operation

such as assignment. A compositiOn is written

{ op block1 , , blockJ, m > 0,

PRODUCTIVE PARALLEL PROGRAMMING 53

where op is one of "II" (parallel), ";" (sequential),

or "?" (choice), indicating that the blocks

block1 , . . . , blockm are to be executed con

currently, in sequence, or as a set of guarded com

mands (a sort of parallel case statement, with each

block being a condition/ action pair), respectively.

A parallel composition specifies opportunities

for parallel execution but does not indicate how

the composed blocks (which can be thought of as

lightweight processes) are to be mapped to proces

sors. The techniques used to specify mapping are

described below.

3.2 Communication and Synchronization

Statements in a parallel composition communi

cate and synchronize by reading and writing spe

cial single-assignment or definitional variables.

(Conventional, or mutable, variables are also sup

ported, but can be used only within sequential

blocks.) Definitional variables are distinguished

by a lack of declaration, are initially undefined,

can be written (defined) once using the primitive

operator =, and once written cannot be modified.

(An attempt to overwrite a definitional variable is

flagged as a runtime error.) A process that re

quires the value of an undefined variable sus

pends until the required data are available. This

provides a dataflow model of computation, with

execution order within parallel compositions de

termined by availability of data.

Processes that share a definitional variable can

communicate regardless of their location in a par

allel computer. For example, in the parallel com

position {II producer (x) , consumer (x) }, the

two procedure calls producer (x) and consu

mer (X) can use x to communicate, whether they

are executing concurrently on one processor or in

parallel on two processors.

Consider the following definitions for pro

ducer and consumer. The producer defines its

parameter to be the string 1 1 hello, 1 1 hence

communicating this value to any process that

shares that variable (in the composition in the pre

vious paragraph, this is consumer). The con

sumer is defined in terms of a choice composition.

The two guarded commands define tests on the

parameter v (v == 1 1 hello 1 1 and v ! =
1 1 hello 1 1

) and the actions that are to be per

formed if these tests succeed (calls to the proce

dures greet() or ignore (v) , respectively).

Hence, the procedure consumer suspends until v

54 FOSTER, OLSON, AND TUECKE

has a value and then executes one of the two pro

cedures.

producer(u)

{II u = ' 'hello' '}

consumer(v)

{ ? v ' 'hello' ' -> greet () ,

v ! = ''hello'' -> ignore(v)

}

Stream Communication

A shared definitional variable would not be very

useful if it could only be used to exchange a single

value. Fortunately, simple techniques allow a sin

gle variable to be used to communicate a stream of

values [5 J. A stream acts like a queue: the pro

ducer places elements on one end, and the con

sumer(s) take them off the other.

Stream communication is achieved by the in

cremental construction of linked list structures.

The technique makes use of a data type called the

tuple. A tuple is represented by zero or more terms

enclosed in parentheses, for example {} (the

empty tuple) or {head, tail} (a two-tuple). The

match operator ? = is used to access a tuple's

components. For example, x ? = {msg, xt}

checks whether xis a two-tuple and, if so, defines

msg and xt to be references to its two compo

nents.

Imagine a producer and a consumer sharing a

variable x. The producer defines x to be a two

tuple containing a message and a new definitional

variable (x = {msg, xt}). The consumer

matches x ? = {msg, xt} to access both the

message and the new variable. These operations

both communicate msg to the consumer and cre

ate a new shared variable xt that can be used for

further communication. This process can be re

peated arbitrarily often to communicate a stream

of messages from the producer to the consumer.

The stream is closed by defining the shared vari

able to be the empty tuple.

The following program implements this proto

col. The stream_producer generates n mes

sages, calling produce to generate each message,

and then closes the stream. The stream_consu

mer consumes messages until the stream is

closed, calling greet or ignore to process each

incoming message. Note that both procedures are

defined recursively. For example, the producer

generates one message (by defining u to be the

tuple {msg, ul}) and then calls itself recursively

to produce further messages. Recursion is often

used in PCN because it allows the introduction of

an unbounded number of new definitional vari

ables; the PCN compiler is designed to compile

such programs efficiently, and in fact translates

recursive procedures into iterative code. Explicit

iterative constructs are also available; these are

described in a subsequent section.

stream_producer(n, u)

{ ? n > 0 ->
{II produce (n, msg) ,

},

u = {msg, ul},
stream_producer(n-1, ul)

n == 0 -> u = {}

stream_consumer(v)

{? v ? = {msg, vl} ->
{II\{? msg ''hello'' ->greet(),

msg ! = ''hello'' -> ignore(msg)

},

stream_consumer(vl)

3.3 Nondeterminism

The use of definitional variables as a communica

tion mechanism avoids errors due to time-depen

dent interactions. Race conditions, in which the

result of a computation depends on the time at

which a process reads a variable, cannot occur: a

consumer of a variable always suspends until the

variable has a value, and then computes with a

value that cannot change.

Nevertheless, it is sometimes useful to be able

to specify nondeterministic execution, particularly

in reactive applications. PCJ'\ also allows the spec

ification of nondeterministic actions, but in a

tightly controlled manner. Only if the conditions

associated with two or more actions in a guarded

command are not mutually exclusive is execution

nondeterministic. For example, the following pro

cedure merges two input streams (in_streaml

and in_stream2) into a single output stream

(out_stream). Note that the two streams are not

mutually exclusive: as guards are executed con

currently, messages can be received from either

input stream, in a time-dependent manner.

merge(in_streaml, in_stream2, out_stream)

{ ?

in_streaml ? = {msg, more_inl} ->

{II
out_stream = {msg, more_out},

merge(more_inl, in_stream2, more_out)

in_stream2 ?= {msg, more_in2}->

{II
out_stream = {msg, more_out},

merge(in_streaml, more_in2, more_out)

PCN programs in which conditions are mutu

ally exclusive are guaranteed to be deterministic.

This is an important property that greatly simpli

fies parallel programming. (The reader might be

concerned about the possibility of writing condi

tions which are mistakenly not mutually exclusive.

In practice, this has not proved to be a problem.)

Two potential sources of nondeterminism that

are not prevented by PCN are concurrent 110 op

erations and concurrent access to Fortran com

mon or C global data by Fortran or C procedures

composed by PCN. The latter issue is discussed in

Section 4. 1.

3.4 Mapping

Parallel compositions define concurrent pro

cesses; shared definitional variables define how

these processes communicate and synchronize.

Together with the sequential code executed by the

different processes, these components define a

concurrent algorithm that can be executed and

debugged on a uniprocessor computer. However,

we do not yet have a parallel program: we must

first specify how these processes are to be mapped

to the processors of a parallel computer. Impor

tant features of PCN are that the mapping can be

specified by the programmer, and that the choice

of mapping affects only the performance, not the

correctness, of the program. The following lan

guage features are used when writing code to de

fine mappings.

Information Functions

When defining mappings, we sometimes require

information about the computer on which a pro

cess is executing. This information is provided by

the primitive functions topology (), nodes (),

and location ().

topology () : Returns a tuple describing the type of

the computer, for example, {''mesh'', 16, 32} or
{''array'', 512}.

PRODUCTIVE PARALLEL PROGRAMMING 55

nodes () : Returns the number of nodes in the com
puter.

location () : Returns the location of the process on

the computer.

Location Functions

Mapping is specified by annotating procedure

calls with system- or user-defined location func

tions, using the infix operator ' ' @ 1 1
• These

functions are evaluated to identify the node on

which an annotated call is to execute; unanno

tated calls execute on the same node as the proce

dure that called them. For example, the following

two procedures implement the location functions

node (i) and rnesh_node (i, j) , which compute

the location of a procedure that is to be mapped to

the i th node of an array and the (i , j)th node of

a mesh, respectively. Note the use of a match

(? =) to access the components of the mesh to

pology type. The percent character, 1 1 %1 1
, is the

modulus operator.

function node (i)

{II return (i %nodes () }

function rnesh_node(i, j)

{ ? topology () ? = { 1 •mesh 1 1
, rows,

cols} ->

return((i*rows + j)%nodes()),

default ->error()

}

The following compositiOn uses the function

node (i) to locate the procedure calls p (X) and

C (X).

{II p (x) @ node (10), c (x) @ node (20)}

Location functions are often used in an itera

tive construct called a quantification to create a

computation that executes on many processors. A

quantification has the general form

{ op i over low .. high : : block},

and specifies that block should be executed once

for each i in the range 1 ow .. high, either con

currently (if op =II) or sequentially (if op = ;).
The following two procedures use quantifica

tions and the location functions defined previ

ously to execute the procedure work in every node

of an array and mesh, respectively. For example,

a call to array on a 1024-processor computer

will create 1024 instances of work(), one per

56 FOSTER, OLSON, AND TUECKE

processor. (In practice, we may choose to use a

more efficient tree-based spawning algorithm on a

large machine.)

array()

{II i over 0 .. nodes () -1 : :

work () @ node (i)

}

mesh()

{ ? topology () ? = {' 'mesh' ' , rows,

cols} ->

}

{II i over 0 .. rows-1 ::

},

{llj over 0 .. cols-1

}

work() @

mesh_node(i, j)

default-> error()

Virtual Topologies and Map Functions

The ability to specify mapping by means of loca

tion functions would be of limited value if these

mappings had to be specified with respect to a

specific computer. Not only might this computer

have a topology that was inconvenient for our ap

plication, but the resulting program would not be

portable.

PCl'\ overcomes this difficulty by allowing the

programmer to define mappings with respect to

convenient virtual topologies rather than a partic

ular physical topology. A virtual topology consists

of one or more virtual processors or nodes, plus a

type indicating how these nodes are organized.

For example, 512 nodes may be organized as a

one-dimensional array, a 32 X 16 mesh, etc.

The embedding of a virtual topology in another

physical or virtual topology is specified by a sys

tem- or user-defined map function. A map func

tion is evaluated in the context of an existing to

pology; it returns a tuple containing three values:

the type of the new embedded topology, the size of

the new topology, and the function that is to be

used to locate each new topology node in the ex

isting topology. For example, the following func

tion embeds a mesh of size rowsxcols in an ar

ray topology; the mapping will be performed with

the location function node provided previously.

(The location function is quoted to indicate that it

should not be evaluated.) Note that the map func-

tion does not check whether the new topology

"fits" in the old topology. It is quite feasible to

create a virtual topology with more nodes than the

physical topology on which it will execute.

function mesh_in_array(rows, cols)

{? topology ?= {''array'', n} ->

}

{II type = { 'mesh'', rows, cols},

size = rows*cols,

map_fn = 'node()',

return ({type, size, map_fn})

},
default-> error()

We use the annotation submc to specify the

map functions that will generate the virtual topol

ogies used in different components of a program.

For example, if the mesh procedure specified pre

viously is to be executed on an array computer, we

may invoke it as follows.

mesh ()
@ submc(mesh_in_array(rows,cols))

Virtual topologies and map functions allow us

to develop applications with respect to a conven

ient and portable virtual topology. When moving

to a new machine, it is frequently possible to get

adequate performance with just a naive embed

ding of this virtual topology. For example, our ap

plications invariably treat all computers as linear

arrays, regardless of their actual topology, and

nevertheless achieve good performance. If com

munication locality were important (e.g., if we

moved to a machine without cut-through routing),

we would probably have to develop a map func

tion that provides a more specialized embedding.

This can generally be achieved without changing

the application code.

3.5 Port Arrays

Recall that individual processes communicate by

reading and writing shared definitional variables,

as in the composition {II producer (x) , consu

mer (x) }. The port array provides a similar mech

anism for use when composing sets of processes.

A port array is an array of definitional variables

that has been distributed evenly across the nodes

of a virtual topology. A declaration ' 'port

P [N] ; ' ' creates a port array P with N elements,

distributed blockwise across the nodes of the vir-

1[2) I

i
0[0) 0[1) 0[2) 0[3)

FIGURE 1. Ring pipeline cell.

tual topology in which the port array is declared.

Elements of a port array are accessed by indexing,

in the same way as ordinary arrays; the elements

can be used as ordinary definitional variables.

The following procedure, a variant of the

array procedure given earlier, uses port arrays

for two purposes: first, to provide each

r ing_node () process with definitional variables

for use as input and output streams; and second,

to establish internal communication streams be

tween neighboring processes, so that each process

has two streams, one shared with each neighbor.

The i th node of this structure is given elements

I [i] and 0 [i] of the two port arrays I and 0

passed as parameters, so as to allow communica

tion with the outside world, and two elements of

the local port array S. As in the C programming

language, the dimension of an array passed as an

argument is not specified.

ring(!, 0)

port S [nodes ()] , I [] , 0 [] ;

{II i over 0 .. nodes () -1 ::

}

ring_node(I[i], O[i], S[i],

s [(i + 1) %nodes ()]) @ node (i)

The process structure created by a call to this

procedure in a four-processor virtual topology can

be represented as follows, with the solid lines indi

cating external port connections and the dotted

lines internal streams. The box separates the in

ternals of the process structure from what is visible

to other processes. The ring_node procedure

executed by each process can use the four defini

tional variables passed as arguments to communi

cate with other processes (see Fig. 1).

4 REUSE

The ability to reuse existing code is vital to pro

ductive programming. The PCN system supports

two forms of reuse: reuse of sequential code writ-

PRODCCTIVE PARALLEL PROGRAMMING 57

ten in C or Fortran, and reuse of parallel code

written in PCN. The former is important when mi

grating existing sequential applications to parallel

computers; the latter is becoming increasingly im

portant as our parallel code base grows.

4.1 Sequential Code:
Multilingual Programming

A simple interface allows sequential code (cur

rently, Fortran and C are supported) to be in~e

grated into PCN programs as procedure calls, In

distinguishable for most purposes from calls to

PCN procedures. Sequential procedures can be

passed definitional and mutable data, but sus

pend until definitional data is available and hence

never deal with incomplete information. Sequen

tial procedures can modify only mutable vari

ables.

A deficiency of the Fortran interface is that no
. df" "dt special allowance IS rna e or common a a.

Each physical processor has a single copy of all

common data declared in an application's For

tran code, and every process on a processor has

access to that data. Hence, while PCN data struc

tures are encapsulated in processes to prevent

concurrent access, the same protection is not pro

vided for common data. It is the programmer's

responsibility to avoid errors due to concurrent

access. Experience shows that programmers deal

with this problem in one of two ways. (1) If an

application is of moderate size, or is being devel

oped from scratch, they often choose to eliminate

common data altogether. This may be achieved by

allocating arrays in PCN and passing them to the

different Fortran programs. Although this ap

proach requires substantial changes to the appli

cation, the bulk of the existing Fortran can be re

tained, and the full flexibility of PCN is available

to the programmer. (2) If substantial rewriting of

an application is not possible, programmers

maintain common data in its usual form and use

PCN to organize operations on this data in a way

that avoids nondeterminate interactions. Al

though certain operations are then more difficult

(e.g., process migration is complicat~~' and the

programmer must check for race conditiOns man

ually), other benefits of the PCN approach still

apply. .
The interface to sequential programmmg lan

guages means that we do not need to throw away

the many years of investment in sequential code

and compiler development when moving to paral-

58 FOSTER, OLSON, AND TUECKE

lel computers. Fortran and C are good sequential

languages but are less well suited to parallel pro

gramming. Experience suggests that PCJ:\" is a

good parallel language; nevertheless, it cannot

compete with Fortran and C in code base and

compiler technology. Multilingual programming

permits us to take the best from each approach,

using PCN for mapping, communication, and

scheduling, and Fortran and C for sequential

computation.

4.2 Parallel Code: Cells and Templates

Cells

Our approach to the reuse of parallel code is

based on what we term a software cell: a set of

processes created within a virtual topology to per

form some distinct function such as a reduction or

a mesh computation, and provided with one or

more port arrays for communication with other

program components.4 We have already seen sev

eral examples of cells: for instance, the procedure

ring in the preceding section implements a cell

that performs ring pipeline computations.

The interface to a PCK cell consists simply of

the port arrays and definitional variables that are

its arguments. A cell definition does not name the

processors on which it will execute, the processes

with which it will communicate, or the time at

which it expects to execute. These decisions are

encapsulated in the code that composes cells to

create parallel programs: a virtual topology speci

fies the number and identity of processors, port

arrays specify communication partners, and the

PCN compiler handles scheduling. As we will see

in subsequent examples, the simplicity of this in

terface allows cells to be reused in many different

contexts.

Templates

The ring cell would be more useful if the code to

be executed at each node could be specified as a

parameter. This is possible, and in this case we

refer to the cell definition as a template, as it en

codes a whole family of similar cells. For example,

the following is a template version of ring. The

procedure to be executed is passed as the param

eter op, which is quoted in the body to indicate

that it is used as a variable.

ring (op, I, 0)

port S [nodes ()] , I [] , 0 [l ;
{IIi over 0 .. nodes () -1

'op'(I[i], O[i], S[(i+l)%nodes()],

S [i]) @ node (i)

This template invokes the supplied procedure

with four definitional variables as additional

arguments. For example, if op has the value

nbody (p) , then a procedure call nbody (p, d1,

d2, d3, d4) (d1 .. d4 being the variables from the

port array) is invoked on each node of the virtual

topology. All parameters to op must be defini

tional variables; it is the programmer's responsi

bility to ensure that the number and type of these

parameters match op's definition.

Example

We illustrate how cells and templates are com

posed to construct complete applications. We

make use of the ring template and also the follow

ing simple input and output cells: load reads val

ues from a file and sends them to successive ele

ments of the port array P; store writes to a file

values received on successive elements of port ar

ray Q. Both use the sequential composition opera

tor to sequence I I 0 operations.

load(file, P)

port P [];

{; i over 0 .. nodes()-1

read(file, stuff),

P [i] = stuff

}

store(file, Q)

port Q [];

{; i over 0 .. nodes()-1

write(file, Q[i])

}

FIGURE 2. :\'-body program.

We compose the three cells to obtain a program

main that reads data from infile, executes a

user-supplied function in the ring pipeline (e.g., a

naive N-body algorithm), and finally writes results

to outfile. Note that although we use a parallel

composition, data dependencies will force the

three stages to execute in sequence. However, if
load were to output a stream of values rather

than a single value per node, then the three stages

could execute concurrently, as a pipeline.

main(param,infile, outfile)

port Pl[nodes()], P2[nodes()];

{II load (infile, Pl),

}

ring(nbody(param), Pl, P2),

store(outfile, P2)

Data flows from load to ring via port array Pl

and from ring to store via port array P2. This is

illustrated in Figure 2, which shows the process

structure created in a four-node topology.

The complete program executes in an array to

pology (''main (if, of) in array () (''))and

will create a ring with one process per node of that

topology.

5 TOOLS

The high-level nature of the PC]'~; language re

quires a sophisticated compiler (to achieve effi

cient execution on sequential and parallel com

puters) and a specialized debugger (to keep track

of multiple concurrent processes). These tools are

integrated with other components to form a toolkit

that supports debugging, performance tuning,

and integration of Fortran and C code, and that

allows programs to be executed on a wide variety

of parallel computers and workstation networks.'!

In this section, we describe four components of

this toolkit: compiler, network implementation,

parallel debugger, and performance analysis

tools.

5.1 Portable Compiler and
Runtime System

We summarize the techniques used to translate

PCJ'\ programs into executable code, so as to pro

vide some insights into the efficiency of the PCN

implementation.

PRODUCTIVE PARALLEL PROGRAYI~II~G 59

The PCN compiler implements both the PCN

language and the constructs introduced to sup

port reuse of parallel code. It translates PCJ'\ pro

grams to a machine-independent. low-level form

that is linked with both object code for sequential

language procedures and a small runtime system,

to produce an executable program. The compiler

is responsible for generating code to perform spe

cialized operations such as creating processes,

suspending processes, terminating processes. and

generating messages; the runtime system routes

incoming messages, schedules executable pro

cesses, and manages the heap on which are allo

cated process records. program data. etc.

The compiler and runtime system have been

carefully designed to optimize the creation, sched

uling, migration, and termination of lightweight

processes. A process with n arguments is repre

sented by a process record that occupies n + 2

words of memory, with n of these words contain

ing pointers to arguments; hence. processes can

be created, scheduled, or descheduled in a few

tens of instructions. A process is migrated to an

other processor by communicating the process

record and the data structures accessible from this

process record. Thus, the cost of migration is pri

marily the cost of transferring its data, and pro

cesses with little data can be migrated extremely

cheaply. The low cost of scheduling means that

the runtime svstem is able to schedule idle tasks

when waiting for the results of remote communi

cation operations. That is, it automatically over

laps computation and communication operations.

The compiler does not currently optimize the

performance of pure PCN code, which may exe

cute 5 to 10 times slower than equivalent Fortran

or C code. As PCJ'\ applications typically spend

much of their time executing Fortran or C. this has

not been a serious difficulty. (The profiling tools

described below can be used to identify bottle

necks; if necessary, PCJ\' procedures can be re

written in Fortran or C to improve performance.)

Future compilers will improve PCJ'\ performance.

allowing a larger proportion of applications to be

written in PCN.

A novel aspect of the compiler is a program

mable source transformation system. incorpo

rated as an optional stage in the compiler pipeline.

after the parser and before the encoder. Program

mers can use this facility to implement applica

tion-specific extensions to the PCJ\' language. For

example, the transformation system has been

used to implement specialized composition opera

tors that generate self-scheduling computa

tions [6].

60 FOSTER, OLSON, AND TUECKE

5.2 Network Implementation

The network implementation of PCN (net-PCN)

allows users to treat a set of workstations as a

parallel computer. Programs developed for multi

processors and multicomputers can be run with

out modification on networks, although because

of higher communication costs, algorithms must

normally be more coarse-grained to execute effi

ciently.

Net-PCN can run on any machine that sup

ports the TCP communication protocol. Hence, a

single computation can in principle run on several

workstations of a particular type, several worksta

tions of differing types, several processors of a

multiprocessor, or a mix of workstations and

multiprocessor nodes. Currently, we require that

all processors involved in a computation employ

common representations for the basic PCN data

types (characters, integers, and double-precision

floats). In the future, type conversions will be per

formed automatically, allowing PCN programs to

run transparently on arbitrary networks.

A useful component of net-PCN is a utility pro

gram called host-control, which provides fa

cilities for managing a network computation. This

utility allows the user to inquire about the status of

nodes available to net-PCN, add and delete

nodes, and execute programs [7].

5.3 PDB: A Parallel Debugger

Debugging tools that assist in the location of logi

cal errors are, of course, a critical component of

any programming system. PCN's unconventional

language constructs, in particular its lightweight

processes and dataflow synchronization, require

specialized debugging support. This is provided

by the PCN symbolic debugger, PDB.

The major difference between PCN and con

ventional sequential programming languages is

that in PCN programs, many threads of control

(processes) can be active at one time. Hence, PDB

not only provides conventional debugger features,

such as the ability to interrupt execution and ex

amine program arguments, but also permits the

user to examine enabled and suspended pro

cesses, identify definitional variables for which

values have yet to be produced, and control the

order in which processes are scheduled for

execution.

A common error in PCN programming is for

one program component not to produce a value

required by another component. This results in a

deadlock situation, in which all processes are sus

pended waiting for data. This situation can be de

tected by PDB. The programmer can examine the

set of suspended processes and identify variables

for which no values have been produced.

5.4 Understanding Performance

In parallel computing, where performance is criti

cal and often nonintuitive, it is important to pro

vide tools to assist in the identification of perfor

mance errors. Two such tools, Gauge and Upshot,

have been integrated into PCN.

Gauge

Gauge is an execution profiler: it collects informa

tion about the amount of time that each processor

spends in different parts of a program [8]. It also

collects procedure call counts, message counts,

and idle time information. Three properties of

Gauge make it particularly useful: profiling infor

mation is collected automatically, without any

programmer intervention; the overhead incurred

to collect this information is small, typically much

less than 1%; and the volume of data does not

increase with execution time. A powerful data ex

ploration tool permits graphical exploration of

profile data. The use of Gauge is illustrated in a

subsequent section.

Upshot

Upshot is a trace analysis tool that can provide

insights into the fine-grained operation of parallel

programs [9]. Upshot requires that the program

mer instrument a program with calls to event log

ging primitives. These events are automatically re

corded and written to a file when a program runs.

A graphical trace analysis tool allows the pro

grammer to examine temporal dependencies be

tween events. Like any trace-based tool, Cpshot

suffers from scaling problems. However, it can be

useful when used in a controlled manner, to ex

amine local phenomena identified as problematic

by Gauge.

6 APPLICATIONS

PCJ\" has been used in substantial programming

projects that have produced programs used to fur

ther scientific research on the world's fastest com

puters. For example, the first two applications op

erational on the 528-processor, 30 Gflops Intel

FIGURE 3 Icosahedral mesh domain decomposition.

Touchstone Delta system-a geophysical model

ing code and a fluid dynamics code-were both

PCN programs [10, 11 J. Here, we describe one of

those programs, survey other representative appli

cations, and identify factors that appear to favor

the use of PCN for programming projects.

6.1 Icosahedral Climate Modeling Code

This application implements a numerical method

proposed for use in climate models, a second

order, conservative control volume method on an

icosahedral-hexagonal grid. The code was devel

oped to permit detailed studies of both the meth

od's accuracy and the long-term behavior of fun

damental modes of the atmospheric circulation.

The code integrates existing Fortran and C code

into a parallel framework implemented in PCN. 10

An icosahedral-hexagonal grid can be struc

tured as 10 n X n meshes plus two separate polar

points. The parallel algorithm decomposes each

mesh into c 2 submeshes, giving 10 c 2 + 2 sub

domains, two with one point and the rest with

(n I c) 2 points. Communication must be per

formed to obtain values from neighboring subdo

mains during integration. The design of an effi

cient mapping is complicated by the irregular

domain. On some parallel computers, it may be

desirable to place two or more subdomains on the

same processor.

Implementation

The development of the parallel code is simplified

if mapping is specified with respect to a virtual

topology with the same shape as the problem do

main [4]. We define an ico_mesh topology con

taining 10 c X c meshes and two polar processors

(Fig. 3) and map functions rhombus (i) and

pole (i) that embed subtopologies correspond

ing to a single mesh or pole in an ico_mesh.

These functions are defined as follows. They lo-

PRODUCTIVE PARALLEL PROGRAMMING 61

cate rhombus i on nodes i c 2
. • (i + 1) c 2 -1 and

pole j on node 10c2 + j of an ico_mesh topology.

function rhombus(i)

{?topology()?= {"ico_mesh", c}, i >= 0,

i < 10 ->
{lltype = {''mesh'',c,c},

size = c*c,

},

map_fn = 'add_ offset <i*c*c) ',

return({type, size, map_fn})

default ->error()

function pole(i)

{?topology() ?={"ico_mesh", c}, i>=O,

i < 2 ->
{II type = {''mesh'', 1, 1},

size = 1,

} '

map_fn = 'add_offset (10*C*c+i) ',

return ({type, size, map_fn})

default-> error()

function add_offset(offset,i)

{II return (i + offset) }

The following sketch of the top-level code for

this application shows how mapping is expressed

in terms of the icosahedral topology. Ten calls to a

mesh template are used to set up a mesh cell

inside each rhombus, two calls to poleop set up

the polar computations, a call to a reduce cell

establishes a global reduction structure (used for

computing global minimums), and the inter

connect procedure establishes communication

streams between the various cells. For brevity, we

omit the definitional variables representing com

munication streams.

sphere ()

{II {II i over 0 .. 9 : :
mesh(...) ~ submc(rhombus(i))

} '
poleop (...) ~ submc (pole (0)),

poleop(...) ~ submc(pole(1)),

reduce(...),

interconnect(...)

The mesh procedure used to create a single

mesh is essentially the same as that outlined in

Section 3.4 .. As the code executed within a subdo

main is derived from the original Fortran and C,

and a global reduction library is available, the

only code that must be developed specifically for

this application is the interconnect procedure

and some interface code. To give an impression of

62 FOSTER, OLSON, AND TUECKE

step(args,tau,tmax,dt,subrhombus,streams,to_r)

double subrhombus[];

{ ?

tau < tmax ->
{ ;

{II I• Compute 1 1 locaLdt' ' •I
find_local_dt(subrhombus,local_dt),

I• Check old 1 1 dt'' ok for this time step •I
{ ? locaLdt < dt -> error () },
I• Initiate computation of 1 1 new-dt'' •I

to_r = {{ 1 1 min' ', locaLdt, new_dt}, to_rl}

I• Exchange data with neighbors •I
communications(streams,subrhombus,streamsl)

},
pre_filter(args,subrhombus),

I• Compute on grid, using old 1 1 dt'' •I
update_grid(args,dt,tau,subrhombus),

post_filter(args,subrhombus),
I• Proceed to next time step, passing 1 1 new_dt'' •I

step(args,tau+dt,tmax,new_dt,subrhombus,streamsl,to_rl)

},
default-> terminate(args,subrhombus)

}

FIGURE 4. Main driver program.

what the interface code looks like, we include in

Figure 4 the main driver executed for each sub

rhombus. Conceptually, this alternates communi

cation and computation. However, there are some

subtleties. For example, the code communicates

with a reduction cell to determine a global time

step (d t) consistent with the CFL condition. The

use of the new d t is delayed for one iteration so as

to permit overlapping of the communication re

quired for the reduction with other computation.

This is achieved by using dt as dt in the current

step, and passing new_dt to the recursive call to

step for use as dt in the next step.

Experiences

The parallel code was developed in collaboration

with the mathematician who wrote the original

sequential code. He provided advice to the under

graduate intern who wrote the parallel program,

and assisted with various enhancements to the

numerical method. We were fortunate in that the

Fortran code used common storage only for con

stants; storage for program data was allocated by

a C driver. This meant that we could reuse much

of the Fortran without change. In addition, once

we had set up the constants in the common stor-

age on each processor, we were free to map pro

cesses to processors in any way we wanted. The

complete code totals 1,400 lines Fortran, 870

lines C, and 750 lines of PCK. The relatively large

amount of PCN code reflects the fact that anum

ber of enhancements to the sequential code were

implemented in PCK rather than Fortran, due to

the greater ease of programming in the higher

level language.

The parallel program was developed, de

bugged, and refined on a Sun workstation. The

resulting code was moved to a 26-node Sequent

Symmetry shared-memory computer for perfor

mance studies and from there was ported with

only minor changes to a 192-node Symult s201 0

mesh, 64-node Intel iPSC/860 hypercube, and

528-node i860-based Intel Touchstone Delta

mesh. The changes were due primarily to use of a

different II 0 structure on the Delta, and a need to

work around certain deficiencies in the Delta's file

system (since corrected). This portability allowed

us to obtain scientific results within 1 week of the

Delta's being installed at Caltech in May 1991;

applications developed with other technologies

were not operational until weeks or even months

later.

Profile and trace data provided by Gauge and

C pshot allowed us to identify mapping and load

PRODUCTIVE PARALLEL PROGRAMMING 63

I Usage II Calls II Statistics II Subset II Delete II Clear II Color Scale II Help II Info II Quit I

IIIII Log Scale Bucket Ill ThreeD

Unzoom ... UnSort ByProcedures

111111
Time Breakdown

0 500 1000 1500 2000 2500 3000

Total Execution Time (mins:secs:msecs): 47:31:847
Total Reductions: 2785082505

Total Suspensions: 3553936826

FIGURE 5 Gauge performance display: time breakdown.

balancing problems in early versions of our pro

gram. One problem was that a too-coarse-grained

decomposition of the Fortran code gave the PCN

compiler too little opportunity to overlap compu

tation and communication. The result was much

idle time. A more fine-grained implementation

was easily achieved in a few hours' work; this gave

the good performance results reported below.

An example of a load imbalance is illustrated in

Figure 5. This is a Gauge histogram display of

summary data for a run on 492 Delta processors,

with each pixel in the vertical dimension repre

senting a processor and shading distinguishing

time spent idle (light) and busy (dark). (About 260

processors are visible.) A slight load imbalance is

evident: it appears that the processors handling

location (0,0) in each rhombus are spending more

time computing than other processors. Other

Gauge facilities allowed us to isolate the Fortran

routine in which the load imbalance occurs, at

which point it was easily corrected by modifying

the Fortran code. We claim that without Gauge it

would have been difficult to correct this load im

balance (or even, perhaps, to suspect its exis

tence).

Good parallel efficiencies are achieved on ail

four parallel computers. On the Delta, we obtain

approximately 2.5 Gflops (5 Mflops per processor)

and 80% efficiency relative to the pure Fortran

code running on a single i860 processor, for a

problem size of N = 56 (approximately 150-km

resolution). This compares favorably with other

applications, which have typically achieved 3 to 6

~flops/processor. Tuning of the sequential For

tran and improvements to the Delta compiler are

expected to further improve overall performance.

The parallel code uses a simple embedding of

the icosahedral mesh that is not specialized for

either hypercube or mesh topologies. This map

ping does not attempt to cluster neighboring ico

sahedral mesh nodes but simply allocates nodes

in the icosahedral mesh to consecutive nodes in

the underlying computer. It is specified as follows.

function icosahedron(c)

{II type = {' 'ico_mesh' ', c},

size = 10*C*c+2,

map_fn = 'node()',

return ({type, size, map_fn})

}

64 FOSTER, OLSON, AND TL'ECKE

Because parallel efficiency is so good, we have

not been motivated to explore alternative map

pings of the icosahedral mesh. (Some tinkering

with the mapping did not appear to generate sig

nificant improvements: this is probably to be

expected, given that cut-through routing in the

Symult and Delta reduces the importance of com

munication locality.) I\evertheless, the use of the

icosahedral virtual topology leaves us with the op

tion of exploring alternatives in the future, if either

improvements in per-node performance increase

relative communication costs, or the code is

ported to a machine on which locality is more im

portant. One potentially interesting mapping

would fold the whole icosahedral mesh structure

(locating two or more nodes per processor) so as

to reduce message latency. Of course, this can

be achieved without changing the application

code.

6.2 Application Survey

Most applications developed to date are, like the

icosahedral code, scientific in nature; almost all

use PCN to organize the parallel execution of pre

existing Fortran or C code. Although they solve a

wide variety of problems, many can be structured

in terms of one or more of a small number of basic

cells and templates. We describe some represen

tative examples, indicating the structures used in

the implementations. We also give code sizes

when this information is available to us.

Mesh Structures

The structure of many different mesh-based ap

plications can be captured in one- or two-dimen

sional mesh templates. A two-dimensional mesh

template forms a building block for both the ico

sahedral code and another climate modeling code

based on overlapping stereographic meshes

(3,800 lines C, 640 lines PCN) [10]. Other mesh

based applications include a computational fluid

dynamics code developed by Harrar et al. for

computing Taylor-vortex flows, based on a torus

structure [11] (5,300 lines Fortran, 900 lines

PCN); a finite-element code for simulating flow in

Titan rocket engines (9,000 lines Fortran, 180

lines PCN); and a parallel implementation of the

mesoscale weather model MM4 (15,000 lines For

tran, 250 lines PCN). Work is under way to build a

version of MM4 in which the mesh template per

forms dynamic load balancing.

Ring Structures

Cells similar to the ring structure presented in Sec

tion 4.2 form the basis for several applications. A

code for computing nonlinear dynamics proper

ties of extended climate simulations uses an algo

rithm similar to that used for naive N-body simu

lations of molecular dvnamics (250 lines Fortran,

170 lines PCN). Essentially the same algorithm

and structure have also been used in programs for

computing molecular interactions and covari

ances between bases in genetic sequences (the lat

ter is 500 lines C, 800 lines PCN). Similar struc

tures are used in a parallel implementation of the

spectral transform method used in climate model

ing (7,400 lines Fortran, 370 lines PCI\).

Tree Structures

Tree and butterfly structures are used in many

codes to perform parallel reductions. A good ex

ample of a code based entirely on a tree structure

is one developed by Wright to solve two-point

boundary value problems [12] (700 lines Fortran,

50 lines PCI\). This algorithm dynamically creates

a process tree; data is produced at the leaves,

flows up the tree to the root (being reduced at each

node), and then back down to the leaves to yield

the final solution [3]. The code is defined with

respect to a tree virtual topology; the map function

that defines this topology specifies how the com

plete structure is embedded in a parallel com

puter. Note that it is the low cost of process crea

tion and migration in PCN which makes this

dynamic formulation of the algorithm (which

proved to be particularly convenient) feasible.

Self-Scheduling Structures

A self-scheduling program incorporates code to

dynamically map tasks to idle processors; al

though this approach introduces additional over

head relative to a static schedule, it is essential for

some very dynamic problems. Self-scheduling

programs can be constructed easily in PCN be

cause of the simplicity of process migration [6].

(The global address space provided by the com

piler means that processes can be migrated as

data structures.) Self-scheduling applications in

clude codes for aligning genetic sequences, com

puting phylogenetic trees, and predicting protein

structure. (Computational biology is a rich source

of applications for self-scheduling techniques be

cause of the frequent use of heuristics.) An appli

cation under development at Argonne schedules

tasks to ring structures (each involving several

processors) rather than to individual processors.

An interesting aspect of all these codes is that the

scheduling code can be separated from the appli

cation-specific code in a distinct scheduling cell.

Alternative scheduling cells can be substituted

without changing the application; typically the

scheduling structure is specified in 20 to 100 lines

of code.

Genetic Algorithms

Genetic optimization algorithms maintain a popu

lation of candidate solution vectors and apply

simulated natural selection to improve the quality

of this population. One approach to parallelizing

these algorithms is to maintain multiple popula

tions, with periodic exchanges of individual vec

tors. Our PCN implementation of a parallel

genetic algorithm is parameterized with the initial

ization, mutation, and mating operators that de

fine a genetic algorithm. The PCN code handles

all aspects of execution on a parallel computer,

using a router cell for asynchronous communica

tion of selected individuals between populations

and a reduction cell for computing global values

when checking for termination. The PCN code to

tals 500 lines; applications developed with this

code have added anything from a few hundred

lines of C to 6,000 lines of Fortran.

6.3 Discussion

As this brief survey shows, PCN applications span

a wide range, from the simple and straightforward

to the sophisticated and complex. The amount of

PCN code incorporated in the various programs

depends both on the complexity of the parallel

algorithms and the extent to which PCN was used

for algorithm development in addition to porting.

It is probably too early to draw firm conclusions

regarding the merits of the approach. However, we

can make a few observations concerning user re

actions. We find that programmers perceive a

substantial benefit from the use of PCN (and fre

quently become ardent advocates of the technol

ogy) when their programming problem has one or

more of the following characteristics.

1. A complex communication structure, or a

need to overlap computation and communi

cation.

2. A need for load balancing.

3. Dynamic computation, communication, or

mapping structures.

PRODUCTIVE PARALLEL PROGRAMMING 65

4. A need for portability and scalability.

5. Initial performance errors that are corrected

by using Gauge.

6. An interest in exploring algorithmic alterna

tives: e.g., different stencils, reduction strat

egies, communication algorithms, or map

pings.

7. An ability to reuse existing cells and tern

plates.

In contrast, programmers working with simple,

regular problems (such as one-dimensional de

compositions with static mapping) find it hard to

justify the inevitable learning curve associated

with a new approach to programming.

7 CONCLUSIONS

The ability to develop parallel programs quickly

and easily is becoming increasingly important to

many scientists and engineers. Although we can

not expect parallel programming to become easy,

we can avoid unnecessary difficulties by using ap

propriate tools. In this article, we have described

tools that take us several steps beyond the low

level facilities commonly available on parallel su

percomputers. A simple concurrent programming

notation allows us to express complex parallel al

gorithms without unnecessary contortions. Inter

faces to sequential languages allow us to reuse ex

isting Fortran and C code. Support for cells and

templates allows us to define and reuse parallel

program structures. Compiler, debugging, and

performance analysis tools reduce the labor asso

ciated with program development and provide

portability over a wide range of machines.

PCN has already been used to develop sub

stantial applications; other application projects

are under way. Optimizing compilers are being

developed, with particular emphasis on the re

quirements of fine-grained computers. Libraries

of software cells and templates are being devel

oped to support fluid dynamics, geophysical mod

eling, and computational chemistry; similar li

braries can and should be developed for other

areas of computational science.

ACKNOWLEDGMENTS

This work is a collaborative effort involving research

groups at Argonne and Caltech. As such, it owes a great

debt to many individuals. Steve Taylor leads the re-

66 FOSTER, OLSON, AND TUECKE

search at Caltech. Mani Chandy has contributed to the

language definition. Sharon Brunett and Dong Ling are

responsible for compiler development. Gauge and Up

shot were developed by Carl Kesselman and Ewing

Lusk, respectively. 1-liang Chern and Steve Hammond

helped develop the icosahedral grid application.

This research was supported at Argonne by the Na

tional Science Foundation's Center for Research on

Parallel Computation under Contract !\"SF CCR-

8809615 and by the Applied Mathematical Sciences

subprogram of the Office of Energy Research, C.S. De

partment of Energy, under Contract W -31-109-Eng-

38.

REFERENCES

[1] A. Whitehead, An Introduction to Mathematics.

Oxford, England: Oxford Cniversity Press, 1958.

[2] C. Chandy and S. Taylor, An Introduction to Par

allel Programming. Boston, MA: Jones and

Bartlett, 1991, pp. 1-228.

[3] I. Foster and S. Tuecke, Parallel Programming

with PCN, Technical Report Al\"L-91/32,

Argonne National Laboratory, 1991.

[4] I. Foster, Information hiding in parallel pro

grams, Preprint MCS-P290-0292, Argonne :"/a

tiona! Laboratory, 1992.

[5] I. Foster and S. Taylor, Strand: New Concepts in

Parallel Programming. Englewood Cliffs, NJ:

Prentice-Hall, 1989, pp. 1-333.

[6] I. Foster, ''Automatic generation of self-schedul

ing programs," IEEE Trans. Parallel and Distrib

uted Systems, vol. 2, no. 1, pp. 68-78, January

1991.

[7] R. Olson, Using host-control, Technical Memo

ANL/MCS-TM-154, Argonne National Labora

tory, 1991.

[8] C. Kesselman, Integrating Performance Analysis

with Performance Improvement in Parallel Pro

grams, Technical Report CCLA-CS-TR-91-03,

UCLA, 1991.

[9] V. Herrarte and E. Lusk, Studying parallel pro

gram behavior with Upshot, Technical Report

A:'\IL-91/15, Argonne .'\lational Laboratory,

1991.

[10] I. Chern and I. Foster, "Design and parallel im

plementation of two methods for solving PDEs on

the sphere," Proc. Conf on Parallel Computa

tional Fluid Dynamics. Stuttgart, Germany: Else

vier Science Publishers B.V., 1991. pp. 83-96.

[11 J H. HarraL H. Keller, D. Lin, and S. Taylor, "Par

allel computation of Taylor-vortex flows," Proc.

Conf on Parallel Computational Fluid Dy

namics. Stuttgart, Germany: Elsevier Science

Publishers B.V., 1991, 193-206.

[12] S. Wright, Stable parallel algorithms for two

point boundary value problems, Preprint MCS

P178-0990, Argonne 1\ational Laboratory, and

SIAM]. Sci. Statistical Comput., 1992 (in press).

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

