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Abstract

Motivation: The amount of sequenced genomes and proteins is growing at an unprecedented

pace. Unfortunately, manual curation and functional knowledge lag behind. Homologous inference

often fails at labeling proteins with diverse functions and broad classes. Thus, identifying high-level

protein functionality remains challenging. We hypothesize that a universal feature engineering ap-

proach can yield classification of high-level functions and unified properties when combined with

machine learning approaches, without requiring external databases or alignment.

Results: In this study, we present a novel bioinformatics toolkit called ProFET (Protein Feature

Engineering Toolkit). ProFET extracts hundreds of features covering the elementary biophysical

and sequence derived attributes. Most features capture statistically informative patterns. In add-

ition, different representations of sequences and the amino acids alphabet provide a compact,

compressed set of features. The results from ProFET were incorporated in data analysis pipelines,

implemented in python and adapted for multi-genome scale analysis. ProFET was applied on 17 es-

tablished and novel protein benchmark datasets involving classification for a variety of binary and

multi-class tasks. The results show state of the art performance. The extracted features’ show

excellent biological interpretability. The success of ProFET applies to a wide range of high-level

functions such as subcellular localization, structural classes and proteins with unique functional

properties (e.g. neuropeptide precursors, thermophilic and nucleic acid binding). ProFET allows

easy, universal discovery of new target proteins, as well as understanding the features underlying

different high-level protein functions.

Availability and implementation: ProFET source code and the datasets used are freely available at

https://github.com/ddofer/ProFET.

Contact: michall@cc.huji.ac.il

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The most used approaches in protein classification rely on distance

measures between sequences based on various alignment methods

(e.g. Smith-Waterman, BLAST). With the growth in the amounts

and diversity of protein sequences, more sophisticated methods have

been introduced (e.g. PSSM, Profile-Profile, HMM-HMM)

(Jaakkola et al., 2000; Soding, 2005). These methods are based on

multiple sequence alignments for improving remote homologs

detection (Edgar and Sjolander, 2004; Karplus et al., 1998).

Incorporating 3D-structure as a seed for the statistical models fur-

ther improved the quality of protein domains and families (e.g.

Pfam) (Finn et al., 2014; Sonnhammer et al., 1997). Currently, there

are �27 000 such models (InterPro, Mulder and Apweiler, 2007)

that cover 83% of all sequences in UniProtKB (2014_10). Function

assignment is gained from mapping InterPro models to Gene

Ontologies (i.e. InterPro2GO). An alternative model-free approach
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was proposed (Portugaly et al., 2002). The assessment of large-scale

automatic protein functional annotations (Radivojac et al., 2013;

Rost et al., 2003) and the contribution of alternative approaches to-

ward this task have been extensively discussed (e.g. Valencia, 2005).

Despite the strength of the model-based methods, in many in-

stances the local sequence-based methods fail to reliably assign a

function (Rentzsch and Orengo, 2009). This is best demonstrated by

the limitation in classifying proteins by their 3D-folds (Greene et al.,

2007; Todd et al., 2005). Notably, the classification of some biolo-

gical niches is especially suited for feature representation. For ex-

ample, routine annotation tools fail to confidently assign function

for bioactive peptides and short proteins (Naamati et al., 2009). A

number of previous studies focus on feature extraction from whole

protein sequences (Cao et al., 2013; Ding and Dubchak, 2001;

Dubchak et al., 1995; Nanni et al., 2014; van den Berg et al., 2014)

as a starting input for machine learning (ML) approaches. Structural

benchmark from SCOP and CATH (Lewis et al., 2013) are fre-

quently used to assess the predictive ML methods. Specialized pre-

dictors have been presented for structural tasks including secondary

structure, solvent accessibility, stability, disordered regions, domains

and more (Cai et al., 2001; Cheng et al., 2005; Ding and Dubchak,

2001). ML approaches have proven suitable to classify protein prop-

erties beyond their 3D-structure. SVMProt was tested on preselected

50 functional families from Pfam (Chou and Cai, 2003). Naive bio-

physical features classification outperformed simple sequence-based

methods for a number of protein families (Varshavsky et al., 2007).

However, the most likely advantage of the feature and pattern-based

ML approach is toward high-level functionality (e.g. Pe’er et al.,

2004). Examples for such predictions include protein–protein inter-

actions (Bock and Gough, 2001; Cheng and Baldi, 2007), discrimi-

nating outer membrane proteins (Gromiha and Suwa, 2005),

membrane topology (Nugent and Jones, 2009), subcellular localiza-

tion (Hua and Sun, 2001) and more. The strongest features learned

by the ML classifiers often expose biologically important motifs

(Leslie et al., 2004).

In this study, we focus on the ability of elementary biophysical

features together with a rich set of engineered representation of pro-

teins to classify high-level protein functions. These features are

suited for both supervised and unsupervised classification. Our goal

is to illustrate the importance of ProFET (Protein Feature

Engineering Toolkit) as a ‘one size fits all’ framework for represent-

ing whole protein sequence. We present a universal, modular work-

flow for protein function classification: (i) feature generation and

extraction from primary sequences (ProFET). (ii) Application of the

extracted features in a ML framework for binary or multi-class par-

tition. (iii) Presentation of discriminative classification power. (iv)

Identification of patterns and features that underlie the successful

classification (‘Feature Selection’).

2 Methods

2.1 Protein databases and datasets
In gathering the protein sets in this study, we used datasets made

available by (i) custom sets gathered from public databases such as

UniProtKB (Wu et al., 2006) and SCOPe (Fox et al., 2014) and (ii)

benchmarks extracted from publications. For both resources, we

applied CD-Hit and USearch (Edgar, 2010) to remove redundant se-

quences according to a predefined % of sequence identity. As a rule,

we used only classes that contain a minimal number of samples per

group (typically 40, after redundancy removal). Sequences with un-

known amino acid (AA), errors or sequences that are shorter than

30 AA were removed. We included in the analysis the most recent

SCOP classification (2.05, 71015 PDB entries pre-filtering) as some

literature-based benchmarks from SCOP were outdated (Chandonia

et al., 2004).

2.1.1 Specialized protein functions

• Neuropeptide precursors (NPPs): The keyword ‘neuropeptide’ is

acquired from SwissProt (SWP) and UniRef90 representatives.

We removed proteins that contain the terms ‘fragment’ and

‘receptor’.
• Ribosomal proteins: Acquired from SWP and partitioned to

Archea, Bacteria and Eukarya. Redundancy filter was set to

20–40% identity (according to the set size).
• Thermophilic proteins: The ThermoPred benchmark dataset (Lin

and Chen, 2011) was used, with a further redundancy removal

(at 40% identity threshold).

2.1.2 Cellular localizations

• LocTree3 benchmark (Yachdav et al., 2014) for Eukarya and

Bacteria were used. Filtered at 40% identity within each class.
• Mammalian subcellular localization: Protein-organelle pairs are

acquired from SWP.
• Uncultured bacterium. Sequences extracted from UniProtKB and

mapped to keyword annotations for major cellular compart-

ments (membrane, cytoplasm, ribosome). Filtered at 50% iden-

tity according to UniRef clusters.

2.1.3 Structural-based classifications

• SCOPe (Release 2.05, February 2015) (Fox et al., 2014). Classes

and folds were defined by SCOP, with 25% or 10% sequence

identity filter (8514 and 6721 sequences, respectively).
• SCOPe (Release 2.05, February 2015) ‘selected class’ defined by

the SCOP class (marked a–k), with classes c,d removed. We also

apply as a benchmark classes ‘a,b,f,g’ at 25% sequence identity

filter. Classes a,b,c,f,g were tested following redundancy removal

at extremely low identity level (10%). The classes that were not

included had small number of folds in each.

2.1.4 Nucleic acids binding proteins

• DNA-binding proteins. Benchmark dataset from DNA binder

(Kumar et al., 2009).
• RNA-binding proteins. Benchmark dataset from BindN (Wang

et al., 2010).

2.1.5 Viral properties and classes

• Virus-host pairs: Acquired from SWP. The set include all viral

proteins partitioned by the kingdom of the hosts. Redundancy fil-

tration (at 40% identity) was performed on the viral proteins but

not on the hosts.
• Capsids: Compilation of two sets of all viral capsid proteins

annotated by SWP: (i) Classes according to host type. (ii) Classes

according to viral replication mode.

The datasets and sequences used are all freely provided online:

https://github.com/ddofer/ProFET.
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2.2 Features
All features extracted by ProFET are directly derived from the pro-

tein sequence and do not require external input (Saeys et al., 2007).

The software packages required for ProFET are part of the scientific

Python distribution. Properties relying on external predictors (e.g.

the 3D structural fold, secondary structure) are not included by de-

fault. However, users can trivially add additional features via the

‘FeatureGen’ script. ProFET can also generate a pre-defined set of

default features for consistency in evaluation and ease of use, call-

able from the command-line.

The features that are described below can be restricted to a seg-

ment of a protein (e.g. each individual third of a sequence). We sup-

port two versions for a subsequence analysis: (i) relative portions

and (ii) fixed lengths. The activation of global feature extraction

combined with segmental consideration is advantageous. It is moti-

vated by the atypical composition of different segments of numerous

protein classes, e.g. the signal peptides, flexible N-terminal linker re-

gions, C-terminal portions of membranous kinases and GPCR recep-

tors, disordered regions and more.

The categories of features currently implemented in ProFET are

as follows.

2.2.1 Biophysical quantitative properties

i. Molecular weight (in Da)

ii. Sequence length (in AA)

iii. pH(I), the isoelectric point

iv. Net Charge at various pH(I)s.

v. Aromaticity the relative frequency of Phe, Trp, Tyr.

vi. Instability index, an estimate for the stability of a protein in

vitro (Gasteiger et al., 2003).

vii. GRAVY (Grand Average of Hydropathy), the sum of hydrop-

athy values of all AA, divided by the number of AA in the ana-

lyzed sequence (Kyte and Doolittle, 1982).

viii. Aliphatic index, the relative volume occupied by aliphatic side

chains (Ala, Val, Ile and Leu) (Gasteiger et al., 2003).

Most of these properties were based on the Expasy proteomics collec-

tion (Gasteiger et al., 2003). The important of these elementary global

features has been previously validated (Varshavsky et al., 2007).

2.2.2 Letter-based features

i. AA composition (single or di-peptide)

ii. Overlapping K-mers.

iii. ‘Mirror’ K-mers. It accounts for K-mers of various combin-

ations of ‘grouped’ AA. For example, lysine-arginine appear-

ance (KR) is grouped together with RK.

iv. Reduced AA alphabets. Grouping of AA secures a compact rep-

resentation. We include a large number of such alphabets from

various sources (Murphy et al., 2000; Peterson et al., 2009) and

some novel alphabet representations of size 14 and 8 (Ofer_14

and Ofer_8, respectively). For the 14 AA representation, the

grouping is for KR, TS and LIVM. For the 8 AA representation,

the grouping is for FYW, ALIVM, RKH, DE and STNQ. The

other AA remain in the uncompressed representation.

2.2.3 Local potential features

i. Potential post-translational modification (PTM) sites. We

included motifs implemented as regular expressions, including

those for ‘known short motif’ dibasic cleavage model (X-X-Lys-

[Lys or Arg], X-X-Arg-Arg, Arg-X-X-[Lys or Arg]; where X

denotes any AA (Southey et al., 2006; Veenstra, 2000). Others

include N-glycosylation and Asp or Asn hydroxylation sites. We

included Cysteine spacer motif that captures the tendency of Cys

to appear in a minimal window (Naamati et al., 2009).

Additional PTM motifs collected from ELM (Dinkel et al.,

2012) were not implemented.

ii. Potential Disorder (FoldIndex). Local regions of disorder are

predicted using the naive FoldIndex (Prilusky et al., 2005) and

TDP-IDP methods (Campen et al., 2008; Klus et al., 2014).

FoldIndex predicts the disorder as a function of the hydrophobic

potential and net charge.

2.2.4 Information-based statistics

These features aim to capture the non-randomly distribution of each

AA in the sequence, based on the concept of information entropy.

The information-based features used are:

i. Total entropy per letter, as a whole

ii. The binary autocorrelation

iii. Autocorrelation with Selected letters. For example, K, R or C is

denoted as ‘1’ and the rest as ‘0’. Lag is then computed. For de-

tails, see Ofer and Linial (2014).

2.2.5 AA scale-based features

AA propensity scales map each AA to a quantitative value that rep-

resents physicochemical or biochemical properties, such as hydropa-

thicity or size. These scales can then be used to represent the protein

sequence as a time series, typically using sliding windows of differ-

ent sizes and to extract additional features.

ProFET includes a wide array of scales, ranging from the estab-

lished propensities for hydrophobicity and flexibility/B-factors

(acquired from Expasy), to ‘optimal’ and maximally independent

derived scales (Atchley et al., 2005; Georgiev, 2009).

Features derived from these scales include:

i. Averages for the sequence as a whole, for different window

sizes.

ii. Quartile averages (e.g. top 25%).

iii. Maximum and minimum values for a given scale and window-

size along the entire sequence.

iv. Autocorrelation.

2.2.6 Transformed CTD features (Dubchak et al., 1995)

We implemented the Dubchak and ProFEAT CTD features (hydro-

phobicity, normalized Van der Waals volume, polarity, polarizabil-

ity, charge, secondary structure and solvent accessibility

hydrophobicity, normalized Van der Waals volume, polarity, polar-

izability, charge, secondary structure and solvent accessibility)

(Dubchak et al., 1995; Li et al., 2006). Code from Spice (van den

Berg et al., 2014) and (Cao et al., 2013) was also integrated. An add-

itional subdivision of disorder propensity was adapted from

Composition Profiler (Vacic et al., 2007): 1:‘ARSQEGKP‘,

2:‘ILNCFYVW’ and 3:‘DHMT’.

The features used are:

i. Composition (C) is the number of AA of a particular property

divided by the total number of AA.

ii. Transition (T) is the number of transitions from a particular prop-

erty to different property, divided by (total number of AA�1).

iii. Distribution (D) captures is the chain length within which the

first 25%, 50%, 75% and 100% AA of a particular property

are located.
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2.3 Evaluation
The power of any of the predictor proposed is tested by several rou-

tinely used evaluation methods. We measure the performance for

the binary and multiclass tasks with the same metrics: F1 score (the

weighted average of the precision and recall) and Accuracy (Acc).

These parameters are defined as:

• F1¼2*TP/(2TPþFPþFN)
• Ac¼ (TPþTN)/(TPþTNþFPþFN)

TP represents the number of the correctly recognized proteins.

FP, the number of proteins wrongly identified and FN the number of

proteins missed. Performance is evaluated using cross-validation.

Specifically, multiple rounds of randomized stratified cross valid-

ation (‘Stratified Shuffle Split’), with 18% holdout for each iteration

(unless mentioned otherwise). Features were filtered prior to cross

validation and testing using a simple univariate filter for statistical

significance (a�0.01, Bonferroni multiple testing family wise

error rate corrected; analysis of variance one-way F-test). This pre-

filtering step at the cross validation phase had a negligible impact on

the overall performance (not shown).

2.4 Feature selection
A wide array of methods for supervised and unsupervised feature se-

lection can be applied to identify the best features, implemented

with the superlative Scikit learn toolkit (Abraham et al., 2014).

These include wrapper methods—Random Feature Elimination

(Ozcift, 2012), model-based filtering [e.g. support vector machine

(SVM) classifiers with a L1 Loss penalty, for sparse coefficients],

statistical filtering, stability selection, PCA, etc.

In the test cases, we used the RFE method, combined with an

underlying non-linear ensemble of classifiers (Random forests). The

underlying principle is iterative fitting of the classifier on the data,

with the weakest features being pruned at each of the iterations

(Abraham et al., 2014). We examined the selected features, and the

model classification performance with the reduced set of features,

and show novel, interpretable features, as well as excellent retained

performance.

3 Results

3.1 ProFET outline
We introduce two test cases to illustrate the potential of ProFET to

provide a generic platform for analyzing the basis of high-level func-

tionality in proteins.

Classifying thermophile proteins was used as a test case for a bin-

ary classification of functionality that is not explicitly derived from

the sequence. Classifying neuropeptide (NP) hormone precursors

serves to assess the classification of poorly studied protein niche

(Karsenty et al., 2014). We generalize the approach to a range of

from subcellular localization to viral phylogeny tasks (see Section

2.1.1–2.1.5). In all the illustrated cases, ProFET was used as a gen-

eric framework for feature extraction and prediction. External

information that is often available (e.g. the family PSSM, GO anno-

tation, structural prediction and disorder predictors) was not

included.

The workflow is composed of modular sections (Fig. 1)

1. ProFET: Feature extraction from any protein sequences.

Extracted features can be analyzed independently (suitable for

ML analysis or unsupervised tasks) or discriminatively (i.e. seek-

ing contrast between groups of proteins).

2. Model Selection: The features are used to train and tune differ-

ent ML models. For any given performance metric (e.g. preci-

sion), the optimal model and hyper-parameters are selected.

3. Performance Report: Classification performance is measured for

a given model and dataset, using cross-validation.

4. Feature Selection: Informative features are selected and their im-

portance measured using different methods. These methods in-

clude the statistical significance, wrapper methods, model-based

selection, stability selection and more.

5. New sequences can be predicted using a trained ML model. This

can be applied via the feature extraction pipeline or with a se-

lected smaller subset of the selected features.

3.2 ProFET workflow—case studies
We selected three datasets to illustrate the performance of ProFET

and its workflow (Fig. 1).

3.2.1 Positive–negative protein sets

Set 1: Thermophiles are proteins that function under high tempera-

ture. Given the extreme environmental conditions, we expect to de-

tect biophysical signatures in these proteins underlying their

thermostability. We used a benchmark dataset of 915 thermophilic

and 793 non-thermophilic (Mesophile) proteins that were further fil-

tered to insure <40% sequence identity between sequences within

each group (Lin et al., 2005).

Set 2: NPPs are pre-pro-polypeptide precursors of NPs. These

are secreted proteins. Routine sequence alignment-based methods

are insufficient to identify the immensely diverse NPs. In compiling

a dataset, we used as a negative set a collection of proteins with

Signal peptides, which lacked validated TMD (and therefore, most

likely to be secreted). We keep the same (atypical) range of lengths

to match the labeled NPPs. Both the positive and negative datasets

have Signal peptides confirmed and cleaved using SignalP (Petersen

et al., 2011). The negative (non-NPP) dataset was filtered using

Usearch (Edgar, 2010), so that proteins in the negative set shared no

sequence similarity (cutoff of 10% identity was applied). The final

dataset held 2309 negatives and 1269 NPPs. Note that in the case of

NPPs, we expect many unidentified NPP peptides among the pro-

teins in the negative set.

Set 3: Uncultured bacteria account for �250 K proteins in

UniProtKB (Wu et al., 2006). We restricted the test to those having

GO annotations for ‘ribosome’, ‘membrane’ or ‘cytoplasm’. Proteins

were filtered for redundancy according to UniRef50 classification,
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Fig. 1. The ProFET framework: merging machine-learning protocols, cross-

validated tuning, feature selection and prediction
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leaving 15 995 sequences, 59.2% of them being ‘membrane’

proteins.

3.2.2 Classification results

For all three sets (as in Section 3.2.1), we obtained almost perfect

classification. Classification was performed using a random forest

classifier, implemented in Scikit learn (see Section 2). Figure 2A

shows the results of the classifications for the set of the

Thermophilic proteins and the NPPs as confusion matrices. Results

were derived from 10-fold stratified cross validation. In both sets,

the number of missed classified (FN and FP) is below 5% for the

NPPs (63 and 110 proteins as FN and FP, respectively). For the set

of the thermophiles, the missed classifications of the FN and FP

reach 6% and 10%, respectively. Figure 2B shows the performance

as receiver operating characteristics curves. Performance was meas-

ured using an automatically tuned SVM with a radial basis function

(RBF) kernel, with 15-fold stratified cross validation. The perform-

ance was very high with a FP rate of 0.1 and the AUC for both tests

reaching 0.97 (out of a maximum of 1.0).

Uncultured bacteria comprise a set of poorly characterized pro-

teins (Set 3). We trained proteins that mapped three main compart-

ments in bacterium (membrane, cytoplasm, ribosome, total of

15 995 sequences). The localization performance for the multi-class

task is very convincing (tested via 12 rounds of stratified shuffle split

cross-validation). The F1 score is 0.917 (60.01 SD); accuracy is

0.916 (60.01 SD).

We further used a combination of ML approach with naive PSI-

Blast search. We activated PSI-Blast (three iterations, default param-

eters) on sets 1 and set 2 (Thermophiles and NPPs sets). The most

significant E-value was used for each sequence as an approximate

distance matrix. We then trained a K-nearest-neighbors classifier

and recorded the performance. We also used an unsupervised, clus-

tering approach (spectral clustering and K-means) and compared

these clusters to the ‘true’ labels.

Clustering performance was significantly lower than reported

(Fig. 2). The best results for the Psi-Blast test were obtained from

Spectral clustering model. For the NPP set (total of 3370 proteins),

the F1 score is 0.56. The similar analysis for the Thermophile/

Mesophile proteins reached F1 score of 0.29 (total of 1708 pro-

teins). To make sure that the poor performance is not dependent on

the choice of the ML methodology, we repeated the analysis for a

classification by K-nearest neighbors classifier (k¼1 or 2). The data

were split 80/20 into evaluation and hold-out sets, and the best par-

ameters on the evaluation set were determined by 4-fold cross valid-

ation. For the NPP and Thermophile sets, the accuracy on the

‘evaluation set’ was 62.8% (60.16 SD) and 48.9% (60.03 SD), re-

spectively. The F1 score for the hold-out sets were 0.61 and 0.44 for

sets 2 and 1, respectively.

3.3 Post-training feature selection
In addition to the success of the predictors, interpretability of the

features that best contributed to the performance is a crucial know-

ledge. Several methods for feature selection can be applied to iden-

tify a minimal set of such features. We applied a combination of

Random Forests (an ensemble of decision tree classifiers) with the

Random Feature Elimination wrapper method.

In each of the iterations, the weakest features are removed and

the model is then retrained with the remaining features, until the

preselected desired amount of features remains. Performance of the

reduced feature set is measured using new splits of the training data

and cross validation. Recall that the initial set of (default) generated

features included 771 features. The F-test filter reduced the number

of features to 453 and 544 features for the Thermophiles and NPP

sets, respectively.

3.3.1. Thermophilic proteins—informative features

We note the importance of AA composition, particularly of charged

and polar AA groups. Of further importance are features involving

glutamic acid (E) and glutamine (Q), and the organizational entropy

of E and Q. The relevance of these AA was reported (Lin and Chen,

2011; Zhang and Fang, 2007). We note that merely using the AA

composition would not have captured many of these features.

The classification performance (F1 score) with just 15 features

reached 99.53% of that obtained using all statistically significant

features (F1 score¼0.906; 453 features).

3.3.2 NPPs feature—informative features

As opposed to the features dominating the test case of thermophilic

proteins, in the case of the NPPs, a smaller set of features dominates,

mainly relating to the normalized frequency of putative NPP cleavage

sites, according to the ‘known motif’ model. Further properties of the

basic residues Lys (K) and Arg (R) repeat themselves by virtue of en-

tropy, binary autocorrelation (6/15 features) and more. Additional

features include protein size (Mw and length) and to a lesser extent

some ‘structural’ properties, such as flexibility (‘Flex_min’), and sec-

ondary structural propensities—reflecting the importance of availabil-

ity of the putative cleavage sites and atypical composition of the

putative peptides.

Fig. 2. Performance results for the two datasets used. (A) Confusion matrix of

the classifier performance. Results were derived from 10-fold stratified cross-

validation. The number of FP and FP is shown for thermophiles (left) and NPs

(right). (B) AUC (area under receiver operating characteristics curve)
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Classification performance: (F1 score of the positive class) with

just 15 features was 95.85% of that obtained using all statistically

significant features [0.945 (+ 0.01); 544 features].

Figure 3 shows the types of the 15 strongest features for the two

test cases. Selected features are ranked by relative importance to the

classifier. Feature titles are self-explanatory. For example,

‘ofer14KC’ specifies the reduced AA alphabet ofer14 (see Section

2.2.2) for grouping of KC in the reduced representation.

3.4 Benchmarks’ performance
The workflow applied to our test cases (Section 3.2) was systematic-

ally applied to all the datasets. Each set was measured using 15-fold

randomized stratified cross-validation. For each iteration, a fraction

of the data (18%) is randomly set apart. The framework’s automat-

ically selected the performance of the classifier. The term ‘Dummy -

by majority’ applies to a classifier that always picks the majority

class. Altogether, we present 15 additional datasets (in addition to

the NPPs and Thermophilic proteins). For 76% of the datasets, the

accuracy and F1 Scores are above 80%, while for 35%, the accuracy

is >90% (Fig. 4).

The classification performance for DNA and RNA binding pro-

teins meets the state of the art results obtained by special purpose

predictors (Wang, etal., 2010). This specialized predictor for DNA

and RNA binding proteins relies on the specific evolutionary infor-

mation (e.g., PSSMs) combined with Support Vector Machine

(SVM) (Wang, etal., 2010). 72.42% Accuracy is reported for DNA

binding proteins using a random forest model and extensive feature

selection (Kumar et al., 2009).

We used the same benchmark data to directly assess the perform-

ance. We show (Fig. 4) that our platform reaches a classification

success of 0.72 and 0.79 for DNA and RNA binding proteins, re-

spectively. We conclude that excellent performance is achieved by

using the default setting of the ProFET workflow.

Five of the benchmarks (Supplementary Table S1, Fig. 4) concern

structural SCOP datasets, at the class or fold level. The classification

success varies according to the tasks. For example, the success for

the SCOP ‘selected class’ is very high (0.82–0.9), whereas the per-

formance for the fold classification is much lower (0.62–0.65). Note

that SCOP 25% and SCOP 10% tasks use the same dataset (SCOPe

version 2.05). These sets differ only by the degree of redundancy re-

moval. We found similar levels of accuracy for both sets. The per-

formance (accuracy, F1 score) for all 17 analyzed datasets with

respect to the Dummy-majority classifier is shown (Supplementary

Table S1).

4 Discussion

The main drawbacks in existing sequence-based methods are (i)

some functions cannot be detected by sequence-based methods; (ii)

current statistical models mostly capture local patterns rather than

high-level function and (iii) rare sequences or those that have very

few homologs cannot be successfully used for inference or construc-

tion of good statistical model.

4.1 Compact representations
In this study, we introduce ProFET as a feature extraction platform

that can serve many classification tasks. ProFET was compiled as a

flexible tool for any size of protein sequence. Our platform adds to

previous studies that use quantitative feature representations for

Fig. 4. Classification performance by the Accuracy and F1 score for 17 datasets using the ProFET combined with the ML scheme. Results and SD for the Accuracy

(Acc, dark blue) and the F1-score (light blue, middle) are shown. Dummy predictor is a default classifier for the largest class in the dataset (rightmost, coloured

pink)

Fig. 3. Top 15 informative features that dominate the successful classification

of thermophilic proteins and NPPs
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sequences. The communality in these methods is the transformation

step in which the protein sequences are converted to hundreds or

thousands of features, many of them elementary biochemical and

biophysical properties, while others are statistically derived (e.g. fre-

quency of AA and dipeptides).

ProFET includes many novel additions for the elementary repre-

sentation. For example, features that are based on a reduced alpha-

bets, entropy, high performance AA scales, binary autocorrelation,

sequence segmentation, mirror k-mers and more. Many of these fea-

tures not only improved performance while allowing a compact rep-

resentation but also expose statistical importance properties in

proteins (Fig. 3). The advantage of using reduced alphabet has been

noted for 3D-structure representation (Bacardit et al., 2009) and

more (Weathers et al., 2004).

ProFET results were the input for ML approaches allowing a

rigorous assessment of performance and reaches state of the art re-

sults. Recovering the classification success by a small set of top fea-

tures argues for the power of a compact representation for

understanding the features that dominate any specific tasks.

4.2 The user perspective
Several conclusions can be drawn from the results of the classifica-

tion tasks (Fig. 4):

A. Protein centric analysis: Feature engineering methods pre-

sented in this study should be considered a baseline approach for

whole protein rather than protein domains. Most of our knowledge

from 3D structure and evolution relies on the properties of domains

within proteins. We propose the feature engineering as a comple-

mentary approach to the domain-centric one.

B. ‘One size fits all’: Features that are included in ProFET are

highly relevant to a broad range of proteins. This is in contrast to

methods that customize features for a specific task. The ProFET

pipeline provides a default set of features that is suitable for many

classification tasks. Therefore, ProFET eliminate the need to dupli-

cate the effort for feature extraction.

C. Flexibility of use: Our presented pipeline accepts a single se-

quence, combined files, multiple files or a directory. It automatically

labels the input into classes (if desired) and normalizes the features

(if desired). Thus, any user can use ProFET to set the desired com-

bination of features, representations and normalization. From the

point of view of the user, several considerations were taken:

• Our pipeline handles FASTA files and stores them as labeled CSVs.
• We use state of art, open source, freely available python data sci-

ence tools (such as Pandas, scikit-learn, biopython) (Cock et al.,

2009).
• Easy to add new features using a standardized format.
• Our framework includes details on the features as part of the

data pipeline so results are interpretable.
• Our code is available for academic and non-commercial use,

under the GNU 3 license.

We provide a large collated resource for feature extraction.

Thanks to the modular design of ProFET, adding and tinkering with

features is trivial. Users of ProFET can decide to focus, remove or

expand any subset of the features (e.g. k-mer lengths). ProFET

allows tuning of any number of parameters in the feature generation

pipeline, e.g. the AA scales to use and the elementary window size

for extracting properties. In addition, features can be extracted lo-

cally from the N’ terminals or the C’-terminals or from an arbitrary

segment of the protein.

In summary, the approach presented here is suitable and power-

ful for application towards modern approach for ML especially in

the emerging field of Deep Learning and unsupervised learning of

feature representations. These features can easily experimented with

allowing additional applications of biological insight to the task of

feature engineering.
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