
ProFID: Practical Frequent Item Set Discovery
in Peer-to-Peer Networks

Emrah Çem1, Öznur Özkasap1?

Department of Computer Engineering
Koç University, Istanbul, Turkey
{ecem|oozkasap}@ku.edu.tr

Abstract. This study addresses the problem of discovering frequent
items in unstructured P2P networks. This problem is relevant for several
distributed services such as cache management, data replication, sen-
sor networks and security. We make three contributions to the current
state of the art. First, we propose a fully distributed Protocol for Fre-
quent Item Set Discovery (ProFID) where the result is produced at every
peer. ProFID uses a novel pairwise averaging function and network size
estimation together to discover frequent items in an unstructured P2P
network. We also propose a practical rule for convergence of the algo-
rithm. Finally, we evaluate the efficiency of our approach through an
extensive simulation study on PeerSim and present our conclusions.

Keywords: peer-to-peer, distributed computing, gossip, frequent items.

1 Introduction

1.1 Motivation

Recent years have witnessed an extraordinary growth of P2P network services
that have a very dynamic structure since peers may join or leave the system at
any time. On the other hand, advantages of these type of systems are the en-
hanced scalability and service robustness due to their distributed architectures.
Because of P2P systems’ dynamic and scalable nature, centralized approaches are
not as functional and reliable as decentralized approaches. In decentralized ap-
proaches, there is no central administration, so peers need to communicate with
each other to perform various tasks such as searching. Furthermore, peers may
need a system-wide information such as network size, system load, query/event
counts, or mostly contacted peers for specific files in order to perform various
tasks such as load-balancing or topology optimization [1]. Database applications,
wireless sensor networks, and security applications can also make use of frequent
item set discovery, as well as P2P applications. Hence, efficient discovery of fre-
quent items would be a valuable service for distributed systems.

? Research supported by TUBITAK (The Scientific and Technical Research Council
of Turkey) under CAREER Award Grant 104E064.

There are various P2P applications such as cache management, search tech-
nique design, query refinement, content mirroring, network topology optimiza-
tion, denial of service attack and internet worm detections that can utilize fre-
quent item set discovery service. For example, cache management can be adapted
to a frequent (popular) item set discovery problem. Since the probability of ac-
cessing frequent items in the future is more probable than accessing non-frequent
items, caching frequent items will reduce the average access time significantly.
Other than p2p networks, frequent item set discovery protocol can also be used
in sensor networks to detect anomalies and attacks. For example, lets assume we
have many movement sensors implanted in the ground which can detect whether
there is a moving object around it or not. If most of the sensors detect a moving
object, then there might be the possibility of an attack. It can also be used to
detect anomalies in atmospheric conditions via temperature sensors [2, 3]. More-
over, that problem can be used in computing and answering iceberg queries as
well as identifying large network flows [4]. Frequent item set discovery problem
is also applicable for database applications [5, 6].

1.2 Related Work

Frequent item set discovery problem has been studied for data streams, P2P
services and network monitoring. First deterministic algorithm for data streams
is proposed in [5]. Algorithms named Sticky sampling and Lossy counting for
identifying items whose frequency exceeds a user-defined threshold value are pro-
posed in [7]. They find approximate frequencies, and the error rate is bounded
by a user-specified parameter. They also propose an algorithm to optimize find-
ing frequent item set in a single pass. However, if the dataset is highly skewed,
algorithm may result in a high error rates. Even though their algorithms are
efficient and applicable for the discovery of frequent items in datastreams, it is
a centralized algorithm. More related to our work, [4] proposes an algorithm to
find approximate frequent items in distributed data streams. Datastreams are
composed of item occurrences with time stamps and recent items are given more
importance while discovering frequent items. The aim is to output approximate
frequencies of items whose true frequencies exceed a user-specified threshold. In
order to accomplish that, a hierarchical communication structure is constructed.
Moreover, the concept of precision gradient is introduced in order to minimize
communication overhead . Another recent work [8] describes significant algo-
rithms in frequent item set discovery in data streams and provides baseline
implementations of them. Experimental evaluation on different data sets is also
performed in order to figure out how practical their implementations are. An
algorithm for the problem of distributed monitoring of thresholded counts is
proposed in [3, 9]. The goal is to monitor all items whose frequency is above
a threshold value within specified accuracy bounds. They use hierarchical ap-
proach. However, since the frequent items are only available on a single node,
this work is exposed to single point of failure.

Obtaining exact frequent items with a technique named in-network filtering
is investigated in [1]. It consists of two phases called candidate filtering and

candidate verification. In order to calculate the aggregates, a tree-based hierarchy
composed of only stable peers is formed, and the most stable peer is chosen as
the root of the hierarchy. This is done to make algorithm more stable, since
constructing tree-like structures is not robust against failures. The basic idea is
to form item groups and calculate the aggregates of item groups. If item group
frequency is below the threshold value, than all items in that group fails to
be a candidate, otherwise items are chosen as candidates (for being frequent
item). They theoretically show how to optimize parameters of the proposed
approach such as group size, filter size, and give the effects of parameters on the
performance of the algorithm. However, this approach is not practical and easy
to deploy for large scale distributed settings.

A uniform gossip based technique for disseminating the local information of
each peer is proposed in [10]. Since they use gossiping for data dissemination, re-
sult is probabilistic as opposed to the study of [1]. However, thanks to gossiping,
there is no underlying network structure or central control which makes algo-
rithm simpler. In order to identify frequent elements, a thresholding mechanism
is used, and by using sampling, the communication load is decreased. Moreover,
a space efficient data representation named sketch is used to store aggregate
values efficiently.

There are also various studies focusing on computing aggregates in dis-
tributed systems. Jelasity et al. [2] present a fully distributed way of calculat-
ing aggregates such as counting, averages, sums, products, and extremal values.
They restart the gossip protocol periodically in order to prevent accumulation in
estimation error. They also give both theoretical analysis and empirical results
of convergence of the proposed algorithm. Moreover, they analyze the effect of
overlay topology on convergence of the algorithm, and show that it effects the
convergence significantly. Hence, they use topology information while determin-
ing the termination time. This is not practical since it may not be available at
all peers. Kempe et al. [11] propose a push-synopses protocol for aggregate com-
putation and analyzes the scalability, reliability and efficiency of their approach.
Algorithm converges to true average, only if all peers have a knowledge about
all items in the system, which might be an inconvenient requirement for large
networks without centralized agents. Moreover, efficiency of their algorithm uses
the assumption of uniform gossiping. [12] also uses similar approach except that
they assume wireless broadcast is available. Chitnis et al. [13] introduces a hy-
brid solution to compute aggregates in sensor networks, which uses strengths of
both gossip and tree aggregation protocols together.

1.3 Our Contributions

We address the problem of frequent item set discovery in unstructured P2P
networks. Our contributions are as follows:

1. We propose a fully distributed gossip-based approach named ProFID using
pairwise averaging function which is novel in frequent item set discovery
problem.

2. We introduce a practical convergence algorithm. In contrast to previous
works, each peer gives local decision for convergence based on the change
of updated local state. Converged peers may list frequent items indepen-
dently from other peers in the network.

3. We developed a model of ProFID on PeerSim [14], and performed various
experiments to compare and measure its efficiency and scalability.

Outline. This paper is organized as follows. In the next section, we describe
the system model and define the problem. In Section III, we give the principles
and algorithms of ProFID. In Section IV, we provide results from experimental
evaluation. Finally, we conclude the paper and state the future directions in
Section V.

2 System Model and Problem Statement

2.1 System Model

We consider a network consisting of N peers which only know their own states
(local view) initially. In order to have knowledge about all peers’ states (global
view), peers have to collaborate and obtain information about other peers’ states
in the network. We assume that peers form an unstructured P2P network. In
order to collaborate and communicate, peers need to know the identifiers of their
neighbors. This neighborhood relation determines the topology of an overlay
network. We also assume that peers may leave (intentionally or due to failures)
or join the network at any time, which is inevitable in P2P networks.

In distributed computing, communication is determined by a time model and
it can be categorized as synchronous and asynchronous. In synchronous time
model, local clocks of peers are synchronized and each peer performs operations
within the same time interval. This is actually not practical in large distributed
systems due to the variable and unpredictable message delays. In asynchronous
time model, each peer uses its local clock to perform a computation. In our case,
peers communicate in rounds with a fixed duration. However, it is not necessary
to synchronize the peers’ local clocks because peers use clocks just to perform
periodic operations. Round duration just determines how often a peer sends local
state to its neighbor(s).

2.2 Problem Statement

There are many problems that may need information about globally frequent
items in a distributed system. Hence, efficiently computing frequent items in
distributed systems is valuable. DDoS attack detection, internet worm detec-
tion, cache management, search technique design, P2P media streaming and
replication protocols [1] are some example applications.

Consider a network consisting of N peers denoted as P={P1, P2, . . . , PN} and
M item types denoted as D={D1, D2, . . . , Dj , . . . , DM}, where Dj has a global

frequency gDj
. Parameters N, M, and g are system-wide information, hence they

are unknown to all peers a priori.
Let each peer (Pi) has a local set of items Si ⊆ D and each local item (Dj)

has a local frequency fi,Dj
such that

gDj =
N∑

i=1

fi,Dj , Dj 6∈ Si =⇒ fi,Dj = 0 (1)

To illuminate the parameters, let’s examine how we can use frequent item set
discovery protocol in a cache management problem. Consider three peers in
Fig.1 representing local movie databases distributed in different countries. Items
at each peer correspond to the name of movies queried/searched by clients and
frequency of each item corresponds to the number of queries that includes the
item (movie name in this case). Our system parameters for these peers can
be written as given in Table 1. After running a frequent item set discovery
protocol with threshold 8000, all the movies that are queried more than the
threshold are computed. In this example, protocol needs to output Avatar and
The Hurt Locker. Peers may actually utilize this information to cache frequently
queried/searched movies in order to access them in a shorter time because clients
will probably query these movies more than others in future, at least for a period
of time.

����� ����	�
��
�������
������ ����� ������
�����	���������� ������
��������� ������� ��!��
"#��� ����� ���� ����

���� ����	�
��
�������
�����	���������� ��$���
������� ������
"#��� ����� ����

���� ����	�
��
�������
������� �����
�����	���������� �����
��������� ����� ��$��

%� %�%!

Fig. 1: Sample three peers with local frequencies of movie items queried/searched

3 ProFID: Protocol for Frequent Item Set Discovery

We provide a gossip-based fully distributed approach with pairwise averaging
function for discovering frequent items in unstructured P2P networks. Utiliz-
ing pairwise averaging function with gossip-based aggregation and a practical
convergence rule is novel and beneficial. Due to the unstructured form of com-
munication in gossiping, it is not easy to prevent a local frequency of an item
at a peer from being accounted for multiple times. For this reason, either peers
need to handle the duplicates in incoming gossip messages or use an aggrega-
tion function which is insensitive to duplicates. Pairwise averaging function is

Global parameters (unknown a priori):

P = {P1, P2, P3} , N=3
D = {Avatar, DisasterMovie, TheHurtLocker, EpicMovie} , M=4
g(Avatar) = 11000, g(DisasterMovie) = 700, g(TheHurtLocker) = 8400, g(EpicMovie) = 70

P1’s local parameters:

S1 = {Avatar, TheHurtLocker, DisasterMovie, EpicMovie}
f1,Avatar = 4500, f1,TheHurtLocker = 3200, f1,DisasterMovie = 100, f1,EpicMovie = 20

P2’s local parameters:

S2 = {TheHurtLocker, Avatar, EpicMovie}
f2,TheHurtLocker = 3000, f2,Avatar = 2500, f2,EpicMovie = 50

P3’s local parameters:

S3 = {Avatar, TheHurtLocker, DisasterMovie}
f3,Avatar = 500, f3,TheHurtLocker = 200, f3,DisasterMovie = 600

Table 1: Parameters of distributed movie database example

the latter choice. Even though the local frequency of an item at a peer might
be accounted for multiple times, it still efficiently converges to the approximate
global average frequency of the item at each peer. The only assumption we do
is to perform pairwise averaging operation atomically. We used buffering and
timeout mechanisms to perform pairwise averaging atomically.

Being a frequent item is directly related with the global frequency of that
item. Likewise, it is also directly related with the global average frequency of the
item, where global average frequency of an item is defined as:

ga(Dj) =
g(Dj)

N
=

1
N

N∑

i=1

fi,Dj (2)

A new threshold value which will be compared by the global average of the item
(instead of item’s global frequency) while determining frequent items can be
defined as:

∆ =
T

N
(3)

Using this parameter, we may rewrite the frequent item set as

F (∆) = {Dj |ga(Dj) > ∆, ∀j ∈ 1, 2, . . . , M} (4)

System size N is a global parameter, so it is not known by any peer a priori
and it also needs to be calculated. In order to calculate system size, an initiator
peer adds a unique item type named ui in its local item set. The local frequency of
this item is set to 1. Since only one peer has that unique item, average frequency
of that item would converge to 1

N from which ∆ can be calculated simply by
multiplying the converged result with the threshold value. [2]

In general, gossip algorithms can be divided into 3 parts in terms of decisions
regarding:

1. To whom gossip messages to send
2. What to perform when a message comes in
3. When to stop (convergence rule)

In ProFID, all of those decisions are taken locally, and peers do not know any
system wide information such as topology and network size, initially. Algorithm
1 shows initialization, periodic send operation and handling of incoming mes-
sages. Convergence rule is explained in Sect. 3.2 in detail. Those algorithms are
the general operations, details such as buffering and timeout mechanisms were
excluded for better readability. Description of algorithm parameters are given in
Table 2.

Algorithm 1: ProFID: Protocol for Frequent Item Set Discovery
Input: fanout, mms, ui, convLimit, ε, T , S
Output: F : set of frequent items
Initialize
if Initiator then

S.add(ui,1);

converged=false; prevSizeEstim=0; convCounter=0;
1.Gossip(periodically do)

if !converged then
targets = getNeighbors(fanout);
for i=1:fanout do

send(push, message(S,mms), targets(i));

2.Handle incoming messages

messg=accept();
if messg.Type == push then

avg = AVERAGE(S, messg); S.update(avg); send(pull, avg, sender)

else if messg.Type == pull then
S.update(messg);

currSizeEstim=messg.getVal(ui);
if ISCONVERGED(convLimit, ε) then

converged=true;

Query

∆= T*currSizeEstim; F ={item | ∀ item ∈ S, S.getFrequency(item) > ∆ };

Definition 3.1 Epsilon condition: A peer satisfies this condition if the fre-
quency of ui at that peer changes at most ε percentage after a gossip.

3.1 Atomic Pairwise Averaging

In order to calculate global frequencies of items, we use pairwise averaging func-
tion with network size estimation. Our pairwise averaging function uses push-pull

Parameter
Type

Parameter
Name

Description

User defined T threshold

Protocol fanout number of peers to whom gossip message is sent
at each round

Protocol mms maximum gossip message size a peer can send.

Protocol ui unique item used in network size estimation

Convergence convLimit number of successive rounds a peer needs to sat-
isfy epsilon condition (See Def. 3.1) in order to
converge

Convergence ε(epsilon) parameter used to determine epsilon condition

Table 2: Algorithm parameters

scheme meaning that a peer sends its state (in a push message) to a target peer
and the target peer performs averaging operation using its own state and incom-
ing state, then replies the average of incoming items (in a pull message) back
to the sender. Then, sender updates its state. By this way, a single push-pull
based pairwise averaging operation is completed. In order to prevent misleading
calculations this operation must be performed atomically. Fig. 2a illustrates the
order of an example of push-pull based non-atomic pairwise averaging operation.
Assume that system has a unique item named item1 with global frequency 10
and initial local frequencies are f1,item1=3, f2,item1=5, f3,item1=2. The updated
local frequencies of item1after each operation shown in Fig. 2b. When states of
all peers are considered after operation 4, Eq. 1 does not hold any more, which
puts the system in an inconsistent state. Thus, even though no addition/removal
of item, or loss of a message occurs, global value of item changes.

Since the latencies of messages are very dynamic in real life scenarios, we
can not control the message order without a buffer mechanism. We used a buffer
mechanism in such a way that whenever a peer sends a push gossip message
to another peer, all the requests coming into that peer or push operations to
other neighbors (in case of fanout>1) are buffered until the reply of the push
message comes in. To deal with message losses, we use a timeout mechanism.
For this example, P1 sends push message to P2 and starts waiting for the corre-
sponding pull message. Push message came from P3 is not replied immediately,
but buffered. Whenever the reply comes into P1 from P2, P1 updates its state,
then removes and performs the next event in the buffer which is sending pull
message to P3. After sending the pull message, P3 receives the pull message and
updates its state. By means of buffering and timeout mechanisms, we performed
push-pull based pairwise averaging operation atomically (consecutively).

�� ��

��

�

�

�
�

(a)

����������	�
���
������������������������������������
������������������	
�������
��������������������������������������
����� �
����� �

����� ���

����������	�
����
������������������������������������
������������������	
�������
��������������������������������������
����� ���
����� �
����� �

��
����������	�
����
������������������������������������
������������������	
�������

���������������������������������������
����� �
����� �
����� �

�

����������	�
����
������������������������������������
������������������	
�������

���������������������������������������
����� �
����� �
����� �

�

(b)

Fig. 2: (a)Illustration of operation order of a non-atomic pairwise averaging
(b)States of peers after each operation

3.2 Convergence Rule

In ProFID, peers use parameters ε and convLimit to determine whether algo-
rithm converged and results are available. The idea of convergence is simply
to calculate similar frequency values within at least a time length of convLimit
gossip rounds. Here calculating similar frequency means getting two average fre-
quency estimation values that change at most ε percentage in consecutive rounds
of algorithm. When a similar frequency is calculated, then a counter ,starting
from zero, is incremented. Otherwise, counter is reset to zero. Whenever, the
counter reaches convLimit value, then peer decides that algorithm converged
and can use frequent item set in a required service. As noted in [2], initial distri-
bution of an item does not affect the convergence speed, hence we use ui value’s
average frequency estimation to determine the convergence of the algorithm.

Convergence Rule. Let St be the average frequency estimation of item ui
at time t. Following similarity check is performed at each gossip round and
convCounter, starting from zero, is set accordingly. Whenever the convCounter
reaches to convLimit, then peer decides that algorithm has converged.

convCounter = convCounter + 1 if 100|St − St−1

St−1
| ≤ ε

convCounter = 0 otherwise

In order to prevent misleading convergence cases at the beginning of the
algorithm due to the similar initial states of neighbors, we keep convLimit not

Algorithm 2: ISCONVERGED: the convergence rule for ProFID.
Input: convLimit, ε
Output: converged:boolean representing convergence

if ε ≥ (currSizeEstim - prevSizeEstim)/prevSizeEstim && currSizeEstim
!= 0 then

convCounter++

else
convCounter = 0

prevSizeEstim = currSizeEstim;
return converged || convCounter==convLimit

less than 10 so that peers can not decide to converge in the early stages of the
algorithm.

Since we design a fully distributed protocol, we make a local decision about
convergence of algorithm. In terms of state exchanges, our gossip operations
for averaging are similar to [2] and the convergence issue has been analyzed
clearly in that study. However, the proposed termination criteria uses topology
information which may not be available at peers initially. On the other hand,
ProFID uses no system-wide information which makes it more practical.

As another related work, [11] gives a probabilistic upper bound on the number
rounds for all peers to converge. This upper bound depends on network size
and accuracy. It is shown theoretically that the more the algorithm runs, the
more probable to get correct estimations. However, the problem in the proposed
algorithm is that peers may not have knowledge about all items in the network,
which will cause accuracy drop in the algorithm.

4 Simulation Results

We used PeerSim [14] simulator to build the model for ProFID. It is a modular
and very scalable simulator and gives us a way to access and configure transport
layer properties such as message loss and delays. We evaluated the behavior and
performance of ProFID through extensive large-scale distributed scenarios (up
to 30,000 peers) on PeerSim. Random graphs with average degree 10 is used in
the experiments. Moreover, all the simulation data points presented in graphs are
the average of 50 experiments. We consider the following performance metrics
in our analysis:

– epsilon and convLimit: The effects of convergence parameters have been
analyzed in terms of number of rounds to converge and average number of
messages sent per peer. Relative error has also been analyzed for different
combination of convergence parameters.

– number of rounds (to converge): This performance metric measures
how fast the algorithm converges. The effects of convergence parameters,

average degree of nodes, and number of nodes on convergence speed has
been analyzed

– messages sent per peer: This performance metric measures the energy
efficiency of the algorithm, the effects of convergence parameters and average
degree of nodes on energy efficiency has been analyzed

– percentage of converged peers: This metric is another measure of how
fast algorithm converges. It shows the percentage of peers that converged
during gossip rounds. The effects of this metric has been analyzed in terms
of convergence parameters and network size

– C: This parameter is the convergence time constant. The effects of this
metric has been analyzed in terms of network size and percentage of peer
that converged.

– fanout: This parameter defines the number of peers to whom gossip message
will be sent at each round, its effects on convergence speed and C value has
been analyzed.

4.1 Efficiency of Pairwise Averaging

We evaluate the performance of pairwise averaging function by excluding the
convergence rule of ProFID. A peer compares the actual averages of items with
peers’ estimated averages while deciding convergence. This is for better evalua-
tion of the performance of pairwise averaging.

Fig. 3a depicts the scalability of ProFID in terms of time complexity. Num-
ber of gossip rounds needed for the convergence of all peers in the system is
measured to examine the time complexity of ProFID as the network size scales
up. These results confirm the scalability of our system in terms of time needed
for convergence. In fact, our results (for number of rounds to converge) agree
with the O(logN) time complexity of epidemic dissemination.

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

16

18

20

22

24

26

28

30

32

34

36

Number of peers

N
um

be
r

of
 r

ou
nd

s
(t

o
co

nv
er

ge
)

(a)

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Link drop probability(%)

C
on

ve
rg

en
ce

 E
rr

or
 (

%
)

(b)

Fig. 3: (a)Number of gossip rounds needed for all peers to converge. (b) The
effect of link drop probability on the accuracy of pairwise averaging

Fig. 3b illustrates the convergence error of the pairwise averaging in case
of message losses. In this simulation, the message loss probability of each link
is independent and identically distributed. Relative error is even less than %1,
in case of %5 message drop probability, which show that pairwise averaging is
robust against message losses.

Fig. 4a illustrates the effect of C, convergence time constant, on the network
size. It decreases with the increasing network size from which we can conclude
that for large networks, logN value will be much more dominant than C. Fig.
4b shows the effect of C on the number of peers that converges. It is actually
another way of showing that C value decreases with increasing network size.
Thus, larger networks reaches to full convergence for smaller values of C.

0 0.5 1 1.5 2 2.5 3

x 10
4

7

7.5

8

8.5

9

9.5

10

Number of peers

C

(a)

0 5 10 15
0

10

20

30

40

50

60

70

80

90

100

C

C
on

ve
rg

ed
 P

ee
rs

 (
%

)

100 peers
1000 peers
2000 peers
5000 peers
10000 peers
20000 peers
30000 peers

(b)

Fig. 4: (a)The minimum value of C such that after ClogN rounds all peers con-
verge. (b)Percentage of peers converged after ClogN rounds

The effect of fanout on convergence speed is illustrated in Fig. 5a. For larger
values of fanout, algorithm converges faster since a peer exchanges its state with
more neighbors and its state is disseminated faster to the network. The effect of
fanout on C value is depicted in Fig. 5b. For larger values of fanout, C value
decreases due to the faster convergence of algorithm.

4.2 Efficiency of ProFID

We evaluate the effects of convergence parameters (ε and convLimit) and aver-
age degree on the efficiency of ProFID. Fig. 6a shows that increasing ε, decreases
both average number of messages sent per peer and number of rounds to converge
because convergence rule increments convCounter value with more probability,
which results in faster convergence. Since algorithm converges faster, peers com-
municate less and average number of messages sent per peer decreases. In con-
trast to ε parameter, increasing convLimit increases both the average number of

0 0.5 1 1.5 2 2.5 3

x 10
4

0

5

10

15

20

25

30

35

40

45

50

Number of peers

N
um

be
r

of
 r

ou
nd

s
(t

o
co

nv
er

ge
) fanout=1

fanout=2

fanout=3

fanout=all neighbors

(a)

0 0.5 1 1.5 2 2.5 3

x 10
4

0

1

2

3

4

5

6

7

8

9

10

Number of peers

C

fanout=all neighbors
fanout=3
fanout=2
fanout=1

(b)

Fig. 5: (a)The effects of fanout on the number of rounds needed for all peers to
converge (b)The effects of fanout on C value

messages sent per peer and number of rounds to converge because convCounter
needs to be incremented more to reach convLimit.

0 10 20 30 40 50 60
15

20

25

30

35

40

45

ε(%)

Number of rounds (to converge)
Avg. num. of messages sent by per peer

(a)

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

80

90

100

110

convLimit

Number of rounds (to converge)
Avg. num. of messages sent by per peer

(b)

Fig. 6: The effects of ε(a) and convLimit(b) on the number of rounds to converge
and average number of messages sent per peer

Fig. 7a illustrates the effects of convergence parameters, ε and convLimit on
the number of rounds to converge. The fastest convergence occurs whenever ε
parameter takes its largest value and convLimit takes its smallest value, which
agrees with the convergence rule. However, there is a tradeoff between conver-
gence speed and accuracy. Finding the optimum values of convergence parame-
ters is an ongoing work. Fig. 7b illustrates the effect of average degrees of peers
on the number of rounds to converge. Increased connectivity of the network,

decreases the number of rounds to converge. This actually shows that, optimum
results would be taken in complete graphs, as Kempe et al. [11] showed.

0 2 4 6 8 10 12
0

1

2

3

4

5

6

ε(%)

R
el

at
iv

e
er

ro
r

(%
)

convLimit=4
convLimit=8
convLimit=10
convLimit=15

(a)

0 20 40 60 80 100 120
20

25

30

35

40

45

50

55

60

65

Average Degree

Number of rounds (to converge)
Avg. num. of messages sent by per peer

(b)

Fig. 7: (a)The effects of the convergence parameters on number of rounds to
converge. (b) the effects of average degree on number of rounds to converge and
average number of messages sent per peer.

5 Conclusion and Future Work

This paper has proposed a practical protocol named ProFID for discovering
frequent items in P2P networks. In contrast to prior work, ProFID uses atomic
pairwise averaging function with gossip-based aggregation. It is fully distributed,
uses local peer information plus neighborhood knowledge only, and also offers
a convergence rule for efficiently approximating system wide averages of data
items. We have developed the simulation model, evaluated the behavior and
performance of ProFID through extensive large-scale distributed scenarios (up
to 30,000 peers) on PeerSim. First, we have studied the atomic pairwise function
in terms of its efficiency in approximating averages of items. Then, we have eval-
uated the protocol by considering several metrics such as epsilon, convergence
limit, fanout, number of rounds, and messages sent per peer. The results confirm
the practical nature, ease of deployment and efficiency our approach. As future
directions, we aim to evaluate ProFID in peer churn scenarios, and investigate
the effect of limited gossip message sizes. For comparison, we are developing the
well-known push-synopses protocol [11] by adapting it to the problem of frequent
item set discovery and practical P2P network settings. Furthermore, we aim to
conduct network tests of ProFID on the PlanetLab.

References

1. M. Li and W. C. Lee, “Identifying frequent items in p2p systems,” in Distributed
Computing Systems, 2008. ICDCS ’08. The 28th International Conference on, June
2008, pp. 36–44.

2. M. Jelasity and A. Montresor, “Epidemic-style proactive aggregation in large over-
lay networks,” in ICDCS, 2004, pp. 102–109.

3. R. Keralapura, G. Cormode, and J. Ramamirtham, “Communication-efficient dis-
tributed monitoring of thresholded counts,” in SIGMOD Conference, Jun. 2006,
pp. 289–300.

4. A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Olston, “Finding (recently)
frequent items in distributed data streams,” in Proc. of International Conference
on Data Engineering (ICDE), Apr. 2005, pp. 767–778.

5. J. Misra and D. Gries, “Finding repeated elements,” Sci. Comput. Program., vol. 2,
no. 2, pp. 143–152, 1982.

6. R. M. Karp, S. Shenker, and C. H. Papadimitriou, “A simple algorithm for finding
frequent elements in streams and bags,” ACM Trans. Database Syst., vol. 28, pp.
51–55, 2003.

7. G. S. Manku and R. Motwani, “Approximate frequency counts over data streams,”
in VLDB, 2002, pp. 346–357.

8. G. Cormode and M. Hadjieleftheriou, “Finding the frequent items in streams of
data,” Commun. ACM, vol. 52, no. 10, pp. 97–105, 2009.

9. C. Olston, J. Jiang, and J. Widom, “Adaptive filters for continuous queries over
distributed data streams,” in SIGMOD Conference, 2003, pp. 563–574.

10. B. Lahiri and S. Tirthapura, “Computing frequent elements using gossip,” in
SIROCCO, 2008, pp. 119–130.

11. D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of aggregate
information,” in Proc. of Symposium on Foundation of Computer Scienece (FOCS),
Oct. 2003, pp. 482–491.

12. J.-Y. Chen, G. Pandurangan, and D. Xu, “Robust computation of aggregates in
wireless sensor networks: Distributed randomized algorithms and analysis,” IEEE
Trans. Parallel Distrib. Syst., vol. 17, no. 9, pp. 987–1000, 2006.

13. L. Chitnis, A. Dobra, and S. Ranka, “Aggregation methods for large-scale sensor
networks,” ACM Trans. Sen. Netw., vol. 4, no. 2, pp. 1–36, 2008.

14. “The Peersim simulator,” http://peersim.sf.net.

