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Abstract

We present new and streamlined proofs of various formulae for products and ra-
tios of characteristic polynomials of random Hermitian matrices that have appeared
recently in the literature.
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1 Introduction

In random matrix theory, unitary ensembles of N × N matrices {H} play a central role
[16]. Such ensembles are described by a measure dα with finite moments

∫
R |x|kdα(x) < ∞,

k = 0, 1, 2, · · · , and the distribution function for the eigenvalues {xi = xi(H)} of matrices H
in the ensembles has the form

d Pα,N(x) =
1

ZN

∆(x)2dα(x) (1.1)

where dα(x) =
N∏

i=1

dα(xi), ∆(x) =
∏

N≥i>j≥1

(xi − xj) is the Vandermonde determinant for

the xi’s, and ZN =
∫ · · · ∫ ∆(x)2dα(x) is the normalization constant. The special case

dα(x) = e−x2
dx is known as the Gaussian Unitary Ensemble (GUE). For symmetric functions

f(x) = f(x1, · · · , xN) of the xi’s,

〈
f
〉

α
≡ 1

ZN

∫
· · ·

∫
f(x)∆(x)2dα(x) (1.2)

denotes the average of f with respect to d Pα,N .
Recently there has been considerable interest in the averages of products and ratios of

the characteristic polynomials DN [µ,H] =
N∏

i=1

(µ− xi(H)) of random matrices with respect

to various ensembles. Such averages are used, in particular, in making predictions about the
moments of the Riemann-zeta function, see [15, 14, 13] (circular ensembles) and [3] (unitary
ensembles). Many other uses are described, for example, in [1], [12] and [11].

By (1.2), for unitary ensembles, such averages have the form

〈∏K
j=1 DN [µj, H]

∏M
j=1 DN [εj, H]

〉

α

=
1

ZN

∫
· · ·

∫ ∏K
j=1

∏N
i=1(µj − xi)∏M

j=1

∏N
i=1(εj − xi)

∆(x)2dα(x). (1.3)

In this paper we consider certain explicit determinantal formulae for (1.3) – see (2.6), (2.24),
(2.36), (3.3), (3.12) below. Formula (2.6) is due to Brezin and Hikami [3] (see also [17],
and when all the µj’s are equal, see [10]), whereas (2.24), (2.36), (3.3) and (3.12) are due to
Fyodorov and Strahov [12, 11]. The papers [12, 11] also contain a discussion of the history of
these formulae. The formulae (3.3) and (3.12) are particularly useful in proving universality
results for the ratios (1.3) in the Dyson limit as N → ∞ (see [11]). For a discussion of
other universality results, particularly the work of Brezin-Hikami and Fyodorov in special
cases, we again refer the reader to [11]. The asymptotic analysis in [11] is based on the
reformulation of the orthogonal polynomial problem as a Riemann-Hilbert problem by Fokas,
Its and Kitaev [9]. The Riemann-Hilbert problem is then analyzed asymptotically using the
non-commutative steepest-descent method introduced by Deift and Zhou [8], and further
developed with Venakides in [7] to allow for fully non-linear oscillations, and in [6], [5].
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Our goal in this paper is to give new, streamlined proofs of (2.6)-(3.12), using only the
properties of orthogonal polynomials and a minimum of combinatorics. Along the way we
will also need an integral version of the classical Binet-Cauchy formula due to C.Andréief
dating back to 1883 (see Lemma 2.1 below).

Let πj(z) = xj + · · · denote the jth monic orthogonal polynomial with respect to the
measure dα, ∫

R
πj(x)πk(x)dα(x) = cjckδjk, j, k ≥ 0, (1.4)

where the norming constants cj’s are positive. The key observation in our approach is that
for K = 1 and M = 0 in (1.3) 〈

DN [µ,H]
〉

α
= πN(µ) (1.5)

(see [18]). In our words, the orthogonal polynomial πN(µ) with respect to dα is also precisely

the average polynomial
N∏

i=1

(µ− xi) with respect to d Pα,N . Formula (1.5) appears already in

the work of Heine in the 1880’s (see [18]). Set

dα[`,m](t) ≡
∏`

j=1(µj − t)∏m
j=1(εj − t)

dα(t), `,m ≥ 0, (1.6)

(dα[0,0](t) ≡ dα(t)), and let π
[`,m]
j (t) denote the jth monic orthogonal polynomial with respect

to dα[`,m]. With this notation we see immediately from (1.3), (1.5) that
〈QK

j=1 DN [µj ,H]QM
j=1 DN [εj ,H]

〉
α

is proportional to π
[K−1,M ]
N (µK) Using a classical determinantal formula of Christoffel (see

[18]) for π
[`,0]
N (µ) and a more recent formula of Uvarov [19] for π

[0,m]
N (µ), we are then led

(see Section 2. Formulae of Christoffel-Uvarov type) to (2.6), (2.24) and (2.36) in a rather
straightforward way. Formula (3.3) appears to have a different character from (2.6), (2.24),
(2.36), and relies on Lemma 2.1 mentioned above, which computes the integral of the product
of two determinants: formula (3.12) follows (see Section 3. Formulae of two-point function
type) by combining (3.3) with (2.6) and (2.36). In [11] the authors present a variety of

additional formulae for
〈QK

j=1 DN [µj ,H]QM
j=1 DN [εj ,H]

〉
α

for cases of K and M not covered by (2.6)-(3.12):

we leave it to the interested reader to verify that the method of this paper can also be used
to derive these formulae in a straightforward manner.

Remark 1.1. As is well-known (see e.g., [18]), each measure dα gives rise to a tridiagonal
operator

J = J(dα) =




a1 b1 0
b1 a2 b2

0 b2 a3
. . .

. . . . . .


 , bi > 0 (1.7)

with generalized eigenfunctions given by the orthonormal polynomials

pj(x) = c−1
j πj(x), j = 0, 1, · · · , (1.8)
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i.e.
bj−1pj−1(x) + ajpj(x) + bjpj+1(x) = xpj(x), j ≥ 1 (1.9)

where b0 ≡ 0. Conversely, modulo certain essential self-adjointness issues, dα is the spectral
measure for J in the cyclic subspace generated by J and the vector e1 = (1, 0, 0, · · · )T (see,
e.g., [4]). It follows that the transformation of measures

dα → dα[`,m] (1.10)

leads to the transformation of operators

J(dα) → J(dα[`,m]). (1.11)

For appropriate choices of µ1, · · · , µm and ε1, · · · , ε`, such transformations corresponding to
removing m points from the spectrum of J(dα) and inserting ` points: in the spectral theory
literature, such transformations are known as Darboux transformations. The formulae in this
paper clearly provide formulae for the generalized eigenfunctions p

[`,m]
j (x) of the Darboux-

transformed operator J(dα[`,m]), as well as the matrix entries, a
[`,m]
j and b

[`,m]
j , in terms of

the corresponding objects for J(dα). Again we leave the details to the reader. Here the
elementary formulae

b2
n(dα) =

n + 1

n + 2

Zn(dα)Zn+2(dα)(
Zn+1(dα)

)2 , an(dα) =
d

dt

∣∣∣∣
t=0

log
Zn(dαt)

Zn+1(dαt)
(1.12)

where dαt(x) = etxdα(x), are useful.

Technical Remark 1.2. Formulae (2.6)-(3.12) clearly do not make sense for all values of the
parameters. In all the calculations that follow, we will assume that dα has com-
pact support, support(dα)= [−Q,Q], say, and that the µi’s and εj’s are distinct
real numbers greater than Q: under these assumptions, dα[`,m](t) becomes, in particular,
a bona-fide measure, etc. By analytic continuation one sees that the formulae remain true
for complex values of {µi} and {εj}, as long as they remain distinct. Furthermore, if the µi’s
and εj’s are distinct, and Im(εj) 6= 0 for all j, then we can let Q →∞ and so the formulae
are true for measures dα with unbounded support. Finally we can, for example, let µj → µk

for some j 6= k, which leads to formulae involving derivatives of the πj’s, etc.

2 Formulae of Christoffel-Uvarov type

We use the notations dα, πj, dα[`,m], π
[`,m]
j , ... of Section 1. In addition, in all the calculations

that follow we assume that dα, {µj}, {εk} satisfy the conditions described in Technical
Remark 1.2 above: the natural analytical continuation of the formulae obtained to complex
values of the parameters, and the limit Q →∞, is left to the reader.

The following result of Christoffel (see [18]) plays a basic role in what follows.
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Lemma 2.1. Consider the measure dα[`,0](t) =
∏̀
j=1

(µj − t) dα(t), where ` = 1, 2, .... Then

the nth monic orthogonal polynomial π
[`,0]
n (t) associated with the new measure dα[`,0](t) can

be expressed as follows:

π[`,0]
n (t) =

1

(t− µ1) . . . (t− µ`)

∣∣∣∣∣∣∣∣∣

πn(µ1) · · · πn+`(µ1)
...

πn(µ`) . . . πn+`(µ`)
πn(t) . . . πn+`(t)

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

πn(µ1) . . . πn+`−1(µ1)
...

πn(µ`) . . . πn+`−1(µ`)

∣∣∣∣∣∣∣

. (2.1)

Proof. Set

q[`,0]
n (t) =

∣∣∣∣∣∣∣∣∣

πn(µ1) · · · πn+`(µ1)
...

πn(µ`) . . . πn+`(µ`)
πn(t) . . . πn+`(t)

∣∣∣∣∣∣∣∣∣
. (2.2)

We note that q
[`,0]
n (t) satisfies the condition

∫
tjq

[`,0]
n (t)dα(t) = 0 for all j ∈ {0, . . . , n − 1}.

Also q
[`,0]
n (µj) = 0, j = 1, · · · , `, and so q

[`,0]
n (t)

(µ1−t)···(µ`−t)
is a polynomial of degree at most n.

Now observe that
∫

tj

[
q
[`,0]
n (t)

(µ1 − t) . . . (µ` − t)

]
dα[`,0](t) = 0, 0 ≤ j < n (2.3)

which means that q
[`,0]
n (t) divided by the product (µ1 − t) . . . (µ` − t) is proportional to the

nth monic orthogonal polynomial π
[`,0]
n (t) associated with the new measure dα[`,0](t). Now

q
[`,0]
n (t) cannot vanish for any t = µ`+1 > Q, µ`+1 /∈ {µ1, · · · , µ`}. Indeed, if q

[`,0]
n (µ`+1) = 0,

then there exist {αi}`
i=0, not all zero, such that p(t) ≡ ∑`

i=0 αiπn+i(t) vanishes at {µi}`+1
i=1 .

Thus p̃(t) ≡ p(t)/
∏`+1

i=1(µi− t) is a polynomial of order < n, and as above, p̃(t) is orthogonal
to tj, 0 ≤ j < n, with respect to the measure dα[`+1,0](t). Thus p̃(t) ≡ 0 and hence
α0 = · · · = α` = 0, which is a contradiction. Replacing ` by `− 1, we conclude that

∣∣∣∣∣∣∣

πn(µ1) . . . πn+`−1(µ1)
...

πn(µ`) . . . πn+`−1(µ`)

∣∣∣∣∣∣∣
6= 0. (2.4)

Taking the limit t →∞ and noting that the coefficient of the highest degree of π
[`,0]
n (t) should

be equal to 1, we find the coefficient of proportionality and establish formula (2.1).

Representation (2.1) for the monic orthogonal polynomials associated with the measure
dα[`,0](t) immediately leads to the following result:
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Corollary 2.2. The product of monic orthogonal polynomials
∏`

j=0 π
[j,0]
n (µj+1) defined with

respect to the different measures dα[j,0](t) ≡ (µj − t) · · · (µ1− t)dα(t) is given by the formula

∏̀
j=0

π[j,0]
n (µj+1) =

1

4(µ)

∣∣∣∣∣∣∣

πn(µ1) · · · πn+`(µ1)
...

πn(µ`+1) · · · πn+`(µ`+1)

∣∣∣∣∣∣∣
(2.5)

where 4(µ) =
∏

`+1≥i>j≥1

(µi − µj).

We observe that Corollary (2.2) gives the identity for the average of products of random
characteristic polynomials obtained first by Brezin and Hikami [3].

Theorem 2.3. Let DN [µ,H] be the characteristic polynomial of the Hermitian matrix H.
The following identity is valid:

〈
L∏

j=1

DN [µj, H]

〉

α

=
1

4(µ)

∣∣∣∣∣∣∣

πN(µ1) . . . πN+L−1(µ1)
...

πN(µL) . . . πN+L−1(µL)

∣∣∣∣∣∣∣
(2.6)

where the average is defined by (1.2).

Proof. To prove formula (2.6) we use the representation for the monic orthogonal polynomials
in the case L = 1 given in (1.5),

πN(µ) =
1

ZN

∫
. . .

∫ N∏
i=1

(µ− xi)42(x)dα(x). (2.7)

Let Z
[`,0]
N be defined by

Z
[`,0]
N =

∫
. . .

∫
42(x)dα[`,0](x), ` = 1, 2, · · · . (2.8)

where dα[`,0](x) =
N∏

i=1

dα[`,0](xi). With this notation, we have

〈
L∏

j=1

DN [µj, H]

〉

α

=
Z

[L,0]
N

ZN

=
Z

[L,0]
N

Z
[L−1,0]
N

Z
[L−1,0]
N

Z
[L−2,0]
N

· · · Z
[1,0]
N

ZN

. (2.9)

Equation (2.7) implies that π
[`−1,0]
n (µ`) can be represented as the ratio Z

[`,0]
N /Z

[`−1,0]
N , where

π
[0,0]
N (µ) ≡ πN(µ), and Z

[0,0]
N ≡ ZN . Thus we obtain

〈
L∏

j=1

DN [µj, H]

〉

α

=
L−1∏
j=0

π
[j,0]
N (µj+1) (2.10)

The above equation together with Corollary (2.2) proves formula (2.6).
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Remark 2.4. Notice (see equations (2.7) and (2.10)) that the average of products of charac-
teristic polynomials can be rewritten as a product of averages. Namely,

〈
L∏

j=1

DN [µj, H]

〉

α

=
L∏

j=1

〈DN [µj, H]〉α[j−1,0] (2.11)

where 〈. . .〉α[j−1,0] means the average defined by equation (1.2) but with respect to the new
measure dα[j−1,0](x), and dα(x) ≡ dα[0,0](x).

The formula of Christoffel (equation (2.1)) enables us to construct the orthogonal poly-

nomials associated with the measure dα[`,0](t) =
∏̀
j=1

(µj − t)dα(t) in terms of the orthogonal

polynomials associated with the measure dα(t). Now we derive a formula due to Uvarov

[19] expressing the monic orthogonal polynomials π
[0,m]
n (t) associated with the measure

dα[0,m](t) =
m∏

j=1

(εj − t)−1dα(t), again in terms of the monic orthogonal polynomials πn(t)

associated with the measure dα(t).

Lemma 2.5. Suppose 0 ≤ m ≤ n. The monic orthogonal polynomials π
[0,m]
n (t) associated

with the measure dα[0,m](t) can be expressed as ratios of determinants,

π[0,m]
n (t) =

∣∣∣∣∣∣∣∣∣

hn−m(ε1) . . . hn(ε1)
...

hn−m(εm) . . . hn(εm)
πn−m(t) . . . πn(t)

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

hn−m(ε1) . . . hn−1(ε1)
...

hn−m(εm) . . . hn−1(εm)

∣∣∣∣∣∣∣

. (2.12)

Here the hk(εj)’s are the Cauchy transformations of the monic orthogonal polynomials πk(t),

hk(εj) =
1

2πi

∫
πk(t)dα(t)

t− εj

. (2.13)

Proof. Set

q[0,m]
n (t) =

∣∣∣∣∣∣∣∣∣

hn−m(ε1) . . . hn(ε1)
...

hn−m(εm) . . . hn(εm)
πn−m(t) . . . πn(t)

∣∣∣∣∣∣∣∣∣
. (2.14)

Now q
[0,m]
n (t) is proportional to the nth monic orthogonal polynomial π

[0,m]
n (t) with respect

to the measure dα[0,m](t). Indeed, first observe that

∫
q
[0,m]
n (t)

t− εj

dα(t) = 0, j = 1, · · · ,m. (2.15)
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Also, for 0 ≤ k < n,
tk∏m

`=1(ε` − t)
=

m∑

`=1

β`

ε` − t
+ p(t) (2.16)

for suitable constants {β`} and for some polynomial of degree < n−m. But for 0 ≤ k < n,
∫

tkq[0,m]
n (t)dα[0,m](t) = −

m∑

`=1

β`

∫
q
[0,m]
n (t)

t− ε`

dα(t) +

∫
p(t)q[0,m]

n (t)dα(t). (2.17)

The terms in the sum are zero by (2.15) and the final integral is zero by the construction

(2.14) of q
[0,m]
n (t) and the fact that deg p(t) < n−m. Thus q

[0,m]
n (t) is proportional to π

[0,m]
n (t).

An argument similar to the proof in Lemma 2.1 that∣∣∣∣∣∣∣

πn(µ1) . . . πn+`−1(µ1)
...

πn(µ`) . . . πn+`−1(µ`)

∣∣∣∣∣∣∣
6= 0, (2.18)

shows that the denominator in (2.12) does not vanish. Letting t →∞ in (2.14), and matching
leading terms, we prove Lemma 2.5.

Remark 2.6. In [19], Uvarov obtains formulae for π
[0,m]
n (t) of type (2.12) also in the case

m > n. These formulae can be used to obtain analogues of (2.24) and (2.36) below in the
case M > N .

Remark 2.7. As noted in [12, 11], the Cauchy transformations hk(ε) of the πk’s occur explic-
itly, together with the πk’s, in the solution of the Fokas-Its-Kitaev Riemann-Hilbert problem
for orthogonal polynomials [9].

Lemma (2.5) implies the following analogue of the Christoffel formula for the Cauchy
transforms of monic orthogonal polynomials.

Corollary 2.8. Let h
[0,m]
k (ε) be the Cauchy transform of the monic polynomial π

[0,m]
k (t) with

respect to the measure dα[0,m](t),

h
[0,m]
k (ε) =

1

2πi

∫
π

[0,m]
k (t)

t− ε
dα[0,m](t). (2.19)

Let also 0 ≤ m ≤ n. Then h
[0,m]
n (ε) has a representation similar to that for the monic

orthogonal polynomials π
[l,0]
n (t) (equation (2.1)),

h[0,m]
n (ε) =

(−1)m

(ε− εm) . . . (ε− ε1)

∣∣∣∣∣∣∣∣∣

hn−m(ε1) . . . hn(ε1)
...

hn−m(εm) . . . hn(εm)
hn−m(ε) . . . hn(ε)

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

hn−m(ε1) . . . hn−1(ε1)
...

hn−m(εm) . . . hn−1(εm)

∣∣∣∣∣∣∣

. (2.20)
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Proof. The above representation follows from formula (2.12) and from the fact that

1

(t− εm+1) . . . (t− ε1)
=

m+1∑
j=1

1

t− εj

∏

k 6=j

1

εj − εk

. (2.21)

Indeed we find from formula (2.12) that h
[0,m]
n (ε) is the ratio of the determinants. The

elements of the last row of the determinant in the numerator are the integrals

1

2πi

∫
πn−k(t)dα(t)

(t− ε)(t− εm) . . . (t− ε1)
, 0 ≤ k ≤ m.

Using identity (2.21) and noting that the only term

1

t− ε

1

(ε− εm) . . . (ε− ε1)
. (2.22)

of the sum (2.21) contributes to the determinant, (2.20) follows.

Equation (2.20) immediately implies the following analogy of (2.5) for the h
[0,m]
k ’s.

Corollary 2.9. Let 0 ≤ m ≤ n. Then the product of the Cauchy transforms of monic
orthogonal polynomials with respect to the measures dα[0,j](t), 0 ≤ j ≤ m can be written as
a determinant,

m∏
j=0

h
[0,j]
n−m+j(εj+1) =

(−1)
m(m+1)

2

4(ε)

∣∣∣∣∣∣∣

hn−m(ε1) . . . hn(ε1)
...

hn−m(εm+1) . . . hn(εm+1)

∣∣∣∣∣∣∣
. (2.23)

Now we derive the identity for the average of the product of inverse random characteristic
polynomials.

Theorem 2.10. Suppose 1 ≤ M ≤ N and let γn = −2πi
c2n

, where cn is the normality constant

defined by equation (1.4). Then we have the following formula

〈
M∏

j=1

D−1
N [εj, H]

〉

α

= (−1)
M(M−1)

2

∏N−1
j=N−M γj

4(ε)

∣∣∣∣∣∣∣

hN−M(ε1) . . . hN−1(ε1)
...

hN−M(εM) . . . hN−1(εM)

∣∣∣∣∣∣∣
. (2.24)

Proof. When M = 1, we use the identity (2.21) together with (2.7) and the relation (see,
e.g., [18])

γn−1 = −2πin
Zn−1

Zn

(2.25)

to obtain 〈
D−1

N [ε, H]
〉

α
= γN−1hN−1(ε). (2.26)
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We rewrite the average in equation (2.24) as follows:
〈

M∏
j=1

D−1
N [εj, H]

〉

α

=
Z

[0,M ]
N

Z
[0,M−1]
N−1

Z
[0,M−1]
N−1

Z
[0,M−2]
N−2

. . .
Z

[0,0]
N−M

Z
[0,0]
N

(2.27)

where

Z
[0,M ]
N =

∫
. . .

∫
42(x)dα[0,M ](x), (2.28)

Z
[0,0]
N ≡ ZN and dα[0,0](x) = dα(x). The following relation can be observed from equations

(2.26) and (2.25):

Z
[0,m]
N−K

Z
[0,m−1]
N−K−1

= −2πi(N −K) h
[0,m−1]
N−K−1(εm). (2.29)

Inserting this relation in (2.27) we find
〈

M∏
j=1

D−1
N [εj, H]

〉

α

=
M∏

j=1

γN−jh
[0,M−j]
N−j (εM−j+1). (2.30)

Our result (2.24) immediately follows from the above equation and formula (2.23).

We now repeat the above considerations for the case

dα[`,m](t) =
(µ1 − t) · · · (µ` − t)

(ε1 − t) · · · (εm − t)
dα(t). (2.31)

The first result is a Christoffel type formula for the measure (2.31), which is due to Uvarov
[19]:

Lemma 2.11. Suppose 0 ≤ m ≤ n. Then the monic orthogonal polynomials π
[`,m]
n (t)’s with

respect to the measure dα`,m](t) have the following representation:

π[`,m]
n (t) =

1

(t− µ`) . . . (t− µ1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

hn−m(ε1) . . . hn+`(ε1)
...

hn−m(εm) . . . hn+`(εm)
πn−m(µ1) . . . πn+`(µ1)

...
πn−m(µ`) . . . πn+`(µ`)
πn−m(t) . . . πn+`(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣

hn−m(ε1) . . . hn+`(ε1)
...

hn−m(εm) . . . hn+`(εm)
πn−m(µ1) . . . πn+`(µ1)

...
πn−m(µ`) . . . πn+`(µ`)

∣∣∣∣∣∣∣∣∣∣∣∣∣

. (2.32)
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Proof. As in the previous cases we define q
[`,m]
n (t) to be the determinant in the numerator of

(2.32). Observe that
q[`,m]
n (µ1) = . . . = q[`,m]

n (µ`) = 0 (2.33)

and that ∫
q
[`,m]
n (t)dα(t)

ε1 − t
= . . . =

∫
q
[`,m]
n (t)dα(t)

εm − t
= 0. (2.34)

The next steps are the same as in the proofs of Lemma (2.1) and Lemma (2.5).

Corollary 2.12.

〈
K∏

j=1

DN [µj, H]

〉

α[0,M ]

=
1

4(µ)

∣∣∣∣∣∣∣∣∣∣∣∣∣

hN−M(ε1) . . . hN+K−1(ε1)
...

hN−M(εM) . . . hN+K−1(εM)
πN−M(µ1) . . . πN+K−1(µ1)

...
πN−M(µK) . . . πN+K−1(µK)

∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

hN−M(ε1) . . . hN(ε1)
...

hN−M(εM) . . . hN(εM)

∣∣∣∣∣∣∣

. (2.35)

Proof. Identity (2.35) follows from equations (2.10) and (2.32) once we note that equation
(2.32) can be rewritten in a similar manner as equation (2.5).

Finally we generalize Theorem (2.3) and Theorem (2.10) and obtain a formula for the
average of ratios of characteristic polynomials.

Theorem 2.13. Suppose 0 ≤ M ≤ N . Then the average of ratios of characteristic polyno-
mials of N ×N Hermitian matrices H is given by the following formula:

〈∏K
j=1 DN [µj, H]

∏M
j=1 DN [εj, H]

〉

α

=

(−1)
M(M−1)

2

N−1∏
j=N−M

γj

4(µ)4(ε)

∣∣∣∣∣∣∣∣∣∣∣∣∣

hN−M(ε1) . . . hN+K−1(ε1)
...

hN−M(εM) . . . hN+K−1(εM)
πN−M(µ1) . . . πN+K−1(µ1)

...
πN−M(µK) . . . πN+K−1(µK)

∣∣∣∣∣∣∣∣∣∣∣∣∣

. (2.36)

Proof. Let α[0,0] ≡ α, Z [0,0]
n ≡ Zn. Then we have

〈∏K
j=1 DN [µj, H]

∏M
j=1 DN [εj, H]

〉

α

=
Z

[K,M ]
N

Z
[0,0]
N

=
Z

[K,M ]
N

Z
[0,M ]
N

Z
[0,M ]
N

Z
[0,0]
N

(2.37)
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i.e. 〈∏K
j=1 DN [µj, H]

∏M
j=1 DN [εj, H]

〉

α

=

〈
K∏

j=1

DN [µj, H]

〉

α[0,M ]

〈
M∏

j=1

D−1
N [εj, H]

〉

α

. (2.38)

We use Corollary (2.12) and Theorem (2.10) to obtain formula (2.36).

Remark 2.14. Observe that formulae (2.6), (2.24) do not follow immediately as special cases
of (2.36): some further algebraic manipulation is required. Similarly, the process of adding
and removing zeros is clearly reciprocal. More precisely, given ε1, · · · , ε`, we can construct
the polynomials π

[0,`]
n (t; dα[0,`]) associated with the measure dα[0,`](t) =

(∏`
i=1(εi− t)−1

)
dt by

(2.12): We can then construct π
[`,0]
n

(
t; d(α[0,`])[`,0]

)
with µi = εi, inserting π

[0,`]
n (t; dα[0,`]) for

πn(t) on the right-hand-side of (2.1). We should find that π
[`,0]
n

(
t; d(α[0,`])[`,0]

)
= πn(t; dα).

However, again, this relation is not immediately clear, and requires further algebraic manip-
ulation.

3 Formulae of two-point function type

The following integral version of the Binet-Cauchy formula is due to Andréief [2], and plays
a basic role in our calculations.

Lemma 3.1. Let (X, dµ) be a measure space and suppose fi, gj ∈ L2(X, dµ) for 1 ≤ i, j ≤ k.
Then

∫

X

· · ·
∫

X

det(fi(xj))1≤i,j≤k det(gi(xj))1≤i,j≤kdµ(x1) · · · dµ(xk)

= k! det

(∫

X

fi(x)gj(x)dµ(x)

)

1≤i,j≤k

.
(3.1)

Proof. Set cij =
∫

X
fi(x)gj(x)dµ(x). Then

∫

X

· · ·
∫

X

det(fi(xj))1≤i,j≤k det(gi(xj))1≤i,j≤kdµ(x1) · · · dµ(xk)

=
∑

σ,τ∈Sk

sgn(σ) sgn(τ)cσ(1)τ(1) · · · cσ(k)τ(k)

=
∑

σ

sgn(σ)
∑

τ

sgn(τ ◦ σ)cσ(1)τ◦σ(1) · · · cσ(k)τ◦σ(k)

=
∑

σ

(sgn(σ))2
∑

τ

sgn(τ)c1τ(1) · · · ckτ(k)

= k! det(cij)1≤i,j≤k

(3.2)

as desired. In (3.2) we used sgn(τ◦σ) = (sgn τ)(sgn σ) and the fact that cσ(1)τ◦σ(1) · · · cσ(k)τ◦σ(k) =
c1τ(1) · · · ckτ(k) for all σ.
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Theorem 3.2. Let K ≥ 1. Then the following identity is valid:

〈 K∏
j=1

DN [λj, H]DN [µj, H]

〉

α

=
CN,K

∆(λ)∆(µ)
det

(
WI,N+K(λi, µj)

)
1≤i,j≤K

(3.3)

where

WI,N+K(x, y) =
πN+K(x)πN+K−1(y)− πN+K(y)πN+K−1(y)

x− y
(3.4)

and

CN,K =

∏N+K−1
`=N c2

`

(cN+K−1)2K
(3.5)

where c` is again the norming constant for π` given in (1.4).

Proof. Let pj(x) = c−1
j πj(x), j ≥ 0, denote the orthonormal polynomials with respect to dα.

From (1.2) we obtain

〈 K∏
j=1

DN [λj, H]DN [µj, H]

〉

α

=
1

ZN∆(λ)∆(µ)

∫
· · ·

∫
∆(x, λ)∆(x, µ)dα(x). (3.6)

Adding columns, we see that the Vandermonde determinant ∆(x, λ) has the form

∣∣∣∣∣∣∣∣∣∣∣∣∣

π0(x1) π1(x1) · · · πN+K−1(x1)
...

π0(xN) π1(xN) · · · πN+K−1(xN)
π0(λ1) π1(λ1) · · · πN+K−1(λ1)

...
π0(λK) π1(λK) · · · πN+K−1(λK)

∣∣∣∣∣∣∣∣∣∣∣∣∣

(3.7)

and similarly for ∆(x, µ). Here πj(t) = π
[0,0]
j (t). The determinant ∆(x, λ) can be evaluated

by a Lagrange expansion of the form

∑
0≤i1<i2<···<ik≤N+K−1

σi1,··· ,iK

∣∣∣∣∣∣∣

πi1(λ1) · · · πiK (λ1)
...

πi1(λK) · · · πiK (λK)

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

πj1(x1) · · · πjN
(x1)

...
πj1(xN) · · · πjN

(xN)

∣∣∣∣∣∣∣
(3.8)

where σi1,··· ,iK = ±1 is an appropriate signature and {(j1, · · · , jN) : 0 ≤ j1 < j2 < · · · <
jN ≤ N + K − 1} is the complement of {i1, · · · , iK} in {0, 1, · · · , N + K − 1}. Multiplying
(3.8) by a similar expansion for ∆(x, µ), and inserting in (3.6), we obtain a sum of terms of
the form

∫
· · ·

∫
∣∣∣∣∣∣∣

πj1(x1) · · · πjK
(x1)

...
πj1(xN) · · · πjK

(xN)

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

πj′1(x1) · · · πj′N (x1)
...

πj′1(xN) · · · πj′N (xN)

∣∣∣∣∣∣∣
dα(x) (3.9)
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which is equal by Lemma 3.1 to N ! det
(∫

πj′i(x)πjk
(x)dα(x)

)
1≤i,k≤N

= N ! det(δj′ijk
c2
jk

)1≤i,k≤N .

From this we see that

〈 K∏
j=1

DN [λj, H]DN [µj, H]

〉

α

=
N !

ZN∆(λ)∆(µ)

∑
0≤i1<···<ik≤N+K−1

σ2
i1,··· ,iK

∣∣∣∣∣∣∣

πi1(λ1) · · · πiK (λ1)
...

πi1(λK) · · · πiK (λK)

∣∣∣∣∣∣∣

×
N∏

k=1

c2
jk

∣∣∣∣∣∣∣

πi1(µ1) · · · πiK (µ1)
...

πi1(µK) · · · πiK (µK)

∣∣∣∣∣∣∣

=
N !

∏N+K−1
q=N c2

q

ZN∆(x, λ)∆(x, µ)

∑
0≤i1<···<ik≤N+K−1

det
(
pij(λk)

)
1≤j,k≤K

det
(
pij(µk)

)
1≤j,k≤K

=
N !

∏N+K−1
q=N c2

q

ZN∆(x, λ)∆(x, µ)
det

( ∑
0≤i≤N+K−1

pi(λj)pi(µk)

)

1≤j,k≤K

(3.10)

where the last line follows by applying Lemma 3.1 to the discrete measure dµ =
∑N+K−1

i=0 δi.
But by the Christoffel-Darboux formula

∑
0≤i≤N+K−1

pi(λj)pi(µk) =
πN+K(λj)πN+K−1(µk)− πN+K(µk)πN+K−1(λj)

λj − µk

(3.11)

which then implies (3.3) as ZN = N !
∏N−1

`=0 c2
` (see, e.g. [18]).

Theorem 3.3. Suppose 1 ≤ K ≤ N . Then the following identity is valid:

〈 K∏
j=1

DN [µi, H]

DN [εj, H]

〉

α

= (−1)K(K−1)/2γK
N−1

∆(ε, µ)

∆2(ε)∆2(µ)
det

(
WII,N(εi, µj)

)
1≤i,j≤K

(3.12)

where

WII,N(x, y) =
hN(ε)πN−1(µ)− hN−1(ε)πN(µ)

ε− µ
(3.13)

and again hk(ε) = 1
2πi

∫ πk(t)dα(t)
t−ε

is the Cauchy transform of πk(t) and γN−1 = −2πi/C2
N−1.
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Observe first that by linearity

∣∣∣∣∣∣∣∣∣∣∣∣∣

hN−M(ε1) · · · hN+L−1(ε1)
...

hN−M(εM) · · · hN+L−1(εM)
πN−M(µ1) · · · πN+L−1(µ1)

...
πN−M(µ1) · · · πN+L−1(µL)

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∫
· · ·

∫
dα(λ)

(2πi)M
∏M

j=1(λj − εj)

×

∣∣∣∣∣∣∣∣∣∣∣∣∣

πN−M(λ1) · · · πN+L−1(λ1)
...

πN−M(λM) · · · πN+L−1(λM)
πN−M(µ1) · · · πN+L−1(µ1)

...
πN−M(µ1) · · · πN+L−1(µL)

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(3.14)

Inserting (2.36) on the left-hand-side, and using (2.5) to re-express the integrand on the
right-hand-side, we obtain the following result, which is of independent interest. The result
expresses averages of ratios of characteristic polynomials in terms of averages of products of
such polynomials.

Proposition 3.4. Let 1 ≤ M ≤ N . Then

〈∏L
j=1 DN [µi, H]

∏M
j=1 DN [εj, H]

〉

α

=
(−1)M(M−1)/2

∏N−1
j=N−M γj

∆(µ)∆(ε)

×
∫
· · ·

∫
dα(λ)

(2πi)M
∏M

j=1(λj − εj)
∆(λ, µ)

〈 M∏
j=1

DN−M [λj, H]
L∏

j=1

DN−M [µj, H]

〉

α

.

(3.15)

Proof of Theorem 3.2. For M = L = K ≤ N , by (3.15) and (3.3),

∆(µ)∆(ε)

(−1)K(K−1)/2
∏N−1

j=N−K γj

〈∏K
j=1 DN [µi, H]

∏K
j=1 DN [εj, H]

〉

α

=

∫
· · ·

∫
dα(λ)

(2πi)M
∏M

j=1(λj − εj)
CN−K,K

K∏
i=1

K∏
j=1

(µi − λj) det
(
WI,N(λi, µj)

)
1≤i,j≤K

.

(3.16)
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But

1

2πi

∫
dα(λj)

λj − εj

K∏
i=1

(µi − λj)
πN(λj)πN−1(µk)− πN−1(λj)πN(µk)

λj − µk

=
1

2πi

∫
dα(λj)

(
1− µ1 − εj

λj − εj

)( K∏
i=2
i6=k

(µi − λj)

)(
πN(λj)πN−1(µk)− πN−1(λj)πN(µk)

)

= − 1

2πi

∫
dα(λj)

µ1 − εj

λj − εj

( K∏
i=2
i 6=k

(µi − λj)

)(
πN(λj)πN−1(µk)− πN−1(λj)πN(µk)

)

(3.17)

as
∫

dα(λj)λ
`
jπN−1(λj) =

∫
dα(λj)λ

`
jπN(λj) = 0 for 0 ≤ ` ≤ K − 2 < N − 1. Continuing in

this way, the integral reduces to
∏K

i=1(µi − εj)WII,N(εi, µk). Thus we find

∆(µ)∆(ε)

(−1)K(K−1)/2
∏N−1

j=N−K γj

〈∏K
j=1 DN [µi, H]

∏K
j=1 DN [εj, H]

〉

α

=
∆(ε, µ)

∆(ε)∆(µ)
det

(
WI,N+K(λi, µk)

)
1≤i,k≤K

(3.18)

and (3.12) follows.
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