
PROFASI: A Monte Carlo Simulation Package for

Protein Folding and Aggregation*

ANDERS IRBÄCK, SANDIPAN MOHANTY†

Complex Systems Division, Department of Theoretical Physics, Lund University,
Sölvegatan 14A, SE-223 62 Lund, Sweden

Received 21 December 2005; Accepted 7 February 2006
DOI 10.1002/jcc.20452

Published online in Wiley InterScience (www.interscience.wiley.com).

Abstract: We present a flexible and efficient program package written in Cþþ, PROFASI, for simulating protein

folding and aggregation. The systems are modeled using an all-atom description of the protein chains with only tor-

sional degrees of freedom, and implicit water. The program package has a modular structure that makes the interac-

tion potential easy to modify. The currently implemented potential is able to fold several peptides with about 20

residues, and has also been used to study aggregation and force-induced unfolding. The simulation methods imple-

mented in PROFASI are Monte Carlo-based and include a semilocal move and simulated tempering. Adding new

updates is easy. The code runs fast in both single- and multi-chain applications, as is illustrated by several examples.

q 2006 Wiley Periodicals, Inc. J Comput Chem 27: 1548–1555, 2006

Key words: protein folding; protein aggregation; Monte Carlo; all-atom model; Cþþ

Introduction

With improved algorithms and faster computers, it is becoming

computationally feasible to simulate how small proteins fold to

their native states (for a review, see ref. 1). This is an exciting

development, which will lead to a better understanding not only

of protein folding, but also of protein aggregation and of the

interaction of proteins with other molecules and materials. For

atomic-level simulations of proteins, there exists a number of

program packages that can be used, such as AMBER,2

CHARMM,3 GROMACS,4 and SMMP.5 The force fields imple-

mented in these packages are typically quite detailed, with pa-

rameters that in many cases are estimated using microscopic

arguments. We are currently exploring a different approach,6–8

which starts from a simple ansatz for the interaction potential.

The parameters of this potential are calibrated against data per-

taining to folding properties of whole chains, rather than proper-

ties of groups of one or a few atoms. For this purpose, we con-

sider a set of well-characterized sequences, which we study by

high-statistics folding simulations. The idea is to successively

refine the potential by studying more and more sequences, which

will impose new constraints on the model.

The sequences that the current version of the model is able

to fold have about 20 amino acids, and there are known exam-

ples of sequences of this size that the model fails to fold. One

example is the tryptophan zipper b-hairpins,9 which make b-
hairpins in the model but with the wrong topology. The set of

sequences that the model can fold includes both a-helical and b-
sheet peptides. Furthermore, for these sequences, the model has

been found to provide a good description not only of the folded

structure, but also of the folded population and its temperature

dependence.8 Without changing any parameters, the model was

also used to study the oligomerization of the seven-residue frag-

ment Ab16–22 of the amyloid-b peptide associated with Alzhei-

mer’s disease, with very promising results.10 Recently, the force-

induced unfolding of ubiquitin, with 76 residues, was investigated,

again using exactly the same model.11

Here we present a program package, PROFASI (PROtein

Folding and Aggregation SImulator), that implements this

model. To be able to take full advantage of the computationally

convenient form of the model, we developed PROFASI from

scratch rather than using some existing program package. Antici-

pating future refinements, PROFASI is built so that the interac-

*The PROFASI package is freely and immediately available to academic

users upon signing a user agreement. It can be downloaded from http://

www.thep.lu.se/complex/activities/profasi, where also more details on the

code can be found, including a documentation of the different classes

used.

†Present address: John von Neumann Institute for Computing,

Forschungszentrum Jülich, D-52425 Jülich, Germany.

Correspondence to: A. Irbäck; e-mail: anders@thep.lu.se

Contract/grant sponsor: Swedish Research Council

q 2006 Wiley Periodicals, Inc.

tion potential can be easily modified. The modular structure of

the code, which is written in Cþþ, also facilitates the introduc-

tion of, for example, new capping groups. For the sake of opti-

mization, the code assumes a definite representation of the sys-

tem, with only torsional degrees of freedom, which cannot be

easily replaced. An important design criterion behind PROFASI

is that it should be able to handle both single chains and multi-

chain systems in a flexible and efficient manner. Using PRO-

FASI, a high-statistics study of the thermodynamics of a 20-

residue peptide takes roughly a day on a cluster of ten 2.2 GHz

processors. The corresponding time for a multi-chain system of

6 seven-residue peptides is roughly 3 days.

Model and Algorithms

The model implemented in PROFASI contains all atoms of the

protein chains, including hydrogen atoms, but no explicit water

molecules. The model assumes fixed bond lengths, bond angles,

and peptide torsion angles (1808), so that each amino acid has

the Ramachandran torsion angles � and and a number of side-

chain torsion angles as its degrees of freedom.

The interaction potential

E ¼ Eloc þ Eev þ Ehb þ Ehp (1)

is composed of four terms. The term Eloc is a local backbone

potential which has the form of an electrostatic interaction

between adjacent peptide units along the chain. The other three

terms are nonlocal in sequence. The excluded volume term Eev

is a 1/r12 repulsion between pairs of atoms. Ehb represents two

kinds of hydrogen bonds: backbone–backbone bonds and bonds

between charged side chains and the backbone. The last term

Ehp represents an effective hydrophobic attraction between non-

polar side chains. It is a simple pairwise additive potential based

on the degree of contact between two nonpolar side chains. All

the three terms nonlocal in sequence are short range and are

evaluated using a cutoff. The precise form of the different inter-

action terms and the numerical values of all the geometry pa-

rameters held constant can be found elsewhere.6,8

The most time-consuming and therefore most carefully opti-

mized part of the code is the calculation of Eev, which is split

into two parts. The contribution to Eev from local pairs of atoms,

connected by three covalent bonds, is calculated separately,

through a straightforward summation over all such pairs. The

contribution to Eev from all the remaining pairs of atoms, which

are less likely to be in close contact, is calculated by using the

cell list method.12

To avoid introducing fixed boundaries, the chains are

assumed to move in a periodic box. With these boundary condi-

tions, it could happen that an atom interacts with another atom

from the same chain but from a different periodic copy of the

system. To avoid this situation, it is sufficient to make the box

length slightly larger than the maximum end-to-end distance,

since all the interactions are short ranged. PROFASI uses the

same periodic box for single chains as well as multi-chain sys-

tems, although it is not needed in the single-chain case. The use

of the periodic box slows down the single-chain simulations (by

about 30% for the peptides we have studied, about 20 residues

long), which we regard as an acceptable price for avoiding

duplication of code.

The simulation algorithms available with PROFASI are based

on Monte Carlo rather than molecular dynamics. For backbone

degrees of freedom, two different updates are provided, one non-

local and one semilocal. The full set of conformational updates

currently implemented in PROFASI is as follows.

1. Updates of individual angles. Both backbone and side-

chain torsion angles can be updated using simple Metropo-

lis13 single-variable steps. When applied to a backbone

angle, this method tends to lead to a highly nonlocal defor-

mation of the chain, which is likely to be rejected if the

chain is compact. This simple update can, on the other

hand, be a very powerful method for extended chains.14,15

2. Biased Gaussian steps.16 It is desirable to also include a

backbone update less drastic than the single-angle

update. One possibility is to use a strictly local method

like the concerted-rotation algorithm.17 For long chains,

such an update has the advantage of leaving a large part

of the energy function unchanged. However, strictly

local methods tend to be quite complex, and the proteins

amenable to atomic-level simulations are in any case

not very long. Instead, we have therefore chosen to use

biased Gaussian steps, a semilocal method that is flexi-

ble and easy to implement. This method simultaneously

turns n adjacent torsion angles along the backbone,

where n typically is 7 or 8. A tentative new �� ¼ ð�1; . . . ;
�nÞ, �� 0, is generated with a bias toward local deforma-

tions. Specifically, using a conformation-dependent n �
n matrix G such that ð�� 0 � ��ÞT Gð�� 0 � ��Þ � 0 for changes

corresponding to local deformations, �� 0 is drawn from the

Gaussian distribution

Wð�� ! �� 0Þ ¼ ðdetAÞ1=2
�3

exp
��ð�� 0 � ��ÞTAð�� 0 � ��Þ� (2)

A ¼ a

2
ð1þ bGÞ (3)

where 1 denotes the n � n unit matrix, and a and b are

tunable parameters. The parameter a controls the accep-

tance rate, whereas b sets the degree of bias toward local

deformations. Typical values in our simulations are a ¼
300(rad)�2 and b ¼ (rad/Å)�2. Finally, the new confor-

mation �� 0 is subject to an accept/reject step, with prob-

ability

Paccð��! �� 0Þ¼min 1;
Wð�� 0 ! ��Þ
Wð��! �� 0Þexp½�ðE0 �EÞ=kT�

� �
(4)

for acceptance (k is Boltzmann’s constant and T is the tem-

perature). The factor Wð�� 0 ! ��Þ=Wð��! �� 0Þ is needed for

detailed balance to be fulfilled, since G is conformation-

dependent and W thereby asymmetric.

3. Rigid-body translations and rotations of whole chains.

These updates are useful for multi-chain systems.

1549PROFASI: A Monte Carlo Simulation Package for Protein Folding and Aggregation

Journal of Computational Chemistry DOI 10.1002/jcc

These updates serve different purposes and are meant to

be used together. The optimal choice of relative frequencies for

the updates is not obvious and depends on the system under

study. In our simulations, we used a simple estimate based on

the respective numbers of degrees of freedom to set the ratio

between backbone and side-chain updates. Single-angle back-

bone updates were used more frequently than biased Gaussian

steps at high temperature, whereas the roles were reversed at

low temperature.

In addition to these updates for simulations in the canonical

ensemble, simulated tempering18–20 is also implemented in PRO-

FASI. This method simulates an expanded ensemble defined by

the partition function

Z ¼
X
k

e�gkZðTkÞ; (5)

where the gk’s are tunable parameters, the Tk’s are a set of pre-

determined temperatures, and Z(Tk) denotes the canonical parti-

tion function at temperature Tk. The simulation involves jumps

between the different temperatures Tk, which are controlled by a

Metropolis accept/reject step. The idea is to make it easier for

the system to escape from local free-energy minima by allowing

visits to higher temperatures where barriers are lower. The simu-

lation parameters gk are determined by trial runs.20 A method

closely related to simulated tempering is the parallel-tempering

or replica-exchange method.21–23 In terms of computational effi-

ciency, we expect simulated and parallel tempering to be simi-

lar,24 and so the choice between these methods is largely a mat-

ter of taste. Parallel tempering has the advantage of not having

any gk parameters to be tuned. On the other hand, the determina-

tion of these parameters is often not difficult, and it provides

useful information about the free energy of the system. Also, it

might be easier to detect incomplete convergence in simulated

tempering, where the temperature distribution is not enforced by

hand.

Program Description

The program package PROFASI has been developed on standard

desktop computers running a GNU/Linux operating system.

Computations have been carried out both on single computers

and Linux clusters.

In PROFASI, the key concepts of the model and the algo-

rithms are represented as separate Cþþ classes. These classes

can be divided into three major groups: building blocks (atoms,

amino acids, polypeptide chains, etc.), energy terms, and Monte

Carlo updates. The idea is to combine these elements in an

application program. What the application program should look

like depends on the problem at hand, but a few examples are

provided with the package. These programs illustrate how the

classes are to be used. The user adapts them to what he or she

might be interested in. One such application program will be

discussed in some detail below. The approach taken here, in

which nouns rather than verbs are coded in a program, is native

to the Cþþ programming language.

Building Blocks

A top level building block in PROFASI is the Protein class,*

which provides an easy interface to define and initialize one chain.

A chain object prn with the sequence Acetyl-Lys-Leu-Val-Phe-

Phe-Ala-Glu-NH2, for example, can be declared by writing

Protein prn(‘‘Acetyl’’,‘‘KLVFFAE’’,‘‘Amide’’);

The Protein class is, however, not meant to be used directly

by the user. For that there is a Population class, which repre-

sents a population of one or more chains. To declare a system of

10 chains of the above mentioned kind, the user writes

Population p;

p.AddProtein(‘‘Acetyl’’,‘‘KLVFFAE’’,‘‘Amide’’,10);

p.Initialize();

Using several calls to the AddProtein function, a hetero-

geneous mixture of polypeptide chains can be created and simu-

lated. The Initialize() function creates the Protein

objects according to the specified sequence and assigns random

initial values to all degrees of freedom. When required, other

initial conditions can be set afterwards on a chain by chain ba-

sis. The Chain(. . .) member function of the Population

class gives access to an individual Protein. It is then possible

to invoke several different initializing member functions on the

chain. For instance, the member function helical_init()

forces the Protein to assume a helical backbone conforma-

tion, trivial_init() sets all internal degrees of freedom to

zero, randomize() randomizes all internal degrees of free-

dom, and ReadState(. . .) reads in a previously saved state

from a file. The position and orientation of one or more chains

relative to the rest can, if desired, be randomized using the

RandomizeRelConf(. . .) functions of the Population.

PROFASI contains classes representing structures at different

levels of detail all the way from the population of polypeptide

chains to simple atoms. Only a little familiarity with the build-

ing block classes is necessary to use the program. To be able to

modify and make additions to the package however, some

knowledge is required about the classes used to represent, for

example, the atoms of the system. Each atom carries a unique

integer label. The label for the Ca atom of the jth amino acid in

the ith chain, for instance, can be found by writing

p.Chain(i)---> AA(j)---> Calpha().UniqueId();

Here Chain(i) returns a pointer to the ith chain in the

population, AA(j) returns a pointer to an Aminoacid object

representing the jth amino acid of that chain, and Calpha()

returns a reference to an Atom object representing the Ca atom.

Finally, UniqueId() returns the integer label of this atom.

The Atom class keeps information about the type of atom

(hydrogen, carbon, nitrogen, oxygen, or sulfur) and the position,

where the position is an object belonging to the AtomCoordi-

nates class. The position of an Atom object a is accessed by

writing a.Pos(). The usual algebraic operations on three-

dimensional vectors are available for AtomCoordinates. For

instance, if a1 and a2 are two AtomCoordinates objects,

the expression a1�a2 returns a three-vector representing the

*Peptide and PolypeptideChain are equivalent names for this

class, through typedefs.

1550 Irbäck and Mohanty • Vol. 27, No. 13 • Journal of Computational Chemistry

Journal of Computational Chemistry DOI 10.1002/jcc

difference in spatial coordinates, whereas a1*a2 returns the

vector product. So, an AtomCoordinates object appears very

much like a three-dimensional position vector, but when it is

copied, only an integer label is copied. The main reason behind

creating the AtomCoordinates class was to simplify the

implementation of conformational updates, by making it possible

to access atom coordinates more directly, without explicit refer-

ence to the chain structure. Having this possibility is useful

because many of the operations involved are independent of the

fact that the position vectors actually represent locations of

atoms that constitute amino acids in a chain. By using the

AtomCoordinates class, these operations can be imple-

mented in a simple and efficient way. In addition, the introduc-

tion of the AtomCoordinates class makes it possible to

reduce the number of copying operations on the three double-

precision numbers representing the position in space.

Amino acids are represented using the base class Amino-

Acid for common properties, and derived classes for individual

properties of the different amino acids. There is one such

derived class for each amino acid type. The somewhat abstract

concept represented by the Node class simplifies the structure

of these amino acid classes. It represents the different types of

junction of bonds that occur in protein structures, like tetrahedral

and trigonal junctions. A Node object is responsible for finding

the appropriate positions in three dimensions for all atoms

attached to its out-going bonds. The TetrahedralGroup

class is a derived class of the Node, which has one in-coming

bond and three out-going bonds with similar properties. Another

example is the ATetGroup (asymmetric tetrahedral group),

which is similar to the TetrahedralGroup, except that the

out-going bonds can have different bond lengths and bond

angles. Yet another example is the PhenylGroup, which is re-

sponsible for placing a phenyl ring with attached hydrogens in

space, given the position of the in-coming bond and the orienta-

tion of the ring about that bond. With the computation of coordi-

nates relegated to the various Node objects, each amino acid

class declaration becomes a simple specification of the different

elementary structures in its side chain.

Energy Terms

The different terms of the interaction potential are coded into

different classes, each inheriting from a base class called

Energy. This base class has properties that are necessary for

every energy function so that they can be used with the rest of

PROFASI. Such properties are declared as virtual functions, and

an individual energy class should override these functions. For

instance, each energy class must define a way to evaluate()

the term in question and calculate the change deltaE(. . .) for

a given conformational update. The member function evalu-

ate() calculates the energy term by summing all possible con-

tributions, whereas deltaE(. . .) calculates the change in

energy that would result if a proposed update is accepted. It

could be calculated by using evaluate() for the new set of

coordinates and taking the difference from a stored value corre-

sponding to the state before the update. However, all updates in

PROFASI leave large parts of the system unchanged, which

makes it much more economical to determine deltaE(. . .) by

recalculating only the interactions of moved atoms (with all

other atoms, moved or fixed). Optimization of the energy calcu-

lations based on specific properties of the different conforma-

tional updates is central to the efficiency of the resulting code.

Optimization of a given energy term is a matter of imple-

mentation, which may involve any local tricks and stunts, with-

out affecting any other modules. For this to work, all modules

that have to deal with energy terms, should do so only through

the interface provided by the base class. So long as an energy

class inherits from the base Energy class, and overrides its vir-

tual functions, it can be used with the other classes of PRO-

FASI.

Six energy classes are provided to represent the energy terms

in eq. (1). The classes Bias and Hydrophobicity represent

the terms Eloc and Ehp, respectively. The classes HBMM and

HBMS, which both inherit from a HydrogenBond class, repre-

sent the main chain–main chain and the main chain–side chain

hydrogen bonds, respectively. HydrogenBond in turn inherits

from Energy. Similarly, the classes ExVol and LocExVol

represent two kinds of contributions to the excluded-volume

term Eev. LocExVol represents the contribution from atom

pairs connected by three covalent bonds. This local contribution

is very important to ensure proper torsion angle distributions,

but is also computationally simple. When one torsion angle is

turned, at most nine local pairs can be affected. Information

about which pairs are affected for different updates can be cal-

culated during the initialization and stored, which reduces the

number of calculations done during a Monte Carlo step.

Calculation of the rest of the excluded-volume energy is the

most expensive part of our model. As mentioned earlier, we use

cell lists12 to speed up this calculation. The environment of our

chains, the periodic box, is divided into an integral number of

cells along each axis. The dimension of a cell is at least as large

as the cutoff used for Eev, so that in any given configuration, the

contribution to Eev from atom pairs not located in the same cell

or in neighboring cells is guaranteed to be zero. This greatly

reduces the number of calculations required to compute Eev.

During a simulation, when a Monte Carlo update is proposed,

only the contribution of the cells containing affected atoms and

their neighbors is recalculated.

The other energy terms in our potential are inherently much

less expensive than the two excluded volume contributions. This

is because they involve a limited number of atoms, and simple

bookkeeping helps in avoiding calculation of unchanged contri-

butions during a Monte Carlo step.

We expect that the implementation of energy classes will

change in the future to refine the potential and perhaps also to

further speed up the calculations. Care has been taken in the

design of PROFASI, so that this can be achieved without having

to introduce major changes elsewhere.

Conformational Updates

The conformational updates described in Model and Algortihms

are implemented using five classes, each inheriting from the

base class Update. The Update class represents basic proper-

1551PROFASI: A Monte Carlo Simulation Package for Protein Folding and Aggregation

Journal of Computational Chemistry DOI 10.1002/jcc

ties, like for instance, the first and last atoms affected by an

update. The properties of the base class serve as the interface of

any derived update class with other modules in PROFASI. The

five derived update classes are as follows:

� Rotation, which performs a rigid-body rotation of one

whole chain.

� Translation, which performs a rigid-body translation of

one whole chain.

� Pivot, which turns a single backbone angle.

� Rot, which turns one side-chain angle.

� BGS, which performs a biased Gaussian step (see Model

and Algorithms).

The first four of these updates divide the system into two rigid

parts that move relative to each other, whereas BGS divides the

system into three parts: the unmoved atoms, a range of atoms in

which many atoms move relative to each other, and a third part

moving rigidly relative to the other two. The update classes pro-

vide information to identify these different parts. This informa-

tion is used to optimize the energy calculations.

Algorithms

The role of the update classes mentioned above is only to pro-

pose new configurations. To actually perform the Markov chain

evolution of the system, the MC class is used. During initializa-

tion, an MC object acquires information about different confor-

mational updates, energy functions, and the population of poly-

peptide chains. The Step() member function chooses an

update with given probabilities and performs it. It accumulates

deltaE values from the different energy classes, and accepts

or rejects the update with a Metropolis-like probability depend-

ing on the energy change and the temperature. There is a provi-

sion to incorporate an extra multiplicative factor in the accep-

tance probability of an update, like the Wð�� 0 ! ��Þ=Wð�� ! �� 0Þ
needed in biased Gaussian steps [see eq. (4)].

The MC class as such is for constant-temperature simulations.

With methods for such simulations available, little extra effort is

required to implement simulated annealing25 for stochastic opti-

mization and generalized-ensemble methods such as simu-

lated18,19 and parallel21,22 tempering. In the current version of

PROFASI, a SimAnneal class for simulated annealing and a

SimTemp class for simulated tempering are available, both

implemented as derived classes of the MC class. In simulated

tempering, the user has to specify the number and range of tem-

peratures to be used, the simulation parameters gk [see eq. (5)],

and the number of conformational updates between two tempera-

ture updates. Given this input, the SimTemp class changes the

temperature appropriately.

Observables

PROFASI provides a large number of interface functions that

can be used to monitor various observables. Documentation for

different classes contains information about such interface func-

tions provided by them. Where to look for an interface function

depends on the character of the observable. For instance, the

end-to-end distance is a description of a polypeptide chain rather

than of an amino acid or an atom. So, to access the end-to-end

distance, the user should look for an appropriate function in the

Protein class.

Frequently used and sophisticated observables such as the

root-mean-square deviation (RMSD) from a reference structure

are implemented as individual classes, for easy use. The RMSD

determination involves a minimization with respect to all possi-

ble rotations and translations. The ProteinRMSD class per-

forms this calculation using closed-form algebraic expressions

based on singular-value decomposition, without involving any

search. Monitoring of native contacts and native hydrogen bonds

can be handled conveniently using the ContactMap class.

When adding new observables, it is important to have easy

access to information about individual atoms, particular torsion

angles, etc. One way of accessing a certain atom was mentioned

under Building Blocks, but the Protein and AminoAcid

classes also provide many other ways to address individual

atoms. For instance, the ith backbone atom of Protein p can

be accessed by writing p.backbone_atom(i), and the ith
side-chain atom of AminoAcid a can be accessed by writing

a.sidechain_atom(i). Table1 summarizes the order in

which side-chain atoms are returned for the different amino

acids.

Table 1. Order of Side-Chain Atoms in the Program.

Amino

acid Side-chain atoms

G Ha
2

A Cb,Hb
1,Hb

2,Hb
3

V Cb,Hb,C�1,C�2,H�1
1,H�1

2,H�1
3 ,H�2

1 ,H�2
2 ,H�2

3

L Cb,Hb
1,Hb

2,C�,H�,C�1,C�2,H�1
1,H�1

2,H�1
3,H�2

1,H�2
2 ,H�2

3

I Cb,Hb,C�1,C�2,H�2
1 ,H�2

2 ,H�2
3 ,H�1

1 ,H�1
2 ,C�1,H�1

1 ,H�1
2 ,H�1

3

S Cb,Hb
1 ,Hb

2 ,O�,H�
T Cb,Hb,O�1,C�2,H�2

1 ,H�2
2 ,H�2

3 ,H�1
C Cb,Hb

1,Hb
2 ,S�,H�

M Cb,Hb
1,Hb

2,C�,H�
1 ,H�

2,S�,C",H"
1 ,H"

2 ,H"
3

P Cb,Hb
1,Hb

2,C�,H�
1,H�

2,C�,H�
1,H�

2

D Cb,Hb
1,Hb

2,C�,O�1,O�2
N Cb,Hb

1,Hb
2,C�,O�1,N�2,H�2

1,H�2
2

E Cb,Hb
1,Hb

2,C�,H�
1,H�

2,C�,O"1,O"2
Q Cb,Hb

1,Hb
2,C�,H�

1,H�
2,C�,O"1,N"2,H"2

1 ,H"2
2

K Cb,Hb
1,Hb

2,C�,H�
1,H�

2,C�,H�
1,H�

2,C",H"
1,H"

2,N�,H�
1,H�

2,H�
3

R Cb,Hb
1,Hb

2,C�,H�
1,H�

2,C�,H�
1,H�

2,N",H",C�,N�1,H�1
1 ,H�1

2 ,N�2,

H�2
1 ,H�2

2

H Cb,Hb
1,Hb

2,C�,C�2,N"2,C"1,N�1,H�2,H"1,H�1
F Cb,Hb

1,Hb
2,C�,C�1,C"1,C�,C"2,C�2,H�1,H"1,H�,H"2,H�2

Y Cb,Hb
1,Hb

2,C�,C�1,C"1,C�,C"2,C�2,H�1,H"1,O�,H"2,H�2,H�
W Cb,Hb

1,Hb
2,C�,C�1,N"1,C"2,C�2,C"3,C�3,C�2,C�2,H�1,H"1,H"3,H�3,

H�2,H�2

For an AminoAcid object a, the function a.sidechain_atom(i)

returns the ith side-chain atom, starting from Cb (Ha
2 for Gly). This table

shows the correspondence of the side chain atoms with the integer i. The
heavy atoms are labeled as in the Protein Data Bank (PDB). Hydrogen

atoms are labeled according to which heavy atom they are attached to.

1552 Irbäck and Mohanty • Vol. 27, No. 13 • Journal of Computational Chemistry

Journal of Computational Chemistry DOI 10.1002/jcc

To simplify the handling of repeated tasks relating to observ-

ables, two structures are provided, the Observable base class

and the ObsHandler class. The Observable class repre-

sents anything that has a Name() and a Value() which

returns a double. All energy classes and the ProteinRMSD

class discussed above inherit from this base class. The

ObsHandler class performs tasks such as keeping a record of

all observables, writing a specified set of them into the run-time

history file (see Getting Started), and averaging and maintaining

histograms of the subset of all observables on which such opera-

tion is desired. In addition, it can optionally save the state of all

the histograms at regular intervals, so that the program can be

restarted with the histograms resuming their sampling from the

end of one run. A new observable that calculates a property of

the system and returns a double precision number can be passed

to the ObsHandler object H by writing

H.track(&myobs,‘‘rt avg his’’);

The observable handler H then tracks this observable with the

given options, that is, it puts its value to the run-time history file

‘‘rt’’, prints its average at different temperatures in the ‘‘aver-

ages’’ file, and maintains a histogram of this observable and

saves it regularly. Each Observable also returns an estimate

for its range, which is used by the ObsHandler object to auto-

matically set the range of the corresponding histograms. It is

possible to manually specify the number of bins and the range

of the histograms for one observable by writing

H.setHist(obsname,nbins,xmin,xmax);

The column of the ‘‘rt’’ file corresponding to one observable can

be found in the ‘‘rtkey’’ file, created by the ObsHandler object.

Performance

To give an idea of the speed of the program, we show in

Table2 the time required to perform one billion elementary

Monte Carlo steps for a few different single- and multi-chain

systems. The runs were carried out on a 64-bit AMD Opteron

2.2-GHz processor, using the gcc 3.3.3 compiler. All the sys-

tems were studied using simulated tempering, with the same

choice of temperatures (eight temperatures, ranging from 275

to 369 K). The relative frequencies for the different updates

were the same in all runs, except that the multi-chain runs con-

tained a small fraction of rigid-body moves which were not

used for single chains.

The five single-chain runs in Table 2 contain between 131 and

304 atoms. The computer time per Monte Carlo step shows a

roughly linear increase with the number of atoms for these chains.

Without the cell list method, this scaling of time with system size

would be quadratic for large systems. For the systems of 1, 3, 6,

and 10 Ab16–22 peptides, the computer time per Monte Carlo step

increases slower than linearly with the number of atoms. This

behavior is possible because all the updates act on individual

chains, which means that the fraction of atoms moved by an

update is never larger than the inverse number of chains. Care

has to be taken so that the program takes advantage of this fact.

Finally, we note in Table 2 that the computer time per Monte

Carlo step per atom is significantly smaller for the system of 10

GNNQQNY peptides than for the system of 10 Ab16–22 peptides.

This difference reflects a difference in physical behavior. The

GNNQQNY simulation is faster because the propensity to aggre-

gate is lower for this system than for the Ab16–22 system; an

update typically takes longer if the atoms are densely packed.

To obtain the computational cost, the time per Monte Carlo

step has to be multiplied by the number of steps needed to faith-

fully sample the conformation space. Our experience is that a

run with 1–2 billion steps is sufficient to get a good picture of

the thermodynamic behavior of single chains with about 20

amino acids, and that reasonable estimates of statistical errors

can be obtained from 10 such runs. A run of this length is,

by contrast, somewhat short for the two 10-chain systems in

Table 2. To obtain reliable results for these systems, including

error estimates, we recommend using 10 runs with at least 5 bil-

lion steps. Each such simulation requires 1–2 weeks on the com-

puter that was used for the runs in Table 2.

Installation

Installation of PROFASI is easy: download, unpack, and run

make. Small adjustments might have to be made in the Makefile

to set the path to one particular compiler, and to specify

compiler- or machine-specific optimization options. The package

comes with a Makefile assuming gcc as the compiler. But the

program has been tested with the Intel compiler and Portland

Group’s compiler suite. PROFASI is an independent package,

and does not depend on any other scientific package to be in-

stalled. Only standard Cþþ libraries are needed.

Getting Started

PROFASI includes a basic set of application programs which

can be immediately used without changing anything inside the

code. A convenient interface is provided through a configuration

Table 2. Time Taken Per One Billion Elementary Monte Carlo Steps for

Some Representative Systems.

Peptide Chains Amino acids Atoms

Hours/billion

MC steps

Trp cage 1 20 304 18

GB1p 1 16 247 15

Fs 1 21 266 17

C-peptide 1 13 192 12

Ab16–22 1 7 131 10

Ab16–22 3 21 393 25

Ab16–22 6 42 786 36

Ab16–22 10 70 1310 62

GNNQQNY 10 70 1070 35

Trp cage (PDB code 1L2Y) is a compact helical ‘‘miniprotein’’26; GB1p

is the 41–56-residue fragment from the protein G B1 domain, which

makes a b-hairpin27; Fs is a designed Ala-based a-helix28; the C-peptide

is an a-helix that was studied together with GB1p in a recent test of

different force fields29; Ab16–22 is a fibril-forming seven-residue frag-

ment30 of the Alzheimer’s amyloid-b peptide; GNNQQNY is a fibril-

forming seven-residue fragment31 from the amyloid yeast protein Sup35.

Acetyl and amide capping groups were included in the simulations of

Ab16–22 and the C-peptide. For the Fs peptide we used succinyl and NH2

as N- and C-terminal capping groups.

1553PROFASI: A Monte Carlo Simulation Package for Protein Folding and Aggregation

Journal of Computational Chemistry DOI 10.1002/jcc

file called ‘‘settings.prf’’, in which many program variables can

be set. This file is read in by many application programs, and it

is normally here that one puts information about the amino acid

sequence, the size of the periodic box, the number of tempera-

tures and the temperature range, the length of the simulation,

and many other variables. All these variables can be changed

without the need to recompile the program. A list of variables that

can be set and the syntax to be used can be found in the documen-

tation. It is sufficient to have just this settings file in the directory

where the program is being run. For instance, if you wish to start

a simulation of five chains of the peptide Acetyl-Lys-Leu-Val-

Phe-Phe-Ala-Glu-NH2 in a periodic box of size 50 Å, the simplest

settings file should have the following lines:

add_chain 5 < Acetyl KLVFFAE Amide >

box_length 50

With this settings file in a directory, one runs the program ‘‘sim-

temp.ex’’ (located in the ‘‘app’’ directory; run it either with its full

path or through a symbolic link) to perform a simple simulation

on a single processor. The program performs a simulation of the

specified five-chain system using simulated tempering, with default

values for all unspecified parameters, and writes information to

different files in a directory called ‘‘n0’’. The calculations can also

be performed using the executable simtemp.mex, which is meant

to be used in the parallel mode through mpirun (from MPICH32).

This program can be used to collect statistics by running inde-

pendent simulations of the same system on different nodes. Run-

ning it on 10 nodes creates 10 directories ‘‘n0’’, . . . , ‘‘n9’’ with

the output from each process written in a separate directory.

Among other things, these programs produce a run-time history

file called ‘‘rt’’ in their output directories (e.g., ‘‘n0’’). This file

records the state of the system at regular intervals. The first col-

umn is the number of Monte Carlo cycles (one cycle corresponds

to 100 elementary Monte Carlo steps by default), and the other

columns record the temperature, energy terms, and other proper-

ties. A key to what the different columns mean is found in the

‘‘rtkey’’ file. The ‘‘averages’’ file generated by each run stores

mean and standard deviation for various quantities, like energy

and secondary-structure contents, at the different temperatures.

The settings file above, although functional, is only meant to

be illustrative. It omits a lot of variables which causes them to

fall back to some defaults. In a typical application, the user

would control many more aspects through this file.

An Example Application Program

The interface provided through the settings file is powerful enough

to do a wide range of simulations without changing any code. For

example, all the folding and aggregation simulations mentioned in

the Introduction8,10 can be done by only changing the settings file

and running the same program. Changing only the settings file is,

on the other hand, insufficient if, for instance, a new measurement

or some other statistics is desired. The user then needs to write an

application program like those in the ‘‘app’’ directory. In the appli-

cation programs, an Interface class is implemented with the

following three important member functions.

� Run(int rank, int nruns), which is called by a very

small main() function or by the MPICH interface. The

rank and nruns arguments can be used to redirect output

from one process to a unique directory and to ensure differ-

ent random number seeds in parallel runs. This function is

intended to do what the main() function normally does.

� Init(. . .), which is called by the Run() function, and

carries out all required initializations.

� Optionally a ParseCommands(const char *) function,

which is called by the Init() function. This function takes

a file name as the argument (normally ‘‘settings.prf’’) and sets

up different variables of the program based on the contents

of that file.

An example of an application program can be found in

Figure 1. This program simulates three chains of the Alzhei-

Figure 1. An example application program for PROFASI. Applica-

tion programs are written as Interface classes. The main()

function merely transfers control to the Run() member function of

the Interface class, after performing possible system-specific ini-

tialization steps not directly related to the model, like for instance,

after determining the rank and number of runs in an MPI run. The

code shown here is part of the program ‘‘example.cc’’ in the ‘‘app’’

directory of the package.

1554 Irbäck and Mohanty • Vol. 27, No. 13 • Journal of Computational Chemistry

Journal of Computational Chemistry DOI 10.1002/jcc

mer’s Ab16–22 peptide with acetyl and NH2 groups as N and C

terminal capping groups, respectively. The Interface class

inherits from InterfaceBase, in which we have defined the

default behavior of the entire model. It has a population object

p which is empty, a mc object mc, and instances of the energy

and update classes described in this article. By default all these

energies and updates are used, and their initialization is handled

through this base class. The base class knows nothing about

observables, and is meant to be a pure representation of the

Monte Carlo engine. The Interface, while inheriting its

properties, augments it with an ObsHandler object, which is

set to track the values of all default energy functions, as well as

secondary structure of the chains, and RMSD when appropriate.

For single-chain systems the rigid-body updates are switched

off, unless they are switched on explicitly by the user.

The Interface class provides a purpose to the base class.

It fills the population with a certain number of Proteins. It

has a Run function in which the user specifies what is to be

done with the population. Here one can also make changes such

as skipping default updates or energies and adding new ones,

adding new observables, etc., as illustrated in Figure 1. With

such an Interface class defined, one only needs a small

main() function to instantiate an interface object and transfer

control to its Run() member function.

Inside the Run() function, the two functions RunCycle()

and SwitchTemp() are called. RunCycle() performs a prede-

fined number of conformational updates (default is 100), whereas

SwitchTemp() is responsible for the temperature update.

The SimTemp object looks for the parameters gk of eq. (5) in

a file called ‘‘gpars.in’’. When the file is not found, the gk’s are set

to zero, which normally leads to uneven probabilities for different

temperatures. At any point of a simulation, the ‘‘gpars.out’’ file

contains recommendations for these gk parameters based on the

statistics collected so far, which can be used as input values

for a new run. Several such iterations may be required before

the calculated gk parameters are reasonably close to the input

values. Before this is achieved, the different temperatures are

not uniformly scanned, and the evolution of the system is

likely to be slow.

Summary

The program package PROFASI implements a model that con-

tains all atoms of the protein chains, but which has a force field

that is simpler than the typical all-atom force field. PROFASI

provides a Cþþ platform for folding and aggregation studies of

this model, but might also be useful for studies based on other

models with a similar structure. Special attention has been

devoted to developing a code that runs efficiently in both single-

and multi-chain applications.

Acknowledgments

The authors thank Giorgio Favrin, Simon Mitternacht, Björn

Samuelsson, Fredrik Sjunnesson, and Stefan Wallin for valuable

discussions at different stages of this work.

References

1. Gnanakaran, S.; Nymeyer, H.; Portman, J.; Sanbonmatsu, K. Y.;

Garcı́a, A. E. Curr Opin Struct Biol 2003, 13, 168.

2. Pearlman, D. A.; Case, D. A.; Caldwell, J. W.; Ross, W. R.;

Cheatham, T. E., III; DeBolt, S.; Ferguson, D.; Seibel, G.; Kollman,

P. Comput Phys Commun 1995, 91, 1.

3. Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.;

Swaminathan, S.; Karplus, M. J Comput Chem 1983, 4, 187.

4. Lindahl, E.; Hess, B.; van der Spoel, D. J Mol Model 2001, 7, 306.

5. Eisenmenger, F.; Hansmann, U. H. E.; Hayryan, S.; Hu, C. K. Com-

put Phys Commun 2001, 138, 192.

6. Irbäck, A.; Samuelsson, B.; Sjunnesson, F.; Wallin, S. Biophys J

2003, 85, 1466.

7. Irbäck, A.; Sjunnesson, F. Proteins 2004, 56, 110.

8. Irbäck, A.; Mohanty, S. Biophys J 2005, 88, 1560.

9. Cochran, A. G.; Skelton, N. J.; Starovasnik, M. A. Proc Natl Acad

Sci USA 2001, 98, 5578.

10. Favrin, G.; Irbäck, A.; Mohanty, S. Biophys J 2004, 87, 3657.

11. Irbäck, A.; Mitternacht, S.; Mohanty, S. Proc Natl Acad Sci USA

2005, 102, 13427.

12. Hockney, R. W.; Eastwood, J. W. Computer Simulations Using Par-

ticles; McGraw-Hill: New York, 1981.

13. Metropolis, N. A.; Rosenblut, A. W.; Rosenblut, M. N.; Teller, A.;

Teller, E. J Chem Phys 1953, 21, 1087.

14. Lal, M. Mol Phys 1969, 17, 57.

15. Madras, N.; Sokal, A. D. J Stat Phys 1988, 50, 109.

16. Favrin, G.; Irbäck, A.; Sjunnesson, F. J Chem Phys 2001, 114, 8154.

17. Dodd, L. R.; Boone, T. D.; Theodorou, D. N. Mol Phys 1993, 78, 961.

18. Lyubartsev, A. P.; Martsinovski, A. A.; Shevkunov, S. V.; Vorontsov-

Velyaminov, P. N. J Chem Phys 1992, 96, 1776.

19. Marinari, E.; Parisi, G. Europhys Lett 1992, 19, 451.

20. Irbäck, A.; Potthast, F. J Chem Phys 1995, 103, 10298.

21. Swendsen, R. H.; Wang, J.-S. Phys Rev Lett 1986, 57, 2607.

22. Hukushima, K.; Nemoto, K. J Phys Soc Jpn 1996, 65, 1604.

23. Hansmann, U. H. E. Chem Phys Lett 1997, 281, 140.

24. Irbäck, A.; Sandelin, E. J Chem Phys 1999, 110, 12256.

25. Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P. Science 1983, 220, 671.

26. Neidigh, J. W.; Fesinmeyer, R. M.; Andersen, N. H. Nat Struct Biol

2002, 9, 425.

27. Blanco, F. J.; Rivas, G.; Serrano, L. Nat Struct Biol 1994, 1, 584.

28. Lockhart, D. J.; Kim, P. S. Science 1993, 260, 198.

29. Yoda, T.; Sugita, Y.; Okamoto, Y. Chem Phys 2004, 307, 269.

30. Balbach, J. J.; Ishii, Y.; Antzutkin, O. N.; Leapman, R. D.; Rizzo,

N. W.; Dyda, F.; Reed, J.; Tycko, R. Biochemistry 2000, 39, 13748.

31. Nelson, R.; Sawaya, M. R.; Balbirnie, M.; Madsen, A. Ø.; Riekel,

C.; Grothe, R.; Eisenberg, D. Nature 2005, 435, 773.

32. Gropp, W.; Lusk, E.; Doss, N.; Skjellum, A. Parallel Comput 1996,

22, 789.

1555PROFASI: A Monte Carlo Simulation Package for Protein Folding and Aggregation

Journal of Computational Chemistry DOI 10.1002/jcc

