PRODUCTS OF RANDOM MATRICES
By H. FursTENBERG AND H. KESTEN!
Princeton University

1. Introduction. Let X', X*, X° --- form a stationary stochastic process with
values in the set of £ X & matrices. The asymptotic behavior of the product
"T" = X"X"™ ... X" has been studied by Bellman [1] in certain cases. In par-
ticular, Bellman showed that, if the X" are independent and have strictly posi-
tive entries, then, under certain conditions,

iml n " E{log("Y"); 3

exists, where the subscripts ¢j refer to the 4jth entry of the matrix. In addition,
Bellman conjectured that

n*(log ("Y")s,; — Eflog ("¥"):,})

is asymptotically normally distributed. These assertions are motivated by con-
sidering the case where the matrices in the range of the X" commute so that
they may be simultaneously diagonalised.

We shall arrive at Bellman’s result by considering first the behavior of the
norms || "Y' |. We find that, under very general conditions, the limit of n™*
log || "Y' || exists almost everywhere, as well as lim,.., n E{log || "Y* ||}. Under
certain positivity assumptions on the entries of the possible matrices, the
asymptotic behavior of the ("¥*);,;is deduciblefrom that of || "¥" ||, and this will
enable us to strengthen Bellman’s result to an almost everywhere statement.
The conjecture regarding normality will be proven in certain cases and we
shall give examples to show that the possibilities of further extension are
limited.

2. Asymptotic behavior of the norm. For a ¥ X k matrix A with real or complex
entries we define the norm of 4 by || 4 | = max; D ;| 4.,;|. If B is another
k X k matrix we have

(2.1) [ AB| =141l B].

This simple fact gives us: ‘

Turorem 1: If X', X°, X°, --- form a stationary stochastic process with values in
the set of k X k matrices, then

(2.2) lim n'E{log | X"X" --- X' |} = E

n-»>0
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458 H. FURSTENBERG AND H. KESTEN

exists (E is nmot necessarily finite). If, in addition, the X-process is metrically
transitive and Eflog™ | X' ||} < o,” then

(2.3) limsupn ' log | X"X" ' --- X'|| < E
with probability 1.

Proor: Set
(2.4) nym — xrx" ... X"

Then, by (2.1),
log || X™™ -+ X'|| = log | "*"Y*|| < log || """V || + log || "Y' ||,

and, since the process is stationary, Eflog | "*"Y'|} < Eflog | "Y'|} +
Ef{log || "Y*||}. This, however, is known ([4], p. 98) to imply (2.2).
Under the assumption that E{log™ || X" ||} < , it follows that

> Pllogt | X" || = en} < o, foralle > 0
n=l
and therefore lima.. n " log" || X" || = 0, and so lim sup,..n" log | X" || < 0,

with probability one. Hence in order to prove (2.3) it suffices to show that, for
each ¢ > 0,

(2.5) lim sup n'N " log | ""Y'|| S E +
for some N.

By (2.2), given any ¢ > 0, we can find an N such that N"'E{log || Y ||}
< E + ¢ (if E is finite; E = o is excluded by hypothesis, and if £ = — «

only minor modifications need be made). If the process is metrically transitive,
then, by the strong law of large numbers,
r—1

(26) lim v N7 Y log || Y || S E + e
>0 k=0
If r has the form nN, then, writing the sum in (2.6) as
N n—1
az::l ; lOg ” (t+1)N+s—lYtN+n “

and using (2.1), we deduce
(2.7) limsup 7 "N 7'(log || "Y' || + log | ""¥* | 4+ -+ 4 log | """V ))

<E+e
Since ” nN+jy:i+1 “ < ” nN+jynN+l ” ” nNyN ” ” N—IY}"H ” and

lim sup n ' log || X* || £ 0,

n-»0

2 log* ¢ = max (log ¢, 0).
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we find that we may replace each || "**¥’*' || in (2.7) by || ""¥” ||. This gives
lim sup (nN) ' log | Y| S E + ¢

from which (2.5) follows. This proves the theorem.
We would like to strengthen (2.3) to read

(2.8) Liglon—l log || "Y' | = E.

That this may be done will be seen in the next theorem. For the proof we shall
require an auxiliary process which we proceed to define.

Let Q@ be the set of all sequences {(21, 21), (%2, 22), *-+} where the z, are
matrices in the range of the X" and the z, are matrices satisfying

(2-9) ” Xn-HZn ”Zn+1 = Xn+1Zn ) H Zn “ =0orl.

The variables X", Z" are now defined on Q as the coordinate functions. The
subset of @ on which 2, = /| x| (with 2, = 0 if 2, = 0 and 2,, = 0 if
Zni12n = 0) may be taken as the sample space for the X process, since on this
subset the Z" are functions of the X". Consequently we may define a measure
w on Q by carrying over to this subset the given probability measure of the X
process. Let T be the shift operator on Q:T{(z,, 2.)} = {(Zn41, 2211)}. Note
that since 2; need not equal z;/|| 2, | when 2, = /|| 71 ||, the subset considered
above will generally not be invariant under T'. Hence the measure p; will gener-
ally not be an invariant measure. Now define the measures u; on @ by

p() = m(TQ)

for @' c Q. We then have

LeMMA 1: Letv, = # " D iy wi . There exists a subsequence v,, converging weakly
to a probability measure u on Q in the sense that the finite dimensional joint dis-
tribution functions of the variables X", Z" with respect to the v,, converge to the
corresponding distribution functions of the X", Z" with respect to u at each con-
linuity point of the latter. The measure p s stationary, t.e. invariant under T, and
on subsets of Q defined by the X" alone, u agrees with the given probability measure
of the X process.

Proor: Any sequence of probability distributions on a finite dimensional
Euclidean space has a convergent subsequence; however, the limiting distribu-
tion may not be a probability distribution, i.e. it may not assign probability 1
to the whole space. For the first part of the lemma it will suffice to show that a
convergent subsequence of the distributions in question must converge to a
probability distribution. Once this is shown the required subsequence n; is ob-
tained by a diagonal procedure. Since the X process is stationary we observe
that u, all agree with the original X process measure on those subsets of Q de-

3 A similar idea occurs in a technical report entitled ‘‘Electron Levels in a One Di-
mensional Random Lattice,” by H. L. Frisch and S. P. Lloyd of the Bell Telephone Lab-
oratories.
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fined by the X™. Hence the same is true of the », and of any limiting measure of
the v, . Now, by definition, || Z" || = 0 or 1 on the support of any of the u,,
and so the range of (Z', Z, ---, Z™) is always compact. Let now {k4 be any
sequence of integers such that the joint distribution functions of Zy, ---, Z,
and X, ---, X, with respect to », converge. The convergent sequence of
probability distributions is to be taken on the product of a compact space (the
range of (Z',Z’, ---,Z™)) with a locally compact space (the range of
(X', -+, X™)) and they agree on sets defined by subsets of the locally compact
space (i.e. sets defined in terms of X', --- , X™). Moreover, by (2.9), the space
 is a closed subset of the product space. Under these circumstances it is easily
seen that the limiting distribution is a proper probability distribution. Thus the
limiting measure u exists; that it has the desired properties follows readily.

We may now prove (2.8).

TaroreMm 2. If X', X*, X°, -+ form a metrically transitive stationary stochastic
process and

E(log™ [ X)) < e,
then
limn ™" log || "Y' || = E

with probability 1, where E is defined in Theorem 1.

Proor: Since log || "Y' || < D i-ilog || X*|, E < «.If E = — oo, then the
theorem is a consequence of (2.3). Hence we may assume that E is finite, and so
(2.10) inf n'Eflog || "Y' |} > — .

This implies that P{|| "Y' || = 0} = 0 and in particular P{|| X*| = 0} = 0.
Consider now the space Q introduced before and the probability measures », :
converging to p on . The main step will be to prove the relations

(2.11) E = lix?_jonffnlog | X*Z" || dva; < fﬂlog | X°Z" || dp < o .
By definition of the »,, we have
fn log | X*Z" || dvn, = n:‘g fﬂ log | X*2" || dus .
On the support of u; we have Z' = X'/|| X' |, and by induction, using (2.9)
and the fact that | "Y'| vanishes with probability 0, we find that

Z" = "Y'/| "Y' ||. Hence on the support of ui, || X**'Z*| = || *"'¥*|/| V" ||
so that

[10g | X2 | db, = n* [ﬂ (log [|"*7* || — log || X" ||) dus
JQ

= n;' E{log 'Y} — ni* E{log || X' |}.
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The first equality of (2.11) now follows from the definition of £ and from the
fact that E{log || X' ||} is finite by (2.10) and the hypothesis of the theorem.
The first inequality of (2.11) is derived by showing that log® || X*Z" || is
uniformly integrable with respect to the »,,. In fact, since log | X°Z'||
Slog || X*| + log || Z'|| = log || X*|| when || Z"| = 1, we have for 4 = 0,

log || X'Z" | don; = " 2 f log || X*Z" || duw

log| |X2z1|| =4 log| | X221]|z4
(2.12) <n7 ; A f log || X* || du
" logl|X2z1] |24
sa'y [ gl Xde= [ log] X'lldw.
" logl X224 log| [X1]| 24

By hypothesis, [log™ || X' || du < =, so that the last integral in (2.12) tends
to zero as A — «. But,

[rogl X2 aw= [ gl XZNd+ [ ol X2 | du

log)x271] 20 log| X221 <0

and similarly when u is replaced by v,,. By the uniform integrability of
log" || X°Z* ||,

im [ log| X2 dw= [ log] X' da

00
log| X221 20 log|x221] 20

Since the following integrals have an integrand bounded from above and »,; — p
one obtains

lim inf f log | X*2")| dvn, < f log || X*Z"]| du.
e log| |X22z1]]| <0 log||x22z1]| <0
This proves the first inequality of (2.11). The remaining inequality is a conse-
quence of E log" || X' || < .
Our theorem now follows easily. For, since u is a stationary measure on Q and
log || X*Z" || is integrable with respect to this measure, we may apply the ergodic
theorem ([3] p. 465) to find that

lim n™* ; log | X*"'Z" || =y
exists almost everywhere and fo¢ du = [o log | X°Z'|| du = E. Now by
(2.11) and the assumption that B > —w, || ’Y’Z'|| = || X’Z"| 5 0 almost
everywhere on Q. Then Z° = *Y*Z'/| *Y*Z"' | a.e. and X°Z* = *Y’Z'/|| *Y*Z" |.
Since, by (2.11), || X*Z*|| # 0 a.e., it follows that °Y*Z* s 0 a.e. and so
7 = Y’7'/|| *Y*Z" || a.e. and X*Z® = ‘Y*Z'/| °Y*Z" ||. Continuing in this man-
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ner we find for all k, || *Y°Z" || # 0 a.e. and X*"'Z* = *"'¥*Z'/| *Y*Z" || a.e. As

a result, || X*"'Z* | = || *"'Y*Z" ||/|| *Y*Z" ||, and we have
lim n7" log || "Y'Y?’Z' || = ¢ ae.

Hence "

(2.13) lirnnaionf nlog || "MV = ¢ ae.

with respect to u (and hence with respect to u;). However, by Theorem 1, the
left side of (2.13) is a.e. < E, and since the integral of the right hand side of
(2.13) is greater than or equal to E we find that the left hand side is equal to
E a.e. This completes the proof.

3. Asymptotic behavior of the entries. In this section we always make the
following assumption: A I: The possible matrix values M for X! all satisfy

3.1) M;,; > 0,

and

(32) 1= (II:?X Mi,i)/(n:}’i}l M;;) £C< .
Lemma 2. If A 1 s satisfied, then

(33) (""Y™) 4.0, > 0,

and

(34) C = (Y™ /(TP ™) i) = C

Proor. (3.3) is obvious and so is (3.4) if n = 0. If n = 2, we have

(n+mY‘m)‘ ) TZ (X"M>il,r("+m—lYm+l)r,:(Xm)t.i1

Ym0 (X OV, (X0

and this is £ C* by (3.2). A similar estimate holds for » = 1. This completes
the proof of the lemma.
We remark that with A I, quotients of the form

(n+m+lYm)i1,j1
(n+mYm) iads
are of the same order as (X"*™*),, in the sense that the ratio of the two is
bounded away from zero and infinity. °
CoroLLarY: If X', X°, --- is a stationary stochastic process satisfying A 1,
then limn. n E{log ("Y"); ;} exists and is the same for dll ¢ and j, say E. If, in
addition, the X-process satisfies the conditions of Theorem 2, then for all © and j,
lim n" log ("YY)s,; = E

n->o0

with probability 1.
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Proor: (3.3) and (3.4) imply
(35) min ("Y' £ "V £ k max ("Y');,; < kC? mi,n ("Y")s -
] ¥ i,
Theorems 1 and 2 now give the required result.

The first part of this corollary is a generalization of the result in [1].
Lemuma 3. If wedefine ("""Y™); = D ; ("T"Y™).; and if A 1 s satisfied, then

(G PN Gl ST Y
gt = G| 2 (1 - gy

Proor: A straightforward computation shows that

(m+r+1 Ym)ﬁ y (m+r+1 Ym)i2 y

( 3 6) (m+r+l Ym) i (m+r+l Ym) ie
_ Z ()(m-l'r+l)il's(m-i-r};m)a _ (Xm+r+l)i2'8(m+rym). (m+er)a.j
= (m+1+1 Ym+r) o (m+r+1 Ym+r) i2 (m+r Ym)‘ :
But, for all 4,
m+r+1 m+ryrm
(37) (X™)i, ("X, _ 1

" (m+r+l Ym)i
all the summands in (3.7) are positive and by (3.4),

.St T G oy WY sl PN o ‘¥
CEDOMEE CEOOME

(3.8)
We proceed now as in [3], pp. 173-174. let S’ be the set of indices s for which
the summand in the right hand side of (3.6) is positive and S” the set for which
the summand is negative. By (3.3), (3.7) and (3.8)

o< {(X"‘”“)il,.,('”*’Y'")s _ (X'"+'+‘)¢2,s('"+'Y'”)s}

= (m+r+1}fm)il (m+r+lyvm)i2
_ (}(m+r+l)‘_l’8 (m-h'\Ym)a _ (Xm+1'+l)i2's (m-f-erm)a
= -5 (m+r+lYm)il (m+r+lyv*m)i2
=@1-ch.

Splitting the sum in (3.6) up into a sum over 8’ and one over S” one obtains
from (3.6)—(3.9),

(m+7+1Ym)i,' . (m+r+lym)i’_ . (m+'Y"")1.’.
g, i g, S (7 O e g,
. (m+rl,m)"'
R

The proof is now completed by induction on r (compare [3], pp. 173-174).
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Consider again the (X, Z) process defined by the stationary measure u on Q
as in Lemma 1. Put

2 k+2Zk+l
(3.10) @ = f log (‘ZIZIZ) g, f log (X(ZM) g
+1pr 2
¢ = f (log X7 2014 TZ Jt _ a)(log ———(XIZ Dt _ a) du
(3.11) (@ (Z11
_ /(10 X1‘+k+IZr+k)1,1 _ a)(]()g (Xk+2Zk+1)1'1 . d
g (Zr+k)1,1 (Zk+l)1’1 ,Ll,
and
(3.12) b=1c¢+2 ch,.

(The convergence of the series in (3.12) will follow from the proof of Theorem 3.)

In order to prove the asymptotic normahty of log ("¥*);; we introduce the
following “independence assumption’ A IT: If Q' is a measurable set in the sample
space of the X-process, defined in terms of X™*"*, X™*"*2 ... only, then
[P{Q'| X1, -, Xu} — P{QY}] = DIP{QY, where D; and )\1 are some fixed
positive constants and \; < 1. .

Note that A II is satisfied if the X" are mutually independent or if the X-
process is an aperiodic Markov chain with finitely many states (i.e. X" can only
take finitely many values) with one ergodic class ([3] Ch. V, §2).

In addition to A T and A II we shall need a condition regarding the moments
of log (X")1.1. We then have

TuroreM 3. If A1 and A II are satisfied, and if

(3.13) E|log (X")11 [ <

for some & > 0, and if a and b are given by (3.10) and (3.12), then
. l nyl i — . x _

(3,14) E_I: P{_O%)-lflz_na < x} — (Qﬂ_) 1/2 [we 1/262 dt

when b # 0. If b = 0, then
(3.15) (log ("Y*):,; — na)/(n)"* — 0 in probability.

REMARK. Since, by (3.4), |log (" Yl),1 i — log ("YY,,, i | = 2 log C, it suf-
fices to prove the result for log ("Y);;. This theorem will then give the joint
limiting distribution of all log ("Y?); ;.

Moreover, (3.5) shows that (3.14) (or (3.15)) also holds for log | "Y*||
instead of log ("Y");, .

Proor. As remarked, we can take ¢ = j = 1. Then log ("Y");; = D11 &
where

& = log [("Y))ral/[(*T'Y)1al(k > 1) and & = log (Y.
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We shall show that Bernstein’s central limit theorem [2] dealing with “almost
independent” random variables is applicable. Strictly speaking, Bernstein’s
theorem would require E |log (X')1.1|*° < . We shall therefore follow the
treatment given by Doob in [3], Ch. V, §7 for the special case of Markov chains.
This will show that our conditions are sufficient. We may and will choose &
fixed and 0 < § < 1 such that (3.13) is satisfied.

The heart of the proof is the expansion (cf [3] p. 38):

m+n+k
E{eXpitv > E—a) X, Xm}
s=m+n+1
m+n—+k
=14ty D, Bl —al X, X
s=m+n--
(3.16) S~ .
- (tv)2/2)E{< > a-a) X %)
s=m+n+1
m+n+k
+0<lvt|“’+“E{ > &—al™ Xl,---Xm}>.
s=m+n+1

We shall show that there exist positive constants D and X with 0 < N\ < 1 such
that

(317) |E{£3—a|X1’ ;Xm}l §D>\|8——m,
m+n+k 2
E{(k—uz Z £ — a> | Xy, - )Xm} — ¢
s=m+n+1
(3.18) o o
- 2]{;——1 Z Z cr—s+1 é D)\n,
s=1 r=g+1
and .
m+ ,
(3.19) Bl 3 (& — o) | Xy, -+, X} S DETED
s=m+1

for 8 = 0 or é. The relations (3.16)—(3.19) replace the Lemmas 7.1-7.4 in [3]
pp. 222-228, and with their help one can then compute

Blexp ity 3., (& — a)} for v = (nb)™"
s=1

and complete the proof along the lines of pp. 228-230 in [3].
If A, B, C are k X k matrices, then’

(3.20) (ABC)y.1/(BC)11 = Zi)Al,iKBC)i.l/(BO)l,l]
= Z_‘, A1,i(Bi/By) + [; Al,iBi; (Bi,i/Bi — Bl.j/Bl)Ci,l]/[; B1,,C;4l,

where B; = Z , Bij . Now take*
J

4 [z] denotes the largest integer < x.
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m+n+1
4 = X"
B = m+nYm+ln/2]

)

C — m+[n/2] Yl.

With these substitutions it follows from Lemma 2 applied to ratios such as
Avi/As,i, and B; 4,/B,, , and from Lemma 3, that the second term in the right
hand side of (3.20) is O((X™*"*");1(1 — C™*)™*) uniformly in the matrices

X1, -+, Xmn . Hence, again using Lemma 2 and the identity
log (¢ + B) = log a + log (1 + (8/a) = loga + O(8/a)
as B/a — 0, one has, uniformly in X1, -+, Xpnyn

m+n+1 (m+" Ym-H”IZJ ) g

( m+n+1 Ym+ [n/2] )1

+0(1—CH" =log o214 0(1 — CH),

(m+n Ym+ [n/Z])l

(3.21)

This shows, in particular, that (again by Lemma 2) | £mynys — log (X AR Pl
is bounded and hence (using A II and (3.13)), E{| fnins1 | > | X1, -+, X}
is bounded.

We also obtain from (3.21)

(m+n+l Ym+ [n/2] )1
E{Em«'-n+l X, ,Xm} = E{log(T_M—W])—l 'Xl,... ’Xm}
(3'22) S\nj2 (m+n+1 Yn+[n/2] )1] a2 .
+ 01 —-C)" = E{IOngﬁ)Tf'l‘ O(1 — C)™ + O\
uniformly in X;, -+, X,,. The last equality is a consequence of A II because
the expression between the braces depends only on X i (nje, - - - y Xmin+t1, and

the uniform boundedness of

s

(ef. remark after Lemma 2). Setting N, = {max (1 — €% \)}"*(< 1) and
using the stationarity of the X-process, (3.22) can be rewritten as

(3.23) Bltnini | X1, - X} = Ebatums2 + ONF)

uniformly in X, - -+, X,,. But, by (3.21) and its analogue, derived by putting
A =X" B ="*Y" ¢ = Z'in (3.20), one has
_ (ch+1 .. Xl)l,l _ (Xk+1 .. Xz)l.l
€k+l = lOg _—_(Xk T Xl)lll = log (Xk . X2)1,1
(ch+1 .. X2Z1)1'1
(Xk e XZZI)L]

mtn+1y,rm+[n/2]
log ( Y )1 ' }

(m+n Ym+[n/2])1

(3.24)
+0(1 — %,

+0(1 — C** = log
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as long as (Z').; > 0. However, by Lemma 2 and the construction of
u, (Z):,; > 0 a.e. with respect to u. Therefore

Xk+l . Xl)l,l

_ (
Etp = flOg WW du
XL xg
(3.25) = flog ((Xk Xzzl)l)l{l dp 4 0(1 — ¢)*

k+1 7k
= flog (X(Zk)Z“)L‘ du+0(1 - C ) =a+Q(1 - )~

(3.22) and (3.25) prove (3.17) for a suitable D and A = ..
Asin (3.22) and (3.25) one shows

E{((minsr — @) (bmint1 — @) [ X1, ooy X

(3.26) = E{(fa-tmrsr — ) (bnetmn — @)} + O(A3) = ¢ + O(NF)
uniformly in X;, --+, X,n. At the same time, using (3.17)

E{(Eminir — @) (Emintr) —a) | Xu, -+, X}
(327) = E{(¢m4nt1 — O)E{Gmyntr — @) | X1+ Xngnsd} X1 -+ X} = O(N3)
uniformly in X, ---, X,.. Hence also ¢. = O()\;) so that the series in (3.12)

converges. (3.18) can now be proved quite easily, as

m+n+k 2 1 m+n+k 2
E{(k”‘” > &—a) X X p= k7 3, Bl(E = a)| X0 X

s=m+n-+1 s=m+n+1
m+n+k m4n+k

+2]C~l Z Z E{(Es—a)(gr—‘a)le"'Xm}a

s=m+n+1 r=s+1

E{(Es - a)2'X1 ce Xm} =c + O()\;—m),

and
m+n+k s+u
=Z+1 E{ (Es - a) (Er - a) IXI ¢ Xm} = =Z+1 cr—-s+1 + uO()\;—m) + O(k;‘)-

Taking v = min (m + n + k — s, s — m) we obtain (3.18) for a A < 1 satis-
fying nAs = D,\" for some D, and all positive n. (3.18) of course implies (3.19)
for & = 0. The proof of (3.19) can be completed as in Lemma (7.4) p. 225 in
[3]. In fact, if

m—+k+n m+k+2n

Un= 2, (&, —a) and va= 2 (& —a),
s=m+k+1 s=m+k+n+1

then
Efl tn+ 00 | " | X1 o X} S B{(n + 02)(|%a|* 4 |00 |°) | X1+ X}
< B{lu | ™| Xy X} + Ef|va PP Xy o0 Xl
+ 2B(| wn | [on | | Xy oo Xnd + 2B wn | Jon | TP Xy e, X
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However, E{| u, | " | v, | | X1 -+ X}
S B{lua | "TB{|va | | X1 Xmgrnd | X1, oo, X
S Bl un | "B va |*| X1 o Xrnd) P [ Xy oo, X
é D’n,l/2(E{| U ‘ 2 l Xl .. Xm})(1+6)/2
< Dnl/Z(Dn)(l+6)2 — D(3+B)/2n(2+8)/2
and similarly for E{| u, || v. | '™ | X1 - -+ Xn}. Hence
E{ [0 + 02| X, -, X}

(3.28) e _ 248 (3+8)/2, (2+8)/2
< 2sup E > (& —a)|™| Xy Xn) +2D n .
k>0 s=m+k+1

The inequality (3.28) repleces (7.11), p. 226, in [3] if ¢, in [3] is replaced by

| m4k+n °
supE{’ > (fs—a)|2+le1---Xm}.
k=0 s=m+k+1

The remainder of the proof of (3.19) can be copied from pp. 226-227 of [3] and
the theorem now follows from (3.16)-(3.19) as indicated before.

4. Two examples. The first example shows that one cannot prove the corol-
lary to Theorem 2 without some positivity assumption as in (3.1), even though
Theorems 1 and 2 show that the corresponding result for the norm is true with-

out A I.
ExampLe 1. Take the X’ mutually independent with the distribution

(0 1\ _
rix=(Q o)) -
(2 0\ _
rir=(9)}-
k1
In this case "Y" is sometimes of the form ((2) 2k,> and sometimes of the form

=

’

[N

2"
n'Elog ("Y")11.

Since log || "Y" || behaves slightly better than log ("Y"),,, as indicated by the
last example, one might hope that the central limit theorem would hold at least
for log || "¥* || without AL The following example shows that this is also false.

ExampLE 2. Take the X’ mutually independent with the same distribution.
All X* are of the form <31 g ) where A\; and \; are independent strictly positive

2
random variables with the same distribution, and E log \; = 0, E(log \;)* = 1.
Then ("Y')12 = ("Y')s; = 0 while n7"%log ("Y");,; and n™*log ("Y"),, are
independent random variables, both asymptotically normal, with zero mean and

k1
(0 2 ) where 0 < lim k;/n < 1. Hence n~" log ("Y");1 has no limit, nor has
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unit variance. Since n*log || "¥* || is the maximum of these two variables it
is not asymptotically normal, nor is n~*(log || "¥* || — nd) for any d.
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