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PRODUCTS OF CONJUGACY CLASSES

AND FIXED POINT SPACES

ROBERT GURALNICK AND GUNTER MALLE

1. Introduction

Our first main result is the following:

Theorem 1.1. Let G be a finite nonabelian simple group. There exists a conjugacy
class C of G such that:

(1) there is a triple of elements in C which have product 1 and generate G, and
(2) there exist x, y ∈ C that generate G such that xy is conjugate to x2 unless

G is a projective two-dimensional special linear group L2(q) with q even or
q = 7.

The exceptions in (2) are true exceptions. Indeed, we will see that any group
satisfying Theorem 1.1(2) can have no irreducible two-dimensional representations.

We show that this has the following consequence.

Corollary 1.2. Let G be a finite nonabelian simple group. Then there exists g ∈ G
with the following property. Whenever k is an algebraically closed field, and V a
finite-dimensional kG-module without composition factors of dimension at most 2,
then every eigenspace of g on V has dimension at most (1/3) dimV .

Note that the hypothesis that V has no two-dimensional composition factors is
vacuous if the characteristic of k is not 2. For our intended subsequent application
it is critical that the g ∈ G that we choose does not depend on V . We also prove a
variant of the previous corollary for direct products of finite simple groups.

If V is a G-module, let CV (g) denote the fixed space for g ∈ G. We use the
previous result together with some recent results of the first author and Maróti
[26] as well as an improvement in the solvable case to answer a conjecture of
P. Neumann [45]:

Theorem 1.3. Let G be a nontrivial irreducible subgroup of GL(V ), where V is a
finite-dimensional vector space. There exists g ∈ G with dimCV (g) ≤ (1/3) dimV .

This is Theorem 5.10. See Remark 5.9 for a short history of this problem.
The example G = SO3(k) on its natural module shows that 1/3 is best possible.
However, if the dimension of V is large enough, it seems likely that the bound
of 1/3 can be improved. Indeed, we prove (Theorem 6.1) that if ǫ > 0, G is

Received by the editors May 20, 2010 and, in revised form, June 4, 2010, January 11, 2011,
and April 19, 2011.

2010 Mathematics Subject Classification. Primary 20C15, 20C20, 20D05; Secondary 20E28,
20E45, 20F10, 20F69.

The first author was partially supported by NSF grants DMS 0653873 and 1001962.

c©2011 American Mathematical Society
Reverts to public domain 28 years from publication

77

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



78 ROBERT GURALNICK AND GUNTER MALLE

finite simple and V is an irreducible CG-module of sufficiently large dimension,
then there exist g ∈ G with all eigenspaces of dimension at most ǫ dimV . On the
other hand we give examples for suitable nonsimple groups G of irreducible CG-
modules V of arbitrarily large dimension such that dimCV (g) ≥ (1/9) dimV for all
g ∈ G and even with V primitive and dimCV (g) > (1/50) dimV for all g ∈ G; see
Examples 6.4 and 6.5.

We also extend some results of Malle–Saxl–Weigel [44] and Larsen–Shalev–Tiep
[36] to prove another result about products of conjugacy classes.

Theorem 1.4. Let G be a finite non-abelian simple group. There exist conjugacy
classes C1, C2 in G with G = C1C2 ∪ {1}. Moreover, aside from G = L2(q), q = 7
or 17, we can assume that each Ci consists of elements of order prime to 6.

This immediately implies that any element in a finite non-abelian simple group
is the product of two mth powers for m a power of 6 (answering a conjecture of
Larsen-Shalev-Tiep [36] for squares; the result on squares has also been obtained
independently by Liebeck, O’Brien, Shalev and Tiep by other methods). Combining
our methods with the main result of Chernousov–Ellers–Gordeev [7], we obtain:

Corollary 1.5. Let G be a finite nonabelian simple group. Let m be either a prime
power or a power of 6. Then every element of G is a product of two mth powers.

The main result of [36] is a similar (but asymptotic) result for arbitrary words.
There is a related conjecture of Thompson that in fact G = CC for some class C.

Thompson’s conjecture is known to hold in many cases. See Ellers–Gordeev [12].
We show that if G is a finite simple group of Lie type of rank 1, then a very strong
version of Thompson’s conjecture holds (see Theorem 7.1 for a precise statement).
This shows that a version of the previous corollary holds for most words for the
rank 1 groups. See Theorem 7.2 for a very strong result for the Suzuki and Ree
groups.

Next, we extend some results of Breuer–Guralnick–Kantor [5] about the gen-
eration of finite simple groups. The proof depends upon knowledge of maximal
subgroups as well as the ideas from the proof of Theorem 1.4.

An easy consequence (see Corollary 8.2) answers a question of Jayce Getz [19] in
regard to an application to nonsolvable base change for automorphic representations
of GL2:

Theorem 1.6. Let S be a finite nonabelian simple group other than O+
8 (2). There

exists a conjugacy class C of S consisting of elements whose order is prime to 6
such that if 1 �= s ∈ S, then S = 〈g, s〉 for some g ∈ C.

The results in [5] show there is a conjugacy class C as above (but the elements
in C may not have order prime to 6). It is proved there that the probability that
a random element of C generates with s is typically large. If S = O+

8 (2), then one
can take C to consist of elements of order 15 (and so with no exceptions we can
take C to be a class of elements of odd order).

We also show how our methods can be used to answer a conjecture of Bauer–
Catanese–Grunewald [2, 3] regarding Beauville structures (this is related to the
existence of certain free actions of a finite group acting on a product of two smooth
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PRODUCTS OF CONJUGACY CLASSES AND FIXED POINT SPACES 79

projective curves; see [16] for background). The conjecture is that all non-abelian
simple groups other than A5 admit an unmixed Beauville structure. It has re-
cently been proved by Garion–Larsen–Lubotzky [17] to hold at least asymptoti-
cally. In particular, we prove Theorem 8.6 that the groups E8(q) admit an unmixed
Beauville-structure. In a sequel [25], we use our methods to solve the conjecture in
the affirmative.

We now describe some of the main ingredients in the proofs of our main results.
There usually are two parts: first, we need to show that triples of elements from
specified conjugacy classes Ci and with product 1 exist in a given group G. There is
a well-known character formula which counts the number of such triples, involving
values of the complex irreducible characters of G on the Ci. In our situation, we
choose the Ci such that only a few irreducible characters vanish simultaneously
on all three classes. Then we may estimate the structure constant using Deligne–
Lusztig theory, or for some small rank groups compute it from known character
tables.

Secondly, we need to argue that some of these triples do generate G. So we
will choose conjugacy classes Ci whose elements are contained in only a few max-
imal subgroups of G, and for which the character formula allows us to estimate
the structure constant to be larger than the possible contributions from maximal
subgroups. The most delicate case occurs in Theorem 1.1 where there is only one
class to be chosen.

The paper is organized as follows. In Section 2, which may be of independent
interest, we classify the maximal subgroups of the simple groups of Lie type con-
taining certain elements with large irreducible submodules. In Section 3, we prove
Theorem 1.1 for groups of Lie type. In Section 4, we complete the proof of that
result for alternating and sporadic groups.

In Section 5, we prove Neumann’s conjecture, Theorem 1.3. In Section 6, we
show a much stronger (asymptotic) version of the theorem for finite simple groups in
characteristic zero. We also give examples to show that there are large dimensional
examples (in all characteristics) where all fixed spaces are large. In Section 7,
we prove Theorem 1.4 and Corollary 1.5. We also derive stronger results for the
low rank groups of Lie type and a very strong result for the image of word maps
for Suzuki and Ree groups. In the final section, we prove Theorem 1.6 and some
corollaries including the application needed for nonsolvable base change for GL2.
The final result is a proof that E8(q) admits a Beauville structure for all q.

We will use standard notation for the finite simple groups: for the exceptional
groups (and their twisted analogs) we use the Lie notation; for the simple classical
groups, we prefer to use the notation L, U, S and Oǫ for the (projective special)
linear, unitary, symplectic and orthogonal groups.

2. Zsigmondy primes

Here we collect some results on subgroups of groups of Lie type containing large
Zsigmondy prime divisors. If q is a prime power and e > 2 is a positive integer, we
let Φ∗

e(q) be the largest divisor of qe − 1 that is relatively prime to qm − 1 for all
1 ≤ m < e. Note that every prime divisor of Φ∗

e(q) is congruent to 1 modulo e. By
Zsigmondy’s theorem, Φ∗

e(q) > 1 unless n = 6 and q = 2 (and indeed, this is true

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



80 ROBERT GURALNICK AND GUNTER MALLE

for e = 2 as well unless q is a Mersenne prime). In particular, aside from that case,
Φ∗

e(q) ≥ e+ 1.
Hering [29] showed that usually Φ∗

e(q) is reasonably large (see Bamberg–Penttila
[1, Lemma 6.1] for the version we are stating below and see Feit [13] as well).

Lemma 2.1. Let q be a power of the prime p and e > 2 an integer.

(a) If Φ∗
e(q) = 1, then q = 2 and e = 6.

(b) If Φ∗
e(q) = e+ 1, then q = p and qe = 24, 210, 212, 218, 34, 36 or 56.

(c) If Φ∗
e(q) = 2e+1, then either q = 2 and e = 3, 8, or 20, or q = 4 and e = 3

or 6.

The main result of [28] was the classification of all subgroups of GLn(q) whose
order is divisible by some prime divisor of Φ∗

e(q) with e > n/2. The list becomes
much shorter if we insist that this prime divisor is larger than 2e+1. The previous
lemma indicates that almost always such a prime divisor exists.

Theorem 2.2. Let G = GL(V ) = GLn(q) where q = pa with p prime. Assume
that n > 2. Let r either be a Zsigmondy prime divisor of qe − 1 with e > n/2 and
r > 2e+ 1 or a product of two (not necessarily distinct) Zsigmondy prime divisors
of qe − 1. Suppose that H is an irreducible subgroup of G containing an element of
order r. Then one of the following holds:

(1) H contains SL(V ), SU(V ), Ω(±)(V ) or Sp(V );
(2) H preserves an extension field structure on V (of degree f dividing gcd(n, e));
(3) H normalizes GLn(p

b) for some b properly dividing a; or
(4) H normalizes the subgroup H0 given in Table 1.

Proof. Under our assumptions, q has order greater than n/2 modulo r. The main
result of [28] is that Examples 2.1–2.9 are all possibilities. We go through them one
at a time.

The groups in Example 2.1 are those in cases (1) and (3). Example 2.2 gives
only reducible groups. Examples 2.3 and 2.5 are excluded by the hypothesis that
r > 2e+ 1. Example 2.4 is case (2).

The rest of the possibilities are nearly simple groups. All the examples in [28]
other than those in Table 1 are eliminated by the hypotheses. �

Table 1. Subgroups with large Zsigmondy primes

n e H0 condition classical overgroup

4 4 2B2(q) q = 22k+1 Sp4
6 6 G2(q) p = 2 Sp6
7 6 G2(q) p �= 2 O7

2G2(q) q = 32k+1 O7

U3(q) p = 3 O7

8 6 U3(q) p �= 3 O8

SL2(q
3) always Sp8 (O8 if q is even)

Spin7(q) always O8

9 6 SL3(q
2) q �= 2 SL9
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PRODUCTS OF CONJUGACY CLASSES AND FIXED POINT SPACES 81

Note that the condition on r is precisely that r > 2e+ 1. If r = 2e+ 1, there is
a relatively short list of extra possibilities but for r = e + 1 there are many more
examples.

We make this explicit in the following sections. Moreover, we will work with
each of the classical groups and pick a specific e (depending upon the type of group
and the dimension).

We also use the results of Hiss–Malle [30] and the Atlas [8] to help verify what
subgroups embed in each classical group we consider.

2.1. The special linear groups SLn(q). Set q = pa and let G = SLn(q). We
record the following results, which are immediate consequences of the results above
and in [28].

Lemma 2.3. Let G = SLn(q), n > 2, and set e = n. Let C be a conjugacy class of
elements of order r dividing Φ∗

e(q). Assume that r > 2e+1 and that r is divisible by
some prime divisor of Φ∗

ae(p). Then the only possible maximal subgroups containing
an element of C are:

(1) the normalizer of SUn(q
1/2) (if n is odd and q is a square);

(2) the normalizer of Ω−
n (q) (if n is even and q is odd);

(3) the normalizer of Spn(q) (if n is even); and
(4) the normalizer of GLn/f (q

f ) ∩G for f a prime divisor of n.

Moreover, such a class exists unless (n, q) is one of (6,2), (4,2), (10,2), (12,2),
(18,2), (4,3), (6,3), (6,5), (3,2), (8,2), (20,2), (3,4) or (6,4).

Lemma 2.4. Let G = SLn(q), n > 3, and set e = n − 1. Let C be a conjugacy
class of elements of order r dividing Φ∗

e(q). Assume that r > 2e + 1 and that r is
divisible by some prime divisor of Φ∗

ae(p). Then the only possible maximal subgroups
containing an element of C are:

(1) the normalizer of SUn(q
1/2) (if n is even and q is a square);

(2) the normalizer of Ωn(q) (if nq is odd); and
(3) the stabilizer of a 1-space or of a hyperplane.

Moreover, such a class exists unless possibly (n, q) is one of (7,2), (5,2), (11,2),
(13,2), (19,2), (5,3), (7,3), (7,5), (4,2), (9,2), (21,2), (4,4) or (7,4).

The only SLn(q), n > 2, where neither of the previous lemmas applies are SL3(2),
SL3(4) and SL4(2) ∼= A8.

2.2. The special unitary groups SUn(q). The following two results are easy
consequences of earlier results. Let q = pa.

If n is odd, then we take e = 2n and so the only special cases are when Φ∗
e(q) =

2n + 1 or 4n + 1, that is, (n, q) is one of (5, 2), (9, 2), (3, 3), (3, 4), or (3, 5) by
Lemma 2.1. In these cases we use [30] and [28] to check the possibilities. This
gives:

Lemma 2.5. Let G = SUn(q), n > 2 and n odd, (n, q) �= (3, 2). Set e = 2n.
Let C be a conjugacy class of elements of order r dividing Φ∗

e(q). Assume that r
is divisible by some prime divisor of Φ∗

ae(p). If M is a maximal subgroup of G
containing an element of order r, then one of the following holds:

(1) M is the normalizer of G ∩GUn/f (q
f ), f an odd prime divisor of n;

(2) (n, q) = (5, 2), C consists of elements of order 11 and M is the normalizer
of L2(11);
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82 ROBERT GURALNICK AND GUNTER MALLE

(3) (n, q) = (9, 2), C consists of elements of order 19, and M is the normalizer
of J3;

(4) (n, q) = (3, 3), C consists of elements of order 7, and M = L2(7); or
(5) (n, q) = (3, 5), C consists of elements of order 7, and M is the normalizer

of A7 (3 classes fused in the automorphism group).

Similarly, if n is even, we take e = 2(n−1) and so the only problematic cases are
when Φ∗

e(q) = 2n− 1, 4n− 3 or 1, so (n, q) is one of (4, 2), (6, 2), (10, 2), (4, 3), (4, 4)
or (4, 5). Since Φ∗

6(2) = 1, we have to exclude the case (4, 2).

Lemma 2.6. Let G = SUn(q) with n > 2, n even, (n, q) �= (4, 2). Set e = 2(n−1).
Let C be a conjugacy class of elements of order r dividing Φ∗

e(q). Assume that r
is divisible by some prime divisor of Φ∗

ae(p). If M is a maximal subgroup of G
containing an element of order r, then one of the following occurs:

(1) M is the stabilizer of a nondegenerate 1-space;
(2) (n, q) = (6, 2), C is a class of elements of order 11 and M = M22 (3

classes);
(3) (n, q) = (4, 3), C is a class of elements of order 7, and M = 42.L3(4) (2

classes) or M = A7 (4 classes); or
(4) (n, q) = (4, 5), C is a class of elements of order 7, and M = A7 (2 classes

fused in GU4(5)).

Finally, we deal with SU4(2). The maximal subgroups containing elements of
order 5 are S6 and 24.A5 (see [8]).

2.3. The odd-dimensional orthogonal groups Ω2n+1(q).

Lemma 2.7. Let G = Ω2n+1(q), q = pa, n > 2 and q odd. Let e = 2n. Let C be a
conjugacy class of elements of order r dividing Φ∗

e(q). Assume that r > 2e+ 1 and
that r is divisible by some prime divisor of Φ∗

ae(p). Let M be a maximal subgroup
of G intersecting C. Then one of the following holds:

(1) M is the stabilizer of a nondegenerate 1-space;
(2) n = 3, M is the normalizer of G2(q);
(3) n = p = 3, M is the normalizer of U3(q); or
(4) n = 3, q = 32a+1 and M is the normalizer of a Ree group 2G2(q).

Moreover, such a class exists unless (2n + 1, q) is either (7, 3) or (7, 5). In those
two cases, the additional possibilities are given in Table 2.

The entries in Table 2 can be proved using [8], resp. [30].

Table 2. Further maximal subgroups of Ω2n+1(q), n ≥ 3

(2n+ 1, q) M # classes r

(7, 3) S9, 26.A7, Sp6(2) 2, 1, 2 7

(7, 5) A8, 26.A7, Sp6(2), U3(3).2 2, 1, 2, 2 7
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2.4. The symplectic groups Sp2n(q). Applying the previous results gives:

Lemma 2.8. Let G = Sp2n(q), q = pa, n ≥ 2 with (n, q) �= (2, 2), and set e = 2n.
Let C be a conjugacy class of elements of order r dividing Φ∗

e(q). Assume that
r > 2e+1 and r is divisible by some prime divisor of Φ∗

ae(p). Let M be a maximal
subgroup of G intersecting C. Then one of the following holds:

(1) M is the normalizer of Sp2n/f (q
f ) for f a prime divisor of n;

(2) M is the normalizer of SUn(q) with qn odd;
(3) q is even and M = Ω−

2n(q);
(4) n = 3, q is even, and M is the normalizer of G2(q); or
(5) n = 2, q = 22a+1, and M is the normalizer of a Suzuki group 2B2(q).

Moreover, such a class exists unless (2n, q) is as in Table 3. In those remaining
cases, the additional possibilities (for r|Φe(q)) are listed in the table.

The entries in Table 3 follow by the results of [28, 30]. We excluded Sp4(2)
∼= S6.

Table 3. Further maximal subgroups of Sp2n(q)

(2n, q) M r Remarks

(4, 3) 21+4.A5 5 U4(2)

(6, 2) 26.L3(2), S8 7 Φ∗
6(2) = 1

(6, 3) 2.L2(13) (2 classes) 7

(6, 4) L2(13) 13

(6, 5) 2.J2, U3(3) 7

(8, 2) L2(17) 17

(10, 2) none 11

(12, 2) A14, L2(25) 13

(18, 2) none 19

(20, 2) L2(41) 41

2.5. The orthogonal groups of plus type Ω+
2n(q). Applying the previous results

gives:

Lemma 2.9. Let G = Ω+
2n(q), q = pa, n > 3, and set e = 2n − 2. Let C be a

conjugacy class of elements of order r dividing Φ∗
e(q). Assume that r > 2e+ 1 and

that r is divisible by some prime divisor of Φ∗
ae(p). Let M be a maximal subgroup

of G intersecting C. Then one of the following holds:

(1) M is the stabilizer of a nondegenerate subspace of dimension 1 or 2;
(2) nq is odd and M is the normalizer of Ωn(q

2);
(3) n is even, and M is the normalizer of SUn(q); or
(4) n = 4 and M is the normalizer of U3(q) (for p �= 3) or Spin7(q).

Moreover, such a class exists unless (2n, q) is as in Table 4, where additional max-
imal subgroups arise as given.

For the 8-dimensional groups we have used the results of Kleidman [33]. For
Ω+

14(2) there are two classes of L2(13): first of all there are two different (not even

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



84 ROBERT GURALNICK AND GUNTER MALLE

Table 4. Further maximal subgroups of Ω+
2n(q), n ≥ 4

(2n, q) M # classes r Remarks

(8, 2) A9, 26 : A8 3, 3 7 Φ∗
6(2) = 1

(8, 3) 2.O+
8 (2) 4 7

(8, 4) none 13

(8, 5) 2.2B2(8), A10, 2.A10, 2.O+
8 (2) 8, 4, 8, 4 7

(10, 2) none 17

(12, 2) none 11

(14, 2) A16, L2(13), G2(3).2 1, 2, 2 13

(20, 2) L2(19), J1 1, 1 19

(22, 2) none 41

quasi-equivalent) 14-dimensional representations and so at least two classes (and
exactly two in the full orthogonal group). Note that both representations extend
to PGL2(13), which does sit in the full GO+

14(2) but not in the simple group. (The
easiest way to see this is that there is an element of order 4 normalizing the 13 in
PGL2(13), it permutes freely the 12 nontrivial eigenvalues of the element of order 13
and on the 2-dimensional fixed space it acts trivially since it commutes with the
element of order 3 which is semisimple regular on that 2-space. Thus, it has 5
Jordan blocks, but unipotent elements are in the simple algebraic group if and only
if they have an even number of Jordan blocks.) So there are two classes.

For G2(3), there is one class in the full orthogonal group GO+
14(2) (since there

is only one such representation) and it extends to G2(3).2. The centralizer of an
outer involution x ∈ G2(3).2 (which is unique up to conjugacy) is L2(8).3. Since x
commutes with an element y of order 9 that has precisely two eigenvalues of order 3,
it must be trivial on the 2-dimensional space where y3 = 1, and so it has at least
2 trivial Jordan blocks. If it had t < 6 Jordan blocks, then the reductive part of
its centralizer (in GL14(2)) would be a direct product of a torus and GLt(2) and so
L2(8).3 would embed in GL5(2), but the smallest faithful representation of L2(8).3
is 6-dimensional. So x has 6 nontrivial Jordan blocks and thus lies in Ω+

14(2).

2.6. The twisted orthogonal groups Ω−
2n(q). Applying the previous results

gives:

Lemma 2.10. Let G = Ω−
2n(q), q = pa, n > 3, and set e = 2n. Let C be a

conjugacy class of elements of order r dividing Φ∗
e(q). Assume that r > 2e+ 1 and

that r is divisible by some prime divisor of Φ∗
ae(p). Let M be a maximal subgroup

of G intersecting C. Then one of the following holds:

(1) M is the normalizer of Ω−
2n/f (q

f ) for f a prime divisor of n; or

(2) n is odd and M is the normalizer of SUn(q).

Moreover, such a class exists unless (2n, q) is as in Table 5, where additional max-
imal subgroups arise as given.
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Table 5. Further maximal subgroups of Ω−
2n(q), n ≥ 4

(2n, q) M r

(8, 2) none 17
(10, 2) A12 11
(12, 2) A13, L2(13), L3(3) 13
(18, 2) A20 19
(20, 2) none 41

2.7. The exceptional groups. We end this section by completing a result of
Weigel [50] on maximal subgroups of exceptional groups of Lie type containing
certain maximal tori.

Proposition 2.11. Let G be a simple exceptional group of Lie type. Then there
exists a cyclic subgroup T ≤ G such that |T |, |NG(T ) : T | and the conjugacy classes
of maximal overgroups M ≥ T in G are as given in Table 6.

Table 6. Cyclic subgroups and maximal overgroups in excep-
tional groups

G |T | |AG(T )| M ≥ T further maximals

2B2(q2), q2 ≥ 8 Φ′
8 4 NG(T ) −

2G2(q2), q2 ≥ 27 Φ′
12 6 NG(T ) −

G2(q), 3|q + ǫ q2 + ǫq + 1 6 SLǫ
3(q).2 L2(13) (q = 4)

G2(q), 3|q q2 + q + 1 6 SL3(q).2 (2×) L2(13) (q = 3)

3D4(q) q4 − q2 + 1 4 NG(T ) −
2F4(q2), q2 ≥ 8 Φ′

24 12 NG(T ) −

F4(q), 2 � |q q4 − q2 + 1 12 3D4(q).3

F4(q), 2|q q4 − q2 + 1 12 3D4(q).3 (2×) 2F4(2),L4(3).22 (q = 2)

E6(q) Φ9/(3, q − 1) 9 SL3(q3).3 −
2E6(q) Φ18/(3, q + 1) 9 SU3(q3).3 −

E7(q) Φ2Φ18/(2, q − 1) 18 2E6(q)sc.Dq+1 −

E8(q) Φ30(q) 30 NG(T ) −

Here, AG(T ) := NG(T )/CG(T ), Φ′
8 = q2 +

√
2q + 1, Φ′

12 = q2 +
√
3q + 1,

Φ′
24 = q4 +

√
2q3 + q2 +

√
2q + 1.

The entry “(2×)” signifies that there are two conjugacy classes of the indicated maximal
subgroups.

Proof. The existence of cyclic tori of G of the given orders follows from the general
theory of tori in finite reductive groups; see for example [6, §3.3]. In all cases
T is (the image in G of) a self-centralizing maximal torus (of the corresponding
finite reductive group of simply-connected type), and the order of the automizer
AG(T ) = NG(T )/CG(T ) can be calculated from the Weyl group; see [6, Prop. 3.3.6].
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The lattice of overgroups of T up to conjugation can be found in the work of
Weigel [50, Sect. 4], except for

G ∈ {G2(q), F4(2), F4(3),
2E6(2),

2E6(3), E7(2), E7(3)}.
The maximal subgroups of G2(q) were determined by Kleidman [34, Thm. A] and
Cooperstein [9, Thm. 2.3]: for q ≥ 5 the only maximal subgroups containing T
are one class of SU3(q).2 if q ≡ 1 (mod 3), respectively one or two classes of
SL3(q).2 else. For G2(3) and G2(4) there is one further class of maximal subgroups
L2(13). The maximal subgroups of F4(2) and of 2E6(2) are printed in the Atlas [8].
According to the arguments given in [50, Sect. 4(f)], the only further overgroup of T
in F4(3) could be a group with derived group isomorphic to SU3(9). But the latter
group contains elements of order 80, while the centralizer of a 5-element in F4(3),
of shape C10Sp4(3) has no element of order 16 (see [8]). (This fact was pointed
out to us by Frank Lübeck. Alternatively, one can show that the 25-dimensional
module would have to split as 24 ⊕ 1 for such a subgroup, whence SU3(9) would
have to be contained in the stabilizer 3D4(3).3 of that 1-space.) It is shown in [40,
Thm. 5.1] that no further overgroups of T arise in 2E6(3).

Now assume that G = E7(q) with q = 2, 3. If q = 3, then we take the cyclic
maximal torus T of order 4 × 703. If q = 2, T is cyclic of order 3 × 57 (by [6,
Prop. 3.2.2]).

We claim that there is a unique maximal subgroup M of G containing T (with
M = 2E6(q)sc.Dq+1). The proof is very similar in spirit to Weigel’s proof and is
based on various results of Liebeck and Seitz and others on the maximal subgroups
of the exceptional Chevalley groups. See [38] for a summary of these results and
various references.

Let H be a maximal subgroup of G containing T other than M . By [38, Thm.
3], H is an almost simple group. Let S denote its socle. It follows by [38, Table 2]
that S must be a Chevalley group in the same characteristic as G. Moreover, by
[38, Thm. 7], it follows that the (untwisted) rank of S is at most 3. Inspection of
the groups of rank at most 3 defined over fields of size a power of q shows as in [50]
that the only possibility is that S = U3(q

3). If q = 3, we can eliminate the latter
case, since the automorphism group of S contains no elements of order |T |.

So assume that q = 2 and F ∗(H) = S = U3(8). We will show that the normalizer
of any subgroup of E7(2) isomorphic to S and containing an element x of order 19
in T is contained in M . Let V be the irreducible F2G-module of dimension 56. Let
T0 = 〈x〉 be the subgroup of T of order 19. Note that T0 has a 2-dimensional fixed
space on V , and so the fixed space of T0 is the same as that of M0 = F ∗(M). Since
M acts transitively on those 3 points, it follows that the stabilizer of the vectors
are the three subgroups of the form M0.2 < M . Looking at the Brauer character
table for F2U3(8)-modules and knowing that the element of order 19 has Brauer
character −1, it follows that if S exists, then V has three F2S-composition factors:
one of dimension 54 and two trivial modules. Since V is self-dual, this implies that
S has fixed points on V , whence S ≤ M . If S has a 1-dimensional fixed space, then
the normalizer of S also fixes this vector, whence is also contained in M . If S has a
2-dimensional fixed space, then H is contained in the stabilizer of the 2-space and
so again H ≤ M . �

Note that we proved a bit more for E7(2): even the cyclic subgroup of order 57
of T is only contained in one maximal subgroup of E7(2). We also note that Ryba
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[46] proved that U3(8).6 in fact does embed in E7(2). It follows that in fact U3(8).6
embeds in 2E6(q)sc.Dq+1.

3. Groups of Lie type

This section is devoted to the proof of Theorem 1.1 for finite simple groups of Lie
type. We first give a sketch of the approach to be followed. Let G be a finite group,
C a conjugacy class of G. If a ∈ Z, let Ca be the conjugacy class {xa|x ∈ C}.
Then, for a ∈ Z and fixed x ∈ C the number of pairs

na(C) := |{(y, z) ∈ C × Ca | xyz = 1}|
in G is given by the well-known character formula

na(C) =
|C|2
|G|

∑

χ∈Irr(G)

χ(C)2χ(Ca)

χ(1)
,

where the sum ranges over the complex irreducible characters ofG and χ(C) denotes
the value of χ on elements of C (see, for example, [43, Thm. I.5.8]).

Often, for G almost simple and C a large conjugacy class, the main contribution
to this structure constant is by the terms coming from the linear characters of G.
In our situation, the class C will be contained in the derived group G′, so all linear
characters take value 1 on elements of C and Ca. Set d := |G/G′|, the number of
linear characters of G. We’ll write

ǫa(C) :=
1

d

∑

χ∈Irr(G)

χ(C)2χ(Ca)

χ(1)
− 1 =

1

d

∑

χ(1) �=1

χ(C)2χ(Ca)

χ(1)
,

so that

na(C) = d
|C|2
|G| (1 + ǫa(C)) = d

|G|
|CG(x)|2

· (1 + ǫa(C))

for x ∈ C. So to show that there exist triples we need to prove that |ǫa(C)| < 1.
This can either be done using results from Deligne–Lusztig theory, or, for many
small rank groups, using the known generic character tables which are available in
the Chevie-package [18].

To prove generation, assume that H is a maximal subgroup of G containing x,
and CH := C ∩H. Then there are at most |CH | pairs of elements y ∈ CH , z ∈ H,
such that xyz = 1. So we will choose a conjugacy class C of elements whose order
is divisible by a Zsigmondy prime as considered in the previous section, so which
are contained in few maximal subgroups of G, and for which the value of na(C) can
be estimated from below by the character formula to be larger than the possible
contributions from maximal subgroups.

3.1. Some character theory. We first recall some results on character values in
finite groups of Lie type. Let G be a connected reductive algebraic group over the
algebraic closure of a finite field and F : G → G a Frobenius map, with finite group
of fixed points G = GF . For T an F -stable maximal torus of G, with T := TF ,
and θ ∈ Irr(T ) we denote by RT,θ the corresponding Deligne–Lusztig character.

Lemma 3.1. Let x ∈ G be a semisimple element. Then we have:

(a) If RT,θ(x) �= 0, then x ∈ T g for some g ∈ G.
(b) If x is regular, lying in the (unique) maximal torus T , then RT,θ(x) =

±θGT (x).
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Proof. Part (a) is clear from the character formula [6, Prop. 7.5.3]. For the second
part, note that if x is regular, then it lies in a unique F -stable maximal torus,
so CG(x)◦ = T. The Steinberg character St then takes value ±1 on x by [6,
Thm. 6.4.7], so the claim follows by the fact that St·RT,θ = θGT [6, Prop. 7.5.4]. �

Let’s translate this to the setting of Lusztig series of characters. For this let G∗

be a group in duality withG, with corresponding Frobenius map F ∗ : G∗ → G∗ and

group of fixed points G∗ := G∗F
∗

(see [6, §4.3]). There is a bijective correspondence
between G-conjugacy classes of pairs (T, θ) in G as above and G∗-classes of pairs
(T ∗, s), where T ∗ ≤ G∗ is a maximal torus in duality with T and s ∈ T ∗ is
semisimple (see [11, Prop. 13.13]). We will also write RT∗,s for RT,θ if (T ∗, s)
corresponds to (T, θ) in this way. Then the Lusztig series E(G, s) is by definition
the set of constituents of RT∗,s for T ∗ running over maximal tori of G∗ containing
s. Lusztig has shown that the E(G, s), with s running over semisimple elements of
G∗ modulo conjugation, form a partition of Irr(G). With these definitions we have:

Lemma 3.2. Let x ∈ G be semisimple and χ ∈ Irr(G) with χ(x) �= 0. Then there
exists a maximal torus T ∋ x of G and s ∈ T ∗ ≤ G∗ such that χ ∈ E(G, s).

Proof. By the result of Lusztig, there is some s ∈ G∗ with χ ∈ E(G, s). Since
χ(x) �= 0 and the characteristic functions of semisimple classes are uniform, there
exists a maximal torus T ∗ ≤ G∗ with s ∈ T ∗ such that RT∗,s(x) �= 0, so RT,θ(x) �= 0
for some θ ∈ Irr(T ). By Lemma 3.1, this implies that x lies in some conjugate of
T . �

Let’s assume for what follows that G has connected center, so that centralizers
of semisimple elements in G∗ are connected (see [6, Thm. 4.5.9]). Let W (s) denote
the Weyl group of the centralizer CG∗(s) of s in G∗. The semisimple character of
G corresponding to s is defined (up to sign) by

χs :=
1

|W (s)|
∑

w∈W (s)

ǫw RT∗

w,s

(with certain signs ǫw; see [11, Def. 14.40]), where T ∗
w denotes a maximal torus of

CG∗(s) (hence of G∗) parametrized by w in the sense of [6, Prop. 3.3.3]. By [6,
Thm. 8.4.8] the degree of χs is given by

χs(1) = |G∗ : CG∗(s)|p′ ,

the part of the index of CG∗(s) prime to the characteristic p of G. The character
χs is irreducible (see [11, Prop. 14.43]). We let W (θ) := NG(T, θ)/T denote the
stabilizer of θ in W (T ) := NG(T)/T .

Proposition 3.3. Let x ∈ G be regular, lying in the (unique) maximal torus T of
G parametrized by v ∈ W . Let (T ∗, s) correspond to (T, θ), and assume that the
intersection of the F -conjugacy class of v in W with W (s) is a single F -conjugacy
class in W (s). Then

χs(x) = ±
∑

w∈W (T )/W (θ)

θ(xw),

where the sum runs over a set of coset representatives of W (θ) in W (T ). In par-
ticular, |χs(x)| ≤ |CW (Fv) : CW (s)(Fv)|.
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Proof. By assumption T is parametrized by the F -conjugacy class of v ∈ W . Since
x ∈ T is regular, by the definition of χs and Lemma 3.1 we have

χs(x) =
1

|W (s)|
∑

w∼v

ǫvθ
G
T (x),

where the sum extends over those w ∈ W (s) for which Tw is G-conjugate to T ,
that is, the F -conjugates of v in W (s). By assumption there are exactly |W (s) :
CW (s)(Fv)| such conjugates, so

χs(x) = ± 1

|CW (s)(Fv)| θ
G
T (x).

In order to evaluate θGT (x) observe that for g ∈ G we have xg ∈ T if and only
if x ∈ gT , that is, if g ∈ NG(T ). Moreover NG(T ) = NG(T) since T contains the
regular element x. Thus

θGT (x) =
1

|T |
∑

g∈NG(T)

θ(xg) =
1

|T |
∑

g∈NG(T)

gθ(x).

Then, with W (T ) = NG(T)/T and W (θ) = NG(T, θ)/T we have

θGT (x) = |W (θ)|
∑

w∈W (T )/W (θ)

wθ(x) = |W (θ)|
∑

w∈W (T )/W (θ)

θ(xw).

Since (T, θ) corresponds to (T ∗, s) we have W (θ) ∼= NG∗(T∗, s)/T ∗ ∼= CW (s)(Fv)
(see [11, proof of Prop. 14.43]), so

χs(x) = ± 1

|CW (s)(Fv)| |W (θ)|
∑

w∈W (T )/W (θ)

θ(xw) = ±
∑

w∈W (T )/W (θ)

θ(xw).

�

Apart from these results from Deligne–Lusztig theory we also use the following
result on blocks with cyclic defect groups: let B be a block with cyclic defect group
P generated by x, say. Then the character values χ(x), for all nonexceptional
characters χ in B, are the same up to sign.

3.2. The exceptional groups. We first consider the simple exceptional groups of
Lie type. We postpone the treatment of the classical groups 2G2(3)

′ = L2(8) and
G2(2)

′ = U3(3) until the next subsection, as well as the Tits group 2F4(2)
′, which

will be considered in Section 4.
We show that not all triples of elements from a class of generators of the cyclic

subgroup T as in Table 6 can lie in proper subgroups. For the five families of excep-
tional groups of small rank, the character tables are known, so that lower bounds
for the structure constant na(C) can easily be obtained. Using Proposition 2.11
we can also estimate the contribution from maximal subgroups containing T from
above. From this one gets:

Proposition 3.4. Theorem 1.1 holds for the simple exceptional groups of Lie type
2B2(q

2), 2G2(q
2), G2(q),

3D4(q) and 2F4(q
2), with C containing generators of a

cyclic subgroup T ≤ G as in Table 6.
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Proof. The character tables of all five families of groups are known explicitly and
contained for example in the GAP-package Chevie [18]. With this system it is
possible to compute structure constants generically, that is, for all prime powers q
(in a fixed congruence class modulo 12) at the same time. For G = 2B2(q

2) one
obtains with Chevie

na(C) =
|G|
|T |2

(

1 +
4q5 + 11

√
2q4 + 6q3 − 2q +

√
2√

2(q2 +
√
2q + 1)

)

≥ |G|
|T |2 .

By Proposition 2.11 the only maximal subgroup M of G containing T is the nor-
malizer NG(T ), which contributes at most |CH | = |C ∩H| = 4 triples.

Similarly, for G = 2G2(q
2) one finds that

na(C) ≥ |G|
|T |2 .

The only maximal subgroup containing T , the normalizer NG(T ), contains at most
6 of these triples.

For G = G2(q) one finds that for either congruence,

na(C) ≥ 1

3
q10.

For q ≥ 5 the possible number of triples from the subgroups SLǫ
3(q).2 is too small.

For G2(3) we have n1(C) = 25456, n−2(C) = 26185, while the two classes of maxi-
mal subgroups SL3(3).2 contain at most 133 triples each and the maximal subgroup
L2(13) contains no more than 15 triples with fixed first component. Similarly, for
G2(4) we have n1(C) = 1495561, n−2(C) = 1499657, while the maximal subgroups
of type SU3(4).2 and L2(13) contain at most 1380 + 15 triples.

From the known character table of G = 3D4(q) one computes that

na(C) = |T |(q12 − 4q6 + 1)(q2 + 1)2.

The only maximal subgroup containing T is the normalizer NG(T ), contributing 4
triples.

From the known character table of G = 2F4(q
2) one finds that na(C) ≥ q42 when

q2 ≥ 8. Again, the only maximal subgroup containing T is the normalizer NG(T ),
accounting for 12 triples. �

For the larger exceptional groups, neither the character table nor the list of max-
imal subgroups is completely known. In order to estimate the structure constant
na(C) we use results from Deligne–Lusztig theory as explained above.

Proposition 3.5. Theorem 1.1 holds for the simple exceptional groups of Lie type
F4(q), E6(q),

2E6(q), E7(q), E8(q) with C containing generators of a cyclic subgroup
T as in Table 6.

Proof. First let G = F4(q). By Lemma 3.2 the only characters not vanishing on
an element x ∈ C are those in the Lusztig series E(G, s), where s is a semisimple
element lying in the dual torus T ∗ ≤ G∗ (up to conjugation). As T is the centralizer
of any of its nonidentity elements, the same is true for T ∗. Thus all nonidentity
elements s ∈ T ∗ are regular, and E(G, s) consists of a single irreducible and thus
semisimple Deligne-Lusztig character χs (up to sign).

The elements of E(G, 1) are by definition the unipotent characters of G. Using
the character formula [6, Prop. 7.5.4] or the theory of blocks with cyclic defect group
for a prime dividing |T |, one finds that χ(x) ∈ {0,±1} for all unipotent characters
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χ ∈ E(G, 1), with χ(x) ≡ χ(1) (mod |T |). Explicit computation using the degrees
of unipotent characters, given in [6, 13.9] for example, shows that the contribution
of these χ �= 1G to ǫa(C) is positive.

Next, the character formula in Proposition 3.3 shows that for s ∈ T ∗ a regular
element χs(x) is a sum of |NG(T ) : T | = 12 roots of unity, hence of absolute value
at most 12. There are (|T | − 1)/12 such semisimple characters, each of degree
|G : T |q′ , so they contribute at most 122|T |2/|G|q′ to |ǫa(C)|. Thus na(C) ≥
|G|/|T |2(1− 122|T |2/|G|q′).

By Table 6 the only maximal subgroups H containing x are one or two classes
of triality groups 3D4(q).3, when q ≥ 3. Since any such subgroup contains the full
normalizer of T , T is contained in a unique group in each class, and moreover the
intersection CH = C ∩H is a single conjugacy class of H, whence |CH | = |H : T |.
Thus each of the two classes of triality subgroups contributes at most |H : T |
triples, which is smaller than na(C). For F4(2), the maximal subgroups above
NG(T ) contain less than 108 triples, while na(C) > 1013.

For E6(q) we compute the structure constant na(C) in the group G = E6(q)ad
of adjoint type, which contains the simple group as a normal subgroup of in-
dex d = gcd(3, q − 1). Here, the dual group is of type E6(q)sc, and the semisimple
elements in the dual torus T ∗ are either central, or regular. The regular elements
parametrize irreducible Deligne-Lusztig characters, whose contribution to |ǫa(C)|
is thus bounded above by 81 |T |2/|G|q′ by Proposition 3.3, while the d central el-
ements parametrize the d Lusztig series consisting of the various characters of G
having the same restrictions to E6(q) as unipotent characters. Explicit computation
gives that their contribution to |ǫa(C)| is less than q56/|G : T |.

By Proposition 2.11 the only maximal subgroup H containing T is of type
SL3(q

3).3. This subgroup contains at most |H| < 3q24 triples.
The argument for G = 2E6(q)ad is completely analogous to the one in the un-

twisted case. Here, the contribution from the unipotent characters to |ǫa(C)| is less
than 2q56/|G : T |. The only maximal subgroup containing T is of type SU3(q

3).3,
by Proposition 2.11, and we may conclude as before.

For G = E7(q)ad, the torus T ∗ does contain nonregular noncentral elements.
We use the results of Lübeck [39, §5.9] on smallest character degrees. Let x ∈
G′ = E7(q) be an element of order Φ2(q)Φ18(q)/d, where d = gcd(2, q − 1). The
nontrivial character of G of smallest degree is the unipotent character φ7,1. It
lies in the principal p-block for any Zsigmondy prime divisor p of Φ18(q), so takes
value ±1 on x (in fact, value −1). There are just d characters of this degree, and
the next smallest character degree is larger than q26. By the orthogonality relations
for characters,

∑

χ∈Irr(G)

|χ(x)|2 = |CG(x)| = (q + 1)(q6 − q3 + 1) < q8

(in particular, |χ(x)| < q4 for any irreducible character χ). So all the characters
of degree at least q26 contribute less than q12/q26 = q−14 to ǫa(C). The only
maximal subgroup containing our element x is M = 2E6(q).Dq+1, contributing at
most |M | < q80 triples.

For G = E8(q), arguing as for F4(q) above we see that the nonunipotent char-
acters contribute at most 900 |T |2/|G|q′ to |ǫa(C)|, while the unipotent characters
different from 1G contribute at most q211/|G : T |.
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On the other hand the normalizer NG(T ) contains no more than 30 triples. �

3.3. The classical groups. We now turn to the simple classical groups of Lie
type. Let Gad be a group of adjoint type such that G′ = [Gad, Gad] is our given
simple group. This is the group of fixed points under a Frobenius endomorphism
of a simple algebraic group with connected center, so in particular the results of
Section 3.1 are applicable. We’ll choose the class C ⊂ G′ of an element x whose
order is divisible by a Zsigmondy prime as in Section 2.2, such that its centralizer is
a maximal torus of Gad. Note that the number of conjugates of a maximal subgroup
containing such an element can grow with both the field size and the rank. However,
note that the automizer of the maximal torus T containing x acts semiregularly on
the nontrivial powers of x. It follows that every nontrivial eigenspace of x on an
irreducible V has dimension at most dimV/[NG(T ) : T ].

Table 7. Maximal tori in classical groups

G |T | |AG(T )| ref.

PGLn(q), n ≥ 3 odd (qn − 1)/(q − 1) n Lemma 2.3
PGLn(q), n ≥ 4 even qn−1 − 1 n− 1 Lemma 2.4
PGUn(q), n ≥ 3 odd (qn + 1)/(q + 1) n Lemma 2.5
PGUn(q), n ≥ 4 even qn−1 + 1 n− 1 Lemma 2.6
PCO2n+1(q) qn + 1 2n Lemma 2.7
PCSp2n(q) qn + 1 2n Lemma 2.8

PCO◦
2n

+
(q) (qn−1 + 1)(q + 1) 2n− 2 Lemma 2.9

PCO◦
2n

−
(q) qn + 1 n Lemma 2.10

We consider the various types case by case.

Proposition 3.6. Theorem 1.1 holds for the groups O−
2n(q), n ≥ 4, with C con-

taining elements of order Φ∗
2n(q).

Proof. We estimate the structure constants na(C) in the group G := PCO◦
2n

−
(q).

Since the class C is contained in the derived subgroup G′ = O−
2n(q), this will prove

the claim. Note that elements of C are regular since their order is divisible by a
Zsigmondy prime for q2n − 1. Thus, by Lemma 3.2 the irreducible characters of
G not vanishing on an element x ∈ C lie in Lusztig series E(G, s) for semisimple
elements s in the dual group G∗ = Spin−2n(q) whose centralizer order is divisible by
Φ2n(q). These are precisely the elements in tori T ∗ ≤ G∗ of order qn+1; the latter
correspond to the F -class of an element v of the Weyl group W of G with cyclic
centralizer of order n.

The elements of E(G, s), with s central in G∗, are the extensions to G of the
unipotent characters of G′. Those which do not vanish on x take value ±1 on
x. Furthermore, since |NG(T ) : T | = n, there are exactly n − 1 nonprincipal
unipotent characters of G′ not vanishing on C; as all unipotent characters extend
to G, there are d(n − 1) nonlinear characters of G to consider for ǫa(C), with
d = |G : G′| = gcd(4, qn + 1). Since the minimal nontrivial character degree of
G equals b := (qn + 1)(qn−1 − q)/(q2 − 1) by Tiep–Zalesskii [49, Thm. 1.1], the
contribution of nonlinear characters in E(G, s), s ∈ Z(G∗), to |ǫa(C)| is at most

(n− 1)
1

b
=

(n− 1)(q2 − 1)

(qn + 1)(qn−1 − q)
.
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The noncentral elements in T ∗ have centralizer Zr := GUn/r(q
r) for some divisor

r of n such that n/r is odd. Let sr denote an element with centralizer Zr. Then
CW (v) ∼= W (T ) ∼= Cn, W (s) = Sn/r, and CW (s)(v) ∼= NZr

(T )/T ∼= Cn/r, so by
Proposition 3.3 we have |χsr(x)| ≤ r. By [15, §9] the n/r characters in E(G, sr) not
vanishing on x lie in the same p-block as χsr , for all Zsigmondy prime divisors p
of Φ2n(q). In particular, their value on x has the same absolute value as χsr(x),
and similarly for the value on xa. Finally, up to conjugation there are at most qr/r
elements in T ∗ with centralizer GUn/r(q

r), so the characters in Lusztig series for
noncentral elements of G∗ contribute at most

∑

r|n

nqrr3

r2|G : Zr|q′
=

∑

r|n

nrqr

|G : Zr|q′

to ǫa(C). Using these estimates an easy calculation now shows that ǫa(C) < 0.5
for all n ≥ 4, q ≥ 2, so that na(C) ≥ |C|2/(2|G|).

The maximal subgroups of G containing an element x ∈ C were listed in
Lemma 2.10. For the two generic classes, viz. H1 = NG(SUn(q)) (for n odd)
and Hr = NG(GO−

2n/r(q
r)) (for r an odd prime divisor of n), we have |G : H1| ≥

q5(qn + 1), and |G : Hr| ≥ q18(qn + 1), whence
∑n

r=1(q
n + 1)/|G : Hr| < 1/2. So

at most
n
∑

r=1

|Hr : T | = |G|
|T |2

n
∑

r=1

|T |
|G : Hr|

<
1

2

|G|
|T |2 = |C|2/2|G| ≤ na(C)

triples are contained in these proper subgroups. For the groups O−
10(2), O

−
12(2) in

Table 5, an explicit calculation produces generating triples as claimed. For O−
20(2)

the index of the subgroup A20 is too large. �

Proposition 3.7. Theorem 1.1 holds for the groups O2n+1(q), n ≥ 3, q odd, with
C containing elements of order Φ∗

2n(q).

Proof. As in the previous proof we first estimate the structure constant na(C) in
the group G := SO2n+1(q) of adjoint type. Let x ∈ C and let T be its centralizer
in G, a maximal torus of order |T | = qn + 1, parametrized by v ∈ W with cyclic
centralizer of order 2n. As in the proof of the previous result we see that the
extensions to G of unipotent characters of G′ which do not vanish on x take the
values ±1 on x. Furthermore, |NG(T ) : T | = 2n, so there are exactly 2(2n − 1)
nonlinear such characters. The minimal degree of a nontrivial unipotent character
of G equals b = (qn − 1)(qn − q)/(2(q + 1)) by [49, Prop. 5.1], so the contribution
of characters from E(G, s) with s ∈ Z(G∗) to |ǫa(C)| is at most

(2n− 1)
1

b
=

(2n− 1)2(q + 1)

(qn − 1)(qn − q)
.

The noncentral elements in the torus T ∗ in the dual group G∗ = Sp2n(q) have
centralizer Zr := GUn/r(q

r), with r|n such that n/r is odd. Then CW (v) ∼= W (T ) ∼=
C2n, W (s) = Sn/r, and CW (s)(v) ∼= NZr

(T )/T ∼= Cn/r, so by Proposition 3.3 we

have |χsr(x)| ≤ 2r. Arguing as for PCO◦
2n

−
(q) we see that the nonunipotent

characters contribute at most
∑

r|n

nqr(2r)3

r2|G : Zr|q′
=

∑

r|n

8nrqr

|G : Zr|q′
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to |ǫa(C)|. Again, it ensues that na(C) ≥ |C|2/(2|G|) (recall that q > 2 since q is
odd).

We now estimate the contribution from maximal subgroups. The maximal sub-
groups containing elements of order divisible by Φ∗

2n(q) were described in Lemma
2.7. The stabilizers of nondegenerate 1-spaces H := NG(SO

−
2n(q)) have index

|G : H| > q2(qn+1), and for n = 3, G2(q) has index q3(q4−1) and U3(q) has index
q6(q3 − 1)(q4 − 1), and for both groups there are q+1 distinct conjugates above x.
Thus, the trivial estimate that there are at most |H| triples in H shows that not all
triples can lie inside these proper subgroups. The Ree groups 2G2(q) do not possess
elements of order Φ∗

6(q) for q ≥ 27. For O7(3) and O7(5), explicit computation
yields that there exist generating triples consisting of elements of order 7. �

Proposition 3.8. Theorem 1.1 holds for the groups S2n(q), n ≥ 2, (n, q) �= (2, 2),
with C containing elements of order Φ∗

2n(q), respectively of order 7 when (n, q) =
(3, 2).

Proof. The claim for S6(2) can be checked by computer, so now assume that (n, q) �=
(3, 2). Then all elements x ∈ C are regular with centralizer a cyclic torus T of order
qn + 1 in the adjoint type group G := PCSp2n(q). As in the previous proof, using
[49, Prop. 5.1] we obtain that the nonlinear unipotent characters of G′ contribute
at most

gcd(2, q − 1)
(2n− 1)2(q + 1)

(qn − 1)(qn − q)

to |ǫa(C)| in G. The nontrivial elements in the dual torus of order qn + 1 of
G∗ = Spin2n+1(q) have centralizers of types Spin−2n(q) (when qn ≡ 3 (mod 4)) and
GUn/r(q

r) for r|n with n/r odd. The semisimple elements with centralizer of types

Spin−2n(q) lead to the Weil character of G of degree qn − 1, which takes value −2
on x. Via Jordan decomposition the characters in this Lusztig series E(G, s) are in
bijection with the unipotent characters of Spin−

2n(q); thus the second smallest degree
in E(G, s) equals b|G∗ : Spin−2n(q)|q′ = b(qn−1) with b = (qn+1)(qn−1−q)/(q2−1)
by [49, Thm. 1.1]. Since |E(G, s)| = n these characters contribute at most

1

qn − 1
+

(n− 1)(q2 − 1)

(qn + 1)(qn−1 − q)(qn − 1)

to |ǫa(C)| (and only when qn ≡ 3 (mod 4)).
As in the previous proof, the characters parametrized by semisimple elements

with centralizer Zr := GUn/r(q) contribute at most

∑

r|n

8nrqr

|G : Zr|q′
.

For n ≥ 3 and (n, q) �= (3, 2) this shows that |ǫa(C)| < 0.5. Explicit computation
of the structure constant in PCSp4(q) with Chevie shows that here |ǫa(C)| < 0.5
for q ≥ 3 as well.

The maximal subgroups of G containing elements of order divisible by Φ∗
2n(q) are

given in Lemma 2.8 and Table 3. The index of H1 := NG(SUn(q)), for n odd, is at
least q5(qn+1), the index of Hr := NG(Sp2n/r(q

r)) is at least q10(qn+1) for n ≥ 4,

respectively q2(q2−1) for n = r = 2. The index of G2(q) for n = 3 equals q3(q4−1),
and there are q+1 distinct conjugates containing x. The structure constant na(C)
in H = SO−

2n(q) was investigated in Proposition 3.6; it is less than 2|H|/|T |2. By
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explicit computation in GAP, the groups Sp2n(q) listed in Table 3 different from
Sp20(2) possess generating triples of the stated form. For Sp20(2) the structure
constant in the exceptional subgroup L2(41) is too small. The subgroups 2B2(q) of
Sp4(q) in Lemma 2.8(5) do not possess elements of order Φ∗

2n(q) for q �= 2. �

The excluded group S4(2) has derived group the alternating group A6, which
will be considered in Lemma 4.4.

To deal with the even-dimensional split orthogonal groups we need to understand
the elements in a certain maximal torus of the dual group.

Lemma 3.9. Let n ≥ 4, T a maximal torus of G = Spin+2n(q) of order (qn−1 +
1)(q + 1). Then for s ∈ T \ Z(G) either CG(s) ∼= H := Spin−2n−2(q)(q + 1) or
CG(s) ≤ GUn(q) if n ≥ 6 is even, or CG(s) ≤ GUn−1(q)(q + 1) if n = 4 or n is
odd. Moreover, the number of elements with centralizer H is given in Table 8.

Table 8. Centralizer Spin−2n−2(q)(q + 1) in Spin+2n(q)

q even qn ≡ 1 (mod 4) qn ≡ 3 (mod 4)

n = 4 3q/2 3(q − 1) −
n > 4 q/2 q − 1 q

Proof. Assume that q is odd. We first work inside the group SO+
2n(q). Under the

action of T , the natural module decomposes into an orthogonal sum V1 ⊥ V2, with
dimV1 = 2n − 2, dimV2 = 2. The elements x ∈ T for which x|V1

and x|V2
do

not have the same eigenvalues have centralizer contained in SO−
2n−2(q) × SO−

2 (q).
Moreover, if x|V1

�= ±Id, then the centralizer is contained in GUn−1(q) × (q + 1).
Thus, elements with centralizer SO−

2n−2(q) × SO−
2 (q) are those acting as ±Id on

V1 (and of order dividing q + 1 on V2); hence they are the elements in a subgroup
H ∼= C2×Cq+1 of T , and they are all real. Apart from the two central elements, we
have 2q such elements and q classes. Now let’s study the elements which lie inside
H ′ := H ∩ Ω+

2n(q). If q ≡ 1 (mod 4), then H ′ is cyclic of order q + 1 with q − 1
noncentral elements in (q−1)/2 classes. Lifting to Spin+2n(q), each element has two
preimages, so we get q − 1 classes.

If q ≡ 3 (mod 4) and n is even, H ′ ∼= C2×C(q+1)/2, which contains 3 involutions
(1 central), so there are q − 1 noncentral elements including two involutions, lying
in (q − 3)/2 + 2 classes. The involutions lift to one class each and all other classes
have two preimage classes, so there are again (q − 3) + 2 = q − 1 classes.

If q ≡ 3 (mod 4) and n is odd, then the central involution has spinor norm −1 and
H ′ has only one involution, so it is cyclic of order q + 1 with no nontrivial central
elements. Thus we find q elements with this centralizer and so (q − 1)/2 + 1 =
(q + 1)/2 classes in Ω+

2n(q). Again, the only element with only one preimage class
is the involution, so we find q classes in G.

The elements x ∈ T for which x|V1
and x|V2

have the same eigenvalues (which
can only happen if n is even), have centralizer GUn(q). For n = 4, their lifts to
Spin+8 (q) are interchanged with those of centralizer Spin−2n−2(q)(q + 1) by triality,
so we get 3(q − 1) classes with this centralizer in total.

The case where q is even is much easier since there Spin+2n(q) = SO+
2n(q). �
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Proposition 3.10. Theorem 1.1 holds for the groups O+
2n(q), n ≥ 4, with C

containing elements which act as an element of order Φ∗
2n−2(q) on a (2n − 2)-

dimensional subspace and as an element of order > 2 dividing q+1 on its orthogonal
complement.

Proof. Let C be the conjugacy class of an element x ∈ O+
2n(q) as in the statement.

Then x is regular semisimple in a maximal torus T of order (qn−1 + 1)(q + 1)

in the group G := PCO◦
2n

+
(q) of adjoint type. Such an element exists unless

(n, q) = (4, 2). For the group O+
8 (2) it can be checked using GAP that there exist

triples as required with elements of order 9, so now assume that (n, q) �= (4, 2).
We estimate the structure constant na(C) in G. The characters of G not vanishing
on x lie in Lusztig series parametrized by semisimple elements in the dual torus
T ∗ ≤ G∗ = Spin+2n(q). We distinguish three types of such elements: the central
elements, the elements with centralizer Spin−2n−2(q)× Spin−2 (q), and the remaining
elements, having centralizer GUn(q) (for n even) or smaller; see Lemma 3.9.

The Lusztig series for central elements s ∈ T ∗ contain the extensions to G of
unipotent characters of G′. Those which do not vanish on x take the values ±1 on
x. Furthermore, |NG(T ) : T | = 2n − 2, so there are exactly d(2n − 3) nonlinear
such characters. The minimal degree of a nonlinear unipotent character of G equals
b1 := (qn−1)(qn−1+q)/(q2−1) by [49, Prop. 7.2], so the contribution of characters
from E(G, s) with s ∈ Z(G∗) to |ǫa(C)| is at most

(2n− 3)
1

b1
=

(2n− 3)(q2 − 1)

(qn − 1)(qn−1 + q)
.

Next, let s ∈ T ∗ with centralizer Spin−2n−2(q)Spin
−
2 (q); the corresponding semisim-

ple character χs has degree b2 := (qn − 1)(qn−1 − 1)/(q + 1). By Proposition 3.3,
χs(x

a) has absolute value at most 2, and thus the same holds for all the n − 1
characters in E(G, s). By Lemma 3.9 there are at most q such semisimple elements
up to conjugation, so these characters contribute at most

q(n− 1)23
1

b2
=

8(n− 1)q(q + 1)

(qn − 1)(qn−1 − 1)

to ǫa(G). If n is even, there are at most (q+1)2−2(q+1) = q2−1 further elements
s0 with centralizer Z0 := GUn(q), each conjugate to its inverse. The remaining
elements in T ∗ have centralizer Zr := GU(n−1)/r(q

r)(q + 1), with r|(n − 1) such

that (n− 1)/r is odd, and for each r there are at most (qr + 1)(q + 1)− (q+ 1)2 =
(qr − q)(q+1) < qr(q+1) such elements sr, falling into at most qr(q+1)/r classes.
By Proposition 3.3 we have |χs0(x)| ≤ 2, respectively |χsr(x)| ≤ 2r. Thus, the
remaining characters contribute at most

8(n− 1)(q2 − 1)

|G : Z0|q′
+

∑

r|n−1

(n− 1)qr(q + 1)(2r)3

r2|G : Zr|q′

to |ǫa(C)|. This shows that na(C) ≥ 1
2 |C|2/|G| for (n, q) �= (4, 2).

The maximal subgroups of G containing elements of order divisible by Φ∗
2n−2(q)

are given in Lemma 2.9 and Table 4. By our choice of x it stabilizes a unique decom-
position of the underlying space, into a 2-dimensional subspace and its orthogonal
complement. The stabilizer H1 := GO−

2n−2(q)×GO−
2 (q)∩G of this decomposition

has index q2(n−1)(qn − 1)(qn−1 − 1)/(q + 1). The index of H2 := NG(SUn(q)), for
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n even, is at least qn(n−1)/2(qn−1 − 1), the index of H3 := NG(Ωn(q
2)), for n odd,

is at least q(n
2−1)/2(qn − 1).

For n = 4, there is one more subgroup Spin7(q), again with too few triples by
Proposition 3.7, and a subgroup NG(U3(q)), of index at least q9(q4 − 1)(q3 − 1).
Thus, not all triples can lie inside these proper subgroups. By explicit computation
in GAP, the groups O+

8 (3) and O+
8 (5) possess generating triples of elements of

order 7, resp. 21. The only other group in Table 4 containing elements of order
o(x) is A16 in Ω+

14(2), but there the number of triples is too small. �

Proposition 3.11. Theorem 1.1 holds for the groups Un(q), n ≥ 3 odd, (n, q) �=
(3, 2), with C containing elements of order Φ∗

2n(q).

Proof. Let x ∈ C, with centralizer a cyclic torus T of order (qn + 1)/(q + 1) in
G := PGUn(q). The minimal degree of a nonprincipal unipotent character of G is
at least (qn − q)/(q+1) by [49, Thm. 4.1], so the nonlinear unipotent characters of
G′ contribute at most

(n− 1)(q + 1)

(qn − q)

to |ǫa(C)| in G. The nontrivial elements in the dual torus T ∗ in G∗ = SUn(q) of
order (qn + 1)/(q + 1) have centralizers of types Zr := G∗ ∩ GUn/r(q

r) for r|n,
r > 1. Let sr denote an element with centralizer Zr. Then CW (v) ∼= W (T ) ∼= Cn,
W (s) = Sn/r, and CW (s)(v) ∼= NZr

(T )/T ∼= Cn/r, so by Proposition 3.3 we have
|χsr(x)| ≤ r. By [14, Thm. 7A] the n/r characters in E(G, sr) not vanishing on x
lie in the same p-block as χsr , for all Zsigmondy prime divisors p of Φ2n(q), so their
value on x has the same absolute value as χsr(x). Up to conjugation there are at
most qr−1/r elements with centralizer SUn/r(q

r), so the characters in Lusztig series
for noncentral elements of G∗ contribute at most

∑

r|n

nqr−1r3

r2|G : Zr|q′
=

∑

r|n

nrqr−1

|G : Zr|q′

to |ǫa(C)|. Using these estimates an easy calculation now shows that |ǫa(C)| < 0.5
for all n ≥ 5, (n, q) �= (5, 2), so that na(C) ≥ |C|2/(2|G|). For n = 3, the structure
constant can be computed explicitly as |T |(q2 + 3q + 1) for q �= 3, 5.

For the groups U3(3), U3(5) and U5(2) it can be checked by direct calculation
that there exist generating triples. For the remaining cases, by Lemma 2.5 the
only maximal subgroups to consider are the images in PGUn(q) of normalizers of

GUn/r(q
r) in GUn(q), for r|n, of index at least qn

2/4(qn−1−1)/r, resp. q3(q2−1)/3
if n = 3. Again, not all triples can lie in these subgroups. �

The excluded group U3(2) is solvable.

Proposition 3.12. Theorem 1.1 holds for the groups Un(q), n ≥ 4 even, (n, q) �=
(4, 2), with C containing elements of order Φ∗

2n−2(q).

Proof. Let x ∈ C, with centralizer a cyclic torus T of order qn−1 + 1 in G :=
PGUn(q). The minimal degree of a nonprincipal unipotent character of G′ is at
least (qn+ q)/(q+1) by [49, Thm. 4.1], so the n− 2 nonlinear unipotent characters
of G′ not vanishing on regular elements of T contribute at most

(n− 2)(q + 1)

(qn + q)
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to |ǫa(C)| in G. The nontrivial elements in the dual torus T ∗ in G∗ = SUn(q) of
the same order have centralizers of types Zr := GU(n−1)/r(q

r) for r|(n− 1). Let sr
denote an element with centralizer GU(n−1)/r(q

r). Then CW (v) ∼= W (T ) ∼= Cn−1,
W (s) = S(n−1)/r, and CW (s)(v) ∼= NZr

(T )/T ∼= C(n−1)/r, so by Proposition 3.3
we have |χsr(x)| ≤ r. By [14, Thm. 7A] the (n − 1)/r characters in E(G, sr) not
vanishing on x lie in the same p-block as χsr , for all Zsigmondy prime divisors
p of Φ2n−2(q), so their value on x has the same absolute value as χsr(x). Up to
conjugation there are at most qr−1/r elements with centralizer GU(n−1)/r(q

r), so
the characters in Lusztig series for noncentral elements of G∗ contribute at most

∑

r|n

(n− 1)qr−1r3

r2|G : Zr|q′
=

∑

r|n

(n− 1)rqr−1

|G : Zr|q′

to |ǫa(C)|. It follows that |ǫa(C)| < 0.5 and thus na(C) ≥ |C|2/(2|G|) for all even
n ≥ 4, (n, q) �= (4, 2), (4, 3), (6, 2).

For U6(2), U4(3) and U4(5), a direct calculation shows that there exist generating
triples. By Lemma 2.6 the only maximal subgroup to consider in the remaining
cases is GUn−1(q), of index qn−1(qn − 1)/(q + 1); thus not all triples can lie in
proper subgroups. �

The excluded group U4(2) is isomorphic to S4(3), treated in Proposition 3.8.

Proposition 3.13. Theorem 1.1 holds for the groups Ln(q), n ≥ 3, (n, q) �=
(3, 2), (4, 2), with

(a) C containing elements of order Φ∗
n(q) if n is odd, and

(b) C containing elements of order Φ∗
n−1(q), if n is even.

Proof. First assume that n is odd. Let x ∈ C, with centralizer a cyclic torus T of
order (qn − 1)/(q − 1) in G := PGLn(q). The minimal degree of a nonprincipal
unipotent character of G is at least (qn − q)/(q − 1) by [49, Thm. 3.1], so the
nonlinear unipotent characters of G′ contribute at most

(n− 1)(q − 1)

(qn − q)

to |ǫa(C)| in G. The noncentral elements in the dual torus T ∗ in G∗ = SLn(q) of the
same order have centralizers of types Zr := G∗ ∩ GLn/r(q

r) for r|n, r > 1. Let sr
denote an element with centralizer Zr. Then CW (v) ∼= W (T ) ∼= Cn, W (s) = Sn/r,
and CW (s)(v) ∼= NZr

(T )/T ∼= Cn/r, so by Proposition 3.3 we have |χsr(x)| ≤ r.
Again by [14, Thm. 7A] the values of the n/r characters in E(G, sr) not vanishing
on x have the same absolute value as χsr(x). Up to conjugation there are at most
qr−1/r elements with centralizer Zr, so the characters in Lusztig series for non-
central elements of G∗ contribute at most

∑

r|n

nqr−1r3

r2|G : Zr|q′
=

∑

r|n

nrqr−1

|G : Zr|q′

to |ǫa(C)|. It follows that |ǫa(C)| < 0.5 for all n ≥ 5, (n, q) �= (5, 2), so that
na(C) ≥ 1

2 |C|2/|G|. For n = 3, the structure constant can be computed explicitly

from the known character table as |T |(q2 − 3q + 1) for q �= 2, 4.
By direct computation, the groups L3(4) and L5(2) contain generating triples.

By Lemma 2.3, the only maximal subgroups to consider in the remaining cases are
the image in G of GUn(q

1/2) if q is a square, of index at least qn(n−1)/4(qn−1 − 1)
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and with qn/2 − 1 conjugates containing x, and of the normalizers of GLn/r(q
r) in

GLn(q), for r|n, r > 1, of index at least qn
2/4(qn−1 − 1)/r, resp. q3(q2 − 1)/3 if

n = 3.
If now n ≥ 4 is even, the same arguments apply to show that |ǫa(C)| < 0.5 unless

(n, q) = (4, 2), so that na(C) ≥ 1
2 |C|2/|G|.

By direct computation, the group L4(4) contains generating triples. The only
maximal subgroups to consider in the remaining cases are, by Lemma 2.3, the image
in G of GUn(q

1/2), with q a square, of large index and less than qn/2 conjugates
containing x, and the end node parabolic subgroups P1, Pn−1, of index (qn −
1)/(q − 1). Since both Pi contain the full normalizer of the maximal torus T of
order qn−1 − 1, there are at most |Pi|/|T | elements from C in Pi, so each contains
at most (q − 1)|G|/((qn − 1)(qn−1 − 1)) triples, which is sufficiently small for our
estimate. �

The excluded group L4(2) ∼= A8 will be treated in Lemma 4.4. The groups L2(q)
are the subject of the next section.

3.4. The groups PSL2(q). We now consider SL2(q) and L2(q), where the results
are somewhat different especially for q even.

From the subgroup structure of SL2(q), it is quite easy to see that if q > 11,
then the only maximal subgroups containing the split torus are the normalizer of
the torus and the two Borel subgroups. Similarly, the normalizer of the nonsplit
torus is the unique maximal subgroup containing the nonsplit torus.

We first deal with q odd.

Lemma 3.14. Let S = L2(q) with q ≥ 11 and odd. Let C be a conjugacy class of
elements of order (q − 1)/2. Then Theorem 1.1 holds for C. Also, Theorem 1.1
holds for L2(9) with C a class of elements of order 5.

Proof. We work in G = SL2(q). First assume that q > 11. Let C be a conjugacy
class of elements of order q − 1 in G. It is a trivial matrix computation to show
that tr(xy) with x, y ∈ C can be any element of Fq. Thus, there exist x, y ∈ C
and z ∈ C or z ∈ −C−2 so that xyz = 1. We claim that G = 〈x, y〉 in either case.
If not, then x, y are contained in a Borel subgroup B. However, if x, y ∈ C ∩ B,
we see that xy is either unipotent or conjugate to x2. Thus, G = 〈x, y〉. Passing
to the quotient L2(q) gives the result. For q = 9, 11 the claim follows by direct
computation. �

We note that if q = 5 or q = 7 and C is a conjugacy class of elements of order q
in G = L2(q), then there exists a generating triple from C with product 1. It is also
straightforward to check that if V is a nontrivial absolutely irreducible kG-module,
then an element of order q has no eigenspace of dimension greater than (1/3) dimV .

We next consider G = L2(q) with q even. If q = 4, then G = A5
∼= L2(5), a case

already dealt with.

Lemma 3.15. Let G = L2(q) with q > 7 and even. Let C be a conjugacy class of
elements of order q − 1. Let k be an algebraically closed field of characteristic p.

(a) There exist x, y, z ∈ C with product 1 and G = 〈x, y〉.
(b) If p > 2 and V is any nontrivial irreducible kG-module, then every eigen-

space of x has dimension at most (1/3) dimV .
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(c) If p = 2 and V is any nontrivial irreducible kG-module of dimension greater
than 2, then every eigenspace of x has dimension at most (1/3) dimV .

Proof. (a) follows just as for q odd. Now first suppose that p > 2. Thus, dimV =
q − 1 + e, where e = 0, 1, 2 by the well-known representation theory of L2(q) =
PGL2(q). Let B be a Borel subgroup containing x ∈ C. Let U be the unipotent
radical of B. Then U has q − 1 nontrivial eigenspaces on V permuted transitively
by x. Thus V is a direct sum of a rank 1 free x-module and an x-submodule of
dimension e. Thus, any eigenspace of x has dimension at most 1 + e, whence (b)
holds.

Now assume that p = 2. Then every nontrivial irreducible module is a tensor
product of Frobenius twists of the natural module. It is trivial to check that either
every eigenspace for elements of C has dimension at most 1 or V is the Stein-
berg module of dimension q and the largest eigenspace is the trivial eigenspace of
dimension 2 < q/3. �

We close this section with a result for the nonsplit tori in SL2(q) with q even.

Lemma 3.16. Let G = SL2(q) with q > 3 even. Let x ∈ G have order q + 1. If k
is an algebraically closed field of characteristic 2 and V is an irreducible nontrivial
kG-module, then x has distinct eigenvalues on V and CV (x) = 0.

Proof. V is a tensor product of distinct Frobenius twists of the natural 2-dimension-
al module. If q = 2f , there are exactly f distinct twists. It is straightforward to
see that possible eigenvalues are distinct on V and CV (x) = 0. �

4. Alternating and sporadic groups

In this section we prove Theorem 1.1 for alternating and sporadic groups. We
first recall a translation result for generation. See [27, Lemma 4.6] for example.

Lemma 4.1. Let G be a finite group generated by x, y, z with product 1. Then for
any d ≥ 1 there is a normal subgroup N generated by xd, yd and d conjugates of z
with product 1 generating N . Moreover G/N is cyclic of order dividing d.

Lemma 4.2. Let n ≥ 11 be odd and set G = An. Then there exist three n − 2
cycles with product 1 that generate G.

Proof. Set x = (2 4 5 6 . . . n) and u = (1 2)(3 4). Then w := ux = (1 2 . . . n). Set
s = w4. Then v := us = (5 6)(7 8). Set y = xs. So w = vy. Thus, y−1(vu)x = 1
with vu an involution moving 8 points. Let H := 〈x, y〉. Since y does not fix 1 or
3 or {1, 3}, H is transitive. Since x is an n − 2 cycle and n is odd, H is primitive
and then applying [51, Thm. 13.8], H is triply transitive. It follows by [51, Thm.
15.1] that either H = G or n ≤ 21. By inspection of the triply transitive degree n
groups with 11 ≤ n ≤ 21 generated by n − 2 cycles, no possibility remains for H
since n ≥ 11.

So G = 〈x, y〉, where x and y are n− 2 cycles and their product is an involution.
By the translation principle, a subgroup of index at most 2 in G is generated by x2

and two conjugates of y with product 1. �

Lemma 4.3. Let n ≥ 12 be even and set G = An. Then there exist three n − 3
cycles with product 1 that generate G.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



PRODUCTS OF CONJUGACY CLASSES AND FIXED POINT SPACES 101

Proof. Set u = (1 2)(3 4)(5 6) and x = (1 3 5 7 8 . . . n). Then w = xu is the
standard n-cycle. Set s = w6. So w = yv, where y = xs and v = us. Note that vu
is an involution moving exactly 12 points and y−1(vu)x = 1. Set H = 〈x, y〉. By
construction H is transitive. It is obviously primitive unless 3|n and then the fixed
points F of x would have to be a block (i.e. {2, 4, 6} as well as vu(F ) = {1, 3, 5}).
Since x(1) = 3 and x(5) = 7, this is a contradiction. So H is primitive.

By [51, Thm. 13.8], H is 4-transitive. By [51, Thm. 15.1], n ≤ 25. The
only possibilities for H other than G would be for H to be a Mathieu group with
n = 12, 22 or 24. In all three cases, we see that the Mathieu group Mn does not
contain both an involution moving exactly 12 points and an n− 3 cycle. �

A computer check shows the following:

Lemma 4.4. Let 5 ≤ n ≤ 10. Then Theorem 1.1 holds for An with C the class of
a k-cycle, where k = 5 for n = 5, 6 and k = 7 otherwise.

The result is pretty close for A10: for a fixed element x of order 7, only 42 out
of the 7446 pairs (y, z) with y, z conjugate to x and xyz = 1 do generate G (this is
roughly one in 177), all others generate intransitive subgroups: for example, 2856
pairs generate an A9, 3717 generate an A8. The generating triple for A10 can be
obtained by translation from the rigid genus 0 triple of S10 consisting of elements
of cycle shapes (25, 7, 7.2).

Proposition 4.5. Theorem 1.1 holds for sporadic groups and for the Tits group,
with C as indicated in Table 9.

Proof. In Table 9 we give, for each sporadic simple group G, a conjugacy class C
(in Atlas notation), the index AG(C) := |NG(〈g〉) : CG(g)| for g ∈ C, the structure
constant n1(C) (and, if that is different, n−2(C)) in G, and the list of conjugacy
classes of maximal subgroups containing an element from C. Here, the structure
constant in G as well as in any maximal subgroup H nontrivially intersecting C is
easily computed from the character tables, using GAP for example, since we chose
C such that only almost quasi-simple or metabelian maximal subgroups H occur.
It remains to check that these contributions are less than na(C).

The lists of maximal subgroups are taken from the Atlas [8] or from the Atlas
home page [53]. �

5. An application to representation theory

Here, we prove our main results, Corollary 1.2 and Theorem 1.3, from the intro-
duction.

We first recall Scott’s Lemma [47]. Let k be a field of characteristic p ≥ 0.

Lemma 5.1. Suppose that G = 〈g1, . . . , gr〉 with g1 · · · gr = 1. Then for any finite-
dimensional kG-module V we have

r
∑

i=1

dim[gi, V ] ≥ dimV − dimV G + dim[G, V ].

We shall apply this when r = 3 and G has no fixed points on V or V ∗. Noting
that dimCV (gi) = dimV − dim[gi, V ], this gives

3
∑

i=1

dimCV (gi) ≤ dimV.
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Table 9. Structure constants for sporadic groups

G C AG(C) na(C) max. overgroups of g ∈ C

M11 11a 5 35|80 L2(11) : 2|14
M12 11a 5 640|1180 M11 : 35|80 (2×),L2(11) : 2|14
J1 19a 6 496|419 19.6 : 3|3
M22 11a 5 3632|3776 L2(11) : 2|14
J2 7a 6 12528 U3(3) : 397,L3(2).2 : 12
M23 23a 11 17646|18222 23.11 : 11
2F4(2)

′ 13a 6 114870|114195 L3(3).2 : 106|133(2×),L2(25) : 1650
HS 11a 5 363464|367964 M22 : 3632|3776,M11 : 35|80 (2×)
J3 19a 9 131161 L2(19) : 4 (2×)
M24 23a 11 441904|455728 M23 : 17646|18222,L2(23) : 5|29
McL 11a 5 7372675|7463800 M22 : 3632|3776 (2×),M11 : 35|80
He 17a 8 14113998 S4(4).2 : 13892
Ru 29a 14 174426828 L2(29) : 35
Suz 13a 6 ∗ G2(4),L3(3).2 (2×),L2(25)
ON 31a 15 479254117 L2(31) : 7 (2×)
Co3 23a 11 ∗ M23

Co2 23a 11 ∗ M23

Fi22 13a 6 ∗ O7(3) (2×), 2F4(2)
′

HN 19a 9 756228015580 U3(8).3 : 134923
Ly 67a 22 ∗ 67.22
Th 19a 18 252411100157582 U3(8).6 : 539180,L2(19).2 : 36
Fi23 17a 16 ∗ S8(2), S4(4).4
Co1 13a 12 ∗ 3.Suz.2, (A4 ×G2(4)).2
J4 43a 14 ∗ 43.14
Fi′24 29a 14 ∗ 29.14
B 47a 23 ∗ 47 : 23
M 71a 35 ∗ L2(71)

*: the values are too large to be printed

Recall our notation Ca := {xa | x ∈ C} for C a conjugacy class of G. The
connection between our previous results on generation and the size of eigenspaces
is made by:

Lemma 5.2. Let k be algebraically closed. Let x, y ∈ GLn(k) = GL(V ) be conju-
gate with product xy conjugate to x2, where n ≥ 2. Set G = 〈x, y〉. If V contains
no 1-dimensional kG-submodules and has no 1-dimensional kG-quotient module,
then every eigenspace of x has dimension at most n/3.

Proof. Let θ be an eigenvalue of x with the θ-eigenspace of maximal dimension
among all eigenspaces. Set z = (xy)−1,

x′ = θ−1x, y′ = θ−1y, z′ = θ2z.

Then x′y′z′ = 1. By hypothesis, V and V ∗ have no fixed points for H = 〈x′, y′〉.
Note that the fixed space of each of these elements has dimension at least that of
the θ-eigenspace of x, so an application of Scott’s Lemma to this triple shows that
this dimension is at most n/3. �
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Let’s say that a finite group G has property (E) if there exists g ∈ G such that
for any algebraically closed field k and any kG-module V for which G has no fixed
points on V or V ∗, every eigenspace of g on V has dimension at most (1/3) dimV .
Note that nontrivial irreducible representations of a group G with property (E) are
necessarily of dimension at least 3; in particular, G is perfect. We will say that G
has property (E) in characteristic p if the result holds for modules over fields of
characteristic p.

Corollary 5.3. Let G be a finite nonabelian simple group other than L2(q) with q
even. Then G has property (E). All finite nonabelian simple groups have property
(E) in characteristic not 2.

Proof. Let x, y ∈ G as in Theorem 1.1(b). Then G has property (E) with respect
to g := x. The result follows by the previous lemma unless G = L2(q) with q even
or q = 7. If q = 7 or we are considering modules in any characteristic other than
2 and q is even, the result follows for irreducible modules by Lemma 3.15 (and the
remarks above it). For any eigenvalue other than 1, property (E) can be checked on
irreducible modules. The condition for the eigenvalue 1 follows by Scott’s Lemma
from Theorem 1.1. �

The same proof in the remaining cases yields:

Corollary 5.4. Let G be a finite nonabelian simple group and k an algebraically
closed field of characteristic p. There exists x ∈ G such that if V contains no com-
position factors of dimension at most 2, then every eigenspace of x has dimension
at most (1/3) dimV .

We now move towards composite groups:

Lemma 5.5. Let G = G1 × G2 be a direct product of finite groups. Assume that
G1 and G2 both have property (E). Then so does G.

Proof. We may assume that k is algebraically closed. Let gi ∈ Gi as in property (E).
We claim that g := (g1, g2) ∈ G satisfies (E) for G. As in the previous proof we
may assume that V is irreducible. Thus, V = V1 ⊗ V2, with Vi irreducible for Gi

and at least one of them not the trivial module, say V1.
By assumption every eigenspace of g1 on V1 has dimension at most (1/3) dimV1.

Choose a g2-invariant filtration 0 < W1 < · · · < Wr = V2 of V2 with 1-dimensional
quotients, so r = dimV2. It is clear that on V1 ⊗ (Wj+1/Wj) each eigenspace
of g has the same dimension as an eigenspace of g1 and so of dimension at most
(1/3) dimV1. The result follows. �

The previous result implies that direct products of finite nonabelian simple
groups have property (E) in any characteristic not 2, and also in characteristic
2 as long as we avoid L2(q) with q even.

In this last case, we will need a different result. If S is a finite subset of GL(V ),
let avg(S, V ) := |S|−1

∑

s∈S dimCV (s).

Corollary 5.6. Let G = L1 × · · · × Lt, where Li
∼= L2(q) with q ≥ 4 even. Let k

be an algebraically closed field of characteristic 2. Let V be a kG-module with no
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trivial composition factors. Let X = X1×· · ·×Xt, where Xi ≤ Li is cyclic of order
q + 1.

(a) avg(X,V ) ≤ (1/3) dimV .
(b) There exists x ∈ X with dimCV (x) < (1/3) dimV .

Proof. Clearly the second statement follows from the first. To prove the first state-
ment, it suffices to assume that V is irreducible. So V = V1 ⊗ · · · ⊗ Vt with each Vi

an irreducible kLi-module (and at least one nontrivial). By Lemma 3.16 we have
that CV (X) = 0. Since |X| is odd, the result follows by [26, Thm. 1.1]. �

Combining the previous results yields:

Corollary 5.7. Let G be a direct product of a finite number of isomorphic non-
abelian simple groups. Let k be an algebraically closed field and V be a kG-module
with no trivial composition factors. Then there exists g ∈ G with dimCV (g) ≤
(1/3) dimV .

We can now solve a conjecture stated in the 1966 thesis of Peter Neumann [45].
There are two new ingredients in our proof. The first is the previous result. How-
ever, we also improve his result even for solvable groups. The idea is to consider the
average dimension over some coset of a normal subgroup. This result does require
the irreducibility assumption (consider the augmentation ideal for an elementary
abelian 2-group in any odd characteristic).

Theorem 5.8. Let G be a finite group acting irreducibly and nontrivially on the
kG-module V .There exists an element g ∈ G with dimCV (g) ≤ (1/3) dimV .

Proof. Let R := EndkG(V ). This is a division ring. We may replace k by the center
of R, and so R is a central simple algebra over k. Now extend k to a Galois splitting
field L of R. Then V ⊗k L is a direct sum of Galois conjugates of V . Any element
has the same size fixed space on each of these conjugates. We can then extend
scalars and assume that k is algebraically closed, so there is no harm in assuming
that V is absolutely irreducible.

Let N be a minimal normal subgroup of G. If N is an elementary abelian p-group
for p > 2, the result follows by [32] (see also [26, Thm. 1.1]).

Suppose that F (G) = 1. Then N = L1×· · ·×Lt is a direct product of isomorphic
nonabelian simple groups and V is a completely reducible kN -module with no fixed
points. The result follows by Corollary 5.7.

The remaining case is when N is an elementary abelian 2-group. If N acts
homogeneously on V , then N is central and there is a fixed point free element in
N . Let Ω = {V1, . . . , Vm} denote the homogeneous components of N with m > 1.
Then G acts transitively on Ω. Thus, there exists g ∈ G with no fixed points on Ω.

We will prove that avg(gN, V ) ≤ (1/3) dimV . This completes the proof for then
certainly some element in the coset gN has fixed point space of dimension at most
(1/3) dimV . Let Δ ⊆ Ω be an orbit for g with δ = |Δ|. Let W =

⊕

i∈∆ Vi. We will
in fact prove that avg(gN,W ) ≤ (1/3) dimW and clearly this suffices. Obviously,
dimCW (gy) ≤ (1/δ) dimW for every y ∈ N . Thus, if δ > 2, our assertion has been
proved. It remains to consider the case that δ = 2. By reordering, we may assume
that W = V1 ⊕ V2. Consider the image of N in GL(W ). Since the Vi are distinct
nontrivial weight spaces for N , the image of N in GL(W ) is M , an elementary
abelian group of order 4. In computing this average on W , we may mod out by the
kernel of the action of N on W and so we are averaging over the coset gM of size
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4. Let M = {1, z1, z2, z}, where zi is trivial on Vi (and so acts as −1 on the other
factor).

Write g = (s, t)τ in GL(W ), where τ is an involution interchanging coordinates
(identify V1 with V2). Then g2 = (st, ts) and so we see that c := dimCW (g) =
dimCV1

(st). Note that (gz)2 = g2 and (gzi)
2 = g2z. Thus, dimCW (gz) =

dimCW (g) = c and dimCW (gzi) ≤ dimV1 − c (since g2z and g2 have no com-
mon fixed points). Thus,

avg(gN,W ) =
1

4
(2 dimCW (g) + 2 dimCW (gzi))

≤ 1

4
2 dimV1 =

1

4
dimW <

1

3
dimW.

This completes the proof. �

Remark 5.9.

(1) Neumann [45] proved that for solvable G there exists an element g ∈ G with
dimCV (g) ≤ (7/18) dimV . Segal and Shalev [48], using the classification of
finite simple groups, showed that for all groups one could obtain (1/2) dimV
as a bound. Isaacs et al. [32] improved this to (1/p) dimV as long as V is a
completely reducible G-module (where p is the smallest prime dividing the
order of G; for p = 2, they used the classification of finite simple groups via
a result of [23]). Maróti and the first author [26] improve this by showing
that one can take V to be any module with no trivial composition factors
and improve the bound to strictly less than (1/p) dimV , where p is the
smallest prime divisor of |G|.

(2) As we have already noted, one cannot improve the 1/3. See the next section
for examples, showing that even for arbitrarily large dimension, one cannot
do better than 1/9.

We close this section by extending our result to infinite linear groups as an-
nounced in Theorem 1.3 of the introduction:

Theorem 5.10. Let G be a nontrivial irreducible subgroup of GL(V ) with V a
finite-dimensional vector space over a field k. There exists g ∈ G with dimCV (g) ≤
(1/3) dimV .

Proof. As in the proof of Theorem 5.8 there is no harm in assuming that V is
absolutely irreducible. Let n := dim(V ). By passing to a subgroup we may assume
that G is finitely generated. By passing to the subfield of k generated by the matrix
entries of the finitely many generators and their inverses we may assume that k is
finitely generated as a field over the prime field. Indeed, we may assume that
G ≤ GLn(R), where R is a finitely generated subring of k (whose quotient field is
k). Let M be a maximal ideal of R such that the image Ḡ of G in GLn(R/M) is
still absolutely irreducible. (This can be easily done. Choose n2 elements of G that
form a basis for Mn(k). This is an open condition on the spectrum of R and so
holds for a dense subset of maximal ideals of R.)

By the Nullstellensatz, R/M is finite, so by the result for finite groups in Theo-
rem 5.8, we may choose an element ḡ ∈ Ḡ whose fixed space has dimension at most
n/3. This is equivalent to the rank of I − ḡ being at least (2/3)n, whence the same
is obviously true for any lift g ∈ G of ḡ. �
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6. Some characteristic 0 results

Under suitable circumstances, one can improve Theorem 1.3. If G is a compact
Lie group (or complex algebraic group), then as the dimension increases, the di-
mension of any weight space of a maximal torus divided by the dimension tends to
0 [24, Thm. 6].

Here, we specialize to irreducible complex representations of nonabelian sim-
ple groups where we prove much better upper bounds for the maximal size of
eigenspaces of suitable elements.

Theorem 6.1. For any ǫ > 0 there exists N > 0 with the following property: for
all finite quasi-simple groups G there exists g ∈ G so that for all irreducible CG-
modules V of dimension dimV > N every eigenspace of g is of dimension at most
ǫ dimV .

Proof. We first consider the case thatG is quasi-simple of Lie type. Furthermore, we
may assume that G is not one of the finitely many exceptional covering groups. Now
for G = SL2(q), q ≥ 5, let g be a regular semisimple element of odd order (q− 1)/2
or (q + 1)/2, and otherwise let g be (a lift to the central extension G of) a regular
semisimple element of order Φ∗

e(q) in the maximal torus T of G/Z(G) as given in
Table 7 for classical groups, respectively as in Table 6 for exceptional groups. Note
that such regular semisimple elements exist whenever there is a suitable Zsigmondy
prime, that is, in all but finitely many cases. Then |CG(g)| = |T |. Let V be an
irreducible CG-module, with character χ, and set d := dimV = χ(1). Then, the
multiplicity of any linear character λ of H := 〈g〉 in χ|H is

〈χ, λ〉H =
1

|H|
∑

t∈H

χ(t)λ̄(t) ≤ 1

|H|
(

d+ |H| |T |1/2
)

.

Thus, any eigenspace of g on V has at most dimension ( 1
|H| +

|T |1/2

d ) dimV . Since

|H| = Φ∗
e(q) goes to infinity as qe does and since |T |1/2/d → 0 (by [49, Table 1]),

the claim follows.
Next consider G = An. Let x be a cycle of odd length n− e with e = 2 or 3. For

sufficiently large n, it follows by [35, Thm. 1.2] that |χ(xj)| < χ(1)1/2 for all xj �= 1
and all nonlinear irreducibles χ. Now let H be the subgroup generated by such an
x. Arguing as we did for the case of Lie type groups, we see that this implies that
the multiplicity of any irreducible character of H in the restriction of a nontrivial
character χ of An is less than χ(1)/(n− e) + χ(1)1/2. The result follows.

Suppose that G is the double cover of An. Let π be the projection from G onto
An. Let x ∈ G with π(x) a product of a 2-cycle and 2f -cycle where n/2 ≤ 2f ≤ n−4.
It follows by [31, Thm. 3.9] that every noncentral element y of H = 〈x〉 is conjugate
to yz, where z is the central involution in G. Thus χ(y) = 0 for every such y if
χ is a faithful character of G. This implies that every eigenspace of x is either
0-dimensional or has dimension χ(1)/2f .

Since the result is asymptotic, we need not consider sporadic groups or the covers
of A6 and A7. �

We give two sample results showing how the bound obtained in the proof of the
previous theorem can be strengthened with a bit more work for the groups of Lie
type.
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Proposition 6.2. Let G = E8(q). Then there exists g ∈ G such that for every
irreducible CG-module V the dimension of every eigenspace of g on V is at most
(1/q8) dimV .

Proof. Let g ∈ G of order Φ30(q) = q8+ q7 − q5− q4 − q3 + q+1. Then g generates
a TI-torus T of G, with |NG(T )/T | = 30 (see Table 6). Let χ ∈ Irr(G) be a non-
trivial character. By Proposition 3.3 we have |χ(s)| ≤ 30 for all powers s = gb �= 1
of g. Thus, the multiplicity of any linear character of T in χ|T is at most

χ(1) + 30|T |
|T | =

χ(1)

|T | + 30 ≤ χ(1)

q8

as claimed, since χ(1) > q28 by [39]. �

Proposition 6.3. Let G = O−
2n(q). Then there exists g ∈ G such that for every

irreducible CG-module V the dimension of every eigenspace of g on V is at most
(1/Φ∗

2n(q)) dimV + n.

Proof. Consider G as the derived subgroup of PCO◦
2n

−
(q) and let g ∈ G of order

Φ∗
2n(q). Then g is a regular element in a cyclic maximal torus of PCO◦

2n
−
(q) of

order qn+1, and any nontrivial power of g is conjugate to precisely n of its powers.
Let χ ∈ Irr(G) be a nontrivial character. By Proposition 3.3 we have |χ(s)| ≤ n
for all powers s = gb �= 1 of g. Thus, the multiplicity of any linear character of
H := 〈g〉 in χ|H is at most

χ(1) + n|H|
|H| =

χ(1)

|H| + n,

as claimed. �

The following examples show that (as opposed to the simple group case) even
in characteristic 0, one cannot get arbitrarily small ratios for dimCV (g)/ dimV as
dimV increases (and V is irreducible).

Example 6.4. Let L = A5 and let W be an irreducible 5-dimensional module in
characteristic 0 (all we need assume is that the characteristic is not 2).

Set G(m) = L× · · · × L (m copies) acting on V (m) = W ⊗ · · · ⊗W (m copies).
Then dimCV (m)(g) > (1/50) dimV (m) for all g ∈ G(m).

Proof. If g has order 5, then χV (m)(g) = 0 and dimCV (m)(g) = (1/5) dimV (m) for
all m.

If g has order 2, we claim that dimCV (m)(g) > (1/2) dimV (m). By induction
on m, it suffices to assume that g = (h, . . . , h) with h ∈ L of order 2. Then
χV (m)(h) = 1, whence the trivial eigenspace of g has dimension (1/2)(dimV (m) +
1) > (1/2) dimV (m) (but as m increases, the ratio gets arbitrarily close to 1/2).

If g has order 3, then χV (m)(h) = ±1, whence the trivial eigenspace of g has
dimension at least (1/3)(dimV (m)− 2) ≥ (1/5) dimV (m) (and 1/5 is achieved for
m = 1).

Now take g arbitrary. We may write (up to reordering) g = g1 ⊗ g2 ⊗ g3 ⊗ g5
acting on V (a1)⊗V (a2)⊗V (a3)⊗V (a5) with m =

∑

ai and gi has each component
of order i. Thus, g1 is trivial on V (a1) and by the previous results, dimCV (ai)(gi) ≥
(1/5) dimV (ai) for i = 3, 5 and dimCV (a2)(g2) > (1/2) dimV (a2). Thus, the result
follows. �

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



108 ROBERT GURALNICK AND GUNTER MALLE

We get a similar result for A4. The proof is essentially the same as in the previous
example:

Example 6.5. Let L = A4 and let W be the irreducible 3-dimensional module
in characteristic not 2. Set G(m) = L × · · · × L (m copies) acting on V (m) =
W ⊗ · · · ⊗W (m copies). Then dimCV (m)(g) ≥ (1/9) dimV (m) for all g ∈ G(m).

We next show that for direct products of simple groups and for sufficiently large
dimension, Example 6.4 is the worst case.

Lemma 6.6. Let L be a finite nonabelian simple group and V an irreducible non-
trivial CL-module. Let G = G(m) be the direct product of m copies of L and V (m)
be the tensor product of m copies of V . Let ǫ > 0. If m is sufficiently large, then
there exists an element g ∈ G such that dimCV (m)(g) < (1/50 + ǫ) dimV (m).

Proof. Let χ be the character of V . Let e be the exponent of L (i.e. the smallest
positive integer e such that xe = 1 for all x ∈ L). Choose g1, . . . , gs ∈ L such that
the least common multiple of the orders of the gi is e. Set y = (g1, . . . , gs) in G(s).
Consider (y, . . . , y) ∈ G(st) acting on V (st). We see that for any 0 < j < e we
have |χ(yj)|/χ(1)st → 0 as t increases. It follows that V (st) is very close to a free
module for 〈y〉 and in particular

lim
t→∞

dimCV (st)(y)

dimV (st)
=

1

e
.

Thus, if m is sufficiently large, we can find g ∈ G satisfying the conclusion unless
e ≤ 50. An easy inspection shows that e > 50 is true for every L aside from L = A5.

So now suppose that L = A5 (note that e = 30). So dimV = 3, 4 or 5. If
dimV = 4, an element of order 3 has no fixed points and so the same is true for
an element of order 3 of the form (x, 1, . . . , 1) ∈ L(m) for any m. If dimV = 5,
then V is a free module for an element of order 5. An element of order 3 has a
1-dimensional fixed space. If m is large enough, we can choose an involution whose
fixed space has dimension very close to (1/2) dimV . Arguing as above, we can
choose an element g ∈ L(m) whose fixed point space has dimension as close as we
want to (1/50) dimV (m), whence the result holds in this case.

Finally suppose that dimV = 3. Every element of order 3 in L(t) has a fixed
space of dimension 3t−1. Consider g = (h, h2) with h of order 5 acting on V (2).
Then the fixed space of g is 1-dimensional and so (1/9) dimV (2). An involution
has a fixed space of dimension 1 on V . Thus, we see that there is an element of
order 30 acting on V (m) for any m ≥ 4 with dimCV (g) = (1/81) dimV (m). �

We can extend the previous result to the case of primitive groups.

Theorem 6.7. Let G be a finite group and W an irreducible primitive CG-module.
Let s be any positive number greater than 1/50. If dimW is sufficiently large, then
there exists g ∈ G such that dimCW (g) < s dimW .

Proof. We may assume that W is faithful. Any normal subgroup of G acts homo-
geneously on W , whence any abelian normal subgroup of G is central. If Z(G) �= 1,
the result is clear. So we may assume that F (G) = 1. So F ∗(G) = L1 × · · · × Lt

with Li simple, and every irreducible F ∗(G)-submodule of W is isomorphic to
V1 ⊗ · · · ⊗ Vt, where Vi is a nontrivial irreducible Li-module. If dimVi is large
enough, it follows by Theorem 6.1 that there exists gi ∈ Li with fixed space of di-
mension less than (1/50) dimVi, a contradiction. Thus there are only finitely many
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possible isomorphism types for the Li. We may assume that t is as large as we wish
(otherwise F ∗(G) has bounded order, whence so does |G| and so dimV is bounded).
So we may assume that Li

∼= L1 for 1 ≤ i ≤ m for m as large as we wish and that
Vi

∼= V1 for those i (since there are only a bounded number of possible isomorphism
types of irreducible modules). By the previous lemma, for m sufficiently large,
there exists (g1, . . . , gm) ∈ L1(m) with dimCV (m)(g) < s dimV (m) with V = V1.
Setting g = (g1, . . . , gm, 1, . . . , 1) ∈ F ∗(G), we see that dimCW (g) < s dimW , as
required. �

7. Products of classes and powers

A conjecture of Thompson asserts that for any finite nonabelian simple group
there is a conjugacy class C such that G = C · C, that is, any element of G is the
product of two elements in C. A proof of this seems out of reach at present, although
we expect that, in some sense, most classes will do. We propose the following partial
results. First we consider rank 1 groups. Here, we set G# := G \ {1}.

Theorem 7.1. Let G be a rank 1 finite simple group of Lie type. Let C be the
G-conjugacy class of an element x of order o(x) > 2. Assume that one of the
following holds:

(1) G = L2(q) with q odd and x is not unipotent;
(2) G = L2(q) with q even and o(x) does not divide q + 1;
(3) G = 2G2(q

2), q2 ≥ 27, and o(x) is not divisible by 3;
(4) G = 2B2(q

2), q2 ≥ 8; or
(5) G = U3(q) and x is regular of order (q2 − q + 1)/d or (q2 − 1)/d, with

d = gcd(3, q + 1).

Then G# ⊆ CC.

Proof. If G = L2(q), this is a straightforward matrix computation; see also
Macbeath [41]. For the Suzuki groups 2B2(q

2) the generic character table is avail-
able in Chevie and the claim can be checked by computer. (By [21, Thm. 2] we
actually only need to worry about the classes of elements of order 4.) Similarly, for
the Ree groups 2G2(q

2), q2 ≥ 27, by loc. cit. and our restriction on C we only have
to check that the square of any class of semisimple elements of order greater than 2
meets all nonsemisimple classes, which is immediate using the table in Chevie.

Finally, the character table of U3(q) can also be found in Chevie, and we only
need to verify that squares of regular semisimple classes of order (q2 − q + 1)/d or
(q + 1)/d contain all nonsemisimple classes. �

This has the following immediate consequence:

Theorem 7.2. Let w1 and w2 be nontrivial words in the free group on d generators.

(a) If G = 2B2(q
2), q2 ≥ 8 and w2

i (G
d) �= 1 for i = 1, 2, then G =

w1(G
d)w2(G

d).
(b) If G = 2G2(q

2), q2 ≥ 27, and w9
i (G

d) �= 1 �= w6
i (G

d) for i = 1, 2, then
G = w1(G

d)w2(G
d).

The main result of [36] is a version of this for any pair of words w1 and w2 and
any sufficiently large nonabelian simple group (where sufficiently large depends on
the choice of w1 and w2).
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Next we consider some rank 2 groups.

Theorem 7.3. Let G be a simple group L3(q) (q > 2), S4(q), G2(q),
3D4(q) or

2F4(q
2)′. Then there exists a conjugacy class C of semisimple elements of G such

that G# ⊆ CC.

Table 10. Conjugacy classes in some rank 2 groups

G o(x)

L3(q) (q2 + q + 1)/(3, q − 1)

or (q2 − 1)/(3, q − 1)

S4(q), q even q2 − 1

S4(q), q odd (q2 + 1)/2

G2(q), q ≥ 3 (q2 + q + 1)/(3, q − 1)
3D4(q) q4 − q2 + 1
2F4(q

2) Φ′
24

Proof. Let C be the conjugacy class of a regular semisimple element x of order as
given in Table 10. We claim that the (C,C,C ′) structure constant is nonzero for
any nontrivial conjugacy class C ′ of G. For the first four families of groups, the
complete generic character table is available in the Chevie-system, and the claim
can be checked by computer.

The group 2F4(2)
′ is covered by the square of class 13a, so it remains to consider

2F4(q
2) for q2 ≥ 8. Here, the complete character table is known in principle, but is

only partly contained in Chevie. Now note that for any class C ′ of semisimple ele-
ments, our claim follows by the elementary observation [21, Thm. 2]. By Lemma 3.2
the irreducible characters not vanishing on C are the irreducible Deligne-Lusztig
characters RT,θ, with |T | = Φ′

24, and some of the unipotent characters.
Let y be a nonsemisimple element of G. By [6, Prop. 7.5.3] we have RT,θ(y) = 0

unless the semisimple part of y is conjugate to an element of T . Since all non-
identity elements of T are regular, this implies that RT,θ(y) = 0 unless y is unipo-
tent. In the latter case, RT,θ(y) does not depend on θ by [6, Cor. 7.2.9]. Let
I := {±RT,θ | 1 �= θ ∈ Irr(T )} ⊂ Irr(G) and I ′ := Irr(G) \ I. By the orthogonality
relations we have |

∑

χ∈I χ(x)
2| < |T |. Writing a := RT,θ(y), d := RT,θ(1) we find

|n(C,C,C ′)| = |C|2
|G|

∣

∣

∣

∣

∣

∣

∑

χ∈I

χ(x)2χ(y)

χ(1)
+

∑

χ∈I′

χ(x)2χ(y)

χ(1)

∣

∣

∣

∣

∣

∣

≥ |C|2
|G|

⎛

⎝

∣

∣

∣

∑

χ∈I′

χ(x)2χ(y)

χ(1)

∣

∣

∣− |a|
d
|T |

⎞

⎠ .

Now a = RT,θ(y) is the value of a Green function and these have been determined
by the second author [42], from which we get |a| ≤ q16 +2q15. Since |T | ≤ q4 +2q3

and d = |G|2′/|T | ≥ q20 we have |a| · |T |/d < 1/2. It can now be computed from
the unipotent part of the character table in Chevie that n(C,C,C ′) > 0 for all
unipotent classes C ′. �
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Remark 7.4. It’s easily seen that for all simple groups in Theorems 7.1 and 7.3 at
least one of the classes is real, so Thompson’s conjecture holds for all these groups.

For the other types of simple groups, we give an approximation by showing that
G# is covered by a product of two classes.

For most families of simple classical groups of Lie type this was already shown
in [44, Thm. 2.1–2.6]:

Theorem 7.5 (Malle–Saxl–Weigel (1994)). Let G be a simple classical group of
Lie type not of type O+

4n(q) and different from U3(3) and O−
8 (2). Then there are

two conjugacy classes of G whose product covers G#.

It is straightforward to check from their character tables that this continues to
hold for U3(3) and O−

8 (2).
We next handle the remaining family of classical groups, giving a small improve-

ment of the argument in [36, §7] for O+
4n(q), n > 2.

Theorem 7.6. Let G be a simple classical group of Lie type O+
4n(q) with n ≥ 2.

Then there exist two conjugacy classes of G whose product covers G#.

Proof. If n = 2, we choose the two classes as in [44, Thm. 2.7], so that only three
irreducible characters do not vanish on either class, which moreover are unipotent.
The values of the unipotent characters of a group of type D4 are contained in
Chevie, and one computes that the result holds.

Now assume that n ≥ 3. Let C1 be the class of an element of order a Zsigmondy
prime divisor of q2n−1 − 1 inside the subgroup GL2n−1(q) and for C2 the class of
an element of order the product of a Zsigmondy prime divisor of q2n−2 + 1 with
a Zsigmondy prime divisor of q2 + 1, inside a subgroup Ω−

4n−4(q) × Ω−
4 (q), as in

[36, §7]. The claim is proved in the last section of that paper aside from a small
number of cases. There are precisely 3 nontrivial characters that vanish on neither
C1 nor C2 described there (the Steinberg character, γ and δ) which take on the
value ±1 on each Ci. We want to show that any nontrivial class C3 is contained in
C1C2. By a result of Gow [21], we may assume that C3 consists of nonsemisimple
elements and so the Steinberg character vanishes on C3. By a general bound of
Gluck [20, Thm. 1.11 and 5.3], |γ(C3)| ≤ (19/20)γ(1). We use the trivial estimate
that |δ(C3)| ≤ |CG(z)|1/2 < (1/20)δ(1) for z ∈ C3. �

Next, we extend this result to the exceptional groups of Lie type. (For those of
small rank, it has already been shown above.)

Theorem 7.7. Let G be a simple group F4(q), E6(q),
2E6(q), E7(q) or E8(q).

There exist two conjugacy classes of semisimple elements of G whose product covers
G#.

Proof. For each type, we choose Ci to contain semisimple elements xi of order as
indicated in Table 11. (Such elements exist since G contains maximal tori with
cyclic subgroups of that order.)

We first determine the irreducible characters of G simultaneously not vanishing
on both classes. It is easy to check that no nontrivial element of Gad has centralizer
order divisible by Zsigmondy primes p1, p2 for both element orders (for example,
for G = F4(q) using that the only semisimple algebraic group of rank at most four
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Table 11. Conjugacy classes in exceptional groups

G o(x1) o(x2) χ

F4(q) Φ12 Φ8 1, F4[i], F4[−i], St

E6(q) Φ9/(3, q − 1) Φ8 1, St
2E6(q) Φ18/(3, q + 1) Φ8 1, St

E7(q) (Φ2Φ18){2,3}′ Φ7 1, St

E8(q) Φ20 Φ24 1, E8[i], E8[−i], St

whose order polynomial is divisible by both Φ8 and Φ12 is F4). Thus, by Lemma 3.2,
only unipotent characters may possibly take nonzero values on both C1, C2.

The list in [6, 13.9] shows that apart from the two, respectively four, characters χ
listed in Table 11 (where 1G, St denote the trivial and the Steinberg character, and
otherwise the notation is as in loc. cit.) all other unipotent characters have degree
divisible by at least one of the two Zsigmondy primes pi, hence are of pi-defect 0.
Thus, only the listed characters may potentially not vanish on both C1, C2.

Now let C be any nontrivial conjugacy class of G. We use the character formula
([43, Thm. I.5.8]) to estimate the structure constant n(C1, C2, C). The value of the
Steinberg character St on semisimple elements equals the p-part of their centralizer
order, up to sign, and is zero on all other elements (see [6, Thm. 6.4.7]). The
elements in both classes C1, C2 are regular, so |St(xi)| = 1. Also, the values of
the characters F4[±i] and E8[±i] on our regular semisimple elements have absolute
value 1 (for example by block theory for the Zsigmondy primes pi). Thus we are
done if we can show that |χ(C)| < χ(1)/3 for the one or three nontrivial unipotent
characters.

Now St(1) = q24, q36, q36, q63, q120, respectively, and F4[±i](1) > q20, E8[±i](1) >

q104. On the other hand, |χ(x)| ≤
√

|CG(x)| for x ∈ C. The largest centralizers of
nontrivial elements in G have order at most q36, q56, q56, q99, q190, respectively, so
we are done. �

Finally, we note that:

Proposition 7.8. Let G be a simple sporadic group or An, n ≥ 7. Then there
exist two conjugacy classes C of G whose elements have odd coprime order such
that G# ⊆ CC.

Proof. If G is sporadic, this is straightforward using the character tables. In fact,
we can always choose both classes to contain elements of prime order p > 2 with
this property.

Similarly, this is clear for An, 7 ≤ n ≤ 16, with elements of orders

(5, 7), (3, 7), (3, 7), (5, 7), (5, 11), (5, 11), (11, 13), (11, 13), (11, 13), (7, 13),

respectively. If n ≥ 17, we can take two classes of ℓ-cycles with 3n/4 ≤ ℓ ≤ n − 2
by Bertram [4, Thm. 1], and two such odd coprime ℓ exist unless n = 18. In the
latter case we can also take C to contain elements of order 17. A random computer

search shows that the square of one of these already covers A#
18. �

Proof of Theorem 1.4. For all finite nonabelian simple groups G other than L2(q),
q = 7 or 17, we produce two elements whose order is prime to 6 such that their
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classes C1, C2 satisfy G# ⊆ C1C2. If G is sporadic or an alternating group An with
n ≥ 7, the claim is an immediate consequence of Proposition 7.8. For n = 5 we use

that the product of the classes 5a and 5b covers A#
5 , and similarly for A6.

So assume that G is a simple group of Lie type. If G has rank 1, the result
follows by Theorem 7.1. Indeed, for L2(q) with q odd, we take for x an element of
order prime to 6 in one of the two maximal tori. Such elements will exist unless
q ∈ {5, 7, 17}. The latter two cases have been excluded in the statement of (b), and
the group L2(5) ∼= A5 was already settled. For L2(q) with q ≥ 8 even, take for x
an element of order dividing q − 1 and prime to 3. For 2G2(q

2), take any elements
of order prime to 6, for 2B2(q

2) take any elements of odd order; finally, for U3(q),
q > 2, take elements of order (q2 − q + 1)/ gcd(3, q + 1) (which is prime to 6).

For the groups of rank 2 in Theorem 7.3, we may take for C the class occurring
in Table 10, except for S4(2

f ), which is covered by the product of any two distinct
classes of elements of order q2 + 1. The remaining exceptional groups are covered
by the product of two classes as in Table 11, which consist of elements of order
prime to 6.

For the groups occurring in Theorem 7.5 which have not yet been discussed, it
is straightforward to check from [44] that the two conjugacy classes can be taken
to have order a Zsigmondy prime greater than 3 except possibly for

L6(2), L7(2), U4(2), U6(2), U7(2), S6(2), S12(2).

Now L6(2)
# is covered by the square of class 31a, L7(2)

# by the square of 127a,
U4(2) by the square of 5a, U6(2) and S6(2) by the square of 7a, and S12(2) by the
square of class 31a. For G = U7(2) the character table is not available in GAP. We
claim that the product of classes of elements of orders 43 and 11 covers G#. First,
by Lemma 3.2 it is easy to see that only (some) unipotent characters take nonzero
values on both classes. These are contained in Chevie, and the claim can then be
verified. The group O−

8 (2) excluded in Theorem 7.5 is covered by the square of
class 17a.

For the 8-dimensional orthogonal groups of plus type, the classes in [44, Thm. 2.7]
can be chosen to contain elements of order prime to 6, except for O+

8 (2). The latter
group is covered by the square of class 7a. For n ≥ 3, the two classes for O+

4n(q)
chosen in Theorem 7.6 consist of elements of order prime to 6.

Finally, it is straightforward to see that any element of L2(q) is a product of two
unipotent elements. �

In [36], a weaker version of Theorem 1.4 was proved.
We obtain the following consequence:

Theorem 7.9. Let G be a finite nonabelian simple group. Let m be a prime power.
Then every element of G is a product of two mth powers.

Proof. By Theorem 1.4 we may assume that gcd(m, 6) = 1. Now for G sporadic or
G = An, n ≥ 7, our claim follows from Proposition 7.8. The groups A5 and A6 are
both covered by products of two 3-elements or two 5-cycles.

So assume that G is a group of Lie type. Let B denote a Borel subgroup of
G and U− the opposite of the unipotent radical of B. If gcd(m, |B|) = 1, we use
Chernousov–Ellers–Gordeev [7, Thm. 2.1], which asserts that every element of G is
conjugate to an element of U−B, and so a product of two mth powers.
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So now assume that gcd(m, |B|) �= 1. For all groups G of rank 1 except possibly
L2(2

f ), by Theorem 7.1 there exists a conjugacy class of elements of order prime
to |B| whose square covers G#. For L2(2

f ) it’s easily seen that any element is
a product of two elements of order dividing q + 1. Similarly, for the groups in
Theorem 7.3 the claim is clear except for G = S4(2

f ). Here, again G# is also
covered by products of two elements of order dividing q2 + 1. For all other groups,
we have already argued in the previous proof that they can be covered by products
of two elements whose order is prime to |B|. �

8. Further generation results

We use our results on overgroups of suitable cyclic subgroups in simple groups
to derive the following:

Theorem 8.1. Let S be a finite simple group different from O+
8 (2). There exists

a conjugacy class C of S consisting of elements of order prime to 6 such that if
1 �= x ∈ S, then S = 〈x, y〉 for some y ∈ C.

In the one exception, we can instead take C to be a class of elements of order
15 (and so in all cases, there is a class C of elements of odd order satisfying the
conclusion). Moreover, if 1 �= x ∈ S has odd order, then we can choose the class to
consist of elements of order 7.

Before we begin the proof, we point out some easy consequences including the
affirmative answer to a question of Getz [19]. Recall that a quasi-simple group is a
perfect central cover of a simple group.

Corollary 8.2. Let S be a finite quasi-simple group. If T is a solvable subgroup
of S, then there exists a solvable subgroup T1 ≥ T and an element s ∈ S of order
prime to 6 such that S = 〈T1, s〉.
Proof. It is trivial to reduce to the case that S is simple (elements of order prime
to 6 in the simple group can be lifted to elements of order prime to 6 in a covering
group).

The result is now immediate unless S = O+
8 (2). Consider that case. Let T1 be

a maximal solvable subgroup of S containing T . The result follows by the remarks
above unless T1 is a 2-group. However, it is clear that a Sylow 2-subgroup of S
is not a maximal solvable subgroup of S (it is contained in a minimal parabolic
subgroup which is still solvable). �

Corollary 8.3. Let S be a finite quasi-simple group. Then S can be generated by
two conjugate elements of order prime to 6.

In the proof of the theorem, we need the following observation (see Guralnick
[22, 2.2] for a slightly different proof):

Lemma 8.4. Let C be a nontrivial conjugacy class in a finite simple group G.
Then C is not contained in the union of any two proper subgroups.

Proof. Suppose that C is contained in X ∪ Y , with X,Y proper subgroups. Re-
placing X and Y by maximal subgroups, we still have the hypothesis and C is not
contained in either X or Y since clearly G = 〈C〉.

Choose x ∈ C ∩ (X \ Y ). Note that if y ∈ Y , then xy ∈ X (for xy ∈ Y implies
that x ∈ Y ). Thus 〈xY 〉 is contained in X and normalized by Y obviously and also
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by x. Since Y is maximal, G = 〈Y, x〉 normalizes the proper subgroup 〈xY 〉 ≤ X,
a contradiction. �

Example 8.5. Note that one cannot replace 2 by 3 in the lemma: take G = SLn(2)
or Sp2n(2) and let X,Y, Z be the stabilizers in G of three vectors in a 2-space. Then
every transvection of G fixes a hyperplane and so fixes at least one of the vectors
in this 2-space. Thus the class of transvections is contained in the union of three
subgroups. A similar argument applies to the class of transpositions in the non-
simple group Sn.

Proof of Theorem 8.1. We use two types of standard arguments. In the first situa-
tion, let’s call it (S1), we let y be an element as in Theorem 1.1(a), of order prime
to 6. If there are no more than two maximal subgroups of S containing y, then by
Lemma 8.4 any conjugacy class in S \ {1} contains an element x outside of these
maximal subgroups, whence S = 〈x, y〉. In some of the cases where there are more
than 2 maximal subgroups, we compute (as in [5]) directly that no conjugacy class
is contained in the union of the maximal subgroups containing y.

In the second situation (S2), we produce two conjugacy classes C2, C3 of S, at
least one of them containing elements of order prime to 6, such that the (C,C2, C3)-
structure constant is nonzero for any nontrivial conjugacy class C of S and such
that no maximal subgroup of S can contain elements from both C2 and C3, in
which case we’re done again.

Assume first that S is sporadic. Let y be an element of prime order as in Table 9.
Then unless

S ∈ {M12, T i, HS, McL, Suz, F i22}
we are in situation (S1). It is easily checked from the character tables that in each
of the six exceptions S listed above, for any prime p there are less elements of
order p in the (disjoint) union of the relevant maximal subgroups than in any class
of elements of order p in S, except for elements of order 5 in HS, elements of order 3
in Suz, and elements of order 2 or 3 in Fi22. In HS, we reach situation (S2) with
C2 = 11a and C3 = 20a; and in both Suz and Fi22 with C2 = 11a and C3 = 13a.

Now let S be of exceptional Lie type. Here, we take y to be an element generating
a cyclic subgroup as in Table 6. Note that the order of y is coprime to 6 unless
possibly when S = E7(q). Again, y is contained in at most two maximal subgroups,
except for S ∈ {G2(3), F4(2)}, and we may conclude as before. For G2(3) and F4(2)
we are in situation (S2) with the classes 9a, 13a, respectively 13a, 17a. For S =
E7(q), let C denote a nontrivial conjugacy class. We have shown in Proposition 7.7
that the (C,C2, C3)-structure constant is nonzero, where C2 contains elements of
order Φ7 and C3 contains elements as in Table 6, whence there exist (x, y, z) ∈
(C,C2, C3) with xyz = 1. Since the order of the maximal subgroup 2E6(q).Dq+1

is not divisible by (a Zsigmondy prime divisor of) Φ7, we necessarily have S =
〈y, z〉 = 〈x, y〉, so we are in situation (S2). Clearly, y has order prime to 6.

Now consider S = An, n ≥ 5. When gcd(n, 6) = 1, then by [5, Prop. 6.9] for
any 1 �= x ∈ An there exists an n-cycle y such that 〈x, y〉 = An. Suppose that
n = 2m is even. Then choose e with 1 ≤ e ≤ 6 such that gcd(m+ e,m− e) = 1 and
gcd(m± e, 6) = 1. Let y ∈ An be the product of disjoint cycles of length m+ e and
m− e. Clearly, y is not contained in any imprimitive subgroup. Thus, for n ≥ 16,
y is contained in a unique maximal subgroup by [52]. If n = 6, 8, 10, 12 or 14, a
computer check shows that one can take y of order 5, 7, 5, 35 or 13, respectively.
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Now suppose that n is odd and divisible by 3. Let y ∈ An−1 be chosen as above.
If n > 16, it follows as above that y is not contained in any imprimitive subgroup.
Clearly, given 1 �= x ∈ S, we can choose a conjugate y′ of y such that 〈x, y′〉 is
transitive and so primitive. It again follows by [52] that S = 〈x, y′〉. If n < 16,
then we need only consider n = 9 and 15. If n = 15, take y to be of order 13 and
if n = 9, take y of order 7. It is straightforward to check that the result holds.

For S simple of classical Lie type, we typically take y to be the smallest power
of an element as in Table 7 of order prime to 6. First let S = Ln(q) with n ≥ 4
even. The possible maximal subgroups containing such an element y are given in
Lemma 2.4. Note that case (2) does not arise since n is even. If q = r2 is a square,
then o(y), the prime to 6 part of (qn−1 − 1)/ gcd(n, q − 1) = (rn−1 − 1)(rn−1 +
1)/(n, q − 1), is divisible by a Zsigmondy prime divisor of (rn−1 − 1), so case (1)
is out as well. Hence there are at most two maximal subgroups containing y, and
the only cases for which the lemma does not apply are L4(2) ∼= A8 and L4(4).
For S = L4(4) the (C, 63a, 85a)-structure constants are nonzero, and none of the
subgroups in Lemma 2.3 contains elements of orders 63 and 85.

Now let S = L3(q). Then by Lemma 2.3 there are at most two maximal over-
groups of y (viz. cases (1) and (4) for f = 3), so we are done unless S ∈ {L3(2) ∼=
L2(7),L3(4)}. For the first group, see [5, Table 5]; for L3(4) the (C, 5a, 7a)-structure
constants are nonzero.

Next let S = Ln(q) with n ≥ 5 odd. Let C2 denote the conjugacy class of an
element of order o1 := (qn − 1)/d(q − 1), and let C3 be the class of an element of
order o2 := ((qn−1−1)/d)′2,3, where d = (n, q−1). By the argument in the proof of
[44, Thm. 2.1] only the trivial and the Steinberg character of S take nonzero values
on both classes, and thus the (C,C2, C3)-structure constant does not vanish for
any nontrivial class C of S. Now consider the subgroups in Lemma 2.3. Cases (2)
and (3) are out since n is odd, and case (1) is excluded as before. The extension
field subgroups GLn/f (q

f ) occur for prime divisors f |n. Now note that their order

is not divisible by a Zsigmondy prime divisor of qn−1 − 1, which exists unless
(n, q) = (7, 2). But in the latter case, there is just one overgroup, so we are done
again.

Next let S = Un(q) with n ≥ 4 even, (n, q) �= (4, 2). If (n, q) is none of
(6, 2), (10, 2), (4, 3), (4, 5), then by Lemma 2.6 there is only one maximal subgroup
containing y and we are done. For (n, q) = (10, 2) the argument in [44, Thm. 2.2]
shows that the (C,C2, C3)-structure constant does not vanish for any nontrivial
class C of S, where C2 contains elements of order 19 and C3 elements of order
(qn − 1)/(q − 1) = 1023. None of the groups in Lemma 2.6 contains elements
of order 13. The same may be applied to U4(5), with elements of order 7, re-
spectively 13. For U6(2), the (C, 11a, 12f)-structure constant is nonzero for any
C �= {1}, and the class 12f has trivial intersection with U5(2) as well as with M22.
For U4(3), the (C, 7a, 9a)-structure constants are nonzero and none of the relevant
maximal subgroups contains elements of order 9.

Now let S = Un(q) with n ≥ 3 odd. Firstly, if n is prime and (n, q) is different
from (3, 3), (3, 5), (5, 2), (9, 2), then by Lemma 2.5 there is a unique maximal sub-
group containing our element y, and we are done. The same holds in fact for U3(3)
and U5(2). Else, we let C2 denote a class of elements of order (qn + 1)/d(q + 1)
and C3 a class of elements of order (qn−1 − 1)/d, where d = gcd(n, q + 1). By
[44, Thm. 2.2], the (C,C2, C3)-structure constants are nonzero in S. The extension
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field subgroups in Lemma 2.7(1) and (3) are ruled out by Zsigmondy. For U3(5)
the (C, 7a, 8a)-structure constants are nonzero, and no maximal subgroup contains
elements of orders 7 and 8.

For S = O2n+1(q), we are done by Lemma 2.7 unless n = p = 3 or (2n+ 1, q) =
(7, 5). Suppose that n = p = 3. In this case, we take y to be of order (q + 1)′2,3. If
q > 3, then Lemma 2.7 still implies that y is in a unique maximal subgroup. For
O7(3) we may take y of order 13, for O7(5) of order 31.

Now let S = S2n(q). Let y be an element of the largest possible order prime to
6 dividing qn + 1. Let M denote the set of maximal subgroups of S containing y.
First assume that q is even. If n > 3, it follows by Lemma 2.8 that all maximal
subgroups containing y contain the centralizer of y. Let z be a generator for the
centralizer of y. It was shown in [5, 5.8] that for any g ∈ S, we have that S = 〈g, z′〉
for some conjugate z′ of z. Thus, the same is true for y. If n = 2, we may assume
that q �= 2. If q is a square, then |M| = 2 and the result follows. If q is not a square,
then |M| = 3. If q ≥ 8, it follows by [37] that |sS ∩ M | ≤ (4/3q)|sS| ≤ |sS |/6,
whence the result. If n = 3, then the same argument applies for q > 4. See [5,
Table 2] for the case q = 4. For S6(2) a computer check shows that we can take for
y an element of order 7.

Now assume that q is odd. Let s be a nontrivial element of S. Suppose that sS

is contained in the union of the maximal subgroups containing y. Excluding the
cases with (n, q) = (4, 3), (6, 3), (6, 5), the only maximal subgroups containing y are
one for each prime divisor of n and if n is odd, the normalizer of SUn(q). Suppose
that sS intersects b ≥ 3 of the maximal subgroups containing y. It follows that s
is contained in a conjugate of the normalizer Sp2n/f (q

f ) for some prime f > b. By

[5, 2.1 and 2.3], |sS ∩M | ≤ (4/3qf−1)|sS | for any proper subgroup M of S. Thus,

|
⋃

M∈M

(sS ∩M)| ≤ (4(f − 1)/3qf−1)|sS | < |sS |,

a contradiction. For S4(3), S6(3), S6(5) a computer check shows that we may take
y of order 5, 13, 31, respectively.

For S = O−
2n(q), let C2 denote a class of elements of order o1 := (qn+1)/(4, qn+1)

and C3 a class of semisimple elements of order o2 := (qn−1+1)2,3′ . The arguments
in the proof of [44, Thm. 2.5] show that only the trivial and the Steinberg character
do not vanish on both C2, C3. Thus, the structure constant n(C,C2, C3) is non-
zero for any nontrivial class C of S. None of the subgroups listed in Lemma 2.10
and Table 5 contains elements of orders o1, o2, except possibly when no Zsigmondy
prime for qn−1 + 1 exists, that is, when (2n, q) = (8, 2). For the latter group, the
(C, 17a, 21a)-structure constants are nonzero, and no maximal subgroup contains
elements of orders 17 and 21.

Next consider S = O+
2n(q), n ≥ 4. If n = 4 and q > 4, the result follows by

[5, Lemma 5.15] (the element chosen there has order prime to 6). If n = 4 = q,
the result follows by [5, Table 3]. Similarly, the result follows by [5, Lemmas 5.13,
5.14] if n > 4. For S = O+

8 (3) we may take y of order 13. The group O+
8 (2) is an

exception.
For S = L2(q), let C2 be a class of elements of order p and C3 a class of elements

of order (q + 1)/(2, q+ 1). Then the (C,C2, C3)-structure constant is nonzero. For
q ≥ 5 prime to 6, no proper subgroup of G contains elements of orders p and
(q + 1)/(2, q + 1). For q = pf with p = 2, 3, let C2 be a class of elements of
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order (q − 1)/(2, q − 1) instead; again the structure constants do not vanish, one
of C2, C3 contains elements of order prime to 6, and no proper maximal subgroup
does contain elements from both classes unless q = 9, so S = A6, which was already
considered. �

We end this section by demonstrating with the example of E8(q) how our meth-
ods can also be used to show that simple groups admit a so-called unmixed Beauville-
structure (see for example [16]):

Theorem 8.6. The simple groups E8(q), where q is any prime power, admit an
unmixed Beauville structure.

Proof. By [16, Def. 1.1] it suffices to show that E8(q) has two generating systems
(x1, y1), (x2, y2) such that the orders of x1, y1, x1y1 are pairwise prime to those of
x2, y2, x2y2.

By Proposition 3.5 we already know that there exists a conjugacy class C of G
such that G is generated by x1, y1 ∈ C with (x1y1)

−1 ∈ C, containing elements of
order n := Φ30(q). Now let C1 be a class of elements of order Φ24(q), C2 a class
of elements of order Φ20(q), and C3 a class containing the product of a (long) root
element x with a semisimple element of order Φ14 (from the subgroup E7(q) lying
in CG(x)). Note that all three classes contain elements of order prime to n. Using
Lemma 3.2 it is immediate to see that at most unipotent characters might take non-
zero values on the two semisimple classes simultaneously. Moreover, from the tables
in [6, 13.9] one sees that in fact at most four unipotent characters have this property.
Apart from the trivial character, this is the Steinberg character (which vanishes on
the nonsemisimple class C3) and two further characters of degree > q100. Since the
elements in all three classes have centralizer order less than q10, we conclude that
n(C1, C2, C3) �= 0.

The result of Cooperstein [10] shows that no proper subgroup of G containing
long root elements has order divisible by Φ20(q) and Φ24(q). �
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