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It is the main purpose of this note to prove that every complex

matrix with real determinant is the product of four hermitian ma-

trices; Theorem 2 is an actually stronger result. Every real square

matrix is the product of two real hermitian matrices [l]; this is a

special case of our Theorem 1 which is of interest in itself, if it is

indeed new. Theorem 3 was motivated by a theorem of Halmos and

Kakutani [3] who proved that every unitary operator on an infinite-

dimensional Hubert space is the product of four symmetries (i.e.,

operators that are hermitian and unitary). We also show that the

number of factors in these results cannot be reduced in general.

Theorem 1. Let F be any field and let A be a square matrix over F.

Then A is the product of two symmetric matrices over F.

Proof. If Si, Si, T are matrices of the same size over F, if Sj = S'J,

j = l, 2, and if P is invertible, then T~1(SiSi)T is the product of two

symmetric matrices P_15i(P')_1 and T'StT over P. Hence we can

assume, with no loss of generality, that A is in the rational form [4],

i.e., A =diag(j4i, • • • , Am), where each A¿ is of the form

0 0   0 • • ■ 0    ai

1 0   0 • • • 0    a2

0    1    0 • • • 0    a3

.0   0   0 • • • 1    (

Hence it suffices to prove the theorem for a matrix of the form B:

The matrix

C =

a2

«3 at

a» —1

■1       0

o4 ■

as •

0  •

0   •

«n-l

a„

0

0

O-n

-1

0

0

is symmetric and invertible over P. Computation shows that BC is
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also symmetric so that B = (BC)C~l is the product of two symmetric

matrices over F.

Theorem 2. Let A be a matrix over any subfield F of complex num-

bers. Then A is the product of four hermitian matrices over F if and only

if det A is real.

Proof. Let det A be real. The property of being the product of

four hermitian matrices over F is invariant under similarity over F

(by an argument analogous to the one given in the proof of The-

orem 1). Hence we can assume that A is in the rational form

diag(.4i, • • • , Am), where

f0 tn

1 0 tj2

1    •Ai

1    /j»ü);

7 = 1, • • • ,  m. Then det A = i/n^i • • • tmi; hence assume that if

det .4=0, then tmï = Q.

Let « = «(1)+ • ■ ■ +n(m) and let K denote the «X» matrix

(E2, E3, • • ■ , E„, Ei), where Ei denotes the ith column of the identity

matrix. Then A —BK, where

B =

<Bi    d    0

0      B2   C0

0

... o

... o

B„-i Cm-i

0 Bm

for each/, B¡ is an n(j) Xn(j) block of the form diag(0, 1, 1, • • • , 1),

and

Un       0 • ■ • 0)

tu       0 • • • 0
Cy =

[;'»(i) 0 0

The matrix K is the product of two hermitian matrices over F; in

fact, by Theorem 1, it is the product of two symmetric matrices over

the field of rational real numbers. We now proceed to prove that B

is also the product of two hermitian matrices over F. In view of
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Theorem 1 it suffices to show that P is similar over F to a real matrix.

For each pair of integers (j, k) other than (m, 1) define rjk to be t¡k

if tjk9*0 and  1 if tjk = 0; set rmi — \/rurn • • ■ rm_i,i. Consider the

matrices

Pi = diag(fu, • • • , fi,B(i))r2ir3i • • • rmh

D2 = diag(r2i, ■ • • , ft,nm)rtira ■ • • rmi,

Dm-i = diag(rm_i,i, • • ■ , rw-i,»(iii-i))rmi)

Dm = diag(rmi, ■ ■ • , rm,„(m)),

and let P=diag(Pi, • • • , Dm). Then D~*BD is similar over P

to B. Straightforward computation shows that the nonzero en-

tries of D~XBD are all 1 except possibly for the position («(l)-f- ■ • •

+n(m —1) + 1, 1); the entry at this position is rnrn • • ■ rm-i,itmi

= ±det A. HenceD~lBD is real. This completes the proof of sufficiency

for the condition that det A be real; the necessity is immediate.

Theorem 3. Let U be a complex unitary matrix. Then det U= ± 1

if and only if I)= JiJiJ%Ji, where the /,• are symmetries and JiJ2 com-

mutes with JzJi.

Proof. Assume det U= ± 1. We can actually draw a stronger con-

clusion than mentioned above. Let P be the smallest subfield of com-

plex numbers containing the entries of U together with its eigen-

values. We shall show that the desired matrices /¿ can be chosen

over F.

Since U is unitarily equivalent over F to a diagonal matrix, we can

assume that P = diag(ai, ■ • • , an). Define «X« unitary matrices F

and W by

V = diag(ai, äi, aionai, «10:20:3, • ■ • , ai«2 • ■ • «2/+i(

ai«2 • • • «2/+1, • • • ))

W = diag(l, aia2, aiä2, - ■ • , aiaa • • • a2y, äiä2 • ■ • 52/, • • • ).

If « = 2fe, then all the complex eigenvalues of V appear in conju-

gate pairs, so that it is the product of two symmetries over F; this is

a special case of the result of [2], but can be verified directly by

observing that

cK-on-
Also, the last diagonal entry of W is 0:10:2 • • • a2t = det A, which is

+1 by hypothesis; hence W is also the product of two symmetries
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over F. Ii n is odd, then the last diagonal entry of V is det A, and a

similar argument proves the desired result.

Remarks, (i) For n>2 there are «X« unitary matrices with real

determinant which cannot be expressed as the product of three (or

less) hermitian matrices: Leta = exp(7Tî/«) and let 7denote the «X«

identity. If ai = MiM2Mz, where the M,- are hermitian, then aMr1

is similar to its adjoint; hence a2Mi-1 and Mi~l are similar and

have the same spectrum. This is a contradiction since Mc1 is her-

mitian and a2 is nonreal. Every 2X2 unitary matrix with real determi-

nant is the product of three symmetries.

(ii) If U is a real unitary matrix, then it is the product of two

real symmetries. This can be deduced from Theorem 1 as follows:

U — MiM2 where M( is real hermitian. Every invertible real hermitian

matrix is the product of a real positive-definite matrix and a real

symmetry commuting with it. Write Aí, = 77¿7,- accordingly, where

77,- is positive-definite and /,• is a symmetry. Then JiUJi = HiH2 so

that 77i772 is unitary; since the spectrum of 77i772 is necessarily real

and positive, we have HiH2 = 7.

(iii) If a complex matrix has nonreal determinant, then it is not a

finite or infinite product of hermitian matrices. The infinite product

is of course interpreted as a limit of finite products in any norm on

the linear space of matrices; det A is a continuous function of A.

A complex matrix A is the product of two hermitian matrices if

and only if it is similar to a real matrix [l ] ; this occurs if and only if

A is similar to its adjoint [5]. Ii A is unitary, then A is the product

of two symmetries if and only if A is similar to A* [2]. Thus it would

be interesting to characterize those complex matrices which are the

product of three hermitian matrices and also those which are the

product of three symmetries.

Added in proof. C. S. Ballantine has pointed out that Theorem 1

was discovered by Frobenius in 1910.
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