
Profile-Based Algorithms to Solve Multiple Capacitated Metric
Scheduling Problems

Amedeo Cesta
IP-CNK

National Research Council
Viale Marx 15

1-00137 Rome, Italy
aaedeo4~scs2, irakant, am. cnr. it

Angelo Oddi
IP-CNR

National Research Council
Viale Marx 15

1-00137 Rome, Italy
oddiepscs2, irakant, rm. cnr. it

Stephen F. Smith
The Robotics Institute

Carnegie Mellon University
5000 Forbes Avenue

Pittsburgh, PA 15213, USA
sfsQisll .ri.aau. edu

Abstract

Though CSP scheduling models have tended to as-
sume fairly general representations of temporal con-
straints, most work has restricted attention to prob-
lems that require allocation of simple, unit-capacity
r~=,ources. This paper considers an extended class of
scheduling problems where resources have capacity to
simultaneously support more than one activity, and
resource availability at any point in time is conse-
quently a function of whether sufficient unallocated
capacity remains. We present a progression of algo-
rithms for solving such multiple-capacitated schedul-
ing problems, and evaluate the performance of each
with respect to problem solving ability and quality of
solutions generated. A previously reported algorithm,
named the Conflict Free Solution Algorithm (CFSA),
is first evaluated against a set of problems of increasing
dimension and is shown to be of limited effectiveness.
Two variations of this algorithm are then introduced
which incorporate measures of temporal flexibility as
an alternative heuristic basis for directing the search,
and the variant making broadest use of these search
heuristics is shown to yield significant performance
improvement. Observations about the tendency of
the CFSA solution approach to produce unnecessar-
ily overconstrained solutions then lead to development
of a second heuristic algorithm, named Earliest Start
Time Algorithm (ESTA). ESTA is shown to be the
most effective of the set, both in terms of its ability
to efficiently solve problems of increasing scale and
its ability to produce schedules that minimize overall
completion time while retaining solution robustness.

Introduction

Over the past few years, constraint satisfaction prob-
lem solving (CSP) techniques have been productively
applied to several classes of scheduling problem (e.g.,
(Cheng & Smith 1994; 1996; Nuijten & Aarts 1994;
Oddi & Cesta 1997; Sadeh 1991; Oddi & Smith 1997)).
One advantage of CSP approaches to scheduling is the
generality of their underlying representational assump-
tions. Techniques have been proposed, for example,
which operate relative to very general temporal con-
straint models and support resource allocation under

Copyright (c) 1998 American Association for Artificial
Intelligence (www.aaai.org).

complex quantitative time constraints. Thus, in con-
trast to classical scheduling approaches which tend to-
ward specialized solutions to idealized problem formu-
lations, the representational assumptions underlying
CSP scheduling techniques are well matched to the
modeling requirements of practical scheduling prob-
lems.

However, current CSP scheduling models are not
without modeling limitations. Most research has fo-
cused on problems that require allocation of simple,
"unit-capacity" resources; i.e., resources that must be
dedicated exclusively to performing any given activ-
ity and, at any point in time, are either "available"
or "in-use". In many practical domains, resources in
fact have the capacity to support some number of ac-
tivities at any point in time. Indeed, the inability to
accommodate capacity resources and to solve multiple-
capacitated scheduling problems is perhaps the princi-
pal obstacle to widespread application of most CSP
scheduling models and heuristics. In this paper, we
take some steps toward removing this obstacle.

Let us introduce a very intuitive example of the type
of multiple-capacitated scheduling problem we will fo-
cus on: suppose that a vacation house has a limited
amount of power supply (a generator with capacity
k - 2) and a family (two parents and a child) rents
for a week-end. They are unaware on the power limita-
tion upon arrival but soon after realize that this will be
a serious constraint on their week-end activities. For
example Tim, the son, is unable to switch on the hair-
drier after taking a shower because the water-heater is
on and his mother is simultaneously cooking an apple
pie in the electric oven (we assume that any electric de-
vice consumes one unit of power supply). It is easy to
see that it is not possible to solve these resource avail-
ability conflicts by simply postponing one or more of
these conflicting activities, because these activities are
connected to others by temporal relations: Tim cannot
postpone his hair drying for more than 5 minutes after
having a shower because it is winter time and he risks
catching a cold; mother cannot indefinitely delay the
baking of the pie once it has been prepared, because
this may harm its taste. In general it is necessary to
postpone or interleave blocks of temporally connected
activities, and different decisions can have significant
impact on how efficiently resources are used and how
efficiently activities can be completed.

214 Scheduling

From: AIPS 1998 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

The type of scheduling problem illustrated above is
distinguished by the need to re .~o.n abo..ut capacity, x~-
sources in the presence of quantitatlve tlme constraints
on the starts, ends and durations of individual activi-
ties as well aa on the temporal separations between re-
lated activities. We call this particular class of schedul-
ing problem the Multiple Capacitated Metric Schedul-
ing Problem (MCM-SP). Variants of the MCM-SP are
commonplace in practical domains. Aircraft trans-
portation scheduling applications, for example, gener-
ally require management of capacity resources at air-
ports (e.g., onload/offload capacity, aircraft parking
space, cargo storage area) while simultaneously enforc-
ing complex temporal constraints on airlift activities
(e.g., minimum time on ground, takeoff/landing sepa-
ration times). Similarly, in most manufacturing envi-
ronments, production activities must be synchronized
to account for the finite processing capacity of various
machining centers and operator pools while respect-
ing the ordering, timing and separation constraints on
various production steps.

In this paper, we define and evaluate a set of ~profile-
based~ methods for solving MCM-SP. Profile.baaed
solution methods rely centrally on a temporal func-
tion called a demand profile Dj (t) which describes the
quantity of resource rj required by various activities
at time t. Generally speaking, profile baaed solution
methods proceed by detecting time instants in which
the profile Dj (t) is greater than the available capac-
ity of resource rj and then "leveling" these utilization
peaks by posting additional ordering constraints be-
tween those activities competing for rj’s capacity.

Our starting point is a solution procedure based
directly on the techniques described in (E1-Kholy
Richards 1996). This approach, which emphasizes
contention-baaed criteria for prioritizing the leveling
decisions that must be made, is found to be ineffective
aa problem size is inc~eaaed. We then propose variants
of this procedure which alternatively use the heuristic
criteria proposed in (Cheng & Smith 1994) (baaed
the idea of maintaining sequencing flexibility) to pri-
oritize and make leveling decisions. These variants are
shown to yield significant performance improvements.
Finally, we propose a new algorithm, also incorporat~
ing the heuristic ideas of (Cheng & Smith 1994) but
this case designed specifically to emphasize construc-
tion of compact solutions. We show that this approach
outperforms all other procedures, both in terms of the
number of solved problems and overall solution quality.

The remainder of the paper is organized aa follows:
first, the MCM-SP is formally defined, and connections
and distinctions with related literature are discussed;
second, the problem of generating reproducible random
instances of MCM-SPs is addressed and performance
evaluation metrics are defined; third, a progression of
profile.baaed solution methods is presented and evalu-
ated on the controlled set of problems. Some conclud-
ing remarks close the paper.

Definition of MCM-SP

The Multiple-Capacitated Metric Scheduling Problem
(MCM-SP) considered in this work involves synchro-

nizing the use of a set of resources R = {rl... rm} to
perform a set of jobs J = {jl...j,} over time. The
processing of a job j~ requires the execution of a se-
quence of ni activities (ail...ainu}, a resource rj can

process at most cj activities at the same time (with
cj >_ 1) and execution of each activity a~j is subject to
the following constraints:

¯ resource availability- each aij requires the use of a
single resource r,,j for its entire duration.

¯ processing time constraints- each aij has a mini-

mum and maximum processing time, proc~ in and

proc~ija’, such that proc~i/n < e,j -- so <_ proe~or,

where the variables s~j and eij represent the start
and end times respectively of a~j.

¯ separation constraints- for each pair of successive
activities a0 and aio+l), j = 1... (n~ - 1), in job
there is a minimum and maximum separation time,
sep~’’~ and sep~ka’, such that {se~’n <_ s,<,+,~ -

e,, <_ sept*Z: k-- l...(n,- 1)}.

¯ job release and due dates - Every job j~ has a release
date rdi, which specifies the earliest time that any
aij can be started, and a due date dd~, which desig-
nates the time by which all alj must be completed.

A solution to a MCM-SP is any temporally consistent
assignment of start and end times which does not vio-
late resource capacity constraints.

It is worth noting the main features of the problem:
(a) the resources are discrete (and not consumable)
with capacity e$ greater than or equal to one; (b) all
temporal constraints are quantitative and expressed as

a bound between a maximal and minimal duration of
a distance; (c) an important role is played by the pres-
ence of separation constraints between activities; these

constraints in fact have a crucial role in increasing the
intrinsic difficulty of the problem. They constrain the
’~fluidity" of a single activity in the solution to be de-
pendent on a set of connected activities. This fact
introduces a further level of interdependency between

activity start and end time assignments.

Time and Resource Constraints. The style of so-
lution investigated here is based on the explicit man-
agement of sets of constraints that the solution should
satisfy. To sharpen the basis for comparison of alterna-
tive algorithms, we will assume a common constraint
representation and management infra-structure.

Time Ontology. To support the search for a consis-
tent solution, a directed graph Gd(V, E), named dis-
tance graph, is defined, wherein the set of nodes V
represents time.points tpi and the set of edges E rep-
resents temporal distance constraints. The origin, to-
gether with the start time s,~ and end time e,~ of
each activity a~, comprise the set of represented time
points in Gd for any given MCM-SP. Activity process-
ing time constraints, aa well aa separation constraints
and precedence constraints between pairs of activities,
are encoded (naturally) aa distance constraints. Ev-
ery constraint in Gd is expressed as a bound on the
differences between time.points a < tpj - tp~ <_ b and
is represented in Gd(V, E) with two weighted edges:

Cesta 215

From: AIPS 1998 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

the first one directed from tpi to tpj with weight b,
the second one from tpj to tp~ with weight -a. The
graph Gd(V, E) corresponds directly to a Simple Tem-
poral Problem (STP) (Dechter, Meiri, & Pearl 1991)
and its consistency can be efficiently determined via
shortest path computations (Ausiello et al. 1991;
Oddi 1997). Thus, the search for a solution to
MCM-SP can proceed by repeatedly adding new prece-
dence constraints into Gd to resolve detected con-
flicts and recomputing shortest path lengths to con-
firm that Gd remains consistent (i.e., no negative
weight cycles). We let d(tpi, tpj) designate the short-
est path length in graph Gd(V~ E) from node tpl to
node tpj. Note that, given a Gd, the distance be-
tween any pair of time points satisfies the constraint
tpj - tpi = [-d(t pj , tpi) , d(tpi , tpj) (Dechter, Meiri, &
Pearl 1991).

Resource Ontology. Each problem relies on a set of
resources R. We denote the required capacity (also
called resource demand) of a resource rj E R by an
activity ak as rcah,j , and the set of activities ak that
demand resource rj as Aj (i.e., Aj = {at,[rc, hj ~ 0}).
Then for each resource rj a Demand Profile Dj(t)
can be defined, representing the total capacity require-
ments of ak E Aj at any instant of time. For rj then,
the resource capacity constraint requires Dj(t) < cj
for all t. For purposes of this paper, we assume that
rca~ j = 1 for all at,.

Related Literature. An earlier work that formal-
izes the scheduling problem as a CSP (Constraint Sat-
isfaction Problem) is (Sadeh 1991). This work focuses
on the JSSP (Job-Shop Scheduling Problem) where:
(a) temporal constraints represent constant durations
of activities; (b) separation between activities are sim-
ple qualitative ordering constraints; (c) capacity con-
straints are binary (a resource is either busy or free).

An extension of JSSP to multi-capacitated problems
is developed in (Nuijten & Aarts 1994). The paper
introduces and presents a solution procedure for the
Multi-Capacitated JSSP (MCJSSP), which retains the
temporal constraint model of the classical JSSP but
allows resource capacities to be greater than one. In
(Smith & Westfold 1996), a similar problem involving
a single, multi-capacitated resource is addressed.

An extension of JSSP to include the more general
temporal constraint assumptions of an STP (while re-
taining the assumption of binary capacity constraints)
is introduced and solved in (Cheng ~k Smith 1994), and
also subsequently considered in (Oddi & Smith 1997).
A variant of this problem where temporal constraints
may be relaxed is discussed in (Oddi g~ Cesta 1997).

Representations and solution procedures that simul-
taneously account for STP-style temporal constraints
and multi-capacitated resource constraints have re-
cently been proposed within the planning literature,
principally to provide resource reasoning subcompo-
nents within larger planning architectures (Laborie
GhMlab 1995; EI-Kholy & Richards 1996; Cesta &
Stella 1997). These efforts will be considered later on
in the paper.

216 Scheduling

A Controlled Experimental Setting

The scheduling problem introduced here has not been
carefully studied from previous research. It is thus im-
portant at the outset to consider issues related to es-
tablishing a common basis and experimental design for
comparison of alternative solution procedures. Below,
we consider in turn two critical issues in this regard:
(a) generation of benchmark problems, and (b) devel-
opment of measures that characterize the quality of an
algorithm and the solution it produces.

Generation of Problem Instances. The first step
toward establishing an experimental design is the im-
plementation of a controlled random number gener-
ator. We adopt the generator proposed in (Taillard
1993) (pag.179) and obtain the uniform distribution
function U[a,b] which generates a random number
n, where n~ a and b are positive numbers such that
a < n < b z. To generate different problem instances
we use the time seeds reported in Figure I of (Taillard
1993) (in particular the first 50 seeds in this paper).

Next we define the dimensions along which problem
instances will be varied. Using the format for formulat-
ing job shop scheduling problems, we call Njobs x Nres
the problem with Njoba each of them composed of a
sequence of Nrea activities that must be executed on
one of the Nre~ different resources. For purposes of
this paper, we create problem sets of 50 instances for
each of the following sizes: 5 x 5, 10 × 5, 15 × 5, 20 × 5,
and 25 x 5. To generate random instances of MCM-
SP of the above sizes we assign the remaining data as
follows:

¯ Each resource rj has capacity cj generated randomly
as U[2, 3], with full availability over the horizon.

¯ The minimum processing time of activities is drawn
from a uniform distribution U[10, 50], and the max-
imum processing time is generated by multiplying
the minimum processing time by the value (1 + p),
where p -- U[0, 0.4].

¯ The separation constraints [a, b] between every two
consecutive activities in a job are generated with a =
U[0, 10] and b = U[40, 50].

¯ Release and due dates for jobs are not considered ex-
plicitly in the current experiments so they are fixed
to 0 and H respectively for all the jobs.

Finally, the horizon H is computed by the following
formula adapted from (Cheng ~k Smith 1994): H

N
2vr.o .

(jobs--1)Pbk+~_ 1 Pi, where Pbk lS the average min-
imum processing t]~ne of the activity on the bottleneck
resource, and pi is the average minimum processing
time of the activity on resource rf. The bottleneck re-
source is the resource with maximum value of the sum
of the minimum processing time of the activities which
request the resource.

Evaluation Criteria. The identification of criteria
for assessing the relative effectiveness of alternative so-
lution methods and solutions is always somewhat con-

21fa and b are integers then n is obtained as an integer,
if one of them is real n is real.

From: AIPS 1998 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

troversial. For purposes of this paper, we consider the
quality of a given solution procedure to be given as
* number of solved problems from a fixed set (Na);

¯ average CPU time spent to solve instances of the
problem (C PU).

¯ the number of leveling constraints posted in the so-
lution S (N~e). This number gives a further struc-
tural information of the kind of solution created. It
indicates the number of sequencing constraints in-
troduced by the algorithm to resolve competing re-
source capacity requests.

¯ the average quality of the solutions generated.

We consider two factors as contributing to judgements
of solution quality. From an optimization viewpoint,
we will measure the compactness of the solution and
from an executability viewpoint, we will characterize
its robustness. These notions are formalized below.

One commonly used measure of schedule quality is
its overall makespan. Consequently we consider the
makespan Mk, (or minimum completion time) of a so-
lution to be one indicator of quality.

Robustness is a trickier notion to formalize. It is
commonly believed that robustness is related to the
possibilities for obtaining minor variations to a solution
(at execution time for example) without incurring
a major disruption to the overall solution. In general,
when working with strongly temporalized domains (as
is the case in this paper) this capability seems con-
nected to the degree of "fluidity" of the solutions. The
kind of measure we are trying to define takes into ac-
count the fact that a temporal variation concerning an
activity is absorbed by the temporal flexibility of the
solution instead of generating a deleterious "domino
effect" in the solution itself.

Building on this intuition, we define the robustness
RB of a solution S to be the average width, relative to
the temporal horizon H, of the distance, for all pairs of
activities, between the start time of one activity and
end time of the other. More precisely:

Id(e,o, s,j) - d(s,~, e,,) I
RB(S)= ~ x,uu

,,es,~jes,o,#o, H x (N, x (No - 1))

where N6 is the number of activities in the solution, ah
is a generic scheduled activity, d(sa,, ea,) is the length
of the shortest path between the start-time of aj and
the end-time ofal, 100 is a scaling factor. With RB(S),
we at least obtain a coarse idea of the reciprocal "shift-
ing" potential between pairs of activities in a solution.
In fact, we focus on the current average bounds on dis-
tances between the end time and start time of any pair
of activities in the schedule.

Profile-Based Algorithms

We can now define and evaluate alternative procedures
for solving MCM-SPs. From previous work that has
taken into account multiple capacitated resources, we
can distinguish at least two general approaches to the
identification of resource conflicts s:

SAny classification of existing works might be partial
and a bit arbitrary. For example the current classification

¯ profile.based approaches (EI-Kholy & Richards 1996;
Cesta ~ Stella 1997): these approaches are exten-
sions of a technique quite common in unit-capacity
scheduling (e.g. (Sadeh 1991)). Most generally,
consist of characterizing resource utilization demand
as a function of time, identifying periods of resource
overallocation in this utilization, and incrementally
performing "leveling actions" to (hopefully) ensure
that resource usage peaks fall below the total capac-
ity of the resource;

¯ clique-based approaches (Laborie & Ghallab 1995):
given a current schedule, this approach builds up
a "conflicts graph" whose nodes are activities and
whose edges represent possible resource conflicts be-
tween the connected activities. Fully connected sub-
graphs (cliques) are identified and if the number
nodes in the clique is greater than resource capacity
a conflict is detected.

In this paper we restrict attention to the profile-based
solution methods and consider several different algo-
rithms based on this idea. All proposed strategies have
in common the basic concept of demand profile Dj (t).
The goal of a profile-based scheduling algorithm is to
create a temporally consistent schedule where in every
time instant the demand profile of any resource satis-
fies the resource constraints Dj (t) <_ cj.

In (Cesta & Stella 1997) the complementary aspect
of Dj(~) , resource availability Qj(t)= cj- Dj(Q,
considered, and a set of constraint synthesis techniques
is introduced that perform filtering of the search space
during resolution. In (EI-Kholy & Richards 1996)
more limited form of resource constraint propagation
is used. However, a leveling heuristic is also given so
that a procedure can be reproduced which forms a com-
plete scheduling algorithm. For this reason, we have

chosen this second procedure as the starting point of
our investigation and analysis.

Conflict Free Solution Algorithm (CFSA)

The Conflict Free Solution Algorithm (CFSA) which
we first consider is based directly on the procedure
defined in (El-Kholy & Richards 1996). The princi-
pal point of departure in our formulation has been to
eliminate the backtracking search framework that is
employed in (EI-Kholy & Pdchards 1996) in favor
a greedy, backtrack-free search model. This more re-
strictive search model obviously places much stronger
importance on the heuristics used to direct the search,
and one of our interests in this paper is to improve
upon these heuristics. But also, from a pragmatic
standpoint, the scale and complexity of the MCM-SP
problem that is considered here dwarfs the types of
problems considered in (EI-Kholy & Richards 1996)
and a complete, back-tracking search model is not vi-
able computationally.

Before presenting the initial CFSA algorithm itself,
some preliminary definitions are needed.

is enough for purposes of the paper but does not represent
well proposals like the "energetic approach" in (Erschler,
Loper, & Thuriot 1990).

Cesta 217

From: AIPS 1998 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

Demand Profile Bounds. Due to the temporal flex-
ibility of an intermediate solution, an exact computa-
tion of the D/(t) is not possible but upper and lower
bounds for Dj (t) may be defined. Without loss of gen-
erality, such bounds are computed taking into account
only activity start times. This is because it is in such
points that a positive variation of the demand profile
happens. Broadly speaking, for each start time aa,,
the value of the lower bound profile (upper bound pro-
file) is the sum of the capacity requirements of the ac-
tivities whose execution interval necessarily (possibly)
intersects with the time point sa,.

A more formal definition is based on the temporal
distances on the graph Gd. The lower-bound profile of
a resource rj is defined as:

LBD~(Sa,) = E Pik × rcahj

akEAj

where Pi~ = I if d(sa,, sah) _< 0 A d(ea~, s.,) < 0
Pik = 0 otherwise. Similarly the upper-bound profile of
a resource rj is defined as:

uBo,(,..) = ×
a~EAi

where Pi’k = 1 if d(sah, s~,) > 0 d(sa,, e~) > 0 an

p; = 0 otherwise.
~Resource Conflicts. The concept of peak formalizes

the idea of conflict (or contention) in the use of a re-
source. A peak is the couple <aa,, {aj}>, where aa,
is the start time of an activity ai and {aj } is a set of
activities which produces a violation of the resource
constraints. Three types of peaks are introduced:

¯ lb-peak: a lower-bound peak where LBD, (s~,) =

and U BDj(s,,) > cj;

¯ unre.s-peak: an unresolvable peak where
LBD~(Sa,) > cj;

¯ ub-pea& an upper bound peak where LBDi (s,,)

cj and UBo, (s,,) > cj.

Conflict Resolution. A solution is always obtainable
when UBoj (aa,) < ej for each resource rj. In such a
case any consistent assignment of values to the solu-
tion’s time points gives a solution where resource uti-
lizations are consistent. A conflict free solution is built
by iteratively posting leveling constraints on the lb-
peaks and ub-peaks until every peak is removed. Given
a set of peaks, the leveling action can be formalized in
two steps:

1. conflict selection: a conflict in this case is a couple
<aa,, aj> (notice a time-point and an activity)
which the condition Pij = 0 A Pi’j = 1 holds;

2. leveling: one of the two leveling constraints
s,,{before}sai or e,j{before}sa, is selected and
posted in the partial solution.

Note that it may be the case. that one of the two pos-
sible leveling constraints cannot be posted, because of
its inconsistency in the graph Gal. In this case, the

218 Scheduling

choice is uniquely determined. When both constraints
are consistent alternatives, a heuristic choice is needed.
The strategy followed in (EI-Kholy ~ Richards 1996),
according to a least commitment principle, first makes
choices in the area of the solution where the most con-
straints have already been posted. The algorithm first
detects the Ib-peaks, where the lower bound of the de-
mand has reached the maximal resource availability,
and tries to satisfy UBDi (s,,) <_ cj by adding leveling
constraints. Note that all the lb-peaks must be neces-
sarily leveled to ensure a conflict free solution, so the
heuristic choice concerns only the order in which the
conflicts within a lb-peak are considered and which lev-
eling constraint is applied when both possibilities are
consistent. After having leveled the Ib-peaks, the algo-
rithm starts to consider the ub-peaks. In this case the
heuristic choice concerns not only the conflict choice
and the leveling constraints but also the order in which
the ub-peaks are considered for leveling.

The CFSA Algorithm. The basic CFSA algo-
rithm is sketched in Figure 1. On any given cy-
cle, it first looks for unresolvable peaks (function
Exists-Unresolvable-Peak). If any are found the
algorithm stops. Otherwise the presence of lb-
peaks is detected (gxists-Lb-Peak), the heuristic
Select-Lb-Peak-Lev-Constr is applied to select a
leveling constraint, and it is posted in the underlying
temporal constraint graph Gd.

C onfli et- Free-S olver (mcmsp
1. loop
2. if Exlsts-Unresolvable-Peak(mcmsp)
3. then return(Failure)
4. else begin
5. if Ex~sts-Lb-Peak(mcmsp)
6. then begin
7. LC := Select-Lb-Peak-Lev-Constr(memsp)
8. Post-Lev-Constr(LC)
9. end
10. else if Exists-Ub-Peak(mcmsp)
l 1. then begin
12. LC := Select-Ub-Peak-Lev-Constr(mcmsp)
13. Post-Lev-Constr(LC)
14. end
15. else return(Solution)
16. end-loop

Figure 1: Conflict Free Solution Algorithm

The choice is implemented as follows: in the set of
all lb-peaks {<aa,, {aj}>} the set of conflicts which
have a unique solution {only one of Sa,{before}saj,

e~{before}na, is consistent) is computed. The con-
flicts in the set are randomly chosen and leveled by
posting the uniquely determined ordering constraint.
In none of these conflicts exist, the set of conflicts
where both leveling constraints are possible is com-
puted and iteratively one is randomly chosen and lev-
eled by randomly posting one of the two ordering
constraints. If, in the current solution, the Ib-peaks
have been leveled, the existence of ub-peaks is checked
(Exists-Ub-Peak). If any peaks are found, a differ-

From: AIPS 1998 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

ent leveling heuristic ($ele¢~-Ub-Peak-Lev-Constr)
is applied: in the subset of the ub-peaks where the value
LBD~(Sal) is maxima], one of the ub-peaks is selected
where the value UBDj(s..) is minimal. Within this
ub-peak the same strategy used for lb-peaks is applied
to level conflicts. When all ub-pmks have been leveled
a solution is found.

Experimental Evaluation. The CSFA algorithm
was run on generated problem sets of increasing size
and the results are given in Table 1 4. We call this ver-
sion of the algorithm CFSA+PK to stress the composi-
tion of a generic conflict free strategy with the particu-
lar mechanism that focuses on peaks. Each problem set
consists of 50 randomly generated problem instances.

It is interesting to notice that the performance of
CSFA, although effective on small problems, degrades
rather markedly as problem size increases. At the two
largest problem sizes, the algorithm is able to solve
very few problems.

Table 1: Experiments with CFSA+PK

] Probl II N. I RB I Mk. I Jv o [c,’eu I
5x5 50 5.9 [241.7 [29.3 0.5
10x5 [48 2.4 [424.0 [114.5 7.0
15×5 II 32 1.21606.71212.8 25.8
20x5 11 5 0.9[785.21365.8 67.9
25×5]] 1 0.5] 884.0] 497.0 133.2

Retaining Temporal Flexibility

The heuristics embedded in the basic CFSA procedure
just described attempt to first level a peak where the
lower-bound profile is maximal and at the same time
the upper bound profile is minimal. In this way, the lev-
eling action is concentrated in the area of the current
solution where it is more probable that an unres.peak
will appear. However, we observe that the selection of
the leveling constraints is randomly done without any
evaluation of its temporal commitment on the current
solution. On the contrary, as observed in (Cheng
Smith 1994), such analysis can provide crucial guid-
ance for fmding solutions to scheduling problems with
temporal separation between activities.

Following this observation, we propose aa extension
of the basic CFSA procedure that utilizes the notion of
temporal flexibility as a heuristic basis for prioritizing
leveling decisions. At each (previously random) deci-
sion point, we propose instead to non randomly make
the choice which leaves the maximal degree of tempo-
ral flexibility. Intuitively, the notion of temporal flex-
ibility is related to the idea of how many "temporal
positions" the time points in a solution may assume
with respect to each other (i.e., how many consistent
assignments remain). Given two partial solutions Sx
and $2 where the degree of temporal flexibility of $1 is
much greater than $2 the probability to get a complete

4The CPU times given here and in subsequent tables
are in seconds. All procedures described in this paper were
implemented in Commonlisp and all experiments were run
on a SUN Sporcstation I0.

solution from $1 is greater because there is more ’Tree
temporal space~ in it.

We can define the notion of temporal flexibility
between any pair of time points in a way similar
to (Cheng & Smith 1994). Assume tp~ and tpj
are two time points in a solution’s temporal net-
work where the following relation holds: tpj - tp~ E
[-d(tpj, tp~), d(tpi, tpj)]. We define temporal flexibility
(flez(tp~, tpj)) associated to the pair (tpi, tpj) the am-
plitude of the interval of temporal distances between
tp~, tpj with the condition tpi <_ tpj. For example, in
the case that tpl - tp2 E [-5, 10] the temporal flexibil-
ities are flez(tp2, tpl) = 10 and flez(tpl, tp2) = 5. In-
stead, in the case tpl -tp~ 6 [12, 16], flez(tp~,tpl) =
and flez(tpl,tp2) =

When a temporal constraint is posted between tpi
and tpj a fixed amount of temporal flexibility is re-
moved from the temporal network. In particular, when
solving MCM-SPs, we use only constraints of the type
tp~{before}tpj which removes an amount of tempo-
ral flexibility equal to flez(tpj, tpi). This simple idea
is used in the algorithms proposed in the next para-
graphs where the goal of the heuristic is to improve
the probability to find a solution by maintaining the
value ~-’~tp,,tp~ flez(tpi, tpj) as high as possible.

Heuristics Using Temporal Flexibility

To incorporate a bias toward retention of temporal
flexibility into the basic CFSA procedure, we need to
specify two heuristic estimators. The first estimator is
used to select a conflict <aa,, aj> from a set of peaks
and it is computed as follows:

¯ Conflict Selection (CS) Given a set of peaks, the
selection of a single conflict <aa., aj> is done on the
basis of a measurement of the temporal flexibility
associated to <sa~,aj>. We use the two temporal
distances on the Gd graph d(sa,, sai) and d(eaj, sa,).

In the ease that for each <sa,, aj> both the ordering
choices s.~ {before)s,~ and e,~ {before)s,, are tem-
porally consistent (d(sa,, saj) > 0 and d(eoi, s,,)
0) then, the conflict <sah,am> is selected with the
minimum value ~0re°(s, h, am) 5 where:

car.s(s..,am) min{d(S~sa’)
d(ea.,sak)

, ,/-g }

with S = ~n~(’*~"")’~("’"’~)) Otherwise, raaz{d(,.~,,.,.).d(e.=.~.~))"
the case there is at least one conflict which can
be leveled in a unique way (one of the distances
d(sa.,sa#) or d(ea#,s,,) is 0), th e conflict is se-
lected with the minimum value w~o(s,~,a~)
min{d(sa~, aa,), d(ea,, s~)}--the conflict closer to
the resource consistent status.

SAs suggested in (Cheng & Smith 1994) a balancing
factor ~is used. It is possible to see that S ~ [0,1]: S = 1
when d(s.~,s,,,~) = d(e..,s°~) and it is dose to 0 when
d(s.,, s,. ~ >> d(e,., aa,) d(e,., s,,) > >d(s, ,, s,..
The aim of this balancing factor is to select first conflicts
with small and similar values of flexibility.

Cesta 219

From: AIPS 1998 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

The second estimator is used, given an <sa~, aj>, to se-
lect one of the two leveling constraints aa, {before}sa~

or eai {before}s.,:

¯ Levehng Constraint Selection (LCS) The ch oice
is made according to the function pc, such that,
pc(s.,,aj) : se,{be/ore)s., when d(s..,sej)

d(.eaj, aa,) and pc(se,, aj) -- eej (before}aa. other-
wISe.

These two estimators provide a basis for defining two
new algorithms for MCM-SP:

¯ The first variant maintains the CFSA strategy of
"peak focusing" and simply utilizes a deterministic
choice procedure based on temporal flexibility in-
stead of the previous random choice procedure (we
call this version CFSA+PK+TF). The two heuristic
functions of CFSA are modified as follows:

Select-Lb-Peak-Lev-Constr - Given the set of all
lb-peaks: first, apply the US heuristic to select a
conflict; next, apply the LCS heuristic to select a
leveling constraint.

Select-Ub-Peak-Lev-Constr- Given the set of
the ub-peaks, the subset of peaks where the value
of the lower bound profile is maximal and the
value of the upper-bound profile is minimal is cal-
culated. Within this subset of peaks: first, apply
the CS heuristic to select a conflict; next, apply
LCS to select a leveling constraint.

¯ The second variant is designed to more widely take
advantage of the temporal flexibility estimators (we
call this algorithm CFSA+TF). In more detail:

Select-Lb-Peak-Lev-Constr - same as above.
Seleet-Ub-Peak-Lev-Constr- Given the set of

all ub-peaks: first, apply the CS to select a con-
flict;, next, apply the LCS to select a leveling con-
straint.

Experimental Evaluation. The two procedures,
CFSA+PK÷TF and CFSA+TF, were both run on the
same sets of scheduling problems used to evaluate the
original CFSA÷PK algorithm. Results are shown in
Table 2 where the column "Alg" distinguishes between
"pktf" for CFSA+PK+TF and "tf" for CFSA+TF.

The results provide an interesting insight. They in-
dicate quite clearly that the use of demand upper and
lower bounds as a focusing mechanism is not an ef-
fective strategy for this type of problems. Problem
solving performance does not improve when the basic
procedure is augmented to additionally utilize heuris-
tic estimates of temporal flexibility. Yet when estima-
tions of temporal flexibility are used more broadly as
a basis for prioritizing and selecting leveling decisions
(variant CFSA+TF), problem solving effectiveness
larger problem sizes increases dramatically. Thus, the
power of look-ahead heuristics which emphasize reten-
tion of temporal flexibility in the evolving solution is
seen to extend directly to MCM-SP. On the contrary,
decision prioritization based on the lower and upper
bounds on demand profiles appears to be of limited
effectiveness.

220 Scheduling

One additional observation about the performance
of CFSA+TF is warranted. It is clear that the time
needed to produce a solution is very high at the largest
problem size. This fact seems due to the huge num-
ber of leveling constraints that the algorithm inserts
to produce a solution. This observation motivates the
alternative approach described in the next subsection.

Table 2: Experiments with the CFSA variants

I Probl II Alg IN, IRB I Mk, N~c [CPU[
5 x 5 pktf 50 7.0 236.1 39.5 0.6

tf 50 7.5 228.4 54.4 1.0
10 x 5 pktf 50 2.8 422.8 144.4 7.7

tf 50 3.6 402.8 354.9 25.8
15 x 5 pktf 30 1.5 596.6 278.0 28.5

tf 50 2.0 580.9 884.4 137.0
20 x 5 pktf 6 1.1 776.2 409.0 69.2

tf 49 1.3 750.4 1630.1 430.4
25x5 pktf 2 0.6 1012.0 556.5 150.3

tf 50 0.9 911.5 2601.6 1058.8

Earliest Start Time Algorithm (ESTA)

The rationale behind the CFSA strategy is the idea of
maintaining a conflict free solution, forcing the condi-
tion UBoj(s~,) <_ c~ to be valid for each resource rj
and start time sa,.

CFSA Leveling Activity. Observing the solutions
produced by all the CFSA algorithms, we have ob-
served that such strategies post large numbers of level-
ing constraints in the process of determining a feasible
solution. As it turns out, the solutions produced are
in fact overconstrained solutions. We can demonstrate
this fact with a simple example. Consider a simple
scheduling problem consisting of a single resource with
capacity c = 2 and three independent activities al,
aa and a3. All the activities have a processing time
Pti,ne : 1, they demand one unit of r and must be
scheduled in the time window [0, 10]. It is easy to ver-
ify that to build a conflict free solution it is sufficient
to post only one precedence constraint between two of
the three activities considered. For example, we can
post the constraint al{before}aa and we are ensured
to have no resource conflicts. However, if after posting
this constraint we were to compute the upper-bound
profile in sa~, we obtain UBo(sas) = 3. In fact both al
and aa can overlap sa~ even if separately because of the
constraint al{before}a~. The upper-bound demand is
built on the basis of pairwise tests, so following the
CFSA strategy a new leveling constraint is posted to
get UBz7 (sas) --- 2. The problem is due to the fact that
a pairwise accounting of possible overlapping gives only
partial information ~. Trying to overcome this kind of
limitation of the CFSA approach, we propose another
profile-based approach which, instead of focusing on
the development of a conflict free solution tries instead
to find a so-called eadiest start time solution.

eAn approach based on cliques detection (Laborie
Gba|lab 1995) can avoid this problem because it is global in
taking into account overlapping activities. Unfortunately
it is more time consuming than profile-based approaches.

From: AIPS 1998 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

Earliest Start Time Solution. As is well known from
(Dechter, Meiri, & Pearl 1991), the STP temporal
model associates with any time-point tps (the variables
of a temporal CSP) an interval of possible time values
[ib¢p,, ubt~,]. It is known that the extremes of the in-
terval, either all the lower bounds ibtp~ or all the upper
bounds ubtp,, if chosen as the value for all time vari-
ables tpi, identify a consistent solution for the STP. If,
in correspondence of these two sets of temporal val-
ues, we also have a resource consistent solution (i.e.,
all the resource requirements respect the capacity con-
straints), then we have obtained a solution for the cor-
respondent MCM-SP. We call these two particular so-
lutions the Earliest Start Time Solution and the Latest
Start Time Solution. Since we have previously identi-
fied minimum completion time as an objective criteria
it is straightforward to observe that we are more inter-
sated in producing Earliest Start Time Solutions. It is
interesting to notice that an earliest start time solution
solves the previous simple example by posting only one
leveling constraint.

It should also be noted that if, starting from an ear-
liest start time solution, we consider an arbitrary time
value that is consistent for a given time point we can
generate a conflicting solution. In other words, while
the CFSA strategy guarantees a conflict free solution
for any choice of time values for individual time-points,
an earliest start time solution guarantees this property
only if the values lbtp~ are chosen. Later on we intro-
duce an algorithm to obtain a conflict free solution also
in this second case.

Resource Demand at the Earliest Start Time. The
development of a general algorithm to create earliest
start time solutions is based on the following observa-
tion: having chosen a single value for the time-points
(the lbtp,), we obtain a single value for the resource
demand (instead of an approximate bound) and can
perform stronger deductions using this information.

A demand profile for a resource rj is a temporal
function ESTDj(Sa,) that takes the start time aa, of
activity as computes the required resource in the in-
stant lb(sa~). Given a resource rj and the set of activi-
ties Aj which request rj, the earliest start time demand
profile is defined as follows:

ESTDj (so,) Pih ×
akEAj

where rca~,j is the required capacity of resource rj from
the activity ak E Aj, P~j = 1 when lb(saj) <_ lb(sa,)

Ib(ea~) and Psi = 0 otherwise.
Resource Conflict. Given an instance of MCM-SP,

a peak is a tuple <rj, aa,, ca~>, where rj is a resource,
sa~ is the start time point of the activity as and cai
is a set of activities ca~ = {ak : Psk = 1}, such that
ESTDj Ca.,) > c~.

A peak <rj,so~,cas> can be leveled by posting
precedence constraints between a pair of activities
as, aj G ca. It is worth noting that in this algorithm
a conflict <ai,aj> is composed of two activities. We
will refer generally to <ai, aj> as a pairwise conflict.

On the basis of the shortest paths information con-
tained in the graph Gd, as explained in (Cheng

Smith 1994; Oddi & Smith 1997), it is possible to define
a set of conditions which identify unconditional deci-
sions and promote early pruning of alternatives. For
any pair of activities as and aj that are competing for
the same resource, four poss~le cases of conflict are
defined:

1. d(ea,,saj) < 0 A d(ea~,sa,)

2. d(eo,,soj) < 0 d(ea,,s,,)_>0 A d(sa,,ea~)>0
3. d(eaj,s,,) < 0 dCe,.,sai) > 0 A d(so~,ee,) >
4. d(e.,, s.j) _> 0 s.,)

Condition 1 represents a pairwise unresolvable con-
flict. There is no way to sort ai and aj without in-
ducing a negative cycle in graph Gd(V, E). Conditions
2, and 3, alternatively, distinguish pairwise uniquely
resolvable conflicts. Here, there is only one feasible
ordering of as and aj and the decision of which con-
straint to post is thus unconditional. In the case of
Condition 2, only aj{before}ai leaves Gd(V, E) con-
sistent and similarly, only as{before}aj is feasible in
the case of Condition 3. Condition 4 designates a fi-
nal class of pairwise resolvable conflicts. In this case,
both orderings of as and aj remain feasible and it is
necessary to make a choice. Now we can give a suffi-
cient condition for detecting an unresolvable peak. A
peak <rj, aa,, cas> is unresolvable if for each pairwise
conflict <as,aj> with a~,aj ~ ca and a~ # aj holds
d(e~,,sa~) < 0 d(ea~,s~,) <

The ESTA Algorithm. We now propose a new algo-
rithm for MCM-SP that: (a) finds a solution by level-
ing the earliest start time demand in accordance with
the capacity of the resource; (b) extends the heuristic
method defined in (Cheng & Smith 1994) to this case.
The algorithm, named Earliest Start Time Algorithm
(ESTA), is shown in Figure 2. ESTA iteratively selects
a pair~ise conflict by a heuristic method until the de-
mand on all the resources is less than or equal to their
respective capacities or until an unresolvable conflict
is detected. In this last case the procedure stops with
failure.

Earliest-Start-Time-Solver(mcmsp)
1. loop
2. if E~dsts-an-Unresolvable-Confiict(mcmsp)
3. then return(Failure)
4. else begin
5. ResolvableCon flict:=Sel-Res-Conf(mcmsp)
6. if (ResolvableConflict - NIL)
7. then return(Solution)
8. else begin
9. Pc:= Sel-Prec-Constr(ResolvableCon flict)
10. Insert-Prec-Constr (Pc)
11. end
12. end
13. end-loop

Figure 2: Earliest Start Time Algorithm

The Leveling Heuristics. The heuristic methods for
selecting the next conflict to resolve and for determin-
ing how to resolve it (i.e., which precedence constraints
to post between activities <as, a~>) are derived from

Cesta 221

From: AIPS 1998 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

(Cheng & Smith 1994). Both the selection of pair-
wise conflicts and precedence constraints are based on
the principle of leaving maximum amount of tempo-
rat flexibility possible in the solution at each step. We
use the values of distances d(ea,, saj) (or d(eai, sa°))

a quantification (or measurement) of how many time
positions the pair of activities <ai,aj> may assume
with respect to each other while respecting the time
constraints.

The proposed heuristic estimators operate as follows:

¯ Selection of Pairwise Conflict- We have to distin-
guish two cases. When all pairwise conflicts satisfy
Condition 4, the conflict <ai, aj > with the minimum
value tarea (Ui, a j) is selected, where:

Wres(ai, aj) rain{d(ea’’ saJ) d(ea,,sa,)-

min{d(e*"s’~)’d(e*~’s*i)} In the case wherewith S = max{d(e.,,saj),d(eoi,s.,)}.

a subset of pairwise conflicts satisfying Condition
2 or Condition 3 exists, the heuristic selects the
conflict with the minimum (and negative) value
w,~,(ai,aj) = min{d{e~,,sai),d{ea,,s,,)}, that is
the pair of activities which are closest to having their
ordering decision be forced.

¯ Selection of Precedence Constraints - The choice
procedure is defined by the function pc, such
that, pc(ai,aj) = ai{before}aj when d(e,,,s~j)

d(ea,, sa,) and pc(at, aj) = aj{before}ai otherwise.

In the case of conflicts <ai, aj > with a negative value
of w~,(ai, aj), we can observe that since the capacity
of a resource is in general greater than one, some ac-
tivities in a solution can overlap and others have to
be sequenced. From the point of view of the heuristic
method it is better to resolve pairwise conflicts in the
way that minimizes loss of temporal positions.

The time complexity associated with detecting a
conflict in the use of a resource rj which satisfies the
heuristic method previously defined, is quadratic. In
fact, if N~j is the number of activities which request the

resource rj, then we have to make O(N~j) comparisons
for every non sequenced pair of activities <ai, aj>.

Chaining Algorithm. Given an earliest start time
solution, one way to generate a conflict free solution is
to create a set of ej chains of activities on the resource
rj. That is, we can partition the set of activities which
require rj, into a set of cj linear sequences. This oper-
ation earl be accomplished by deleting all the leveling
constraints in the solution and using the established
lower bound solution to post a new set of constraints
according to the division into linear sequences. In this
situation, which we refer to as chain-form, if N~ is the
number of activities which request rj, then the number
of precedence constraints posted is at most N,i - ej. In
contrast, we would generally expect that the process
of determining an earliest start time solution inserts
a greater number of leveling constraints. A solution
in chain-form is a different way to represent a solu-
tion that. presents two advantages: Ca) the solution is

222 Scheduling

conflict free for on line modifications of start or end
time of activities; (b) there are always O(No) leveling
constraints {where Na is the total number of activi-
ties). So, every temporal algorithm whose complexity
depends on the number of distance constraints can gain
advantages from this new form of the solution.

Experimental Evaluation. The ESTA algorithm
was also run on our set of scheduling problems and
results are shown in Table 3. It should be noted that
in this case the parameter Me refers only to the solu-
tion produced by the ESTA without the chaining pro-
cedure. On the contrary, the other parameters refer to
the production of the conflict free solution (ESTA
Chaining).

The results are particularly encouraging. ESTA
solves all the problems presented but more interest-
ingly it is very quick in solving them and the quality of
the solution is much better than the CFSA+TF algo-
rithm. The speed in producing a solution is confirmed
by the low number of leveling constraints posted. It is
also worth noting that with respect to makespan and
robustness, ESTA outperforms all CFSA style solution
strategy. The result concerning Mk, can be justified by
the search of the earliest start time solution and by the
fact that the CFSA has the pathology of overconstrain-
ing the solution by inserting unnecessary leveling con-
straints (more precisely, these algorithms "over-chain"
the solution). The advantage with respect to robust-
ness RB confirms the relevance of techniques which
retain solution flexibility in solving MCM-SPs.

Table 3: Experiments with ESTA Algorithm

I Probl II No I RB I Mk, I N,o I CPUI
5x5 50 9.1 210.5 1.8 1.0
10x5 50 7.5 300.0 21.1 5.8
15x5 50 5.4 430.1 71.9 18.2
20x5 50 4.9 545.2 143.4 41.0
25×5 50 4.6 664.1 233.2 81.3

Concluding Remarks
In this paper we have introduced and analyzed a pro-
gression of algorithms for solving the multi-capacitated
metric scheduling problem (MCM-SP): a class that in-
volves both metric time constraints and sharable re-
sources with the capacity to simultaneously support
multiple activities. This type of problem is quite com-
monplace in real applications, but it has received rel-
atively little attention in the planning and scheduling
literature.

To support a comparative analysis of solution meth-
ods, we began by defining a procedure for generating a
controlled set of random benchmark problems. A set of
criteria for judging the effectiveness of alternative so-
lution procedures were also identified, including mea-
sures relating to both problem solving ability (num-
ber of problems solved, average computation time) and
quality of the solutions generated. With respect to the
latter point, we considered Makespan minimization (a
common objective) as one target criterion. We also in-
troduced a definition of robustness. Although initial,

From: AIPS 1998 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

we believe it provides a useful characterization of the
~lluidity" of a solution in these %trongly temporal~

domains.
Having established a framework and design for

experimental evaluation, a number of profile-based
scheduling algorithms were then defined and evalu-
ated. Each algorithm that was considered conformed
to a general solution schema that entailed (1) moni-
toring resource demand over time for periods of over-
utilization and (2) introducing additional sequencing
constraints between pairs of competing activities to
level out periods of high demand. The different algo-
rithms considered varied in the heuristic criteria used
to prioritize and make sequencing decisions, as well as
in assumptions made about the number of sequencing
constraints required for a feasible solution.

A first result of the experimentation showed that a
greedy version of a previously reported algorithm (EI-
Kholy & Pdchards 1996) (called CFSA in this paper)
performed rather poorly on larger sized problems. The
reason for the limited effectiveness of the algorithm
stemmed from the weak look-ahead guidance provided
by the computation of upper and lower bound on re-
source demand profiles.

A second result obtained concerns the extension
of ideas of temporal flexibility introduced in (Cheng
& Smith 1994) to the case of multiple-capacitated
sched-llng problems. By substituting the use of tern-
pored flexibility as a basis for prioritizing and mak-
ing decisions with the basic CFSA procedure, substan-
tial performance improvements were obtained at the
larger problem sizes tested. Once again these tech-
niques have been shown to be very effective and rele-
vant for scheduling problems with quantitative separa-
tion constraints.

A final result, triggered by the observation that
CFSA style procedures tend to insert many more level-
ing constraints than are necessary to ensure feasibility,
concerned the development of an alternative MCM-
SP solution approach. In particular, a very quick and
effective solution procedure was obtained by focusing
on construction of solution for a precise time instant
on the time line as opposed to more general construc-
tion of a conflict free solution. The ESTA procedure,
which embodies this approach and computes an "ear-
liest start time solution", was shown to outperform
all variants of CFSA on all dimensions of performance
considered. Furthermore, a post-processing algorithm
was also s-mmexised for transforming this early-time
solution into a conflict-free solution; thus achieving the
same level of solution generality as CFSA but without
the unnecessary leveling constraints inserted by CFSA
style approaches. This fact reproduces, in a different
context, the well known effect in scheduling that when
reasoning with exact start times it is possible to make
stronger deductions than in the case in which fluctu-
ating time-points are reasoned about.

There are a number of directions in which the work
reported in this paper might be extended. One path of
interest is to attempt to productively expand the level
of search performed by the greedy, one-pass solution
procedures developed here. Recent work in iterative

sampling and re-starting search techniques (e.g., (Oddi
& Smith 1997)) would seem to provide a natural ba-
sis. Another area of future research concerns compari-
son of the profile-based solution procedures developed
here with other (non profile-based) approaches. We are
particularly interested in exploring is the clique-based
approach proposed in (Laborie & Ghallab 1995). Due
to its global nature, this approach offers an alterna-
tive basis for eliminating the posting of extra (over-
constraining) sequencing constraints. But the implica-
tions remain unclear with respect to how much increase
in computation time is required.

Acknowledgments.
Amedeo Cesta and Angelo Oddi’s work is supported
by Italian Space Agency, and by CNR Committee 12
on Information Technology (Project SCI*SIA). Angelo
Oddi is currently supported by a scholarship from CNK

Committee 12 on Information Technology. Stephen
F. Smith’s work has been sponsored in part by the
National Aeronautics and Space Administration under

contract NCC 2-976, by the US Department of Defense
Advanced Research Projects Agency under contract
F30602-97-20227, and by the CMU Robotics Institute.

References
Aumello, G.; Italiano, G. F.; Marchetti Spaccamela, A.; and Nanni,
U. 1991. Incremental Algorithms for Minimal Length Paths. Jour-
nal of Algorithms 12:615-638.

Cesta, A., and Steiln, C. 1997. A Time end Resource Problem for
Planning Architectures. In Proceedings of the Fonrth European
Conference on Planning (ECP 97).

Cheng, C., and Smithj S. F. 1994. Generating Feasible Schedules
under Complex Metric Constraints. In Proceedings J~th National
Conference on AI (AAAI-94).

Cheng, C., and Smith, S. F. 1996. A Constraint Satisfaction Ap-
proach to Makespan Scheduling. In Proceedings of the 4th Inter-
national Conference on AI Planning Systems (AIPS-g6).

Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal Constraint
Networks. Artificial Intelligence 49:61-95.

El-Kholy, A., and Pdchards, B. 1995. Temporal and Resource
Reasoning in Planning: the parcPLAN Approach. In Proc. of the
l£th European Conference on Artificial Intelligence (ECAI.96).

Ersclder, J.; Lopez, P.; and Thuriot, C. 1990. Temporal reason-
ing under resource constrednts: Application to task scheduling. In
Lasker, G, and Hughes, R., ode., Advances in Support System

Research. International Institute for Advanced Studies in Systems
Research and Cybernetics.

Lsborie, P., and Ghallab, M. 1998. Planning with Sharable Re-
source Constraints. In Proceedings of the International Joint Con-
ference on Artificial Intelligence (IJCAI-95).

Nuijten, W. P. M., and Aarte, 1~, H. L. 1994. Constraint Satisfac-
tion for Multiple Cnpacitated Job-Shop Scheduling. In Prec. o] the
l lth European Con]crones on Artificial lnteiligence(ECAI-9~).

Oddi, A., and Cesta, A. 1997. A Tabu Search Strategy to Solve
Scheduling Problems with Deadlines and Complex Metric Con-
attaints. In Prec. ~th European Cony. on Planning (ECP 97).

Oddi, A., and Smith, S. F. 1997. Stochastic Procedures for Gener-
ating Feasible Schedules. In Proceedings l~th National Con]erencs
on AI (AAAI-97).

Oddi, A. 1997. Sequencing Methods and Temporal Algorithms
with Application in the Management oy Medical Resources. Ph.D.
Dissertation, Department of Computer and System Science, Uni-
verslty of Rome "La Sapienza’.

Sadeh, N. 1991. Look-ahead Techniques for Micro-opportunistic
Job.shop Scheduling. Ph.D. Dissertation, School of Computer Sci-
ence, Carnegie Mellon University, Pittsburgh, PA.

Smith, D. R., and Westfold, S. J. 1996. Scheduling an Aeyn-
chronouely Shared Resource. Working Paper, Kestrel Institute.

Taillard, E. 1993. Benchmarks for Basic Scheduling problems.
European Journal o] Operational Research 64:278-285.

Cesta 223

From: AIPS 1998 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

