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Abstract 47 

Quality management and independent assessment of high-throughput sequencing-based virus 48 

diagnostics have not yet been established as a mandatory approach for ensuring comparable 49 

results. Sensitivity and specificity of viral high-throughput sequence data analysis are highly 50 

affected by bioinformatics processing, using publicly available and custom tools and databases, 51 

and differ widely between individuals and institutions.  52 

Here, we present the results of the COMPARE (COllaborative Management Platform for 53 

detection and Analyses of [Re-] emerging and foodborne outbreaks in Europe) in silico virus 54 

proficiency test. An artificial, simulated in silico dataset of Illumina HiSeq sequences was 55 

provided to 13 different European institutes for bioinformatics analysis towards the identification 56 

of viral pathogens in high-throughput sequence data. Comparison of the participants’ analyses 57 

shows that the use of different tools, programs, and databases for bioinformatics analyses can 58 

impact the correct identification of viral sequences from a simple dataset. The identification of 59 

slightly mutated and highly divergent virus genomes has been identified as being most 60 

challenging: Furthermore, the interpretation of the results together with a fictitious case report by 61 

the participants showed that in addition to the bioinformatics analysis, the virological evaluation 62 

of the results can be important in clinical settings. 63 

External quality assessment and proficiency testing should become an important part of 64 

validating high-throughput sequencing-based virus diagnostics and could improve harmonization, 65 

comparability, and reproducibility of results. Similar to what is established for conventional 66 

laboratory tests like PCR, there is a need for the establishment of international proficiency testing 67 

for bioinformatics pipelines and interpretation of such results. 68 

 69 
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Introduction 70 

High-throughput sequencing (HTS) has become increasingly important for virus diagnostic in 71 

human and veterinary clinical settings and for disease outbreak investigations (1-3). Since the 72 

introduction of the first HTS platform only about one decade ago, sequencing quality and output 73 

have been increasing exponentially, combined with continuing decreased costs per base. Thus, 74 

HTS has become a standard method for molecular diagnostics in many virological laboratories. 75 

The relatively unbiased approach of HTS not only enables the screening of clinical samples for 76 

common and expected viruses, but also allows an open view without preconceptions about which 77 

virus might be present. This approach has led to the discovery of novel viruses in clinical 78 

samples, such as Bas-Congo virus associated with hemorrhagic fever outbreaks in Central Africa 79 

(2), Lujo arenavirus in southern Africa (3) and Borna-like virus as the causative agent of several 80 

cases of encephalitis with fatal outcome in Germany (4). Considering the potential of HTS to 81 

complement or even replace existing ‘gold-standard’ diagnostic approaches such as polymerase 82 

chain reaction (PCR) and qPRC, quality assessment (QA) and accreditation processes need to be 83 

established to ensure quality, harmonization, comparability and reproducibility of diagnostic 84 

results. While the computational analysis of the immense amount of data produced requires 85 

dedicated computational infrastructure, bioinformatics knowledge or software developed by (bio-86 

) informaticians, the interpretation of the results also requires evaluation by an experienced 87 

virologist or physician. In many cases, true positive results can be difficult to discern among large 88 

numbers of false positives, or may be entirely missing from result sets due to false negative 89 

results. Interpretation of results also requires knowledge of anomalies that may arise through 90 

sequencing artefacts or contamination.  91 

Proficiency testing (PT) is an external quality assessment (EQA) for evaluating and verifying 92 

sequencing quality and reliability in HTS analyses. The pioneer in EQA and PT for infectious 93 
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disease applications of HTS has been the Global Microbial Identifier (GMI) initiative, which has 94 

been organizing annual PT´s since 2015, focusing on sequencing quality parameters including 95 

detection of antimicrobial resistance gene, Multilocus sequence typing, and phylogenetic analysis 96 

of defined bacterial strains (https://www.globalmicrobialidentifier.org/workgroups/about-the-97 

gmi-proficiency-tests) (5). Subsequently, the concept was similarly established regionally for 98 

United States laboratories offered by the FDA (6, 7). 99 

COMPARE (COllaborative Management Platform for detection and Analyses of (Re-) emerging 100 

and foodborne outbreaks in Europe, (http://www.compare-europe.eu/) is a European Union-101 

funded programme with participation of institutions with hands-on experience in viral outbreak 102 

investigation and with the vision to improve the identification of (novel) emerging diseases 103 

through HTS technologies. One of the ambitious goals is to establish and enhance quality 104 

management and quality assurance in HTS, including external assessment and inter-laboratory 105 

comparison.  106 

In this study, we present the results of the first global PT to assess bioinformatics analysis of 107 

simulated in silico clinical HTS virus data offered by the COMPARE network. The viral 108 

sequence dataset was accompanied with a fictitious case report to facilitate a more real scenario 109 

to support the identification of the simulated virus included the dataset.  110 

 111 

 112 

Tools and programs for bioinformatics analysis 113 

Over the past years, numerous tools, programs, and ready-to-use workflows have been 114 

established, making metagenomics sequence analyses accessible to scientists from all research 115 

fields. Workflows for the typical analysis of HTS data and for the identification of viral 116 

sequences are based on the same general tasks and tools, including quality trimming, 117 
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background/host subtraction, de novo assembly, and sequence alignment and annotation. 118 

Sequence processing usually starts with obligatory quality assessment and trimming, using 119 

programs like FastQC  or Trimmomatic, including removal of technical and low-complexity 120 

sequences or filtering of poor-quality reads (8, 9). Following these initial steps, many workflows 121 

include the subtraction of background reads, e.g., host and bacteria, to reduce the total amount of 122 

data and increase specificity, using tools such as BWA (Burrows-Wheeler Alignment Tool) or 123 

Bowtie2 (10, 11). De novo assembly of HTS reads into longer, contiguous sequences (contigs), 124 

followed by reference-based identification, has been shown to improve the sensitivity of 125 

pathogen identification. Such analyses depend heavily on the use of assemblers, such as SPAdes 126 

or VELVET, which make use of specific assembly algorithms, such as overlap-layout-consensus 127 

graph or de Bruijn graph algorithms (12, 13). Alignment tools like BLAST, DIAMOND, Kraken, 128 

and Usearch are among the most important components in the bioinformatics workflows for 129 

pathogen identification and taxonomic assignment of viral sequences (14-17). As command-line 130 

tools for HTS sequence require specific knowledge in bioinformatics, complete workflows and 131 

pipeline approaches were developed, including ready-to-use web-based tools, such as RIEMS 132 

(Reliable Information Extraction from Metagenomic Sequence datasets), PAIPline (PAIPline for 133 

the Automatic Identification of Pathogens), Genome detective, and others (18-20). As the 134 

COMPARE in silico PT focuses on comparing different tools and software programs for 135 

bioinformatics analyses, an overview of frequently-used programs is given in Table 1. A more 136 

extensive overview of virus metagenomics classification tools and pipelines published between 137 

2010 and 2017 can be found at (https://compare.cbs.dtu.dk/inventory#pipeline). 138 

 139 

 140 
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Methods 141 

Organization 142 

The virus PT was initiated by the COMPARE network and organized by the Robert Koch 143 

Institute. Invitations to participate were free of charge for research groups experienced in 144 

analyzing HTS datasets, and were announced through email and the COMPARE website.  145 

Participants were asked to analyze an in silico HTS dataset, with the main goal being to identify 146 

the viral reads with their bioinformatics tools and workflows of choice and to interpret the 147 

obtained results including final diagnostic conclusions.  148 

An artificial, simulated in silico dataset of >6 million single-end 150bp long Illumina HiSeq 149 

sequences derived from viral genomes, human chromosomes and bacterial DNA was provided to 150 

13 different European institutes for bioinformatics analysis towards the identification of viral 151 

pathogens in high-throughput sequence data. In order to assess how different level of experience 152 

and/or bioinformatics methodologies affects the outputs and interpretation, participants were 153 

allowed to use their bioinformatics tools and workflows of choice. Participants were invited to 154 

report the PT results via an online survey within eight weeks (from September 16, 2016 until 155 

November 16, 2016). Overall results were anonymized by the organizers but each participant was 156 

provided with the identifier for their own results. 157 

 158 

In silico HTS dataset 159 

The simulated in silico dataset consisted of a total of 6,339,908 reads (Table 2), based on a 160 

single-end 150-bp Illumina HiSeq 2500 run with an empirical read quality score distribution of 161 

Illumina-specific base substitutions. The artificial dataset was simulated with the ART program 162 

(21). Sequences were generated from the Human Genome Reference Consortium Build38 163 

(GRCh38, NCBI accession CM000663–CM000686), Acinetobacter johnsonii (NCBI accession 164 
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NZ_CP010350.1), Proprionibacterium acnes (NCBI accession NZ_CP012647.1) and 165 

Staphylococcus epidermis (NCBI accession NZ_CP009046.1). In addition to human and bacterial 166 

reads, simulated viral sequences of four viruses, Torque teno virus (TTV; NCBI accession 167 

NC_015783.1), human herpesvirus 1 (HSV-1; NCBI accession NC_001806.2), measles virus 168 

(MeV; NCBI accession NC_001498.1) and a novel avian bornavirus (nABV; NCBI accession 169 

JN014950.1) were included in different numbers and with different levels of similarity to known 170 

viruses present in databases (Table 2). TTV and HSV-1 were included in the panel as the easiest 171 

sequences to identify (with 1,917 and 2,000 reads respectively, and 100% nucleotide identity 172 

with the reference sequences), followed by a slightly altered MeV (1,000 reads, with 82% 173 

nucleotide identity to the reference genome) and, as the likely most difficult taxon, nABV (only 174 

500 reads and 55% nucleotide identity to reference JN014950.1). The dataset has been uploaded 175 

to the European Nucleotide Archive with the study accession number PRJEB32470. 176 

 177 

Participants 178 

Thirteen participants applied for the COMPARE virus PT and completed the survey within the 179 

given timeframe. Participants were registered from Belgium (n = 1), Denmark (n = 1), France (n 180 

= 1), Germany (n = 4), Greece (n = 1), Italy (n = 1), The Netherlands (n = 2), Portugal (n = 1) and 181 

United Kingdom (n = 1). The 13 participants represented 13 different institutes or organizations. 182 

Information about the participants’ background is given in Table 4. 183 

 184 

Case report 185 

To simulate clinical relevance and to set the background for evaluation of the bioinformatics 186 

results, the following fictitious case report was provided with the dataset:  187 
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Recently, a 14-year-old boy from Berlin, Germany, was hospitalized with sudden blindness, 188 

reduced consciousness and movement disorders. The patient’s mother reported developmental 189 

disorders starting one year ago, with concentration problems, uncontrolled fits of rage, overall 190 

decreasing performance in school and occasional compulsive head nods. Unfortunately, the 191 

patient had received neither medical examination nor treatment, but had attended psychological 192 

treatment, assuming behavioral problems. 193 

Magnet resonance tomography of the patient’s brain showed white and gray matter lesions and 194 

gliosis. Soon after hospitalization, the patient showed a persistent vegetative state and died.  195 

A sample of the boy’s brain tissue was sequenced using the Illumina HiSeq 2500 platform, 196 

resulting in approximately 6 million single end reads of 150 bp each.  197 

This case of subacute sclerosing panencephalitis (SSPE) can be caused by a persistent infection 198 

with a mutated MeV (22). However, the symptoms described could also be caused by HSV-1 and 199 

borna-like viruses (4, 23). 200 

 201 

Reported PT results 202 

Results were collected using the Robert Koch Institute’s online survey software VOXCO. The 203 

survey contained 23 questions including general participant information and specifications about 204 

the programs used, parameter settings, computer specifications as well as the final results of the 205 

PT, including an evaluation of the case. The responses were collected as single or multiple 206 

options from a multiple-choice questionnaire with additional free text for remarks and comments.  207 

 208 

Analysis of PT results 209 

The results were evaluated based on sensitivity (true positive rate i.e. fraction of true virus reads 210 

that were identified), specificity and total time of the bioinformatics analysis (Table 3). The time 211 
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of analysis was evaluated based on the computational time only, without time for preparation and 212 

discussion of the bioinformatics results. Correlation of the time of analysis with computer and 213 

server specifications was only based on use of online analysis, personal computer, server and 214 

high-performance virtual machine. Although the pathogen identification by HTS-related 215 

metagenomics should naturally involve experienced qualified health professionals, participants 216 

were dared to attempt an interpretation regardless of the background of the team performing 217 

bioinformatics. In this context, no qualitative and quantitative scoring was performed in this part. 218 

 219 

Results 220 

 221 

PT results 222 

The results of the PT were evaluated based on sensitivity, specificity, total turnaround time, and 223 

interpretation of results (Table 3). HSV-1 was identified by all participants (Tables 3-4, Fig. 1). 224 

For most of the participants, the identified read numbers for HSV-1 were complete or near 225 

complete (actual HSV-1 read count = 2,000). One participant identified more reads of HSV-1 226 

than present in the dataset (participant 7; 8,361 reads identified).  227 

TTV (actual read count = 1917) and MeV were identified by all participants except for one 228 

(participant 4) (Tables 3-4, Fig. 1). For TTV, the read numbers identified were complete or 229 

almost complete for all participants, with the exception of participant 9 who was only able to 230 

identify 29% of the TTV reads. For the mutated MeV (actual read count = 1000), seven out of 13 231 

participants were able to identify complete or almost complete read numbers (participants 3, 5, 6, 232 

8, 10, 11, 12), whereas five participants (participants 1, 2, 9, 13) identified only 21%, 46%, 49% 233 

and 34% of the total number of 1000 reads, respectively (Table 3). Participant 4 was unable to 234 
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identify MeV and participant 7 assigned too many reads (1,411) as originating from the mutated 235 

MeV.  236 

The divergent nABV (actual read count = 500) proved to be the most challenging target and was 237 

identified by only four of the participants (participants 3, 5, 6, 12) (Tables 3-4, Fig. 1). The 238 

overall specificity for all bioinformatics workflows was high, with only participant 6 identifying 239 

43 reads of a chordopoxvirus as a false positive result.  240 

 241 

The total time of analysis ranged widely, from three hours (participant 1) to 216 hours (online 242 

analysis of 15 hours with additional 201 hours of waiting time for sever availability, participant 243 

4) (Table 5). Most workflows were calculated on a server system; two participants used a 244 

personal computer and two participants a virtual machine. One calculation was executed through 245 

an external public server. 246 

Most of the workflows used in the COMPARE virus PT were quite similar, with the same basic 247 

tasks applied in different order (Fig. 2). Most workflows started with trimming and quality 248 

filtering, then subtraction of background reads, assembly of remaining reads, and a final 249 

reference-based viral read assignment (Fig. 1). Databases used were custom-made or full 250 

databases from NCBI nt/nr GenBank (participants 1-4, 6–11, 13). Participants 5 and 12 used viral 251 

sequences from NCBI GenBank only, while participant 7 also included a database for human 252 

pathogenic viruses (ViPR) (https://www.viprbrc.org/brc/home.spg?decorator=vipr). 253 

All groups were also asked to correlate the results based on the bioinformatics analysis with the 254 

clinical symptoms described in the case report (Table 4). HSV-1 was suspected as the disease-255 

causing agent by three groups and MeV was identified by six groups. An MeV infection with 256 

HSV-1 possibly affecting the course of disease was named by two groups. nAVB was interpreted 257 

as the single causative agent by two groups.  258 
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 259 

Discussion 260 

HTS-based virus diagnostics requires a complex multistep processing, including laboratory 261 

preparation, assessment of quality of sequences produced, computationally challenging analytic 262 

validation of sequence reads, and post-analytic interpretation of results. Therefore, not only 263 

comprehensive technical skills, but also bioinformatic, biological, and medical knowledge are of 264 

paramount importance for proper analyses of HTS data for virus diagnostics. 265 

HTS data can comprise several hundred thousand to many millions of reads from a single 266 

sequenced sample. Handling and analyzing such amounts of data pose computational challenges 267 

and currently require know-how and expertise in bioinformatics. Depending on the laboratory 268 

procedure, identification of viral reads from clinical metagenomics data is negatively affected by 269 

low virus-to-host sequence ratios and high viral mutation rates, making reference-based sequence 270 

assignments for highly divergent viruses challenging (24). 271 

The In silico bioinformatics analysis of HTS data can be separated into an analytic and a post-272 

analytic step. The analytic step includes the processing of sequence reads with software tools or 273 

scripts assembled into workflows and pipelines. The post-analytic step is the evaluation of the 274 

results obtained from the bioinformatics analysis, regarding pathogen identification often 275 

involving the interpretation by an experienced qualified health professional to correlate 276 

bioinformatics results with the clinical and epidemiological patient information.  277 

The bioinformatics analysis and the technical identification of viral reads from the HTS dataset, 278 

was shown to have a decreasing success as sequences became more divergent from reference 279 

strains, examplified by MeV with 82% identity on nucleotide level to its closest relative and 280 

nABV with just 52 % identity on nucleotide level to other bornaviruses, identified by only four of 281 

the 13 participants. MeV and TTV were missed by participant 4 whose analysis was based on the 282 
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Kraken tool and an in-house workflow. Kraken is known to align sequence reads to the reference 283 

sequences with a high specificity and low sensitivity, making the alignment of mutated and 284 

divergent virus reads difficult (15). As Kraken uses a user-specific reference database the TTV 285 

may have been absent from the custom database, since Kraken was also used by participant 7, 286 

who was able to identify both MeV and TTV. It is noted that the use of different databases is an 287 

obstacle in bioinformatics analysis of HTS data. So far, there were only unified, curated virus 288 

reference databases for Influenza viruses (EpiFlu) (25), HIV (26) and human pathogenic viruses 289 

(ViPR) (27). Recently, viral reference databases for bioinformatics analysis of HTS data have 290 

been developed (https://hive.biochemistry.gwu.edu/rvdb), (https://rvdb-prot.pasteur.fr/) (28). 291 

NCBI offers the most extensive collection of viral genomes, but the lack of curation and 292 

verification of submitted sequences often leads to false positive and false negative results. To 293 

overcome such problems, reference-independent tools for virus detection of HTS data have been 294 

developed, also making the discovery of novel viruses feasable without any knowledge of the 295 

reference genome (29). All of the participants who were able to identify the divergent nABV 296 

used workflows based on protein alignment approaches, including BLASTx/p, USEARCH, or 297 

DIAMOND, which are known to be highly sensitive (14, 17). The identification of such highly-298 

divergent viruses is still challenging and cannot be accomplished by workflows based on 299 

nucleotide-only reference-based alignment approaches. DIAMOND (double index alignment of 300 

next-generation sequencing data), which became available in 2015, was specifically designed for 301 

such sensitive analysis of HTS data at the protein level, and is up to 20,000 times faster than 302 

BLAST programs. Compared to other alignment tools which seem to have a trade-off between 303 

speed and sensitivity, DIAMOND offers superior sensitivity for the detection of mutated and 304 

divergent viral sequences (14). However, the detection of such highly divergent viral sequences 305 

in patient samples is rare, and virus discovery is not a routine part of clinical virus diagnostics. 306 
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In terms of specificity, all workflows were highly specific, with only workflow 6 showing the 307 

identification of a chordopoxvirus which was not present in the dataset. Such false positives, as 308 

well as the excessive number of HSV-1 and MeV reads found by participant 7 (8,361 of 2,000 309 

reads and 1,411 of 1,000 reads, respectively) can derive, for example, from low-complexity reads 310 

in the dataset which are aligned to low-complexity or repetitive sequences of the viral reference 311 

genomes, from inappropriate matching score limits during filtering, or inappropriate algorithm 312 

parameters. Furthermore, custom databases and viral references from NCBI can include 313 

sequences of human origin which can lead to false positive results, which in some cases can 314 

result in the non-reporting of other matches due to default algorithm reporting limits.  315 

The total time of all workflows differed widely from only three hours to 216 hours (15 hours for 316 

the analysis and 201 hours waiting time for available servers). One of the fastest participants was 317 

participant 1 who needed only 3 hours to perform the calculations on a scalable high-performance 318 

national virtual machine, whereas the slowest workflow (participant 4; 216 hours) was calculated 319 

on a personal computer, through an external public server where bioinformatics software jobs are 320 

queued among many other users (Fig. 1, Table 6). However, participant 5 also performed analysis 321 

on a notebook but within a much shorter time (26 hours). Overall, workflows exclusively 322 

specified for virus detection or using only viral or refSeq databases did not clearly correlate with 323 

faster workflow times compared to full metagenomics analyses. However, the specific 324 

composition of each database was not provided. To finally evalute the performance of each 325 

bioinformatics workflow regarding the time of analysis, all workflows should be run on the same 326 

computer system, but such standardization was not practical for this PT evaluation. 327 

The COMPARE virus PT has further shown that analytic and post-analytic evaluation is both of 328 

importance, as similar analytic results can be interpreted very differently, depending on the 329 

analyzing participant. Unlike standard routine virus diagnostic approaches such as polymerase 330 
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chain reaction, where a medical hypothesis of relevance is tested either positive or negative, HTS 331 

offers an extensive and largely unbiased catalogue of results. The etiological agent of a patient 332 

sample can be masked by false positives, sequencing contaminants, commensal viruses of the 333 

human virome, or viruses of yet unknown importance. Furthermore, the causative viral agent of a 334 

disease may be present in very low read numbers because viral loads may be low, depending on 335 

the timing of sampling and the sample matrix. RNA viruses, some of which are the most 336 

pathogenic human viruses, usually have smaller genomes than DNA viruses (30, 31). Therefore, 337 

low read numbers from an RNA virus might be dismissed, resulting in a false negative. To assess 338 

sequencing results, some workflows and pipelines use cutoffs for read numbers so as to reduce 339 

false positives, but may in the process make the detection of low read-number matches less 340 

likely.  341 

As the analysis of HTS data for virus diagnostics requires bioinformatics as well as virological 342 

knowledge, the collaboration of both disciplines has been emphasized (32). Furthermore, 343 

automated pipelines for HTS-based virus diagnostics with unbiased evaluation of pathogenicity 344 

and relevance of the detected pathogen have been implemented, which can render analysis and 345 

interpretation of HTS sequence results more harmonized (33). 346 

A robust approach to viral diagnostics using HTS requires further refinement and validation. The 347 

COMPARE in silico PT is limited by the low complexity of the simulated dataset. In Vivo 348 

sequence datasets can consist of a high diversity of the background and microbiome of the host, 349 

which further increases the difficulty to identify viral reads. Further proficiency schemes with in 350 

vivo datasets and samples and wider collaboration are required to make progress. A second in 351 

silico PT organized by the COMPARE network has focused on the interpretation of the 352 

significance of food-borne pathogens in a simulated dataset (data not published). Again, the 353 

interpretation of the results was shown to be one of the most diverse and critical points in HTS 354 
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data analysis. Furthermore, third-generation sequencing technologies, such as the MinION from 355 

Oxford Nanopore Technologies, are becoming available in many laboratories and field settings 356 

due to low cost and short sequencing times (34-36). However, analysis tools developed for 357 

second-generation sequencing technologies, such as Illumina, may not be applicable for third-358 

generation sequencing data,  due to the low sequencing accuracy of approximately 85 % and of 359 

and the length of the sequences, which can be up to 2Mbp (37-39). Consequently, future PTs 360 

should also include the use of third-generation sequencing technologies, as those are likely to 361 

become part of future routine laboratory diagnostics. 362 

 363 

Conclusion 364 

The present availability of External Quality Assessment for HTS-based virus identification is 365 

limited. The COMPARE in silico virus PT has shown that numerous tools and different 366 

workflows are used for virus analysis of HTS data, and results of such workflows differ in 367 

sensitivity and specificity. At the present time, there are no standard procedures for virome 368 

analyses, and the sharing, comparing, and reliable production of results of such analyses are 369 

difficult. 370 

Finally, there is a clear need for creating updated and highly curated, publicly freely available 371 

databases for harmonized identification of virus in virome datasets, as well as mechanisms for 372 

conducting continuous ringtails to ensure the quality of virus diagnostic and characterization in 373 

clinical diagnostic and public and veterinary health laboratories.  374 
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Figure legends 509 

 510 

FIG 1 Identified viral read numbers for Torque Teno virus (TTV), human herpesvirus 511 

(HSV-1), measles virus (MeV), and new avian bornavirus (nABV) by participant 512 

(numbered 1-13). 513 

 514 

FIG 2 Simplified comparison of different bioinformatics workflows for virus identification 515 

used in the COMPARE virus proficiency test  516 

+ Human herpesvirus, + Torque teno virus; + Measles virus; + Avian bornavirus 517 

  518 
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TABLE 1 Tools and programs for analysis of HTS data used in the COMPARE Virus Proficiency Test, in alphabetical order 519 

Program Application Description/relevance for viral HTS URL 

BWA (10) Alignment 

(nucleotide) 

BWA (Burrows-Wheeler Alignment Tool) to align efficiently short 

sequencing reads against a large reference genome. Based on string 

matching with Burrows-Wheeler transform (BWT). 

http://bio-bwa.sourceforge.net/ 

DIAMOND 

(14) 

Alignment 

(protein) 

Double-index alignment of NGS data. Shown to be up to 20,000 times 

faster than comparable programs, with high sensitivity.  

http://ab.inf.uni-

tuebingen.de/software/diamond/ 

FastQC (9) Quality 

control, 

trimming 

Generates base quality scores and sequence contents, sequence length 

distributions, identification of duplicate or overrepresented sequences, 

adapter, and k-mer contents. 

https://www.bioinformatics.babra

ham.ac.uk/projects/fastqc/ 

Kmerfinder 

(40) 

Taxonomic 

assignment 

Online user interface also allows the prediction of human and vertebrate 

viruses. 

https://cge.cbs.dtu.dk//services/K

merFinder/ 

Kraken (15) Alignment 

(nucleotide) 

Only uses exact alignments for its taxonomic classification with high 

speed and less computational requirements. 

https://ccb.jhu.edu/software/krake

n/ 

MetaPhlAn Taxonomic 

assignment 

Metagenomic Phylogenetic Analysis is a tool for the taxonomic 

assignment of microbial communities. High accuracy and speed are 

supported by only high-confidence matches. Such approaches allow the 

assignment of 25,000 microbial reads per second but might fail with 

https://bitbucket.org/biobakery/me

taphlan2 
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viral genomes which often lack common markers and genes. 

MGMapper 

(41) 

Pipeline  Online tool for processing, assigning, and analyzing HTS sequences. https://cge.cbs.dtu.dk/services/MG

mapper/, 

https://bitbucket.org/genomicepide

miology/mgmapper 

MIRA  De novo 

assembly 

Mimicking Intelligent Read Assembly, overlap-layout-consensus graph 

(OLC) assembler for metagenomics data from several sequencing 

platforms. Assembles the most as well as the largest contigs compared to 

other de novo assembly programs, as well as produces the highest 

number of contigs which could be assigned to a viral taxon. 

https://sourceforge.net/projects/mi

ra-assembler/ 

NCBI 

BLAST (16) 

Alignment 

(nucleotide 

and protein)  

Basic local alignment search tool. Offers very sensitive online and stand-

alone alignments of nucleotides, translated nucleotides, and protein 

sequences. 

https://blast.ncbi.nlm.nih.gov/Blas

t.cgi 

One Codex 

(42) 

Taxonomic 

assignment 

Web-based data platform for k-mer based taxonomic classification. Very 

high degree of sensitivity and specificity, even when analyzing highly 

divergent and mutated sequences.  

https://www.onecodex.com/ 

PAIPline 

(20) 

Pipeline Pipeline for metagenomic analysis of HTS data. https://gitlab.com/rki_bioinformati

cs/paipline 
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QUASR 

(43) 

Pipeline Combination of several R packages and external software for HTS read 

analysis. Part of the Bioconductor project. 

http://www.bioconductor.org 

RIEMS (18) Pipeline  Pipeline for metagenomics sequence analysis, combining several 

established programs and tools for pathogen detection in one automated 

workflow. Separated into a workflow of accurate and fast “basic 

analysis” and a more sensitive “further analysis”.  

https://www.fli.de/en/institutes/ins

titute-of-diagnostic-virology-

ivd/laboratories-working-

groups/laboratory-for-ngs-and-

microarray-diagnostics/ 

Skewer (44) Quality 

control, 

trimming 

Trimming of primer and adapter sequences focusing on the 

characteristics of paired-end and mate-pair reads. A statistical scheme 

based on quality values allows the accurate trimming of adapters with 

mismatches. 

https://sourceforge.net/projects/sk

ewer/ 

SNAP (45)  Alignment 

(nucleotide) 

Up to 10 to 100 times faster than similar alignment programs but offers 

greater sensitivity due to richer error acceptance.  

http://snap.cs.berkeley.edu/ 

SPAdes, 

MetaSPAde

s (12) 

De novo 

assembly 

De Bruijn graph assembler. MetaSPAdes specifically addresses the 

challenges that arise with complex metagenomics data. 

http://cab.spbu.ru/software/spades/ 

Taxonomer 

(46) 

Taxonomic 

assignment 

Web-based tool for nucleotide- and protein-based read assignment. User-

friendly interactive result visualization. Based on exact k-mer matching 

http://taxonomer.iobio.io/ 
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with low error tolerance. Speed up to ~32 million reads/minute. 

Furthermore, protein-based read identification offers the detection of 

divergent viral sequences but is based on exact k-mer matching without 

error allowance. 

Trimmomat

ic (8) 

Quality 

control, 

trimming 

Paired-end sequence reads can be cut from technical sequences as 

adapters, primers, or low-quality bases. Has been shown to improve 

considerably downstream analyses, for example de novo assembly 

(increasing contig size up to 77 %) and alignment (increasing alignment 

rates from 7 % to 78 %). 

www.usadellab.org/cms/index.php

?page=trimmomatic 

USEARCH 

(17) 

Alignment 

(protein) 

Exceptionally high speed for protein or translated nucleotide read 

alignment. The sensitivity of USEARCH is comparable to the NCBI 

protein BLAST, but USEARCH is ~350 times faster. 

https://www.drive5.com/usearch/ 

Velvet (13) De novo 

assembly 

Can be used for de novo assemblies of short HTS reads using the de 

Bruijn algorithm. de novo assembly using Velvet can be achieved in as 

little as 14 minutes. 

https://www.ebi.ac.uk/~zerbino/ve

lvet/ 

 520 
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 521 

TABLE 2 Composition of the simulated sequence dataset. Total number of reads are 522 

6,339,908. 523 

Organism #Reads 
Nucleotide sequence identity 

with reference (%) 

Human 4,834,491 100 

Acinetobacter johnsonii 500,000 100 

Propionibacterium acnes 500,000 100 

Staphylococcus epidermidis 500,000 100 

Torque teno virus 1,917 100 

Human herpesvirus 1 2,000 100 

Measles virus 1,000 82 

(Novel) Avian bornavirus 500 55 

 524 

TABLE 3 Sensitivity and specificity for identified reads of the COMPARE virus proficiency 525 

test. Particiants were numbered randomly. 526 

 

Torque 

teno virus 

Human 

herpesvirus 

Measles 

virus 

Avian 

bornavirus 

No false 

positive 

result 

Time of 

analysis (h) 

#1 1 0.99 0.21 0 √ 3 

#2 1 1.01 0.46 0 √ 15.5 

#3 0.96 0.96 1 1 √ 60 

#4 0 0.10 0 0 √ 216 

#5 1 0.98 1 1 √ 26 
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#6 1 0.84 1 1 - 12 

#7 0.94 4.00 1.41 0 √ 6 

#8 1 1.04 0.99 0 √ 7 

#9 0.29 0.84 0.49 0 √ 5 

#10 1 1 1 0 √ 48 

#11 1 1 1 0 √ 14 

#12 1 1 1.02 0.23 √ 18 

#13 1.02 0.90 0.34 0 √ 48 

 527 

TABLE 4 Interpretation of bioinformatics results. Abbreviations: TTV = Torque teno virus, 528 

HSV-1 = human herpesvirus 1, MeV = measles virus, nABV =  new avian bornavirus 529 

 Results bioinformatics Results diagnostics Participants’ background 

#1 TTV, HSV-1, MeV HSV-1 Bioinformatics 

#2 TTV, HSV-1, MeV HSV-1 Food & environmental health 

#3 TTV, HSV-1, MeV, nABV SSPE/HSV-1 Veterinarian, virology 

#4 HSV-1 HSV-1 University, virology 

#5 TTV, HSV-1, MeV, nABV nABV Virology 

#6 TTV, HSV-1, MeV, nABV nABV Medical research 

#7 TTV, HSV-1, MeV SSPE Animal and plant health 

#8 TTV, HSV-1, MeV SSPE Veterinarian, virology 

#9 TTV, HSV-1, MeV SSPE Public health 

#10 TTV, HSV-1, MeV SSPE Public health 

#11 TTV, HSV-1, MeV SSPE Public health and environment 
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#12 TTV, HSV-1, MeV, nABV SSPE/HSV-1 Diagnostics, virology 

#13 TTV, HSV-1, MeV SSPE Virology 

 530 

 531 

TABLE 5 Total time of computational analysis, maximum computer/server specifications, 532 

and reference databases used.  533 

 

Time of 

analysis (h) Database 

Operating 

system CPU CPU Mhz RAM (GB) 

#1 3 NCBI nt UNIX VM VM VM 

#2 15.5 NCBI nt 

Ubuntu 16.04 

LTS 56 1270  378 

#3 60 NCBI nt/nr CentOS 6 24 2400 64  

#4 216 NCBI nt Windows XP intel core i5 2300 8 

#5 26 NCBI viral db OS X 2 na na 

#6 12 NCBI nr Ubuntu 14.04 32 2000 503 

#7 6 

VIPR and 

NCBI nt 

BioLinux 

Ubuntu 14.04 8 3.6 16 

#8 7 NCBI nt CentOS 6.5 64 2300 250  

#9 5 NCBI nr Ubuntu 12.04.5 na 3800 50  

#10 48 NCBI nt CentOS 6.5 2 × AMD Opteron 2200 32  

#11 14 NCBI nt/nr RHEL VM, variable 

VM, 

variable 

VM, 

variable 

#12 18 NCBI viral db Linux Mint Intel Xenon 6 × 2.67 25  

 on July 23, 2019 by guest
http://jcm

.asm
.org/

D
ow

nloaded from
 

http://jcm.asm.org/


28 
 

X5650 Ghz 

#13 48 NCBI nt 

Ubuntu 14.04.4 

LTS 

2 × AMD Opteron 

6174 

24 × 2.2 

GHz 128  

db=database; na= not available; nr=non-redundant; nt=nucleotide; VM=virtual machine 534 

 535 
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