
Profile-based Dynamic Voltage Scheduling using Program Checkpoints

Ana Azevedo, Ilya Issenin, Radu Cornea
Rajesh Gupta, Nikil Dutt, Alex Veidenbaum, Alex Nicolau

Center for Embedded Computer Systems
University of California, Irvine

444 Computer Science Building, Irvine, CA 92697-3425
faazevedo, isse, radu, rgupta, dutt, alexv, nicolaug@ics.uci.edu

Abstract

Dynamic voltage scaling (DVS) is a known effective
mechanism for reducing CPU energy consumption without
significant performance degradation. While a lot of work
has been done on inter-task scheduling algorithms to im-
plement DVS under operating system control, new research
challenges exist in intra-task DVS techniques under soft-
ware and compiler control. In this paper we introduce a
novel intra-task DVS technique under compiler control us-
ing program checkpoints. Checkpoints are generated at
compile time and indicate places in the code where the pro-
cessor speed and voltage should be re-calculated. Check-
points also carry user-defined time constraints. Our tech-
nique handles multiple intra-task performance deadlines
and modulates power consumption according to a run-time
power budget. We experimented with two heuristics for ad-
justing the clock frequency and voltage. For the particular
benchmark studied, one heuristic yielded 63% more energy
savings than the other. With the best of the heuristics we de-
signed, our technique resulted in 82% energy savings over
the execution of the program without employing DVS. 1

1. Introduction

With today’s processors speed reaching gigahertz, the in-
herent power dissipation level of the order of tens of Watts
becomes an important concern in digital design. The dy-
namic power dissipation for CMOS circuits has a quadratic
dependency on the supply voltage VDD (Pdynamic ∝ CVDD

2 f ,
where C is the collective switching capacitance and f is
the common switching frequency). Therefore dynamic volt-
age scaling techniques, by lowering the supply voltage, are
effective in reducing CPU power. The main disadvantage

1This research is partly supported by DARPA PAC/C program under
contract number F336-15-00 -C-1632.

of dynamic voltage scaling is its power-performance trade-
off. The supply voltage also determines the CMOS circuit
delay τ (τ ∝ VDD��VDD�VT �α, where VT is the threshold
voltage and α is a velocity saturation index). Lowering the
supply voltage increases the circuit delay and causes a de-
crease in the speed supported by the circuit. As a conse-
quence, dynamic voltage scheduling techniques must care-
fully consider the resulting impact on system performance.
Throughout this paper we will refer to both terms frequency
scaling and voltage scaling interchangeably, meaning that
changes to frequency are accompanied by appropriate ad-
justments to voltage.

Early related work on dynamic voltage scheduling in-
cludes theoretical studies [9] and simulations on the poten-
tial of DVS techniques [7, 12, 14, 15, 24]. Since then, prac-
tical implementation of DVS schemes have already been
proved feasible with some commercial processors [1, 6]
and academic design efforts [11, 16, 17]. Underlying soft-
ware support, mainly at the operating system level, in-
cludes the development of several static/dynamic inter-task
[8, 9, 13, 18, 21, 23, 25] and interval-based DVS techniques
[7, 16, 22, 24]. To scale voltage, these techniques either
make use of a prior knowledge of the application work-
loads or produce predictions for the application demands
based on past history. Energy savings come from exploiting
the slack from the worst case execution time (WCET) [11].
WCET slack time is the extra time produced as the result
of tasks actually running faster than the pessimistic worst
case speed assumed by the heuristics. Another type of time
slack is exploited by intra-task DVS techniques under soft-
ware and compiler control [4, 5, 10, 11, 19, 20]. Called
workload-variation slack time [11], it results from the ob-
servation that within an individual task boundary the exe-
cution time may change significantly depending on the exe-
cuted program path, representing other opportunities to ap-
ply dynamic voltage scaling.

In our studies we observed that most of the above men-
tioned techniques rather view a whole application program

(a)

Task 1

Task 2

Task 3

Task 1

cont’

T

i

m

e

(b)

Code section 1

deadline 2

deadline 1

Code section 2

Task 1

(a)

Task 1

Task 2

Task 3

Task 1

cont’

T

i

m

e

T

i

m

e

(b)

Code section 1

deadline 2

deadline 1

Code section 2

Task 1

Figure 1. Example of applications with over-
lapping time constraints.

as a single task. They do not handle multiple tasks speci-
fied in the same application program that together might re-
sult in multiple deadlines depending upon the executed con-
trol flow. However, in practice, real applications resort to
such computing constructs. As an illustration of the type of
time constraints our approach to DVS can handle, consider
an application with three time-constrained tasks shown in
Figure 1 (a). The program begins executing Task1. At some
point in Task1, two alternative tasks, Task2 and Task3,
might be executed. After either Task2 or Task3 is executed,
Task1 can resume its execution. The scheduling problem
is how to set clock frequency and voltage so that the time
constraints on the two tasks (Task1 and Task2 or Task1 and
Task3) are both satisfied, saving energy as most as possible.

Other difficulties arise in simply dividing a program
into tasks, the unit of computation used in current DVS
techniques, when time constraints need to be specified in
less than usual ways, as for example the time constraint
dependencies for the different code sections depicted in
Figure 1 (b). We believe the flexibility in specifying time
constraints (or task deadlines) is crucial in any DVS tech-
nique. In this work we address this issue and we propose an
intra-task DVS technique based on program checkpoints. In
our scheme, program checkpoints carry time constraint in-
formation and we allow code sections within a task to have
different deadlines. In contrast, Shin et. al. [20, 19] ap-
proach to intra-task DVS fixes the time constraint at task
level. We further extend the use of program checkpoints to
include new checkpoints in the code with the purpose of ex-
ploiting other slack time opportunities that arise at run-time
due to workload variations.

The other aspect that distinguishes our work from previ-
ous research is the fact that, besides optimizing for average
power, we consider that at run-time we operate with a limit-
ing power budget. DVS decisions must take into account an
available power profile that may vary over time. The avail-
able power profile is used as an input to our techniques and
may be produced by an operating system which controls the

foo(){

read(i);

if (i > 5) {

i = i - calc_new_i(i);

} else

a++;

}

i = 36;

for (j = 0; j < i, j++) {

k = k*sin(j/100 + k/10);

}

}

calc_new_i(int I){

for (k = 0; k < limit, k++){

i += new_i[k];

show_value(i);

}

}

(a) Original code.

foo(){

read(i);

CHECKPOINT(1);

if (i > 5) do {

i = i - calc_new_i(i);

} else {

a++;

}

i = 36;

k = i + a;

CHECKPOINT(2);

for (j = 0; j < i, j++) {

CHECKPOINT (3);

k = k*sin(j/100 + k/10);

}

CHECKPOINT(4);

}

(b) Transformed foo code with checkpoints

1, 2, 3 and 4 carrying time constraints.

CDB

Checkpoint Min Time Max Time

Transition (ms) (ms)

1-2 10 30

2-3 20 20

3-3 50 200

3-4 200 200

(c) Checkpoint Database (CDB).

foo(){

read(i);

if (i > 5) {

i = i - calc_new_i(i);

} else

a++;

}

i = 36;

for (j = 0; j < i, j++) {

k = k*sin(j/100 + k/10);

}

}

calc_new_i(int I){

for (k = 0; k < limit, k++){

i += new_i[k];

show_value(i);

}

}

(a) Original code.

foo(){

read(i);

CHECKPOINT(1);

if (i > 5) do {

i = i - calc_new_i(i);

} else {

a++;

}

i = 36;

k = i + a;

CHECKPOINT(2);

for (j = 0; j < i, j++) {

CHECKPOINT (3);

k = k*sin(j/100 + k/10);

}

CHECKPOINT(4);

}

(b) Transformed foo code with checkpoints

1, 2, 3 and 4 carrying time constraints.

CDB

Checkpoint Min Time Max Time

Transition (ms) (ms)

1-2 10 30

2-3 20 20

3-3 50 200

3-4 200 200

(c) Checkpoint Database (CDB).

CDB

Checkpoint Min Time Max Time

Transition (ms) (ms)

1-2 10 30

2-3 20 20

3-3 50 200

3-4 200 200

(c) Checkpoint Database (CDB).

Figure 2. Code example with program check-
points imposing time constraints.

available power sources in the system.
This paper is organized as follows. Section 2 intro-

duces a description of program checkpoints. It also briefly
discusses the details of our previous DVS algorithm [3]
that handles multiple deadlines within a task by using pro-
gram checkpoints. Section 3 explains how to place ex-
tra checkpoints into the application code to better exploit
the workload-variation slack time, followed by the descrip-
tion of our new slack-based DVS algorithm. The COPPER
power-performance simulation framework [3] was used to
obtain the experimental results on our case study, which are
summarized in Section 4. Finally Section 5 concludes the
paper with future work plans.

2. DVS using Program Checkpoints

A checkpoint represents a specific location in the code
marked by a statement label. A checkpoint transition
is a direct control flow path between two checkpoints.
Figure 2 (b) shows an example of a code with four check-
points and four possible checkpoint transitions: transition
1-2 comprises all the instructions from the beginning of the
if-then-else statement up to the for-loop statement; transi-
tion 2-3 includes the for-loop header; transition 3-3 cor-
responds to the code fragment for one loop iteration; and

1. Create a list of events with the time intervals the events occur.

2. Calculate frequency limit flimit for each of the time intervals in the list of events.

3. Calculate optimal frequencies and create a schedule for changing frequencies
and voltages.

Case 1: Only two checkpoints, frequency limit is high enough.

Case 2: Only two checkpoints, frequency limit is not high enough.

Case 3: Several possible future checkpoints.

In all cases voltage is adjusted proportionally to changes in frequency.

4. Execute the program, changing frequencies and voltages according to the
created schedule.

5. As soon as the next checkpoint is encountered, discard the list of events.

Go to step 1.

3
_per_cycle/max_power

2
requencybaseline_f*tpower_limiflimit �

eckpointsbetween_chonstraint_max_time_c

cyclesofnumberprofiled
frequencyOptimal

_ �

��

�
�
�

	
	�

melimited_tionstraintmax_time_c

clesmber_of_cylimited_nuyclesumber_of_cprofiled_n

freq_limit

frequencyOptimal _

For the intervals in the list of events do:

1. Calculate Optimal_frequency for curr interval, for all checkpoint transitions
using Case 1, 2.

2. Optimal_frequency for curr interval = max (Optimal_frequency for all
checkpoint transitions).

power_limit = maximum dissipated power derived from run-time power constraint

requencybaseline_f

equencyOptimal_fr*oltagebaseline_v
ltageOptimal_vo �

1. Create a list of events with the time intervals the events occur.

2. Calculate frequency limit flimit for each of the time intervals in the list of events.

3. Calculate optimal frequencies and create a schedule for changing frequencies
and voltages.

Case 1: Only two checkpoints, frequency limit is high enough.

Case 2: Only two checkpoints, frequency limit is not high enough.

Case 3: Several possible future checkpoints.

In all cases voltage is adjusted proportionally to changes in frequency.

4. Execute the program, changing frequencies and voltages according to the
created schedule.

5. As soon as the next checkpoint is encountered, discard the list of events.

Go to step 1.

3
_per_cycle/max_power

2
requencybaseline_f*tpower_limiflimit �

eckpointsbetween_chonstraint_max_time_c

cyclesofnumberprofiled
frequencyOptimal

_ �

��

�
�
�

	
	�

melimited_tionstraintmax_time_c

clesmber_of_cylimited_nuyclesumber_of_cprofiled_n

freq_limit

frequencyOptimal _

For the intervals in the list of events do:

1. Calculate Optimal_frequency for curr interval, for all checkpoint transitions
using Case 1, 2.

2. Optimal_frequency for curr interval = max (Optimal_frequency for all
checkpoint transitions).

power_limit = maximum dissipated power derived from run-time power constraint

requencybaseline_f

equencyOptimal_fr*oltagebaseline_v
ltageOptimal_vo �

Figure 3. DVS algorithm using program
checkpoints.

transition 3-4 represents the control flow taken to exit the
for-loop. In our simulation framework, user-defined check-
points are inserted in the source code and compiled into spe-
cial machine instructions.

Time constraints are set for the execution of the piece of
code between checkpoints in terms of acceptable lower and
upper bounds (Min Time, Max Time). Such information
is stored in a checkpoint database (CDB), along with the
possible checkpoint transitions derived from the program
control flow. A CDB example is shown in Figure 2 (c).

An initial version of our DVS algorithm using program
checkpoints has been presented in [3]. As this algorithm
serves as basis for our new slack-based DVS technique, a
brief explanation of the former is given in this section.

Our heuristic for scheduling with power and time con-
straints is divided in two phases: an ahead of time profil-
ing phase and the final run-time power scheduling phase.
Prior to either of these phases program checkpoints can be
inserted anywhere in the application program. Time con-
straints must be imposed for each checkpoint transition and
cannot be specified at any other place. In the profiling phase
a checkpoint power profile database (CPDB) is built. We
profile the program using a representative input data set and
collect minimum and maximum energy/power dissipated
and cycle count for checkpoint transitions. The goal of the
run-time power scheduling phase is to follow, in an energy-
efficient way, a run-time power profile which represents the
available power budget, while simultaneously meeting the

0

200

400

600

800

0 100 200 300

Time

F
re

q
u

e
n

c
y

Checkpoint 3

Checkpoint 4

Frequency

limit
Optimal

frequency

0

200

400

600

800

0 100 200 300

Time

F
re

q
u

e
n

c
y

Checkpoint 3

Checkpoint 4

Frequency

limit
Optimal

frequency

(a) Calculating optimal frequency, Case 1.

(b) Calculating optimal frequency, Case 2.

0

200

400

600

800

0 5 10 15 20 25 30

Time

F
re

q
u

e
n

c
y

Checkpoint 1

Checkpoint 2

Checkpoint 3

Frequency limit

Optimal frequency ch1 - ch2

Optimal frequency ch1 - ch3

Final frequency values

(c) Calculating optimal frequency, Case 3.

0

200

400

600

800

0 100 200 300

Time

F
re

q
u

e
n

c
y

Checkpoint 3

Checkpoint 4

Frequency

limit
Optimal

frequency

0

200

400

600

800

0 100 200 300

Time

F
re

q
u

e
n

c
y

Checkpoint 3

Checkpoint 4

Frequency

limit
Optimal

frequency

(a) Calculating optimal frequency, Case 1.

(b) Calculating optimal frequency, Case 2.

0

200

400

600

800

0 5 10 15 20 25 30

Time

F
re

q
u

e
n

c
y

Checkpoint 1

Checkpoint 2

Checkpoint 3

Frequency limit

Optimal frequency ch1 - ch2

Optimal frequency ch1 - ch3

Final frequency values

(c) Calculating optimal frequency, Case 3.

0

200

400

600

800

0 5 10 15 20 25 30

Time

F
re

q
u

e
n

c
y

Checkpoint 1

Checkpoint 2

Checkpoint 3

Frequency limit

Optimal frequency ch1 - ch2

Optimal frequency ch1 - ch3

Final frequency values

0

200

400

600

800

0 5 10 15 20 25 30

Time

F
re

q
u

e
n

c
y

0

200

400

600

800

0 5 10 15 20 25 30

Time

F
re

q
u

e
n

c
y

Checkpoint 1

Checkpoint 2

Checkpoint 3

Frequency limit

Optimal frequency ch1 - ch2

Optimal frequency ch1 - ch3

Final frequency values

Checkpoint 1

Checkpoint 2

Checkpoint 3

Checkpoint 1

Checkpoint 2

Checkpoint 3

Frequency limit

Optimal frequency ch1 - ch2

Optimal frequency ch1 - ch3

Final frequency values

Frequency limit

Optimal frequency ch1 - ch2

Optimal frequency ch1 - ch3

Final frequency values

Optimal frequency ch1 - ch2

Optimal frequency ch1 - ch3

Final frequency values

(c) Calculating optimal frequency, Case 3.

Figure 4. Optimal frequency calculation.

time constraints. The power scheduler dynamically adjusts
voltage and clock frequency values at program checkpoints.
Other events at which the scheduler might adjust values in-
clude points of abrupt changes in the available power profile
and times the scheduler identifies an expected control flow
path was not taken (i.e., an expected checkpoint transition
did not take place). All these points in time are stored in a
structure named list of events.

The main phases of the DVS algorithm are described be-
low. The complete algorithm is outlined in Figure 3.

Step 1: Create list of events
The scheduler creates a list of all potential events that might
occur from the current checkpoint in execution up to the
farthest deadline of all its possible checkpoint transitions.

Step 2: Calculate frequency limit
The frequency limit flimit is the maximum frequency the
program should run to dissipate power below the imposed
power limit. To calculate flimit values the scheduler uses
the CPDB and CDB information, checking the available
power (power limit) and the maximum profiled power
(max power per cycle) consumed from the checkpoint
in consideration to all its possible transitions to other
checkpoints. The frequency limit is calculated by a formula
which is based on the fact that dynamic voltage scaling

combines two CMOS design equations: energy ∝ voltage2

and f requency ∝ voltage.

Step 3: Calculate optimal frequency
The optimal frequency is the frequency the program should
run to satisfy both power and time constraints. Upon
obtaining the frequency limit, the scheduler calculates the
range of frequencies the code can be run to satisfy the time
constraint upper bounds. In this calculation it uses the CDB
information on imposed time constraints for all possible
checkpoint transitions from the checkpoint in considera-
tion. It also makes use of the profiling information in the
CPDB. At this phase three situations may arise.

In the case there is only one future checkpoint transition
(Case 1 in Figure 3, graphically illustrated in Figure 4 (a)),
we calculate a potential Optimal f requency value by di-
viding the profiled number of cycles for the checkpoint
transition by the maximum time allowed for this transi-
tion in the CDB. If this value is less than or equal to
flimit calculated in Step 1, then Optimal f requency is set to
this value. The second case (Case 2 in Figure 3, sketched
in Figure 4 (b)) still handles the situation in which there
is only one possible future checkpoint transition. How-
ever, in this case, the frequency limit values calculated
in the previous phase, for some of the events intervals
that happen within the checkpoint transition interval, are
lower than the potential Optimal f requency values calcu-
lated by Case 1. For such intervals the Optimal f requency
is fixed to flimit . The Optimal f requencies for the re-
maining intervals are calculated just like in Case 1, af-
ter counting off the cycles (and time) spent executing at
flimit speed. In the third case (Case 3 in Figure 3, de-
picted in Figure 4 (c)), several possible checkpoints can
be reached from the checkpoint in consideration. Each
checkpoint transition is then handled as either Case 1 or
Case 2. After calculating the Optimal f requency values for
each checkpoint transition, the scheduler selects the max-
imum Optimal f requency among the values. It keeps ad-
justing the Optimal f requency as program paths are exe-
cuted, always selecting an Optimal f requency value that
makes the code run as slow as possible within the time
constraints. For example, in Figure 4 (c), after checking
that there is no checkpoint occurrence after time 18, the
scheduler assumes the transition 1-2 did not occur and low-
ers the speed for the execution of the remaining code un-
til checkpoint 3 is executed. For all cases, after calculat-
ing the Optimal f requency values, Optimal voltage values
are computed by scaling the voltage proportionally to the
changes in the clock frequency.

3. Slack-based DVS using Program Check-
points

Our original DVS algorithm in Section 2 calculates the
clock frequency and voltage using the maximum profiled
cycle counts. At runtime the actual executed path may dif-
fer from the profiled one and the number of cycles for ex-
ecuting a code section may be lower. This means that the
calculated clock frequency, voltage and the resultant energy
consumption may be higher than necessary. In this section
we explore how the use of additional checkpoints may im-
prove on this situation. A hierarchical control flow graph
(HCFG) program representation is used to both simplify the
addition of new checkpoints and the bookkeeping of time
information related to the checkpoints. The new version of
the algorithm also features further flexibility for specifying
time constraints. Time constraints can be specified between
any checkpoint pairs defined in the same level of the HCFG
of the application program.

Program checkpoints are initially inserted at every
branch, loop and function call. During the compilation
of the application program we generate a HCFG in which
nodes are labeled after the checkpoint that initiates the
code section contained within the node. Each node has
a type and nodes of type f unction call and loop header
are associated with a sub control flow graph. All other
nodes are of type normal. Figure 5 shows how the orig-
inal code in Figure 2 (a) is transformed to include check-
points. Figure 5 (b) shows the corresponding HCFG. Maxi-
mum time constraints for the code example are specified in
Figure 5 (c).

A profiling phase collects the maximum and minimum
number of execution cycles for each node and the maximum
number of iterations for each loop. All this information is
stored with the corresponding HCFG node and a CPDB is
built.

To reduce the inherent run-time overhead associated with
scaling frequency and voltage we prune checkpoints and
merge HCFG nodes that satisfy the following conditions:
(1) nodes with low maximum execution cycle count or (2)
nodes with small variation in the execution cycle count.
Nodes that cannot be merged are those that: (1) are at the
beginning or end of a time constraint interval or (2) have
time constraints in their associated sub CFG.

The dynamic power scheduling phase is executed as
outlined by the algorithm in Figure 6. In the original
algorithm from Section 2, time constraints for checkpoint
transitions are stored in a CDB. This information, together
with the profiling data in a CPDB are used to calculate the
Optimal f requency. In the new version of the algorithm,
a new CDB is built every time a checkpoint is encoun-
tered and is used as input to the algorithm described in
Section 2. In this case, the CDB contains only the active

CHECKPOINT(0);

read(i);

CHECKPOINT(1);

if (i > 5) do {

CHECKPOINT(2);

i = i - calc_new_i(i);

} else {

CHECKPOINT(3);

a++;

}

CHECKPOINT(4);

i = 36;

k = i + a;

CHECKPOINT(5);

for (j = 0; j < i, j++) {

CHECKPOINT (6);

k = k*sin(j/100 + k/10);

CHECKPOINT (7);

}

CHECKPOINT(8);

calc_new_i(i){

CHECKPOINT(9);

for (k = 0; k < limit, k++){

i += new_i[k];

show_value(i);

}

CHECKPOINT(10);

}

(a) Transformed code with checkpoints carrying

time constraints (0, 1, 3, 8, 9 and 10) and

extra checkpoints for exploiting run-time slack. (c) Checkpoint Database (CDB).

Checkpoint Database (CDB)

Checkpoint Max Time

Transition (ms)

0-3 50

1-8 300

9-10 10

(b) Hierarchical control flow graph.

ch0

norm

ch1

If

ch2

func

ch3

norm

ch4

norm

ch5

loop

ch6

norm

ch7

normch8

norm

ch9

norm

end end

ch10

norm

CHECKPOINT(0);

read(i);

CHECKPOINT(1);

if (i > 5) do {

CHECKPOINT(2);

i = i - calc_new_i(i);

} else {

CHECKPOINT(3);

a++;

}

CHECKPOINT(4);

i = 36;

k = i + a;

CHECKPOINT(5);

for (j = 0; j < i, j++) {

CHECKPOINT (6);

k = k*sin(j/100 + k/10);

CHECKPOINT (7);

}

CHECKPOINT(8);

calc_new_i(i){

CHECKPOINT(9);

for (k = 0; k < limit, k++){

i += new_i[k];

show_value(i);

}

CHECKPOINT(10);

}

(a) Transformed code with checkpoints carrying

time constraints (0, 1, 3, 8, 9 and 10) and

extra checkpoints for exploiting run-time slack. (c) Checkpoint Database (CDB).

Checkpoint Database (CDB)

Checkpoint Max Time

Transition (ms)

0-3 50

1-8 300

9-10 10

(c) Checkpoint Database (CDB).

Checkpoint Database (CDB)

Checkpoint Max Time

Transition (ms)

0-3 50

1-8 300

9-10 10

(b) Hierarchical control flow graph.

ch0

norm

ch1

If

ch2

func

ch3

norm

ch4

norm

ch5

loop

ch6

norm

ch7

normch8

norm

ch9

norm

end end

ch10

norm

Figure 5. Code example with program check-
points imposing time constraints and exploit-
ing runtime slack.

time constraints (or active checkpoint transitions) which
are the deadlines for the program paths that the current
node in execution belongs to (Step 1 in Figure 6). These
program paths may either belong to the sub control flow
graph that contains the current node or to the higher level
control flow graph. In the latter case, we call such deadline
an inherited time constraint. For easier management of
inherited time constraints, a sub control flow graph is
augmented with an end node that carries information
about the tightest time constraint from the higher level
CFG. All this data is produced through a reachability
analysis on the HCFG which will be explained shortly.
Different algorithmic steps are taken depending on the
type of the control flow graph node and are discussed below.

Normal nodes: Normal nodes do not have sub control flow
graphs associated with them. When processing a normal
node we first make a new estimation of the remaining num-
ber of cycles for each active checkpoint transition from
the current node (Case 1, Step I in Figure 6). This is sim-
ilar to constructing a new CPDB at run-time. We have
experimented with two heuristics for calculating the cycle
count, labeled Formula1 and Formula2 in Figure 6. Under
Formula1, for each active checkpoint transition the cycle
count is given by the length of the longest path from the

1. At a checkpoint execution, create a new CDB with the active checkpoint transitions.

2. Check type of current node in the HCFG.

Case 1: Node type is normal (not function call nor loop header).

I. Estimate the number of cycles C from curr node to all active checkpoint transitions.

Formula 1:

C = longest_path(curr node, active checkpoint transition end point)

Or for inherited time constraints:

C = longest_path_length(curr node, end node of curr sub-CFG) + extraC,

Where extraC is obtained by

extraC = remaining number of iterations * max cycle per iter + inherited max cycle

(for parent node of type loop header)

or extraC = inherited max cycle (for parent node of type function)

Formula 2:

C = max profiled number of cycles for active checkpoint transition –

elapsed number of cycles for active checkpoint transition

II. Select for each checkpoint transition

C = CFormula1 or C = CFormula2 or C = min(CFormula1, CFormula2)

III. Create a new CPDB using C for each active checkpoint transition.

IV. Invoke DVS algorithm from Section 2 using new CDB and CPDB.

V. Continue with program execution.

Case 2: Node type is function call or loop header.

I. Calculate the tightest active checkpoint transition selecting by frequency

max (longest_path(curr node, active checkpoint transition end point) / time constraint

Name tightest time constraint as inherited and compute max cycle C:

C = longest_path(next node, active checkpoint transition end point) – inherited max cycle

II. Add an end-node to the curr node’s sub-CFG with max cycle = C.

III. Add inherited time constraint to CDB with time = inherited constraint remaining time.

IV. Continue with program execution.

Figure 6. Slack-based DVS algorithm using
program checkpoints.

current node to the end point of the checkpoint transition.
For the particular case when the time constraint is inher-
ited from a higher level CFG, the cycle count is determined
by the longest path as above, plus the cycle count contri-
bution from the added end node in the current sub CFG,
and plus the contribution from the remaining iterations (for
loop bodies). The second heuristic for estimating the cycle
count keeps track of the cycles elapsed since the checkpoint
transition in consideration started to execute. Subtracting
this value from the maximum profiled number of cycles for
the checkpoint transition under consideration, we obtain the
predicted remaining number of cycles via Formula2.

We experimented with these two heuristics and we
noticed that the best estimation may come from either
of them and is very dependent on the run-time program
behavior. Therefore, we selected as the best estimation
the minimum number of cycles obtained by Formula1 and
Formula2 (Case 1, Step II). We create a new CPDB and
update the existing CDB with the new estimated values
for checkpoint transition cycle counts and time. Finally,
the original DVS algorithm from Section 2 is invoked and
program execution continues (Case 1, Steps III, IV and V).

Function call or Loop header nodes: Upon the execution
of instructions in a node of type f unction call or loop
header, the first step is to identify the tightest time con-

straint in the current CFG and convey this information to
the sub CFG associated with the current node. The tightest
time constraint is determined by choosing the maximum
among the estimated minimum necessary frequency for
executing each active checkpoint transition satisfying the
time constraint. This in turn is calculated as the number of
cycles in the longest path of execution between the current
node and the end point of the active checkpoint transition
in consideration divided by the remaining time constraint
associated with this checkpoint transition (Case 2, Step I in
Figure 6). Information on this inherited time constraint is
stored in a special end node in the sub control flow graph
and is added to the CDB (Case 2, Step II and III). After
these steps, program execution continues.

Note that the tasks of creating a CFG, finding reachable
nodes and of finding the longest path in a HCFG can be
pre-computed. Most of the run-time processing is spent on
recomputing cycle count estimates and updating the data
structures used by the algorithm: CDB, CPDB and HCFG.

4. Experimental Results

Using the COPPER simulation framework [3] we eval-
uated our slack-based algorithm. In our simulation frame-
work we make the following assumptions. When decoding
a checkpoint operation a power scheduler module, which
may be implemented within the operating system, is in-
voked. This module determines the new operating clock
frequency and voltage using the DVS algorithms from
Section 2 and 3. An alternative implementation would di-
rectly insert extra code for calculating the new speed into
the application program. This solution is also used by ear-
lier approaches [20, 19]. Our goal in this section is to show
our algorithm at work. We do not take into account the fre-
quency and voltage scaling time overhead nor the time and
power overhead of the code for determining the new fre-
quency and voltage values. However, for checkpoint transi-
tions that take much longer than the typical frequency and
voltage scaling overhead, the latter can be considered neg-
ligible. We simulate a MIPS-based out-of-order processor
with configuration 600MHz-2.2V as baseline. We assume
that frequency and voltage can vary continuously, and that
when reducing the clock frequency, the voltage is scaled
proportionally to changes in the clock speed.

Figure 7 shows the power profile before dynamic power
management for paraffins benchmark [2], highlighting the
points in time where checkpoints carrying time constraints
are executed. Checkpoint transition 4-7 is the code section
for which we detected a high variation on the number of ex-
ecution cycles for different executions of the same program
path. This piece of code consists of nested loops in which
the number of iterations in the inner loops depends on the

iteration variable of the outer loops. We imposed a time
constraint of 1.5 milliseconds on this checkpoint transition.

Crucial for the success of our DVS technique is the accu-
rate run-time estimation of the remaining number of cycles
for active checkpoint transitions (Case 1 in Figure 6). We
experimented with different heuristics to identify the one
that consistently gives the most energy-efficient DVS solu-
tion. Two of these experiments are described below.

From the time constraint on checkpoint transition 4-7
and the available power profile shown in Figure 8, we ob-
tain the frequency limit and optimal frequency values plot-
ted in Figure 9. The gradual decline in steps observed for
a couple of time intervals (100-200, 300-400, 400-600 and
600-800 microseconds) shows the adjustment of frequen-
cies within loop iterations and with the repetition of loop
bodies. As time progresses, the remaining number of cy-
cles and remaining time constraint for the execution of the
loop decrease, requiring lower frequencies as we approach
the end of the loop execution. The resultant power profile
after power management is shown in Figure 8.

The frequency values in Figure 9 were determined by
estimating the remaining number of cycles for the active
checkpoint transitions using Formula1 in Figure 6. We ob-
served energy savings of 52% over the original program ex-
ecution in Figure 7. In Figure 11 we used an alternative
heuristic to estimate the remaining cycle counts. We se-
lected the minimum value between the estimation given by
Formula1 and Formula2. As can be noticed, the frequen-
cies are much lower than the values shown in Figure 9, and
are still satisfying the time constraints. In fact, the calcu-
lated frequency is the same, independent of the loop itera-
tion or loop body repetition. This second heuristic led to
an optimal frequency for the code execution that dismissed
the need for further clock frequency and voltage changes.
Comparing Figure 10 to Figure 8, the energy savings differ-
ence between the two DVS solutions is 63%. The heuristic
based on the minimum value saves 82% more energy than
the original case in Figure 7.

We further experimented with the same program under
different input conditions and observed very different re-
sults for the distinct heuristics. However, the heuristic based
on the minimum value resulted as the most efficient.

5. Conclusions

This paper presented an intra-task DVS algorithm that
differs from existing ones in the flexibility for specifying
time constraints via program checkpoints. We consider this
feature relevant given the types of important applications
that cannot be modeled to be optimized by current DVS
techniques. We also designed a DVS technique that re-
sponds to runtime power constraints. In situations where
the power budget is very limiting, a power limit can be im-

0

1

2

3

4

5

6

7

0 200 400 600 800 1000 1200

[P
ow

er
]

[Time, microseconds]

4
7
4
7
4
7
4
7
4
7
4
7
4
7
4
7
4
7
4
7
4
7
4
7
4

7
4

7
4

7
4

7
4

7
4

7

600 MHz

Figure 7. Power consumption profile high-
lighting checkpoint execution times without
DVS for paraffins.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 500 1000 1500 2000 2500 3000

[P
ow

er
]

[Time, microseconds]

4
7
4
7
4
7
47
47
47
4
7
47
47
4
7
47
4
7
47
4

7
4 7

4 7
4

7
4 7

Power Consumption
Available Power Profile

Figure 8. Available power budget and power
consumption profile after applying slack-
based DVS using Formula1 for paraffins.

150

200

250

300

350

400

450

500

550

600

0 200 400 600 800 1000 1200 1400 1600 1800

[F
re

qu
en

cy
, M

H
z]

[Time, microseconds]

4
7
4
7
4
7
47
47
47
4
7
47
47
4
7
47
4
7
47

4
7
4 7

4 7
4

7
4 7

4
7
4
7
4
7
47
47
47
4
7
47
47
4
7
47
4
7
47

4
7
4 7

4 7
4

7
4 7

Frequency Limit
Frequency

Figure 9. Frequency limit and optimal fre-
quency using Formula1 for paraffins.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 500 1000 1500 2000 2500 3000

[P
ow

er
]

[Time, microseconds]

4
7
4
7
4
7
47
47
47
4
7
47
47
4
7
47
4
7
47

4
7
4 7

4 7
4

7
4 7

Power Consumption
Available Power Profile

Figure 10. Available power budget and power
consumption profile after applying slack-
based DVS using Formula2 for paraffins.

200

250

300

350

400

450

500

550

600

0 500 1000 1500 2000 2500 3000

[F
re

qu
en

cy
, M

H
z]

[Time, microseconds]

4
7
4
7
4
7
47
47
47
4
7
47
47
4
7
47
4
7
47

4
7
4 7

4 7
4

7
4 7

4
7
4
7
4
7
47
47
47
4
7
47
47
4
7
47
4
7
47

4
7
4 7

4 7
4

7
4 7

Frequency Limit
Frequency

Figure 11. Frequency limit and optimal fre-
quency using Formula2 for paraffins.

posed and deadlines be missed if performance is not a con-
cern. Our DVS technique needs refinement, e.g., modifi-
cations to take into account the power and time overhead
for the extra run-time voltage scheduling operations and the
time overhead of frequency and voltage scaling itself. The
high energy savings we obtained over the program execu-
tion without DVS (82% for paraffins) motivates us to fur-
ther exploit the technique.

References

[1] Intel XScale microarchitecture.
http://developer.intel.com/design/intelxscale.

[2] Trimaran Project. http://www.trimaran.org/status.html.
[3] A. Azevedo, I. Issenin, R. Cornea, R. Gupta, N. Dutt,

A. Veidenbaum, and A. Nicolau. Architectural and compiler
strategies for dynamic power management in the COPPER
project. International Workshop on Innovative Architecture,
Jan. 2001.

[4] U. K. C.-H. Hsu and M. Hsiao. Compiler-directed dynamic
frequency and voltage scheduling. In Workshop on Power-
Driven Microarchiteture, June 1998.

[5] U. K. C.-H. Hsu and M. Hsiao. Compiler-directed dynamic
voltage and frequency scheduling for energy reduction in
microprocessors. ISLPED, pages 275–278, Aug. 2001.

[6] M. Fleischmann. Crusoe power management: Reducing the
operating power with LongRun. 2000.

[7] K. Govil, E. Chan, and H. Wasserman. Comparing algo-
rithms for dynamic speed-setting on a low-power CPU. In
Proceedings of the First Annual Int’l Conf. on Mobile Com-
puting and Networking, pages 13–25, Nov. 1995.

[8] I. Hong, D. K. ad G. Qu, M. Potkonjak, and M. Srivastava.
Power optimization of variable-voltage core-based systems.
IEEE Trans. on Computer Aided Design of Integrated Cir-
cuits and Systems, 18(12), December 1999.

[9] T. Ishihara and H. Yasuura. Voltage scheduling problem
for dynamically variable voltage processors. ISLPED, pages
197–202, Aug. 1998.

[10] C. Krishna and Y.-H. Lee. Voltage-clock-scaling adaptive
scheduling techniques for low power in hard real-time sys-
tems. Sixth Real-Time Technology and Applications Sympo-
sium (RTAS), May 2000.

[11] S. Lee and T. Sakurai. Run-time voltage hopping for low-
power real-time systems. 37th Design Automation Confer-
ence, pages 806–809, 2000.

[12] Y.-H. Lee and C. M. Krishna. Voltage clock scaling for low
energy consumption in realtime embedded systems. Pro-
ceedings of the Sixth Int’l Conf. on RealTime Computing
Systems and Applications, 1998.

[13] A. Manzak and C. Chakrabarti. Variable voltage task
scheduling for minimizing energy or minimizing power.
Int’l Conf. on Acoustics, Speech and Signal Processing, June
2000.

[14] D. Mosse, H. Aydin, B. Childers, and R. Melhem. Compiler-
assisted dynamic power-aware scheduling for real-time ap-
plications. Workshop on Compiler and OS for Low Power,
Oct. 2000.

[15] T. Pering, T. Burd, and R. Brodersen. The simulation
and evaluation of dynamic voltage scaling algorithms. In
ISLPED, pages 76–81, Aug. 1998.

[16] T. Pering, T. Burd, and R. Brodersen. Voltage scheduling
in the lpARM microprocessor system. In ISLPED, pages
96–101, July 2000.

[17] J. Pouwelse, K. Langendoen, and H. Sips. Voltage scaling
on a low power microprocessor. Int’l Symposium on Mobile
Multimedia Systems and Applications (MMSA), Nov. 2000.

[18] J. Pouwelse, K. Langendoen, and H. Sips. Energy priority
scheduling for variable voltage processors. Int’l Symposium
on Mobile Multimedia Systems and Applications (MMSA),
Aug. 2001.

[19] D. Shin and J. Kim. A profile-based energy-efficient intra-
task voltage scheduling algorithm for hard real-time appli-
cations. ISLPED, 2001.

[20] D. Shin, J. Kim, and S. Lee. Intra-task voltage scheduling
for low-energy hard real-time applications. IEEE Design
and Test of Computers, Mar. 2001.

[21] Y. Shin, K. Choi, and T. Sakurai. Power optimization of real-
time embedded systems on variable speed processors. Int’l
Conf. on ComputerAided Design (ICCAD), pages 365–368,
Nov. 2000.

[22] A. Sinha and A. Chandrakasan. Dynamic voltage scheduling
using adaptive filtering of workload traces. 14th Int’l Conf.
on VLSI Design, Jan. 2001.

[23] V. Swaminathan and K. Chakrabarty. Investigating the effect
of voltage switching on low-energy task scheduling in hard
real time systems. Asia South Pacific Design Automation
Conference (ASP-DAC), Jan. 2001.

[24] M. Weiser, B. Welch, A. Demers, and S. Shenker. Schedul-
ing for reduced CPU energy. In Proceedings of the First
Symposium on Operating Systems Design and Implementa-
tion (OSDI), pages 13–23, Novermber 1994.

[25] F. Yao, A. Demers, and S. Shenker. A scheduling model for
reduced CPU energy. IEEE Symposium on Foundations of
Computer Science, pages 374–382, Oct. 1995.

