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PRODUCTS OF CONJUGATE PERMUTATIONS

MANFRED DROSTE AND RUDIGER GOBEL

Using combinatorial methods, we will prove the follow-
ing theorem on the permutation group S, of a countable set:
If a permutation pcS, contains at least one infinite cycle
then any permutation of S, is a product of three permuta-
tions each conjugate to p. Similar results for permutations
of uncoutable sets are shown and classical group theoretical
results are derived from this.

1. Introduction. We will deal with the symmetric group S, of
all permutations of a set of cardinality ¥,. Let us denote by |p|
the cardinality of the support [the underlying set without fixed
points], by (p). the set of infinite cycles and by p% the set of all
conjugates of some permutation p€S,. The following theorem is
shown in E. A. Bertram [3] and G. Moran [6] (see also [4]).

If s,peS,, |s| X |p| and |p| is infinite, then s is a product of
4 elements each conjugate to p. Furthermore, 4 is minimal with
this property. The latter follows by examining s = (123) and any
permutation p containing only transpositions (without fixed points)
in its disjoint cyecle decomposition, cf. G. Moran [6, p. 76] and [4,
p. 288, 289]. If p is odd and s is even (with finite supports), then
obviously s¢ (p%)’, and similar examples with finite |p| show
S, # (p).

Therefore, we have to exclude such examples in order to improve
the bound 4 of the theorem above. From the last two examples
follows our assumption |p| = 3, and from the first, the more specific
hypothesis |(p).| = 1. It is the aim of this paper to show that
Ip] =W, and |(p)~! = 1 will be sufficient to improve the bound:

THEOREM 1. Let s, p€S,.

@) If |(8)« =1 and |(p)] = 1, then s is a product of two ele-
ments each conjugate to p.

b)) If |(8)e| = 0 and |(p)=| = 2, then s is a pfroduct of two ele-
ments each conjugate to p.

() If |(8)el =0 and |(p)e| =1, then s is a product of three
elements each conjugate to p.

Furthermore, the number of factors is minimal and may be re-
placed by any greater integer.

THEOREM 2. Let s, pe S, and |(D)s| = W,. Then s is a product
of n elements each conjugate to p for any n = 2.
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If v =0 and p is just one infinite cycle (without fixed points),
Theorem 1 sharpens various results of E. A. Bertram [2; pp. 275,
276, 278, 279, 281, 283].

If v = 0 it shows the range of validity of a conjecture in anothor
interesting paper of E. A, Bertram’s [3; p. 322] which fails in general
as already shown in G. Moran [6] and independently in [4]. If p
consists of Y, infinite cyecles only [and v = 0], Theorem 2 is due to
A. B. Gray [5]. In addition, we obtain an interesting generalization
of O. Ore’s theorem [7; p. 313] that all elements of S, are commu-
tators: If w(x, ---, 2,) is a word of group theory with free variables
Xy -+, X, P. Hall calls a group G w-elliptic of degree d, if any ele-
ment of G is a product of at most d w-elements w(g,, ---, g,) with
g, -, 9.€G. From Theorem 2 we derive:

S, 1s w-elliptic of degree 2 for any word w. The degree 2 can-
not be improved in general.

In order to extend Ore’s therem, that S, is w-elliptic of degree
1if w=wle, 2,) = x7" 27" -2,-2,, to its full generality, it would be
interesting to classify all words w such that S, is w-elliptic of
degree 1.

2. Notation. K =< M: K is a subset of M.

KU K', U,r K; are disjoint unions; f|g is the restriction of a
map f to K. af denotes the value of the mapping f at @, and so
maps are action from the right.

Z denotes the integers, Z° = Z\{0}.

N denotes the positive integers, IV, = N U {0}, N = N U {oo}.

— N denotes the negative integers.

g% = {a~'-g-x; € G} denotes the conjugacy class of ¢ in the
group G.

S, denotes the group of all permutations of a set M of cardi-
nality W,.

Particular permutations are finite eycles of length n of M which
we denote by (#, @, -+ €,) = (@);er,.1 Where [1, #] is the interval of
integers from 1 to » and z,€ M. Infinite cycles are denoted by
(o X Xy ) = (By);c2- Sometimes it will be convenient to replace
the index sets [1, n] or Z of cyclic permutations by order isomorphic
sets; e.g., [® + 1, 2n]. Similarly Z° will often serve as an index set
for an infinite cycle. Then cycles act in the natural way (from left
to right) on their underlying set and are extended trivially to M.

Cycles will be identified with subsets of M which carry a natural
order given by a bijection onto [1, n] or Z, and its fixed points will
not be mentioned explicitely. We will reserve z for the infinite
“shift-cycle” z = (.- —2-112--.) acting on 2Z°.
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It is well known that a permutation can be written uniquely as
a product of possibly infinitely many cycles, which act nontrivially
on pairwise disjoint subsets of M. For details we refer to H.
Wielandt [9].

If peS,, let (p), be the uniquely determined set of all cycles
of length % ¢ N.. of this disjoint-cycle decomposition (DCD) of », | ()]
its cardinality, {p}, the set of all elements in the support of (p),.
Let {p}, denote the set of fixed points of p. Let {9} = Uirren. {0}
be the support of » and |p| = |{p}| its cardinality. We put (p) =
Ul:tker (p)k

The following well-known result will be used without mentioning
it again:

Two permutations a, b€ S, are conjugate if and only if |(a),] =
[(b),] for all ke N., cf. H. Wielandt [9, Lemma 2.5, p. 6].

3. Essential constructions for Theorem 1(a). The essential
techniques of this paper are the following natural and elementary
cutting- and inserting-arguments:

If 7 and J are linearly ordered sets, write I ~ J if there is an
order-isomorphism from I onto J. If j is an immediate successor
of ¢+ in I, we will write § =4+ 1 or 4 = j — 1 in the following.

Let ¢ = (¢,);c: be a cyclic permutation of a given set M with
I~ ZorI~I[l n] for some neN. If K+ @ is a subset of I with
the induced order and K ~ Z or K ~ [1, m] for some m e N, we are
led to a new cycle (¢,);.x. This cycle acts in the natural way on
its support {c, 1€ K} and all ¢, for ieI\K, are fixed points. This
process will be called “cutting off I\K (or {¢c,, € I\K}) from c”.

Now let I~ Z and let K =1[1, n] for some neN be disjoint
from I. For i1¢ ] we will consider a new set X = I'J K which car-
ries a natural order induced from 2, I and K:

Let x = y for «, ye X if one the following conditions is satisfied:

(a) z,yel and 2 £y with respect to the order in I.

(b) =z, yeK and xz £y with respect to the order in K.

(¢) xzel, ye K and » < 1 with respect to the order in I.

(d) yel, e K and ¢ < y with respect to the order in I.

Then X ~ Z and this process will be called “¢nserting K into I at
7. If ¢+ 1 is the successor of 1 in I, we will say “imserting K
between t and © + 1 (or after 1)” as well.

Furthermore, let ¢, € M be given for each ke K. Assume {c;
telI}nie; ke K} = @ and that the mapping %k ¢, for ke K is one-
to-one (as well as ¢+—¢, for ¢el). Inserting K into I at 7 leads
naturally to a new cycle (¢,),.r Which acts according to the order
of X on its support {c;, 1€ X}. This will be called “inserting (¢,);cx
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nto (¢)ie; at 17 (or at ¢, or between i and i + 1 or between ¢, and
¢;+; if there is no ambiguity).

More generally, for any permutation d on M consisting of at
least one infinite cyecle in its DCD and any element z € {d}.., we define
“inserting (¢,);.x after xe M into d” by “inserting (¢,),.x into that
infinite cycle ¢ of d which contains x in its support”. We will define
a two-parameter family g¢(n, k) of infinite cyecles acting on Z° for
all ke N. and 1 £ < k. These cyles will be modified, in particular,
by cutting- and inserting-arguments.

3.1. Construction of g(n, k)€ Sz for ke N. and 1L = n < k:
(@) If meZ and 1 < n < keN, we define

gn, k)y=n—1 if n+#1,

g, k) = Cm — Dk +n—1 if m=1 and

g, k) = —2mk +n —1 if m= —1,

g, B)yptr = —[Cm + Dk + 0] of m=0 and

g, B)omy =2mk —n tf m=0.
(a*) Then put

9, k) = (9, B)diern = (- -+ 91, k). 91, k), 91, k), 9(1, k), - -+)  and
9, k) = (g(n, B))icz = (- - - gln, k)_. g(n, k)_. 9(n, k)og(n, k). 9(n, k), - - )
SJor all 1=n<keN.

(b) If k= c and 1+ neN, jeZ define
gn, =), =2(n — 2+ 1 and gn, =), =2n* — 2n + 3,
g(n, =)y =2[(n + 4 — 25 —3n] +5 for j=2,
gn, <), =2[(n — 3 —1*—2n+ 5] +7 for j< -1,
g(n, 00 )gits = —G(M, )4y — 1.
(b*) Then put
o1, =) =g(L,2) and
g(n, o) = (9(n, )iez
= (- g(n, ), g(n, =) g(n, <) gn, <) gn, <), )

Jor all 1#neN.

(¢) Let .
9. = IL9(n, k) .

Next we modify g(n, k) and derive a second two-parameter family
of eycles:

3.2. Construction of h(n, k)€ Sz for all k€N and 1 = n = k:
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Define h(n, k),; = 24k + n for all 720, h(n, k)y; = —(25 + )k + n
if 7= —1 and h(n, k), = —h(n, k)y; for all jeZ and ke N. If
k= oo, put h(n, «0); = g(n, )4 + 1 and h(n, )y = gn, ) gy
Jor all n # 1 using (3.1).

Then define

hin, k) = (h(n, k))sez = (- -+ h(n, k), h(n, k)_, b(n, k), h(n, k), - - )
for all ne N and k € N.. and put h(l, «)=h(1,2). Let h,=T11%, h(n, k).

LEMMA 8.3. FEach infinite cycle [which moves every element] of
a countable set is a product of two permutations each consisting of
k infinite cycles and no other cycles (including fixed points) for all
ke No.

Proof. We may assume w.l.o.g. s€ Sz and s =2z is the given
infinite cyele and k€ N.. Elementary calculations show that the
cycles g(n, k) with 1 £ n < k constructed in (3.1) define a decomposi-
tion of Z° into k subsets of cardinality ¥,. Hence g, = It g(n, k)
consists of % infinite cycles. Similarly &, = [I%_, h(n, k) consists of
k infinite cycles, and z = g,h, can be checked elementwise (recall that
by our convention g, acts first).

LEMMA 3.4. Let p=a-b-c be a product of three permutations
of S, each consisting of fixed points and infinite cycles only. If
(@)o] = [(0)] = 1, [{a} N {b}| = oo and {a} U {b} = {c},, then p is a pro-
duct of two permutations g and h each consisting of just one infinite
cycle and with fixed points precisely {(b\{a} and {a]\{b} respectively.

Proof. Let Z be the index set of the following cycles. We
may assume w.log. a=(--+—-8—-2-10123.-.) and b= (--. —8*
—2% —1*0*1* ...) which have a set X of infinitely many numbers
in common. Assume ¢, = [[;e;¢; is its DCD with infinite cyecles
C; = R NP NP N P/ PR

First we decompose X into |J| countable subsets. Hence, the
numbers in X may be denoted as pairs j/n for ne N, and jeJ. The
following modification of the cycle a leads to the infinite cycle ¢
which moves all the elements of {a} U {¢} and no others: Insert j,
into a between j/0 — 1 and j7/0, and j_,., j, between j/k — 1 and j/k
for all ke N and jeJ. Define g to be the indentity on the set
{oh\{a}.

Next we modify b to obtain an infinite cycle h: Insert 7,.., 7.,
into b between (j/k) and (j/k)* for all ke N,, 7€J and define h to
be the identity on {a}\{b}.

We will show that p = ¢-h and distinguish between five cases:
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(i) ze{a} and z + 1e X.

(ii) ze{a} and z +1¢ X.

(iii) « = j_, for some ke N and jeJ.

(iv) 2 = 4, for some ke N, and jeJ.

(v) x¢{g}.

In case (i) we have ¢ = j/k — 1 for some k€ N, and jeJ. Hence
et = (jfk — ) = i, = (k) = Gk — D)™ = a*.

In case (ii) we have 2" = (x + 1)) =2 + 1 = (x + 1)? = z* = 2",

In case (iii) we get " = j%% = ji = j_,4, = 7%, = &° = x”.

In case (iv) we have z%* = ji* = (j/k)* = j,4, = Ji = &°.

In case (v) we have z€ {b}\{e} and 2* =" =2’ =2 =2?. []

LEMMA 8.5. If s and p are permutations of a countable set each
containing at least ome infinite cycle, then s is a product of two
elements conjugate to p.

Proof. For brevity, write m = |(p)»]. Then by our assumption
MEN.. Set k=2 if m = «, and k = m otherwise. We will con-
sider first the case |(s).| = 1 which splits into four parts.

Case 1. s contains one finite cycle and p has no finite cycles in
its DCD.

First we label the underlying countable set in an appropriate
manner: Let f= (1*2*...2%*) be the only finite cycle of s. If
¢c=12---n —1) derive z* from the shift-cycle z acting on Z° in-
serting ¢ into 2z after (2» + 1)k for some positive integer #. Then
w.l.0.g. choose the underlying set M= Z°\J{c} U {f} and s = z*- f.
(This includes s = z(1*) if n = 1.

Observe again, that permutations are extended trivially to the
bigger set M.)

In order to define the elements g* and A* conjugate to p such
that s = g*-h*, we choose g = ¢,, and h = h,, defined in (3.1) and (3.2)
respectively, acting on Z°. Let e= (1*12*2... 0% — 12*) (and, in
particular, ¢ = (1*) if n =1). We obtain g by inserting ¢ into
g(1, m) after the element (2r +- L)k = ¢(1, m);.1.. Similarly, insert e
into a1, m) after the element —(@2r + 8k — 1 = [@r + 1) k™™ =
g, m)s,rs = A(1, m)_,,_, to obtain A. Let g* = g-[[r. g(n, m) and
h* = h-1[". h(n, m). The new elements consist of m infinite cycles,
since all cycles of g and » remain unchanged, except for the two
first ones g(1, m) and h(l, m), which are “enlarged”. Thus g¢g*, h*
are conjugate to p, and their product g*-h* equals s.

Case 2. s contains no finite cycles and p has, beside infinite
eycles, only one finite eycle of odd length 2xn -+ 1.
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In this case we need two eycles f= 1*2*..-2n 4+ 1)*) and
e=12-.--2n + 1) of length 2n + 1. They are disjoint and contain
no integers. Chose two different natural numbers 2 and y. Then
we obtain an infinite cycle z* acting on Z° U {¢} J {f} by inserting e
into z after the element (2x + 1)k and f into z after the element
2y + k. We choose s = z* w.l.o.g. Next we take ¢ = g, from
(8.1) and insert 24---2» 13 ---2n + 1) into the cycle g(1, m) of g
after the element 2x + 1)k = g(1, m),.. which leads to a product ¢’
of m disjoint infinite cycles acting on (Z°) Uj{e}. Similarly, take
h=h, from (3.2) and insert (1*3* ... (2n + 1)*2%4* ... 2»*) into
the ceycle h(1, m) of h after the element —(2y + 3)k — 1 = h(1, m)_,, 5
to get a product 2’ of m disjoint cycles acting on (Z°)U{f}. Finally,
put g* =¢-f* and h* = h/-¢, which are the required elements,
obviously conjugate to » and with product s by construction. For
later use we remark that if p has only one fixed point (i.e., n = 0)
then the fixed point 1*(1) of g*(1*) is an element of the infinite cycle
h(1, m) (g(1, m)) of h(g).

Case 3. s contains no finite cycles and » has, beside infinite
cycles, only one finite cyele of even length 2n in its DCD.

Let s=2z w.l.o.g. and choose any natural number ». Next we define
¢g* acting on Z° by a modification of ¢ = g, taken from (3.1). TFirst,
cut the interval [ —2r — 2n + 1, —27] from the first cycle ¢(1, m) of
g to obtain a permutation g’. The missing numbers are g(1, m)_,,+; = .
2kr + 2k and g1, m)_,p o, = —2kr — 2kt — 1 for 0 = j<n — 1 and
0 t<mn— 1. Multiplication of ¢’ with the disjoint eycle of length
2n (—2kr — 2(n — Lk — 1, 2kr + 2(n — 1)k, —2kr — 2 — 2)k — 1, - - -,
2kr + 2k, —2kr — 1, 2kr) will define g*. Then ¢g* is obviously con-
jugate to p. Similarly, take kA = h,, from (3.2) and cut the interval
[27, 27 + 2n — 1] from h(1, m). This leads to a product 2’ of m cycles
acting nontrivially one the set Z\{0, 2k» + 2kj + 1, —2kr — 2kt — 1;
0=/=n—-—1,0=2tn — 1}

Multiplication of A’ with the disjoint cycle of length 2n (2k» + 1,
—2kr — 1, 2kr + 1+ 2k, -+, 2kr + 1 4+ (n— 1)2k, —2kr — 1 — (n — 1)2k)
leads to a permutation A* conjugate to p.

Elementary calculation shows s = g*-h*.

Case 4. ](s)»| = 1 (and no other restriction).

The inserting-argument described in Cases 1 and 2 can be applied
simultaneously for all finite cycles of s and all odd eycles of p using
(possibly infinitely many) different natural numbers », x, v.

For even cycles of p, apply Case 3 (possibly infinitely many times
simultaneously) at different numbers » at a distance such that the
cutting described above can be carried out at disjoint intervals
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separated by nonempty open intervals of the index set Z°. Thus
we get permutations g*, A* conjugate to p with s = ¢*-h*; further-
more we can carry out the cutting and inserting so that ¢* and A*
have infinite cyecles ¢’ resp. A’ in their DCD with |{¢'} N {A"}| =
and {g*}, S {h'} resp. {h*}, S {¢’}. (Compare the remark at the end of
Case 2.)

Now we will drop the restriction |(s).] =1 and consider (3.5)
in general. Because of Case 4 we may assume |(s)»| = 2. Hence we
may decompose s into a product u-v of permutations with disjoint
supports {u} and {v} such that u contains just one infinite cycle and
all the finite cycles (including fixed points) of s and v consists of all
the other infinite cycles in the DCD of s. Let C be the complement
of {v} in the underlying set. Let us consider for a moment » as a
permutation on C. By Case 4 there are permutations g* and A* on
C such that w = ¢*-h* and |(¢%).] = |(h¥),]| = [(p),| for all ne N. and
there are two infinite cycles g’, 2’ in the DCD of g*, h* respectively
with {¢’} N {&'} infinite, and so that {A'} includes all points fixed by
9%, {¢'} containg all points fixed by h*. Let g+ (h*) be the product
of all the other cycles in the DCD of ¢g* (A*). Thus we have g* =
gt-g" (h* = h*-R"), and

(%) (@hSlohn ) (LS h 0D -

Now consider ¢’, ', v as permutations of the set D = ({¢'}U{a'})
{v}. Apply Lemma 3.4 to get ¢'-h’-v = g-h on D, where g (h) con-
sists precisely of one infinite eyecle and fixes the points of the set
(WMo} {g3\{7'}). Now consider again all permutations as acting on
allof M. Wehaves =u-v=g*-h*v=9g g b -vht= (g5 -(h-h").
Since {¢*} N {7} = @ we have

lg7 g} =g 0 gL = o h n (RN’ = {g™) by (%) .

Therefore [(g*-9).] = [(g").] = |(»),| for all w e N... A similar argument

holds for #-h~. Hence g*-g and h-h* are the required elements. [ ]

4, BEssential constructions for Theorem 1(b). As in §3, we
first define a permutation on a countable set which will be modified
by a cutting- and inserting-argument. In this section we will very
frequently make use of the permutations a(k) for k€ Z acting on Z
defined by «* = ¢ + k for all x€ Z. Then a(k) consists of |k| in-
finite cycles if % == 0, the permutations a(k) and a(—k) are inverse
elements and «(0) is the identity. In the following, an interval
[m, n] will be identified with the cyclic permutation (m, m + 1, - -+, )
which acts trivially on the remaining points of Z. The following
notion will be useful:
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DEFINITION 4.1. Let {s;; i€ Z} be a decomposition of Z into finite
(naturally ordered) intervals s, such that

(i) if xes;, yes; and x = y, then 1 £ J;

(i) if xes,, then x <0 ¢ff © < 0.
For 1e€eZ let 0(9) =1 if 1 =0 and o(i) = —1 4f 1< 0. Then the
permutation s = [l,..s{® acting on Z will be called a uniform per-
mutation.

Observe that s maps negative integers onto negative integers
and that s leaves N, invariant. Under the action of s any negative
integer moves at most one step down and any nonnegative integer
moves at most one step up, i.e.,

*=1—1 forall ie —N and =<4+ 1 forall 7eN,.
Here is a typical example
$=--+(—6)(~4-5)(—1-2-3)(0123)(4567)(8) ---.

In this case s, =[—5, —4], s, =[-8, -1}, =1[0,3],5,=[4, 7] ---.
It is clear that every permutation on Z without infinite cycles is
conjugate to a uniform permutation.

Immediately from (4.1) follows:

LemMMA 4.2. Any permutation of a countable set without infinite
cycles 1s a product of two (conjugate) permutations each consisting
of precisely k infinite cycles for any natural number k = 2.

Proof. We may assume that s is uniform, say s = [[,czs:%.
Let a = a(k) and b = a{—k) defined as above, then the product ¢ =
Tli<_: 8{%-a operators after “Lenin’s tactics”: Hence every number
moves at least one step up under the action of ¢. Consequently, ¢
consists of infinite eycles only. Since ¢ coincides with a on the posi-
tive integers, ¢ decomposes into exactly % infinite ecycles. The dual
argument shows that d = -],z s, consists of precisely %k infinite
cycles as well. Since a¢-b =1, we get s = c¢-d.

The following lemma generalizes (4.2) and will be used to show
(4.4), which is exactly the part (b) of Theorem 1.

LEMMA 4.3. Let s be a permutation of a countable set M without
infinite cycles and let G and H be subsets of {s} with the jfollowing
properties:

(1) If NG+ &, then {s} LG and {s}NH= @ and if
{s N H= O, then {s;}) £ H and {8} NG = & for all cycles s, of s.

(i1) {8 NG U H) = @ for infinitely many cycles s, #1 of s.
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Then for every natural number k = 2, there are permutations g and
h on M such that s =g-h, {9, =G, {h}, = H and g, h consist of
exactly k infinite cycles and fixed points.

REMARK. G and H are disjoint subsets of the support of s by
construction. We obtain (4.2) for G = H = @&.

Proof. Case 1. Let s be without fixed points. W.l.o.g. choose
s to be a uniform permutation so that G& —-N, HS N and
min (s,) ¢ G U H for all 1€ Z. This is possible by (i). Because of (ii)
we may further assume that (J%., {s;+;} N (G U H) = @ for infinitely
many positive and infinitely many negative i € Z. Let ¢, d be defined
as in (4.2). We observe that for every infinite cycle d.. of d and
1€ Z: |[{do} U, {s;4;}] = 1, hence we get

(iii) For every infinite cyele d.e(d) and ¢.€(¢) the sets
({do} N N)\G U H) and ({e-} N —N)\(G U H) are infinite.

Next we use the argument of (4.2), but a more complex version.
Define a map d*: Z — Z by 2* = x for all 2 H and 2* = max ({z?";
ne N\H) for all xe Z\H. Thus, d* fixes every element of H, and
for x¢ H, ¥ = 2%, unless 2?c H, in which case 2% = x?, where
ne N is first with * ¢ H. The map d* is obviously injective and
well defined, since H<C N. If ye H, then y* =y and if yc Z\H,
define £ = min ({y* ™; m € N\H), which exists by (iii). Hence z*" =y
by definition of d* and d* is surjective as well. Therefore d* is a
permutation of Z whose set of fixed points is H, and whose only
nontrivial cyeles are k infinite cycles.

We note that 2% < & whenever x¢ H. As in (4.2) we put ¢* =
s-d*~', which operates again after “Lenin tactics”: If x°¢ Z\H, then
2 = (@) = (@°)*" > x because k = 2. If a°c H, then x° =~ min {s;}
for all 7 =0 by assumption on H, hence x # max {s;} for all 1 =0
and 2 = 2* = 2 + 1 > 2. Therefore ¢* has infinite cycles only. Since
¢* ! restricted to negative integers coincides with ¢!, both permu-
tations have the same number % of infinite cycles. Finally, we modify
¢* and d* to get the required permutations g and h. Put z* =2
for all xe G and 2? = min ({z*"; ne N)\G@) if ¢ Z\G. Again by (iii),
the map ¢ is surjective and therefore a permutation of precisely k&
infinite eycles, whose set of fixed points is G and with no finite
cycles of length > 1. We put & = g~*'-s. Therefore it remains to
show that » decomposes into the fixed point set H and % infinite
cycles. If xe H, then x¢{s;} for some i = 0, hence 2*" = 0 and so
2 ¢ G, and also by 0 < 2 < 2° " we have &* * ¢ G whence a* "
2 9. Hence o " = ¢ " = 2% ' = . Therefore z"* = a7 "* = ¢* "¢ =
%, i.e., H is a set of fixed points under h. If xe¢ Z\(G U H), there
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is an ne N such that x* = g7 " = gl = gdmeThnTlar < gras™hn™d
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2" < 2. Therefore =" <z, if »=2. But if » =1 then also
2t =x"<xbyxeH. Ifzxe@G, wehavea' =2°=2 — 1< z. There-
fore h has only infinite cycles outside H. Restriction of A~ to N
shows the number of infinite cycles to be k. Therefore h decomposes
into the fixed point set H and % infinite cycles. Hence (4.3) is shown
in this case.

Case 2. s may have fixed points.

First, we remark that s moves infinitely many points, G U H < {s}
and |{sf\(GU H)| = ~ by assumption of (4.3). Because of Case 1
there are permutations ¢’ and %' acting on {s} such that s = ¢’-h’ if
restricted to {s}. Also {¢’}, =G, {'}, = H and ¢’, &’ decompose into
fixed points and % infinite cycles only. Next, we enlarge the domain
of ¢’ and k' to obtain the required permutations ¢, % acting on the
whole of Z. Since {s}\(G U H) is infinite, it is possible to seleet a
set X of [{s},| elements from {s}\(G U H) labelled by {s},. Insert ¢
after x, € X into ¢’ and after 2/ into 2’ for all te{s},. The resulting
elements satisfy (4.3).

LEMMA 4.4. If s and p are permultations of a countable set, the
first containing no infinite cycles, the second containing at least two
mnfinite cycles, then s 1is a product of two permutations conjugate
to p.

Proof. We consider three cases.

Case 1. p has a finite number, % = 1, of infinite cycles and s
has Infinitely many fixed points.

Denote by M the underlying countable set.

Decompose the fixed point set {s}, into subsets A and B of cardi-
nality |A]| = | M\{p}.| and |B|] = W,. Next we define two permuta-
tions ¢ and h. Let gl, = (h],)™" such that [(g],).| = [(R[):] = [(p)]
for all 1€ N which is always possible. It follows from (4.2) that
there are permutations g¢’, b’ restricted to X = BU {s} such that
sly = ¢'-h and ¢’, 1/ consist of %k infinite eycles only. Therefore put
gly = ¢ and hiy = h' and (4.4) is shown in this case.

Case 2. p has a finite number, k == 1, of infinite cycles and s
has only finitely many fixed points.

Let (1, ---m;) with 1 £ j < n¢N. be an enumeration of all of
the finite cycles of p and let FF=1{1;, ---, m;; 1 £ j =< n}. Since (s)
|= set of all (finite) nontrivial eycles of s} is infinite, there are in-
jections *: F'—(s), (i; —1F) and °: F—(s), (¢; — ¢;) such that F'* N
F° =@ and E = (s)\(F* U F°) ig infinite. Notice that {v} = @ for
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every v € (s). Let f be a choice function defined on the set {{v}; v € (s)},
i.e., flw)e{v} for ve(s). Define for each j cyeles j7* and 5° (of dis-
joint supports) by j* = (f(1F), ---, f(m}), 3° = (fA7), -, f(m))).
Then the permutation *7 (°j) defined by *j = 7% -[14iF (Cj=
1174, 43 -7°) is easily seen to be a nontrivial eycle of length = 2m,; >
m; = 1 since [{*j} = 255 [{(0f}, [{°5} = 24 {7}, Let G = {f(u*);
weF}, H={f(w’);ue F}. Notice that G < U,;{;*}, H< U;{7°}.
Now apply 4.8 to s* = ([I;7%)-s-(Il;5°) = (AL, *9) - Ieer v- (1T, °9).
Notice that the right hand side is a disjointed product of nontrivial
eyeles. Also G {*j} = {4*} and since [{j*}| < m; < |{*j}| we see
that {*s)\G # @. Similarly, {°j}\H = . This with |E| = ¥, implies
(i) and (ii) of Lemma 4.3. Hence there are permutations ¢* and h*
such that s* = ¢g*-b*, {¢*}, = G and {h*}, = H and ¢*, h* decompose
into fixed points and |(p).| infinite cyeles only. Finally, put g =
(TI2=. 4% 9* and k= h*-(J17-, 7°)" which are conjugate to p such
that s =g-h.

Case 3. p has infinitely many infinite eycles.

Since s has no infinite cycles, we decompose the underlying set
into infinitely many s-invariant infinite subsets M(7) for 1€ N. Then
apply Case 1 and Case 2 to s, = s|,, such that s, =g¢,-h;, [(g)=| =
[(h)w]| = 2 for all 1€ N, ¢, h, have no finite cycles for all ¢ = 2 and
1)l = [(h)u] = [(p),| for all ne N. Then g = ][iLi g, and h = J[Z, A,
are conjugate to p and s = g-h.

5. Essential constructions for Theorem 1(c).

LEMMA 5.1. If s and p are permutations on a countable set
such that s contains no infinite cycles and p precisely one infinite
cycle, then s is a product of three permutations conjugate to p.

Proof. Case 1. s has finite support.

Decompose the fixed points {s}, into an infinite set 4 and a set
B of cardinality |({p} U {»})\{p}~]. Obviously, there is an element
te S, with |(#).| = [(p),! for all neN. and {t}. = 4 {s}. From
Is] < <= follows |(t7's).| = 1 and an application of (3.5) for ¢'s leads
to elements u, v conjugate to P [as is £] such that ¢'s = uv or s=tuw.

Case 2. If s has infinite support, decompose {s} into an infinite
s-invariant set A and a set B with |({o} U {»})\{p}x] < |B]. Let B*
be a subset of B with cardinality |B*| = |({p} U {p})\{p}|. Next we
define a permutation ¢ conjugate to p. Put t|s such that [(¢]),.] =
[(p),] for all neN. Let s|, = [l,czs;, with s, = (1,2, ---m,) given
in its DCD. We “glue the cycles together” and let ¢]i, m, = 8:lsm,
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and m! = 1,;,. Next insert the elements in {s}, U (B\B*) elementwise
into ¢t after 1, for arbitrary different co-ordinates 1€ Z. The result
is one infinite cyele which completes our permutation ¢. Since
(1,0 =1, for every ic Z, we have |(t7's)..| = 1. As in Case 1 we
conclude s e (p)°.

6. Proof of the theorems and consequences.

Theorem 1 follows directly from (3.5), (4.4) and (5.1). The mini-
mality of the factors is either obvious or follows from an example
due to M. Perles, which can be found in E. A. Bertram [2; p. 277,
Theorem 2.2]. The number of factors can be enlarged, as follows
immediately from part (a) of Theorem 1.

Proof of Theorem 2. Let [(p)«] = W, and decompose s = [],.;s;
such that (s,) < (s) and each s, has a countable infinite domain S,.
Next we split (p), = U,.; 0, k) with finite—possibly empty—subsets
»(, k) for all k€ N, and take p(z, =) to be any set of two elements.
There are permutations ¢, and ¢, acting on S, with s, = ¢,-¢} on S,
and |(¢),| = [(eD)] = |00, k)| for all ke N, as follows from (8.5) and
(4.4). Hence ¢ = [[,c;¢; and ¢ = [[,.;¢i are conjugate to p and
satisfy s =e¢-¢.

As in Theorem 1, the number of factors can be enlarged. There
are two interesting consequences of this kind of theorem.

COROLLARY 6.1. (R. Baer [1], J. Schreier and S. Ulam [8], cf.
[4, § 4].) The alternating group and S(o) ={peS,;|p| < W} for all
o < v+ 1 constitute a Jordan-Holder-chain of S,.

This follows already from E. A. Bertram [3] for v = 0 and is
shown in [4] for v = 0.

The other consequence is a generalization of a theorem by O.
Ore. With the notation given in §1, we have

COROLLARY 6.2. S, is w-elliptic of degree 2 for any word w.
The degree is minimal in general.

REMARK. (a) Corollary 6.2 follows already from a result of
A. B. Gray [5] by the subsequent argument. It is, however, false
for finite symmetric groups (take the commutator word w = x,0%, =
2t -2, and any odd permutation).

(b) If w = 2,02, then S, is w-elliptic of degree 1; cf. 0. Ore
[7] or R. Gobel and M. Droste [4, p. 289, Corollary 4.2].

Proof of the corollary. Let w(x, ---, 2, 1 be any nontrivial
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word of Group Theory and let F' = {¢;i < w,) be a free group of
rank W, with free generators ¢; let w, be the first ordinal with
cardinality ¥,. Then we have

(+) for every xc F:x-w(e, ---,¢,)" =2 iff m =0, and
(+4) for every %k and » with n <k < w, and » < w,:
e, wle, --,e)"=¢e, iff m=0and k=7r.

Embed a: F=- 8, via right regular representation and identify S,
with all permutations of F. Put » = w(e, ---, e,)* = wle, - -, ex)
and ¢ = s,. Then p consists of no finite cycles, but of precisely W,
infinite cycles as follows from (+) and (++). Hence S, = (p*+)* from
Theorem 2: If seS, there are ¢, he S, such that s=p%-p* =
W(Si’, tT Ty Sgb)'w(sf, Ty S:LL)

In order to show the minimality of the degree, consider w(x) = 2.
However, infinite cycles are not squares, since every square has at
least two cycles in its DCD.

REMARK. The above argument yields that all elements of F%,
especially s, ---, s,, consist of precisely 8, infinite eycles and no
finite cyecles (including fixed points).
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