
 Open access Journal Article DOI:10.1109/TNSM.2019.2943779

Profile-Based Resource Allocation for Virtualized Network Functions — Source link

Steven Van Rossem, Wouter Tavernier, Didier Colle, Mario Pickavet ...+1 more authors

Institutions: Ghent University

Published on: 25 Sep 2019 - IEEE Transactions on Network and Service Management (Institute of Electrical and Electronics
Engineers (IEEE))

Topics: Service-level agreement, Resource allocation, Resource management, Cloud computing and Virtualization

Related papers:

 Model-based self-adaptive resource allocation in virtualized environments

 Recent Advances of Resource Allocation in Network Function Virtualization

 SLA-Aware Virtual Resource Management for Cloud Infrastructures

 Cloud Computing Virtualization of Resources Allocation for Distributed Systems

 Resource allocation heuristics for the miriaPOD platform

Share this paper:

View more about this paper here: https://typeset.io/papers/profile-based-resource-allocation-for-virtualized-network-
3c0mbsmann

https://typeset.io/
https://www.doi.org/10.1109/TNSM.2019.2943779
https://typeset.io/papers/profile-based-resource-allocation-for-virtualized-network-3c0mbsmann
https://typeset.io/authors/steven-van-rossem-41qy0sf75i
https://typeset.io/authors/wouter-tavernier-uirgphxqku
https://typeset.io/authors/didier-colle-24zm8tqria
https://typeset.io/authors/mario-pickavet-6qtqr4yw9e
https://typeset.io/institutions/ghent-university-14limu0t
https://typeset.io/journals/ieee-transactions-on-network-and-service-management-1l6zv2ml
https://typeset.io/topics/service-level-agreement-3nqrgl4d
https://typeset.io/topics/resource-allocation-3696qy02
https://typeset.io/topics/resource-management-3nr2bzdl
https://typeset.io/topics/cloud-computing-23j8n0mk
https://typeset.io/topics/virtualization-y3bxbinu
https://typeset.io/papers/model-based-self-adaptive-resource-allocation-in-virtualized-4erbtk4gsb
https://typeset.io/papers/recent-advances-of-resource-allocation-in-network-function-4xy8nvdh00
https://typeset.io/papers/sla-aware-virtual-resource-management-for-cloud-6xup8zycb8
https://typeset.io/papers/cloud-computing-virtualization-of-resources-allocation-for-1simpce4qa
https://typeset.io/papers/resource-allocation-heuristics-for-the-miriapod-platform-2jrctggu87
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/profile-based-resource-allocation-for-virtualized-network-3c0mbsmann
https://twitter.com/intent/tweet?text=Profile-Based%20Resource%20Allocation%20for%20Virtualized%20Network%20Functions&url=https://typeset.io/papers/profile-based-resource-allocation-for-virtualized-network-3c0mbsmann
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/profile-based-resource-allocation-for-virtualized-network-3c0mbsmann
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/profile-based-resource-allocation-for-virtualized-network-3c0mbsmann
https://typeset.io/papers/profile-based-resource-allocation-for-virtualized-network-3c0mbsmann

1

Profile-based Resource Allocation for Virtualized

Network Functions
Steven Van Rossem∗, Wouter Tavernier∗, Didier Colle∗,

Mario Pickavet∗ and Piet Demeester∗ ∗Ghent University - imec, IDLab.

Email: {steven.vanrossem, wouter.tavernier, didier.colle, mario.pickavet, piet.demeester} @ugent.be

Abstract—The virtualization of compute and network re-
sources enables an unseen flexibility for deploying network
services. A wide spectrum of emerging technologies allows an
ever-growing range of orchestration possibilities in cloud-based
environments. But in this context it remains challenging to rhyme
dynamic cloud configurations with deterministic performance.
The service operator must somehow map the performance spe-
cification in the Service Level Agreement (SLA) to an adequate
resource allocation in the virtualized infrastructure. We propose
the use of a VNF profile to alleviate this process. This is illustrated
by profiling the performance of four example network functions
(a virtual router, switch, firewall and cache server) under varying
workloads and resource configurations. We then compare several
methods to derive a model from the profiled datasets. We select
the most accurate method to further train a model which predicts
the services’ performance, in function of incoming workload
and allocated resources. Our presented method can offer the
service operator a recommended resource allocation for the
targeted service, in function of the targeted performance and
maximum workload specified in the SLA. This helps to deploy
the softwarized service with an optimal amount of resources to
meet the SLA requirements, thereby avoiding unnecessary scaling
steps.

Index Terms—Network Function Virtualization, Performance
Analysis, Performance Profiling.

I. INTRODUCTION

T
HE advancements in the domain of cloud computing,

Software Defined Networking (SDN) and Network Func-

tion Virtualization (NFV) enable a unseen flexibility and pro-

grammability of both compute and network configurations. By

softwarizing network functions, we move away from dedicated

hardware based, monolithic systems to a virtualized solution

for offering telecom services. The service is decomposed into

multiple microservices which each get an allocated share

of resources such as CPU time, memory access or network

bandwidth. Typical tasks involved in network services include

packet forwarding, routing, inspection or any other form of

network traffic processing. Beyond the application layer, the

deeper layers of the network traffic are checked or manipulated

in a chained configuration. This means that network traffic

is sequentially steered through a, possibly lengthy, chain of

processors such as routers, firewalls, load-balancers or proxy-

servers. In the NFV domain, the main aim is to provide

softwarized solutions for each of those network functions,

which can be deployed on commercial-of-the-shelf (COTS)

servers. Ideally, equally high performance is expected com-

pared to rigid, dedicated hardware middleboxes, but at a lower

cost, higher flexibility regarding scaling, configuration and less

prone to vendor and technology lock-in.

At deployment time of the network service, an estimation of

the required capacity and related resource allocation needs to

be made. The performance contract is given in the Service

Level Agreement (SLA) and should be translated to the

required resources. In case of a hardware based middlebox,

performance can be more easily guaranteed and specified, as

this is a controlled and isolated environment. The internal

processing is completely under control and validated by the

middlebox vendor. Configuration settings are tested and speci-

fied in the vendor’s test environment. But in this case, the total

resource reservation is not flexible and often resulting in an

over-provisioned and expensive amount of rigid middleboxes,

calculated to support the maximum expected workload. When

using Virtual Network Functions (VNFs) instead, the resource

reservation translates to the amount of virtualized compute and

network resources needed to process the real-time workload,

e.g. the number of vCPUs, memory and bandwidth which

must be reserved to support the current number of users. Over

time, the amount of resources can be adjusted dynamically

and more fine-grained. However, characterizing or modelling

the performance and required resources of such a VNF is

not a straightforward task. The softwarized nature of VNFs

implies a much larger space of possible hardware and software

configurations, which can influence the resource usage and

performance in many unexpected directions.

Iterative

Development

Service OperatorSoftware Vendor(s)

Core IaaSEdge IaaSAccess IaaS

Service 1

Service 2

Service N

Test

Infrastructure

Custom

Operation Layer

Local Staging

Environment

Service

Orchestration

Infrastructure (IaaS)

Service

Requests

Operational

Infrastructure

Production

Environment

(mobile/fixed)

Fig. 1. A common IaaS environment helps to profile the VNF in a
representative context and infrastructure.

2

In Fig. 1, we can see how cloud-native Infrastructure-

as-a-Service (IaaS) management enables new dynamics in

using test and operational infrastructures. We have outlined

such a platform architecture in [1], where Service Operators

can source VNFs from multiple Vendors to integrate them

in their services. Building further on well-known DevOps

methodologies, the vendor and operator can share the same

IaaS environment to validate and operate VNFs. This helps to

profile the VNF in a representative operational context, similar

to where the operator would deploy it. In another previous

publication [2] we had also advocated the practical use of a

sandbox environment for validating VNFs prior to deployment

in production and also adopted the idea to profile the VNF

in this sandboxed environment. Virtualized IaaS and DevOps

methodologies create an ideal framework for automated VNF

profiling, as several challenges exist:

(i) It is impractical to exhaustively validate the performance

in all possible situations due to limited time, budget and

infrastructure availability. We must select a representative

subset of infrastructure and workload configurations to profile

the VNF on. In a datacenter for example, it might be sufficient

to profile a VNF on one node (using vertical scaling) and than

extrapolate its performance when scaling out horizontally to

similar hardware nodes.

(ii) The operator must often consider the VNF as a black

box because the internal implementation is not exposed by the

vendor. Without a provided analytical performance model, the

VNF performance needs to be characterized through testing.

A black-box profiling approach has the benefit that VNF

functionality is also validated with representative workloads.

Every NFV use-case will have its own specific workloads, and

it is hard to capture all VNF flexibility in an analytical model.

We argue that profiling through testing can offer a more trusted

approach compared to a theoretical model of the internal VNF

workings, derived by source code analysis.

In the following sections we will give details of our mea-

surements and the implementation of a VNF profiling method.

Next, in Section II, we discuss other related research where we

build further on. Then, in Section III, the tested VNFs and used

measurement setup are described. In Section IV we compare

and select the best analysis methods to derive a model for the

VNF performance. In the remaining Sections V and VI we

discuss practical use cases for a VNF profile.

II. RELATED WORK

Unsurprisingly, the underlying server hardware character-

istics have a deep impact on the performance. Parameters

such as processor architecture, clock rate, size of the in-

ternal processor cache, memory latency, bandwidth of inter-

processor and peripheral buses, etc. have a strong impact on

the performance of the specific application or VNF running

on that server. An extensive list of capabilities for bare metal

and virtualized environments can be found in [3]. There

it is also described how descriptor files can help to more

strictly orchestrate VNF performance to specific hardware.

To accurately profile and reproduce the VNF performance,

the service operator must be aware of the factors which can

TABLE I
VERSATILITY OF THE INFRASTRUCTURE CONFIGURATION IN CLOUD

ENVIRONMENTS.

Situation Type of settings

Orchestration Instantiation latency caused by orchestration plat-
form implementation. [5]

Operating
System
(Kernel
space)
+
Hypervisor
(Dom0)

CPU pinning.
Kernel-bypassing with network polling drivers (e.g.
DPDK, netmap, FD.io). [6]
Resource scheduling optimization (vCPU time,
memory, packet processing) [7] [8].
Kernel network buffers and queue tweaks [9].
Hypervisor processing overhead (Xen) [10].

Bare metal NIC (line rate, TCP processing offload, SR-IOV).
CPU (clock speed, hyperthreading support).
Memory (layered cache [11], RAM, DMA).
Disk IO speed.
Offload to specialized (accelerated) hardware e.g.
GPU, FPGA [12].

Network Congestion control, delay, routing protocols,
Degradation due to virtualization overhead [13].

influence the service performance. Possible factors are listed in

Table I with references for measured results in the literature.

Since it is practically impossible to exhaustively profile all

possible configurations, the service provider should be aware

of the settings and control them as good as possible. This is

also illustrated in [4] where vswitch performance is very much

depending on factors such as traffic mix, scheduler settings and

other deployment configuration options.

Different frameworks to obtain VNF profiles have been

described before: [14] and [15] describe an architecture to

implement a VNF profiling framework where users can com-

pare the performance of VNFs in a controlled environment

with multiple types of workload. Similarly, the work in [16]

explains how an automated VNF profiling system was imple-

mented, compatible with a DevOps approach. The automation

of profiling measurements is further exemplified on chains

of multiple VNFs in [17]. The authors propose that a chain

of VNFs should in fact be considered as a single entity for

profiling. These publications do however not provide an

analysis method to model the profiled data for performance

prediction.

An extensive overview of different statistical prediction

methods for resource allocation is given in [18], however

without quantitative results to compare the methods. Validated

methodologies to predict the VNF performance from earlier

measurements are presented in [19] and [20]. Curve fitting is

used to model the relation between VNF performance metrics

and input workload. The proposed methods monitor which

resource and workload metrics are most correlated with a given

KPI metric. The fitted relation is checked and adapted in real-

time using a sliding window of the most recent samples. There

is however no quantative comparison with other modelling

methods, nor is discussed how initial resource allocation can

be improved by profiling prior to deployment in production.

A different method is presented in [21] and [22] where

the VNF performance is modelled using queuing theory. The

monitored KPI metrics of the VNFs include e.g. buffer size,

3

arrival rate and process rate. But only limited configurations

are tested (with a fixed resource allocation) and it is not

investigated if this method can be used to map SLA parameters

to a recommended resource allocation. Other drawbacks of this

method are that specialized probes are needed to monitor the

different queue sizes in the VNF, which can be impossible

for black-box/proprietary VNFs. Furthermore, as described in

[20], queue size or process rate can change dynamically when

the VNF gets saturated, which is not captured in the proposed

queueing models.

III. GATHERING DATA FOR PERFORMANCE MODELLING

A common knowledge from the machine learning domain

is that a learning model is often only as good as the data used

to train it. Since our goal is to predict the performance of a

VNF as good as possible, care must be taken during the data

gathering process that the performance of the VNF is measured

in a representative way. This is done in our measurement

setup by isolating the resources used by the Device Under

Test (DUT) and taking care that the traffic source/sink are not

saturated during the measurements. During VNF profiling, we

try to specify the performance of a VNF, within certain bound-

ary conditions. To specify this, we categorize the monitored

metrics into four types:

• Workload metrics are used to quantify the amount of

’work’ which is presented at the VNF’s input. These reflect

the user generated load (e.g. pps, packet size, requests/s, the

variety in payload content or L2/3 header fields).

• Resource metrics quantify the payable/physical/scalable

hardware resources obtained from the IaaS provider and al-

located to the VNF (e.g. vCPU, MEM, storage or network).

Also OS or hypervisor related metrics bound to the IaaS are

considered (e.g. context switches or cache usage).

• Performance metrics monitor the Key Performance Indica-

tors (KPI). These are (often SLA-defined) measurements of

the processed workload, thus taking the output of the VNF

into account (e.g. delay, loss or throughput).

• Context parameters are one-shot IaaS settings (e.g. buffer

length, scheduler algorithm, see Table I) or VNF specific

configurations (e.g. firewall rules or routing table length).

This is part of the initialization and assumed fixed after

deployment. In a IaaS context, many hardware settings

are strictly limited or even completely shielded by the

infrastructure provider. The VNFs are tested with one fixed

context setting.

Categorizing the metrics like this, helps us to define which

metrics should be monitored in the first place. After the

measurements, we will need to train the VNF profile to predict

the performance metrics from the resource allocation and

workload metrics. For each of the tested VNFs we will later

specify the metrics more in detail.

A. Measurement Setup

Figure 2 represents the different functional blocks used

in the measurement setup. The DUT is the VNF which is

being profiled, it gets an input and output interface. The test

traffic is routed through a hypervisor switch, from the traffic

source, through the DUT, to the traffic sink. The Profiling

Controller iterates over every tested workload and records

the monitored metrics for further analysis. A control interface

must be foreseen in the DUT and traffic source/sink for initial

configuration and to start/stop the workload. The Monitoring

Framework is configured by the Controller to gather metrics

exported by a range of monitoring probes and exported by

the traffic source/sink. We use Prometheus as framework. The

used probes are cAdvisor, Prometheus Node Exporter and a

custom tool to export Virtual Machine metrics gathered by

KVM and libvirt.

Fig. 2. The measurement setup used for profiling the VNFs.

The VNFs are running on a compute node with 2x 8core

Intel E5-2650v2 (2.6GHz) CPU with Ubuntu 16.04. Linux

Bridge is used as the hypervisor switch. We do not change

the default OS options (e.g. we leave hyperthreading enabled).

Depending on the virtualization of the VNF (container or

Virtual Machine (VM)) we use the configuration options of

Docker resp. KVM to isolate the CPU cores between the DUT

and the traffic sink/source.

B. Measurement Strategy

The monitoring capabilities of the platform where the VNFs

are tested provide the base for our additional analysis. The

general data gathering workflow works like this:

1) We define the workload and resource configuration bound-

aries to deploy the DUT. These should be representative for

the expected values possible in the production environment.

Ideally the same type of IaaS node is used for profiling and

in production. In between these boundaries we manually

specify a number of intermediate values. Likewise, we also

define the KPIs which quantify the DUT performance.

2) The metrics which represent the generated workload, al-

located resources and VNF performance should be moni-

torable by the Monitoring Framework. The Profiling Con-

troller instructs the Monitoring Framework to gather the

required metrics.

3) The Profiling Controller configures the DUT and traffic

source/sink with the specified resource allocation, and starts

the workload. The Controller iterates over all combinations

of the workloads and resource allocations defined in step

1. After each tested configuration is stabilized (see next

subsection), the representative metric values are recorded

and the next configuration is tested.

4) The Monitoring Framework is configured to alert the

Controller if either the traffic source/sink is overloaded

(i.e. at their max cpu usage). In this case, the measured

4

performance is marked as invalid, as it is bounded by

the traffic VNFs and not by the profiled DUT. These

measurements are not included in the profiled DUT model.

5) When all measurements are completed, we have recorded

the performance of the VNF in a large range of possible

configurations. Each configuration depicts a certain input

workload and resource allocation. This dataset is then

analyzed further in section IV.

C. Assessing Measurement Stability

Each workload should only be generated long enough until a

representative measurement can be taken. To assess the stabil-

ity of an ongoing measurement, we derive a stability indicator

which is based on the geometric mean of all monitored metrics

xi together:

(

n
∏

i=1

xi

)
1
n

=
n

√
x1x2 · · · xn = exp

[

1

n

n
∑

i=1

ln xi

]

(1)

It can be seen in Eq. 1 that the geometric mean converges

to a stable value, if the sum of the logs of the metrics also

becomes stable. This has the advantage that metrics with

different scales can be combined in the stability indicator.

The sum of the logs will change proportionally to a relative

change in any of the metrics (e.g. if one metric varies 5%,

the geometric mean will change proportionally, regardless of

the scale of the metric). By taking the logs, we also limit the

risk of calculation overflow. When a workload is started, the

measured metrics will stabilize after a certain ramp-up time.

We assume that under a fixed workload, the resources and

performance metrics xi will converge to a stable value, being

constant with a certain Gaussian measurement noise. Under

the Central Limit Theorem, the sum of the logs will then be

approximately normal, so the mean and standard deviation

should stabilize also. The central tendency of the complete

set of profiled metrics is therefore monitored by Eq. 2. Every

second, we monitor S in a moving window of the last 10sec.

∆S depicts the difference between consecutive windows of the

mean and std.

∆S =

{

∆mean(∑n
i=1 ln xi) < ε1

∆std(∑n
i=1 ln xi) < ε2

(2)

When ∆S stays below the thresholds for the last 5 sliding

windows, we assume the measurement is stable and record

the mean of the last 10sec of every monitored metric xi . The

thresholds ε1,2 can be calibrated prior to the profiling test;

under a stable workload, we can monitor the lower limits

of ∆mean and ∆std on our setup. The stability indicator ∆S

has been implemented in the monitoring framework itself and

an event is fired to the Profiling Controller when stability

is detected. By having only one single stability metric we

decrease the monitoring overhead. This removes the need for

the Profiling Controller to constantly poll all of the monitored

metrics to check if the measurement has stabilized. If the

metrics are not stable after 60sec, the workload is stopped

and no measurements are recorded. In our setup, a stable

measurement is detected after 30sec on average. This means

it takes about 30sec to test a single configuration.

D. Measured Network Functions

Typical NFV use cases such as a virtualized Evolved

Packet Core (EPC) or IP Multimedia Subsystem (IMS) make

primarily use of request-based or packet forwarding VNFs

[23]. Since we want to analyze the typical relation between

workload, resource and performance metrics, we select four

typical packet forwarding or request-based VNFs. These VNFs

exemplify our generic understanding of a VNF implementa-

tion: the available amount of CPU and bandwidth is scheduled

over the ingress workload, proportionally to the incoming

packets or requests. So each processed packet or request will

receive a fair share of the available resources. After resource

saturation, performance starts to deteriorate, since packets and

requests will receive a smaller share of resources as prior to

saturation. We suspect that the trends observed in these VNFs

can fit to other ones also, as long as the VNF implementation

is based on the same principle: resource usage is proportional

to packet or request rate and KPIs are affected by resource

saturation.

We monitored the performance of three typical packet

forwarding-based VNFs:

• Router: an evaluation license of a commercially General

Available vRouter, implemented as a VM. In Fig. 3f we

can see that the performance of this router is capped from

2vCPUs onwards. The traffic source and sink are each in a

different L3 subnet. We do not alter the default routing table

and let the router forward the traffic from source to sink.

• Firewall: an evaluation license of a commercially General

Available vFirewall. This is a stateful firewall, providing L3,

L4 and L7 functionality. We activate a built-in set of rules

to protect against: (i) DoS, operating on L3 and L4. (ii)

Additionally we block SSH, SYSLOG and MYSQL services

and (iii) we enable the offered DNS, Web and AntiVirus

inspection tools operating at L7. Implemented as a VM, the

license limits the resource allocation to max 1vCPU. This

is seen in Fig. 3c and 3g where resource allocation stops at

max 1vCPU.

• OVS: To compare with the performance of the other packet

forwarding VNFs, we deploy OpenvSwitch v2.10.1 (an

open source softwarized vswitch implementation) into a

VM based on Alpine Linux v3.9.1. The OpenvSwitch is

configured as a standalone switch, so a flow entry is inserted

for every unique flow passing through, one per unique mac

source-destination pair. Note that to benefit from multi-core

cpu allocation, we must enable multiqueue virtio-net drivers

in KVM. This enables packet sending/receiving processing

to scale with the number of available vCPUs of the guest

VM. We must divide the available vCPUs over the specified

number of queues in the virtio driver and the processing in

the VM (OVS) itself.

We stress the above VNFs by generating multiple unique

parallel flows. Also the packetsize is varied. The tool Scapy is

used to craft a .pcap file which describes a stream of packets

with varying mac addresses. Tcpreplay is then used to stream

5

0 200 400 600 800 1000
packetrate (kpps)

0

100

200

300

400

500

600

700

800

to
ta

l c
pu

 u
sa

ge
 (%

)

OVS packetsize=512B, flows=1000flows

allocated vCPUs
0.25vCPU
0.5vCPU
0.75vCPU
1.0vCPU
2.0vCPU
3.0vCPU
4.0vCPU
6.0vCPU
8.0vCPU

(a) OVS CPU usage

0 100 200 300 400 500
packetrate (kpps)

0

100

200

300

400

500

600

to
ta

l c
pu

 u
sa

ge
 (%

)

Router packetsize=512B, flows=1000flows

allocated vCPUs
0.25vCPU
0.5vCPU
0.75vCPU
1.0vCPU
2.0vCPU
3.0vCPU
4.0vCPU
6.0vCPU

(b) Router CPU usage

0 25 50 75 100 125 150 175
packetrate (kpps)

20

40

60

80

100

to
ta

l c
pu

 u
sa

ge
 (%

)

Firewall packetsize=512B, flows=1000flows

allocated vCPUs
0.25vCPU
0.5vCPU
0.75vCPU
1.0vCPU

(c) Firewall CPU usage

0 10 20 30 40 50 60
concurrent requests (requests)

50

100

150

200

250

300

350

400

to
ta

l c
pu

 u
sa

ge
 (%

)

Squid cache hit ratio=50%, filesize=1000kB

allocated vCPUs and bandwidth
0.25vCPU - 1Gbps
0.5vCPU - 1Gbps
0.75vCPU - 1Gbps
1.0vCPU - 2Gbps
2.0vCPU - 3Gbps
3.0vCPU - 4Gbps
4.0vCPU - 5Gbps

(d) Cache CPU usage

0 200 400 600 800 1000
packetrate (kpps)

0

20

40

60

80

100

pa
ck

et
 lo

ss
(%

)

OVS packetsize=512B, flows=1000flows

allocated vCPUs
0.25vCPU
0.5vCPU
0.75vCPU
1.0vCPU
2.0vCPU
3.0vCPU
4.0vCPU
6.0vCPU
8.0vCPU

(e) OVS packet loss

0 100 200 300 400 500
packetrate (kpps)

0

20

40

60

80

pa
ck

et
 lo

ss
(%

)

Router packetsize=512B, flows=1000flows

allocated vCPUs
0.25vCPU
0.5vCPU
0.75vCPU
1.0vCPU
2.0vCPU
3.0vCPU
4.0vCPU
6.0vCPU

(f) Router packet loss

0 25 50 75 100 125 150 175
packetrate (kpps)

0

20

40

60

80

100

pa
ck

et
 lo

ss
(%

)

Firewall packetsize=512B, flows=1000flows

allocated vCPUs
0.25vCPU
0.5vCPU
0.75vCPU
1.0vCPU

(g) Firewall packet loss

0 10 20 30 40 50 60
concurrent requests (requests)

0

250

500

750

1000

1250

1500

1750

ca
ch

ed
 fi

le
 re

sp
on

se
 ti

m
e

(m
s)

Squid cache hit ratio=50%, filesize=1000kB

allocated vCPUs and bandwidth
0.25vCPU - 1Gbps
0.5vCPU - 1Gbps
0.75vCPU - 1Gbps
1.0vCPU - 2Gbps
2.0vCPU - 3Gbps
3.0vCPU - 4Gbps
4.0vCPU - 5Gbps

(h) Cache response time

Fig. 3. Subset of measured VNF metrics under different resource allocations (with 99% confidence interval).

the .pcap file at a given packetrate from the traffic source.

There is also an iperf stream running, with an iperf server in

the traffic sink. This is used to monitor packet loss. For the

router and firewall to function properly, we need to make sure

the ARP table of the VNF contains the mac addresses of the

generated packets, so the router forwards the packets properly

to the traffic sink. This is done by arp spoofing the VNF under

test from the traffic sink.

Generated workload metrics:

• packetrate: [0.1-1000]kpps, 20 different packetrate values

are selectively chosen, spaced evenly along the log scale.

• packetsize: [64,128,512,1024,1500]bytes

• unique flows: [1,2,10,100,1000,10000] parallel flows

Resource metrics:

• CPU allocation: [0.25, 0.5, 0.75, 1, 2, 3, 4, 6, 8] vCPUs

A subset of the measured configurations is illustrated in

Fig. 3a 3b, 3c. Some VNFs have a more limited set of

vCPU allocations, due to license issues. Since we specify the

generated packetrate and packetsize up front, the bandwidth

requirements for the VNF can be easily determined.

Performance metric:

We choose packet loss (%) as the main KPI to reflect the

performance of the packet forwarding VNFs. A subset of the

measured configurations is illustrated in Fig. 3e 3f, 3g.

We also check the performance of a typical request-based

VNF. For this type of VNFs, both the allocated bandwidth as

the number of vCPUs influence the performance.

• Cache: Squid v3.5 is deployed in a Docker container.

Following the recommended configuration options for multi-

threaded performance we deploy one Squid instance per al-

located vCPU core, each instance serving at a different TCP

port. The incoming requests are then load-balanced over the

Squid instances using rules in iptables. We configure Squid

as a cache server, using RAM to store the cached files.

The cache server is serving files to the traffic generator. We

stress the cache server by generating n concurrent file requests.

This means at any given time, there are n pending file requests

ongoing, by n threads. Locust.io is the tool used to generate

the file requests. The traffic source is generating file requests

of varying filesizes. The traffic sink is a webserver, a Python

based implementation which generates a random file with the

requested size. Files which are not cached in the DUT are

requested to the traffic sink webserver. We also control how

much of the file requests ask non-cached files by manipulating

the http request header (setting ‘Cache-Control: no-cache‘ in

the http header). This emulates a varying cache hit ratio.

Generated workload metrics:

• concurrent requests: [1-60], 15 different values are uni-

formly chosen.

• filesizes: [1,5,10,50,100,500,1000]kB

• cache hit ratio: [10,50,90]%

Resource metrics:

• CPU allocation: [0.25, 0.5, 0.75, 1, 2, 3, 4] vCPUs

• Bandwidth allocation: [0.25-5]Gbps

To model the influence of the bandwidth limit, a number of

bandwidth allocations is dynamically chosen, relative to the

vCPUs used. For each allocated number of vCPU, we allocate

up to three selected bandwidth limits (e.g. for 0.25vCPU we

test 0.25 and 1Gbps, for 2vCPU we test 1, 2 and 3Gbps).

The bandwidth allocation is configured by a ratelimit on the

download link to the traffic source, using tcset. A subset of

the measured configurations is illustrated in Fig. 3d.

Performance metric:

We choose the response time of cached file requests (ms) as

the main KPI to reflect the performance of the cache server,

as illustrated in Fig. 3h.

For all the tested VNFs we consider CPU as the most

important resource metric, and assume CPU is more likely

6

to become a bottleneck resource than memory. This is also

confirmed in [7].

Taking all the different workload and resource configura-

tions into account, there are up to 5400 different configurations

to be tested for one VNF. We reported in section III-C that

each configuration takes an average of 30s to get a stable

measurement, this means the complete profiling can take up

to 45hours for one VNF. The iteration through all the profiled

configurations is automated by the Profiling Controller, which

controls the above mentioned tools and settings to generate all

the different workloads and allocate the specified resources.

This long profiling time pinpoints one of the main problems

with VNF profiling: many possible configurations lead to a

multiplicative growth rate of the test time. Possible ways to

mitigate this include narrowing down the possible configura-

tion options, or apply a better way to select which sample

configurations are most interesting to measure.

IV. ANALYSIS OF PROFILED DATA

In the previous section we described how different VNF

metrics were gathered under a set of different workload

and resource configurations. Having this profiled information

available, we want now to know, how well we can predict the

performance of the VNF from this dataset by a trained model.

We try out several modelling techniques and compare their

accuracy.

In Fig. 3 we can see a subset of the resource allocations

and the related performance measured at the same time. Every

data point is the mean of minimum 15 repeated measurements.

We also derive a confidence interval for each point. Although

some noise is present, we can clearly identify some trends in

the profiled datasets:

• When resources are freely available (no CPU starvation),

workload and resource usage are highly correlated. CPU

usage rises with increasing workload on the x axis. Mean-

while, performance metrics on the bottom row plots remain

fairly constant while CPU still has margin.

• When resources become scarce (CPU reaches saturation),

CPU usage flattens to the maximum available amount, even

if workload still increases. The correlation between mea-

sured workload on the x axis and resource usage is lowering.

From this point onwards, the performance metrics start

to increase more rapidly. Now, workload and performance

metrics are more correlated.

It is important to notice here that the same kind of trend

is witnessed with every VNF. The steepness and trend break-

point of the monitored resource usage and performance differs

from configuration to configuration. This is illustrated in Fig.

4b and 4c. For better readability, we only show a small subset

of processed workloads and the according CPU usage and

KPIs. During our measurements, we observe a general trend

as depicted in Fig. 4a (this trend can also be seen in Fig. 3).

Intuitively, this also corresponds to how we expect a VNF to

be generally implemented: with resource saturation reached by

increasing packet or request rate. While the data in Fig 3 is

averaged over 15 repeated tests, the remainder of the paper is

based on a limited subset of only five repeated tests. We do

this to reflect more a real-life situation where limited time is

available to gather many repeated tests. As a result, a certain

portion of noise is not averaged out in the data as seen in Fig.

4. In general, the gathered data is characterized by following

aspects, which impact the accuracy of the later used modelling

methods:

a) Heavy non-linear relations and trends in various

monitored metrics: There is a steep trend-break in the perfor-

mance when the resources reach saturation. Also the variation

caused by changing workloads cannot be fit to low-grade poly-

nomials as is mostly highly non-linear. This causes regression

methods to fail at modelling the performance trends of the

VNFs as regression methods try to fit the performance to a

polynomial combination of workload and resource metrics.

This is shown in Fig. 4b and 4c where we see that the

performance trends (red curves) are varying under different

workload configurations. This variation seems hard to capture

accurately in a model.

b) Noisy measurements of the performance metrics: Due

to noise on performance measurements, there is no guarantee

for a monotonous trend for the measured performance. The

noise can cause highly over-fitted models, especially with

interpolation methods. (see e.g. Fig. 4b where a non-smooth

curve would result from interpolating between measured per-

formance values.)

c) Inability to gather a lot of training samples because of

the slow profiling measurements: Due to time restrictions, the

amount of profiled samples is rather limited. We need to work

with a limited set of samples where only selected workload

and resource configuration have been measured before. This

can give problems with interpolation and nearest neighbor

based methods, if little neighboring samples are available. Also

machine learning based methods such as ANN tend to fail with

little training samples.

d) A monotonic function approximates the observed

trends: When averaging multiple repeated measurements, a

smoother curve occurs as illustrated in Fig. 3 and 4a. This is

useful information because we can use the smoother curve to

approximate the noisy data. Moreover, we can use a monotonic

function which helps to calculate a resource recommendation

as outlined further in Section IV-E. In our algorithm, the

observed monotonic function simplifies the process to lookup

the according workload for a specified resource and KPI value,

since monotonicity avoids the need to take local extrema into

account.

A. General Analysis Method

For a user of a network service, the performance of the

deployed VNFs is specified in the SLA. Typically the SLA

defines performance limits which must be met while the work-

load varies in a certain range. For example, the VNF can have

max 1% packet loss while the incoming traffic is max 1Gbps,

or the response time is max 500ms while the incoming request

rate is 10 requests/sec. So the SLA imposes a relation between

incoming workload and performance KPIs. The operational

platform however, can only allocate resources to a VNF, it

has no direct idea how the allocated resources impact the

7

workload

Resource

usage

non-saturated

resources

saturated

resources

KPI

metric

(a) Observed generic trends to model

0 200 400 600 800 1000
packetrate (kpps)

0

100

200

300

400

500

to
ta

l c
pu

 (%
)

0

20

40

60

80

lo
ss

 (%
)

OVS with 6 vCPUs, packetsize=1024B

flows
1
2
100
1000
10000

(b) OVS example subset

0 10 20 30 40 50 60
concurrent requests (requests)

50

100

150

200

250

300

to
ta

l c
pu

 (%
)

0

50

100

150

200

250

300

re
sp

on
se

 ti
m

e
(m

s)

Squid Cache with 3vCPU - 3Gbps

cache hit ratio (%)
10
50
90
filesize (kB)
300
500
1000

(c) Cache example subset

Fig. 4. Generic observed trends and data example subsets. This shows how varying workloads induce noisy, non-linear resource and KPI measurements which
follow certain trends.

performance of the VNF. This is where the VNF profile can

help. The profiled dataset can be used to derive a relation

between allocated resources and resulting performance. The

main goal of doing the profiling measurements, is to derive

a model which predicts the needed resource allocation, in

function of the specified workload and performance in the

SLA. From an abstract and generalized viewpoint, the VNF

performance model can be described as:

f (wl, res) = per f (3)

where:

wl = input workload (e.g. packetrate, filesize)

res = resource allocation (e.g.number of allocated vCPUs)

per f = VNF KPI metrics (e.g. packet loss)

This model f allows us to predict the performance at any

given workload and resource allocation. Next, we need to find

a resource configuration which meets our performance target:

per ftarget . Therefore we can define following cost function:

minimize
�

� f (wl, res) − per ftarget
�

� (4)

The objective is now to find the minimal (cheapest) resource

allocation which can process a given workload at a given

performance target. We do this by iterating over all profiled

0 100 200 300 400 500
packet rate (kpps)

0

10

20

30

40

50

pa
ck

et
 lo

ss
 (%

)

regression example

(a) Regression

0 100 200 300 400 500
packet rate (kpps)

0

10

20

30

40

50

pa
ck

et
 lo

ss
 (%

)

kNN example

(b) kNN

0 100 200 300 400 500
packet rate (kpps)

0

10

20

30

40

50

pa
ck

et
 lo

ss
 (%

)

interpolation example

(c) Interpolation

0 100 200 300 400 500
packet rate (kpps)

0

10

20

30

40

50

pa
ck

et
 lo

ss
 (%

)

ANN example

(d) ANN

0 100 200 300 400 500
packet rate (kpps)

0

10

20

30

40

50

pa
ck

et
 lo

ss
 (%

)

curve fit example

(e) Curve Fitting

Legend:

+ training sample points of nearby configurations

trained model, following the trend of the training samples

predicted trend of an arbitrary configuration

(intermediate configuration not part of training set)

(f)

Fig. 5. Comparison of different modelling techniques fitted to the same sample set. Each plot depicts three lines, i.e. the same three configuration settings.
The dashed line shows how the trained model predicts a configuration outside of the training set. Curve fitting approximates best the observed trends.

8

resource allocations, and in each resource allocation we find

the maximum workload which minimizes the above cost

function. As a result, we derive from the profiled dataset how

much workload the VNF can process under given resource

allocations. This can be used by the orchestration or scaling

procedure to estimate the optimal resource allocation in order

to process a certain specified workload with known perfor-

mance. We will exemplify this procedure in section IV-E.

As mentioned earlier, a smooth monotonic function f (wl, res)
would simplify the calculation, since no multiple local minima

have to be taken into account.

B. Model Comparison

The function f in Eq. 3 and 4 can be implemented using

various techniques. In this section we describe our learnings

from comparing following methods:

• Linear Regression: We can try linear regression methods

to fit to non-linear trends by using polynomial expansion on

the predictors of the model. In this case this means including

also the mutual products of workload and resource allo-

cation parameters and even include higher order products.

As exemplified in [24] the introduced collinearity is then

handled by using the Lasso method to select only the most

relevant terms in the regression. The result is however not

satisfactory. And we conclude that regression works not well

in this use-case.

• k-Nearest Neighbors (kNN): By taking the average of

the k nearest profiled samples, we can model non-linear

trends more easily. We search the optimal k, by testing

different values for k and checking which one yields the best

accuracy. We also standardize the configuration metrics, so

the distance to neighboring configurations is not skewed by

the different scales of the metrics.

• Interpolation: Instead of calculating the mean of neighbor-

ing samples, we can also interpolate between surrounding

samples. The interpolant is constructed by triangulating the

input data using Delaunay triangulation, and on each triangle

performing linear barycentric interpolation. This method

also works in multiple dimensions, so we can interpolate

between any number of configuration metrics to predict the

performance of an intermediate configuration. We use the

method griddata implemented in the Python SciPy library

[25].

• Artificial Neural Network (ANN): Neural networks are

widely applied to model non-linear datasets and we train

an ANN to model the shown performance trends. The used

ANN type is a multi-layer perceptron regressor (using the

standard relu activation function). The hyperparameters are

found by exhaustively testing different values for optimal

accuracy (each VNF yields different model parameters). The

regularization parameter α ranges from 10−1 to 10−6. We

obtain the best results when using two hidden layers, within

each hidden layer a number of nodes varying between 15

and 20. Higher numbers of hidden layers and nodes give

no further improvement. For each VNF, the input layer

has a node for each workload and resource configuration

parameter, the output layer has one node for the used KPI

metric.

• Curve Fit: We try to fit a pre-defined set of analytic curves

to the measured performance samples for each profiled con-

figuration. The performance values of any new configuration

are then interpolated between the fitted curves (using the

same interpolation method as described above). This method

offers the best accuracy, as we will further detail in section

IV-C.

1) General Thoughts on the Models Used: In Fig. 5, each

plot shows the same subset of measured samples and how

they are approximated. Here we can compare how well each

method succeeds at modelling the smooth monotonic function

we put forward as objective. The ’trained configurations’ are

defined in Section III-D and comprehend the total set of

profiled resource allocation and workload settings. The dashed

line shows how the model predicts the performance of an

’untrained configuration’. An ’untrained configuration’ means

this resource/workload combination is not tested in the profiled

dataset, hence no samples are available. The model must learn

the behaviour of any untrained configuration from the limited

set of profiled training configurations.

The regression (Fig. 5a) is the least accurate becuase it

cannot handle the steep trend break happening at resource

saturation. We can also clearly see how the ANN, kNN and

Interpolation method do not guarantee a monotonic rising

function. The Curve Fit method approximates best the trends

seen in previous plots (Fig. 3 and 4), especially considering

the imperfections of the data (noisiness and limited quantity

of samples). Moreover, we can guarantee the modelled perfor-

mance trend to be monotonous. This benefits Eq. 4, as it would

guarantee a single possible solution for the recommended

resource allocation.

Table II summarizes different accuracy metrics for the

different methods per VNF. Each reported accuracy is the

result of a 5-fold cross validation: The profiled dataset was

divided into five equal parts, with each part serving once as

the test set and the other parts forming the training set of the

model. In the last row we have normalized and averaged the

accuracy metrics to be able to compare between the different

VNFs. The Curve Fit method seems to be the overall winner

with the lowest error values.

While the accuracy metrics for the ANN in Table II might

seem acceptable, care must be taken: as seen in Fig. 5d, there

is no guarantee that the ANN models the samples in a sensible

way. This means: packet loss should be zero at low packetrates

and then monotonically increase. The same is true for the

kNN method. For the Interpolation method (shown in 5c), the

monotonicity is broken by noise in the sample measurements.

The method we look for, should be able to yield a ’smoother’

curve, which can model a fairly constant performance value

at low workloads and then transition into a steeper curve. To

tackle the issues which decrease the accuracy in the above

described methods, we develop a model based on curve fitting.

As can be seen in Fig. 5e, this method guarantees a smooth

and monotonically rising modelled performance trend. We will

detail the accuracy metrics later in section IV-D. First we

explain the Curve Fit method more in detail.

9

Regression kNN Interpolation ANN Curve Fit

VNF r2 MAE MAD RMSE r2 MAE MAD RMSE r2 MAE MAD RMSE r2 MAE MAD RMSE r2 MAE MAD RMSE

OVS(%) 0.45 19.49 17.54 23.4 0.79 7.42 1.38 14.7 0.87 4.67 0.52 11.4 0.93 4.95 1.88 8.42 0.97 2.33 0.48 4.75
Router(%) 0.53 14.87 11.71 19.01 0.95 2.06 0.13 5.99 0.97 1.52 0.11 4.69 0.98 1.51 0.24 4.1 0.97 1.95 0.28 4.92

Firewall(%) 0.85 8.21 5.54 11.78 0.98 1.73 0 4.23 0.99 1.51 0 3.36 0.99 1.18 0.12 2.63 0.99 1.65 0.07 3.72
Cache(ms) 0.85 14.8 2.15 47.98 0.92 6.86 0.27 36.29 0.95 3.98 0.13 28.31 0.99 5.16 1.25 12.49 0.98 1.84 0.18 19.96

Norm.Avg. 0.67 1 1 1 0.91 0.3 0.05 0.51 0.95 0.2 0.02 0.4 0.97 0.21 0.18 0.26 0.98 0.14 0.04 0.3

TABLE II
ACCURACY METRICS OF THE INVESTIGATED MODELLING TECHNIQUES.(MAE, MAD AND RMSE ARE IN MS FOR THE CACHE VNF, PACKET LOSS (%)

FOR THE OTHER VNFS.)

C. The Curve Fit Method

The training procedure of our Curve Fit method is illustrated

with two sample subsets in Fig. 6. Based on observations of

the profiled dataset and intuitive reasoning on the inner VNF

workings, we use a piecewise model where two curves are

fitted to the samples of each profiled configuration. We define

following analytic relations to model the performance:

• In the non-saturated region, we choose an exponential func-

tion because of its characteristics similar to the observed

trends: the function stays low in the beginning and only

starts to rise rapidly later, as a transition phase to the

saturated region.

• The functions in the saturated region are based on intuitive

assumptions of the internal VNF processing (see Section

III-D). The included parameters allow extra freedom to fit

the slope and the x-axis intercept to the samples of each

configuration.

For the packet loss of the forwarding VNFs, we define an

exponential curve which starts at zero and stays very low,

until it starts to rise near a value b. After resource saturation,

we model the packet loss by:

packet loss (%) =
A − P

A
100 = 100(1 − P

A
)

where:

A = Actual incoming packet rate.

P = Processed packet rate (max throughput) at saturation.

The above equation shows that after saturation, the packet loss

is a function inversely proportional with the incoming packet

rate. We use this information to define following analytic

model for the packet loss (x is the ingress packet rate):

{

−exp(−ab) + exp [a(x − b)] , non-saturated

100(1 − c
x−d), saturated, with x>c+d

(5)

For the cache server, we use the same exponential curve in

the non-saturated region, but now the resulting value can be

larger than zero at low request rates. After resource saturation,

we model that the response time is given by:

response time (s) =
FS

BW
U

where:

BW = The maximum reachable download bandwidth

FS = The average filesize of one file request

U = The number of ongoing file requests

The actual value of BW is determined by both the processing

time needed to prepare the request response and the link

capacity to send the response. We assume that BW is constant

(per configuration) after saturation, but we can only indirectly

quantify its value by profiling. The above equation shows

that after saturation, the response time is linearly proportional

to the number of concurrent ongoing requests. We use this

information to define following analytic model for the cache

0 25 50 75 100 125 150 175 200
incoming packet rate (kpps)

0

20

40

60

80

100

cp
u

us
ag

e
(%

)

0

20

40

60

80

100

pa
ck

et
 lo

ss
 (%

)

non-saturated saturated

Firewall 1vCPU, packetsize 512B, 100 flows

cpu usage
packet loss in non-saturated region
packet loss in saturated region

(a) Firewall curve fitting (Eq. 5)

10 0 10 20 30 40 50 60
concurrent requests (requests)

0

20

40

60

80

100

120

140

160

cp
u

us
ag

e
(%

)

non-saturated saturated

0

20

40

60

80

100
ca

ch
ed

 fi
le

 re
sp

on
se

 ti
m

e
(m

s)

Cache 2vCPU - 1Gbps, cache hit ratio 50%, filesize 100kB

cpu usage
response time in non-saturated region
response time in saturated region

(b) Cache curve fitting (Eq. 6)

Fig. 6. Curve fit strategy exemplified in two sample subsets. Different trend curves are used before and after resources get saturated.

10

response time (x is the number of concurrent ongoing re-

quests):

{

a + exp [b(x − c)] , non-saturated

d(x − e), saturated, with x > e
(6)

As seen in Fig. 6 we also need a method to split the metrics

in a non-saturated and saturated subset. Each sample subset is

then fitted to its respective analytic model given in Eq. 5 and

6, by deriving optimal values for the parameters a, b, c, d, e. In

Algorithm 1 we describe the procedure of fitting these curves

to the profiled dataset.

Algorithm 1: Curve Fit training algorithm

Data: Profiled VNF dataset

Result: P = (curve parameters | profiled configurations)

1 P← empty VNF profile;

2 split the profiled dataset per unique configuration;

3 for each profiled configuration do

4 Snon−saturated ← empty dataset;

5 Ssaturated ← empty dataset;

6 order the samples by increasing packet rate;

7 while sliding window over n samples do

8 standardize the samples in the sliding window;

9 CoVres ← covariance(CPU, packet_rate);
10 CoVper f ←

covariance(packet_loss, packet_rate);
11 if CoVper f > CoVres then

12 Ssaturated .append(remaining samples);

13 stop while loop;

14 end

15 Snon−saturated .append(current window samples);

16 move sliding window by 1 sample;

17 end

18 curve fit Snon−saturated;

19 curve fit Ssaturated;

20 calculate intersection/closest point;

21 P.append([fitted parameters, intersection point,

configuration parameters]);

22 end

Lines 4-14 describe how we split the samples in (non)saturated

regions. For each plot in Fig. 6 we calculate the covariance

between the workload (x-axis metric) and each of the two

y-axis metrics, in a sliding window. If the covariance with

the performance (right y-axis metric) is greater, we enter

the saturated (red) area. This can also be visually examined,

looking at Fig. 6:

• In the non-saturated region the resource metrics (CPU) vary

more than the performance metrics (blue samples). The blue

line shows the fitted function in this non-saturated region.

• In the saturated region the performance metrics (packet loss

and response time, red samples) show the most variation.

The CPU usage is saturated and remains more stable. The

red line shows the fitted function in this saturated region.

The resulting VNF profile P has a row for each profiled

configuration (one configuration is a unique combination of

resource allocation and workload settings). For the packet for-

warding VNFs (router, firewall and OVS) each configuration

is specified by (vCPU allocation, packetsize and number of

flows). Each configuration stores the fitted curve parameters

(a, b, c, d, e in Eq. 5 and 6) and the intersection point which

indicates the boundary where the (non)saturated curve should

be used.

For the Cache VNF, the metrics packet_loss and

packet_rate in Algorithm 1 are replaced by response_time

and concurrent_requests. Each Cache VNF configuration is

specified by (vCPU allocation, bandwidth allocation, filesize

and cache hit ratio). For the other tested VNFs, each configu-

ration is specified by (vCPU allocation, packetsize and number

of flows).

In order to predict the performance of an untrained con-

figuration, we first lookup the surrounding configurations in

the profiled dataset. Then we use the same method as used in

the Interpolation model (see IV-B) to interpolate between the

profiled fitted curves. This is exemplified in Fig. 5e (dashed

line), where a monotonic and smooth curve results from the

interpolation.

We implemented this method using the Python SciPy library

[25], which enables us to test and cross-validate this method in

the same way as done with existing modelling methods such

as kNN, ANN, etc.

D. Accuracy of the Used Models

We have reported different accuracy measurements for the

used methods in Table II:

• r2: R-squared is a statistical measure of how close the

data are to the fitted model. For a multivariate model it

is calculated as: Explained variation / Total variation. Most

of the models report a value near 100% which indicates

that the models explain most of the variability around their

mean. Seeing the low deltas between the reported r2’s, we

conclude that this is not a significant score to compare the

accuracy of the different models.

• MAE: Mean Average Error. This is the mean value of the

fitted residual errors.

• MAD: Median Average Deviation. This is the median value

of the fitted residual errors.

• RMSE: Root Mean Squared Error. When the residuals of the

fitted model are normally distributed, the RMSE depicts the

standard deviation of the residuals. However, the difference

between the MAE and MAD for most of the methods,

seems to suggest that the distribution of the residual errors is

skewed and larger errors are occurring at larger performance

values.

In Fig. 7 we plot the MAE of the different methods,

comparing only the performance (packet loss). We calculate

the MAE in different buckets of the measured loss, averaged

over all the packet forwarding VNFs (router, firewall and

OVS). This indeed shows that larger errors are occurring at

higher loss values, as suggested by the MAE and MAD values.

The Curve Fit method produces the smallest errors.

To have an even better understanding of the accuracy of the

different methods, we investigate the effect of decreasing the

size of the training set in Fig. 8. We measure again the MAE

11

0

1

2

3

4

5

6

7

8

0-2% 2-10% 10-100%

M
A

E
 p

a
ck

e
t

lo
ss

 (
%

)

packet loss range (%)

Curve Fit

ANN

Interpolation

kNN

Fig. 7. Mean Absolute Error comparison for different methods and loss
ranges, averaged over the packet forwarding VNFs.

in the 0-2% packet loss bucket, using 5-fold cross-validation,

but now we stepwise decrease the number of configurations

used in the training set. At the right side of the graph, when

using large enough training sets, we see indeed that the Curve

Fit method has the smallest accuracy, which is in line with fig.

7 and Table II. At smaller training sets however, the Curve Fit

method shows a decreasing accuracy, becoming worse than the

other methods. The Curve Fit method appears to be the most

sensitive to the size of the training set. This emphasizes the

importance of a large enough dataset for training, and carefully

controlling the boundaries in which the trained model is valid.

0

1

2

3

4

5

6

7

10 30 50 70 90

M
A

E
 (

p
a

ck
e

t
lo

ss
 ,

 %
)

Size of training set (%)

Curve Fit

ANN

Interpolation

kNN

Fig. 8. Mean Absolute Error (in range 0-2% packet loss) with increasing
training set size.

E. Resource Allocation Recommendation

In this section we describe how the obtained VNF profile

can be used to give a recommendation for resource allocation.

We therefore look back at Eq. 4: f (wl, res) is modelled by the

Curve Fit model described earlier. We then use f (wl, res) to

calculate the maximum workload the VNF can process at each

profiled resource allocation, within specified workload settings

and KPI limits. Next, we can interpolate and extrapolate this

new dataset and predict the maximum workload the VNF can

process for other resource allocations outside of the profiled

set. This procedure is given in algorithm 2:

• Line 3 uses a modified nearest neighbour algorithm, based

on Euclidean distance, to find and prioritize near configu-

ration parameters at both sides (i.e. with larger and with

smaller parameters than Wltarget). This helps the interpola-

tion method used further in the algorithm.

Algorithm 2: Resource recommendation algorithm

Data: VNF Profile, Per ftarget , Wltarget
Result: Recommended resource allocation

1 Pres ← empty dataset ;

2 for each profiled resource allocation res do

3 Find the profiled workloads surrounding Wltarget ;

4 P← empty dataset ;

5 for each found profiled workload do

6 Lookup using the VNF profile model:

7 Wlmax ← wl where f (wl, res) == Per ftarget ;

8 P.append([Wlmax , configuration parameters]);

9 end

10 Wlmax |res← interpolate in P the requested Wltarget
configuration;

11 Pres .append([Wlmax |res, configuration parameters]);

12 end

13 /* Pres now contains a predicted maximum workload for

each profiled resource allocation */

14 filter out resource allocations which bring no

improvement;

15 train a regression model: f (res) = Wlmax on Pres to

extrapolate Wlmax to untrained resource allocations;

16 recommendation ← find minimal res where

f (Wltarget, res) ≤ Per ftarget ;

• Line 6 uses the trained Curve Fit model to predict the VNF

performance as explained in Section IV-C. However, to find

Wlmax we must inverse the functions in Eq. 5 and 6.

• Line 10 represents again the Interpolation method as ex-

plained in IV-B.

• At the end, from line 13 onwards, we have a reduced

dataset Pres , filtered by our given performance and workload

targets. A simple regression can be used to model this

dataset, since we observe a linear trend between the amount

of allocated resources and the maximum workload (see Fig.

9). This corresponds to our intuitive understanding of a VNF

implementation, where more resources proportionally allow

more processed packets or requests.

• Line 15 is hence an Ordinary Least Squares regression

model with the allocated resources (res) as input and the

according maximum processable workload (Wlmax |res) as

output.

A more practical example might clarify this further:

For the forwarding-based VNFs (router, firewall, OVS) we

must specify following parameters in the SLA:

• workload target: (packetsize, number of flows)

• performance target: packet loss

Using the Curve Fit model we predict which packet rate is

expected at the targeted packet loss and configuration (line

5 in algorithm 2). We predict thus the maximum packet rate

the VNF can process (at the specified packet loss) for every

profiled resource allocation (line 10 in algorithm 2).

Similar, for the Cache VNF, we must specify following

parameters for algorithm 2:

• workload target: (filesize, cache hit ratio)

• performance target: response time of cached file requests

12

0 200 400 600 800 1000
cpu allocation (%)

0

200

400

600

800

1000

m
ax

 p
ac

ke
tra

te
 @

 g
iv

en
 lo

ss
 (k

pp
s)

workload: packetsize 600B, 500 flows

packet loss target
packet loss=0.01%
packet loss=0.1%
packet loss=1%
packet loss=10%
profiled resource configs
regression model

(a) OVS

0 100 200 300 400 500 600
cpu allocation (%)

0

50

100

150

200

250

300

m
ax

 p
ac

ke
tra

te
 @

 g
iv

en
 lo

ss
 (k

pp
s)

workload: packetsize 600B, 500 flows

packet loss target
packet loss=0.01%
packet loss=0.1%
packet loss=1%
packet loss=10%
profiled resource configs
regression model

(b) Router

25 50 75 100 125 150 175 200
cpu allocation (%)

0

20

40

60

80

100

120

140

m
ax

 p
ac

ke
tra

te
 @

 g
iv

en
 lo

ss
 (k

pp
s)

workload: packetsize 600B, 500 flows

packet loss target
packet loss=0.01%
packet loss=0.1%
packet loss=1%
packet loss=10%
profiled resource configs
regression model

(c) Firewall

0 200 400 600 800 1000
vCPU allocation (%)

0

20

40

60

80

100

120

140

160

m
ax

 c
on

cu
rr

en
t r

eq
ue

st
s

@
 g

iv
en

 d
ow

nl
oa

d
tim

e

workload: cache hit ratio 90%, filesize 500kB

response time target
50ms with bandwidth=(5*cpu) Mbps
50ms with bandwidth=(10*cpu) Mbps
50ms with bandwidth=(15*cpu) Mbps
profiled resource configs
regression model

(d) Cache

Fig. 9. VNF resource allocation recommendation. By regression, the performance trend of profiled resource configurations can be extrapolated.

In Fig. 9, we show the predicted workload (y-axis, Wlmax |res)

for a certain performance target in each profiled resource

allocation (x-axis, res). To get a recommendation for non-

profiled resource allocations, we must interpolate or extrapo-

late between the obtained sample points. which is done by

the regression model in Algorithm 2. This is the function

which is used by the service operator to determine an optimal

resource allocation, meeting the SLA specifications. Using the

graphs depicted in Fig. 9, a resource allocation can be chosen

to process the targeted packetrate or concurrent incoming

requests, constrained by a given packet loss or response time.

There is one special case illustrated by the router VNF in

Fig. 9b. This VNF does not show further improvement when

more than 2 vCPU are allocated. This should be detected, as

no resource recommendation should be given beyond 2vCPUs

for this router VNF (see also line 14 in Algorithm 2).

As a side note we can report that the lookup time of all the

samples of a VNF in Fig. 9 is in the order of 100ms. This

means that a delay of approx. 100ms is introduced in the or-

chestration procedure for recommending an adequate resource

allocation. Fast booting network functions (e.g. implemented

as unikernels) are however reported to boot in the order of

10ms. In this case the resource recommendation lookup will be

a bottleneck. A possible way to mitigate this is to implement

the network function in such a way that resource allocations

can be dynamically adjusted, without requiring a reboot.

Another possibility is that pre-trained regression models are

pro-actively made for a number of fixed performance and

configuration targets.

V. MORE USE-CASES FOR VNF PROFILES

In the previous sections we have explained how the VNF

profile can be constructed. Next, we see three immediate

benefits which VNF profiles can bring to the operational

framework of a service orchestration platform:

• At initial orchestration of the VNF, the profile helps to

calculate a sensible recommendation for resource allocation.

This is done in order to meet the performance specifications

in the SLA as soon as possible after the VNF has been

started, avoiding the need for additional scaling cycles.

• During operation of the VNF, fluctuations in the workload

can cause performance degradations. If the (long-term)

workload fluctuations can be predicted, the VNF profile

could map this to a resource allocation at which the VNF

13

is able to keep up with the SLA/performance specification.

Elastic scaling methods can make use of the VNF profile to

calculate optimal resource allocation updates under changing

workloads.

• The obtained VNF profile can serve as a baseline behavior

model for the VNF. The operational performance and re-

source usage trends of the VNF can be compared against

the profile by a healing algorithm to detect any deviations.

In this paper we have focused on the first two cases. The

usefulness of the VNF profile becomes clear when we need

to find a mapping between targeted workload and allocated

resources, thus also when the VNF needs to scale. Referring

back to Fig. 6b, we can observe the following:

Suppose we target a response time of 50ms. According to the

profiled performance curve, the number of concurrent requests

can still increase while the VNF is operating in saturated

mode, before the targeted response time is reached. If we

would scale the VNF already at the point where the CPU

is saturated, we would always keep a very large margin to the

targeted performance limit, and continuously overprovision the

VNF.

In Fig. 10 we show how the VNF profile can improve the

scaling efficiency. We take the Cache VNF as an example. The

upper plot shows a sudden surge in the workload, the number

of requests suddenly increases. The middle plot shows how

different scaling strategies would react to this. Resource-based

scaling triggers have no idea how much resources to add to

bring performance again to an acceptable level, therefore mul-

tiple iterations can happen. Resource-based scaling algorithms

aim to bring the VNF below a certain resource usage threshold,

without any knowledge how the performance is related to

the resource usage. Using the VNF profile, we can lookup

which resource allocation meets the performance target for

the number of requests at the top of the surge. Therefore only

one single scaling iteration is executed. Profile-based scaling

algorithms can more optimally estimate how much resources

are required to meet a performance threshold. This example

shows also that the VNF profile can be used to pro-actively add

more resources if pre-defined workload surges are expected.

0

20

40

re
qu

es
ts

1

2

3

4

sc
al

in
g

fa
ct

or

20 40 60 80 100 120
time

0

50

100

150

ca
ch

ed
 re

sp
. t

im
e

(m
s)

resource based scaling
profile based scaling
performance limit

Fig. 10. At a workload surge, the profile can be used to determine the needed
resources, resulting in less scaling iterations (less vCPU scaling steps in the
middle plot).

Regarding profile-based scaling, we can conclude the follow-

ing:

• Scaling triggers based on resource usages might be subopti-

mal, since also in saturated mode, the VNF performance can

be good enough. Default autoscale functions in Openstack

or Kubernetes for example operate this way.

• When using performance-based scaling triggers, we opti-

mally make use of the allocated resources. In this case we

can let VNF also operate in the saturated region.

• Without a VNF profile we can never predict for sure if a

certain resource allocation offers enough performance or not.

Another challenge is the performance fluctuation, inherent

to the cloud’s operational context. In a typical use-case, the

vendor supplies the application in a portable virtualized form

(like a virtual machine, container or unikernel). The operator

and infrastructure provider can choose themselves how to

optimally deploy the application. This means that the service

operator may implement different strategies regarding resource

isolation (isolated or shared resource mapping), inducing noisy

neighbour effects: To limit under-utilization and save power,

datacenter operators can overcommit their hardware by allow-

ing multiple VNFs on the same CPUs. This creates of course

starvation if each VNF is requesting its complete allocated

resource share [26]. Isolation between processes can also be

compromised on a higher level, e.g. containers sharing the

same kernel. Similarly, the service provider can route multiple

tenants to the same shared VNF, making it difficult to predict

the total workload.

Several measurement campaigns gave insight in the perfor-

mance fluctuations of multiple commercial cloud providers.

Empirical results show significant performance differences for

comparable instances on the public cloud [27]. One of the most

striking learnings from this research is that cloud-hosted VNF

performance can suffer from short-lived but frequent episodes

of very severe performance degradation. CPU, memory and

especially IO-bound workloads can vary greatly (double-digit

percentage fluctuations). Other measurements also show that

multi-tenancy has a dramatic impact on performance and

predictability [28].

The VNF profile can be used to tackle these fluctuations.

It allows to translate any foreseen resource fluctuations to

according performance fluctuations. If we take into account

these predicted performance fluctuations, we can take the

necessary counter actions to better guarantee the SLA.

VI. CONCLUSION AND SUMMARY

We have discussed the use-cases for VNF profiling and

investigated which methods work best to model VNF per-

formance. Using four different VNF implementations we

have quantified the accuracy of the investigated methods.

Although widely used in various domains, our results show

that regression, k-Nearest Neighbors, interoplation and Neural

Networks do not offer good accuracy when modelling the

typical performance trends of VNFs. This is related to the non-

linear relations between VNF parameters, noisy variation of

the performance measurements and a low quantity of profiled

data points due to time restrictions. These drawbacks are

14

mitigated in our experiments, since we use curve fitting to

model the profiled data points and interpolate between the

fitted curves to achieve the highest prediction accuracy of

the VNF performance. Using this newly proposed modelling

approach, it is shown how the modelled VNF profile can assist

the service operator by providing resource recommendations

for a VNF. This allows performance specifications in the SLA

to be mapped to practical resource allocations. This is not

only useful at initial orchestration of the VNF, but also when

the VNF needs to scale to new resource allocations, due

to changing workloads or dynamic cloud-native performance

fluctuations. ACKNOWLEDGMENT

This work has been performed in the framework of the NGPaaS and
5GTANGO project, funded by the European Commission under the Hori-
zon 2020 and 5G-PPP Phase2 programmes, resp. under Grant Agreement
No. 761 557 and 761 493 (http://ngpaas.eu) (https://www.5gtango.eu). This
work is partly funded by UGent BOF/GOA project ’Autonomic Networked
Multimedia Systems’.

REFERENCES

[1] S. Van Rossem, B. Sayadi et al., “A vision for the next generation
platform-as-a-service,” in 5G World Forum (5GWF). IEEE, 2018.

[2] S. Van Rossem et al., “Introducing development features for virtualized
network services,” IEEE Communications Magazine, 2018.

[3] “Etsi gs nfv-per 001 v1.1.1 network functions virtualisation (nfv); nfv
performance & portability best practises,” ETSI NFV, 2014.

[4] V. Fang et al., “Evaluating software switches: Hard or hopeless?”
University of California, Berkeley, Tech. Rep., 2018.

[5] P. L. Ventre et al., “Performance evaluation and tuning of virtual infras-
tructure managers for (micro) virtual network functions,” in Network

Function Virtualization and Software Defined Networks (NFV-SDN),

IEEE Conference on. IEEE, 2016, pp. 141–147.
[6] N. Pitaev, M. Falkner et al., “Multi-vnf performance characterization

for virtualized network functions,” in Network Softwarization (NetSoft),

2017 IEEE Conference on. IEEE, 2017, pp. 1–5.
[7] S. G. Kulkarni et al., “Nfvnice: Dynamic backpressure and scheduling

for nfv service chains,” in Conference of the ACM Special Interest Group

on Data Communication. ACM, 2017, pp. 71–84.
[8] G. P. Katsikas, G. Q. Maguire Jr, and D. Kostić, “Profiling and

accelerating commodity nfv service chains with scc,” Journal of Systems

and Software, vol. 127, pp. 12–27, 2017.
[9] “Red hat enterprise linux network performance tuning guide,”

https://access.redhat.com/sites/default/files/attachments/20150325_
network_performance_tuning.pdf, accessed: 2018-03-30.

[10] L. Chen, S. Patel, H. Shen, and Z. Zhou, “Profiling and understanding
virtualization overhead in cloud,” in Parallel Processing (ICPP), 2015

44th International Conference on. IEEE, 2015, pp. 31–40.
[11] P. Veitch, E. Curley et al., “Performance evaluation of cache allocation

technology for nfv noisy neighbor mitigation,” in Network Softwariza-

tion (NetSoft), 2017 IEEE Conference on. IEEE, 2017, pp. 1–5.
[12] T. Duan et al., “Separating vnf and network control for hardware-

acceleration of sdn/nfv architecture,” ETRI Journal, 2017.
[13] R. Shea et al., “A deep investigation into network performance in virtual

machine based cloud environments,” in INFOCOM. IEEE, 2014.
[14] R. V. Rosa, C. Bertoldo et al., “Take your vnf to the gym: A testing

framework for automated nfv performance benchmarking,” IEEE Com-

munications Magazine, vol. 55, no. 9, pp. 110–117, 2017.
[15] L. Cao et al., “Nfv-vital: A framework for characterizing the perfor-

mance of virtual network functions,” in Network Function Virtualization

and Software Defined Network (NFV-SDN). IEEE, 2015, pp. 93–99.
[16] M. Peuster et al., “Understand your chains: Towards performance

profile-based network service management,” in Fifth European Workshop

on Software-Defined Networks (EWSDN). IEEE, 2016, pp. 7–12.
[17] M. Peuster and H. Karl, “Profile your chains, not functions: Automated

network service profiling in devops environments,” in Network Function

Virtualization and Software Defined Networks (NFV-SDN). IEEE, 2017.
[18] M. Amiri and L. Mohammad-Khanli, “Survey on prediction models of

applications for resources provisioning in cloud,” Journal of Network

and Computer Applications, vol. 82, pp. 93–113, 2017.
[19] P. Xiong, C. Pu et al., “vperfguard: an automated model-driven

framework for application performance diagnosis in consolidated cloud
environments,” in Proceedings of the 4th ACM/SPEC International

Conference on Performance Engineering. ACM, 2013, pp. 271–282.

[20] J. O. Iglesias et al., “Orca: an orchestration automata for configuring
vnfs,” in Proceedings of the 18th ACM/IFIP/USENIX Middleware Con-

ference. ACM, 2017, pp. 81–94.
[21] S. Lange et al., “Discrete-time modeling of nfv accelerators that exploit

batched processing,” in INFOCOM - Conference on Computer Commu-

nications. IEEE, 2019, pp. 64–72.
[22] J. Prados-Garzon et al., “Analytical modeling for virtualized network

functions,” in ICC Workshops. IEEE, 2017.
[23] “Tsi gs nfv 001 v1.1.1 network functions virtualisation (nfv) use cases,”

ETSI NFV, 2013.
[24] L. Huang, J. Jia et al., “Predicting execution time of computer programs

using sparse polynomial regression,” in Advances in neural information

processing systems, 2010, pp. 883–891.
[25] E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific

tools for Python,” 2001–, [Online; accessed 2019-04-23]. [Online].
Available: http://www.scipy.org/

[26] S. Van Rossem, W. Tavernier et al., “Automated monitoring and detec-
tion of resource-limited nfv-based services,” in Network Softwarization

(NetSoft), 2017 IEEE Conference on. IEEE, 2017, pp. 1–5.
[27] B. L. Muhammad-Bello and M. Aritsugi, “A transparent approach to

performance analysis and comparison of infrastructure as a service
providers,” Computers & Electrical Engineering, 2017.

[28] P. Leitner and J. Cito, “Patterns in the chaos - a study of performance
variation and predictability in public iaas clouds,” ACM Transactions on

Internet Technology (TOIT), vol. 16, no. 3, p. 15, 2016.

Steven Van Rossem received a M. Sc. in Electrical
Engineering in 2010 from K.U. Leuven. He started a
PhD with the IDLab research group of Ghent Univer-
sity in 2015. His research is situated in the field of
Software-Defined Networking and Network Function
Virtualization, focusing on scalability and performance
profiling of network services. This work contributed to
European research projects such as UNIFY, SONATA
and NGPaaS.

Wouter Tavernier received a M.S. in computer science
in 2002, and a Ph.D. degree in computer science engi-
neering in 2012, both from Ghent University. He joined
the IDLab, imec research group of Ghent University
in 2006 to research future Internet topics. His research
focus is on software-defined networking, network func-
tion virtualization, and service orchestration in the
context of European research projects such as TIGER,
ECODE, EULER, UNIFY, SONATA and TANGO.

Didier Colle is a full professor at Ghent University.
He received a Ph.D. degree in 2002 and a M.Sc. degree
in electrotechnical engineering in 1997 from the same
university. He is group leader in the imec Software
and Applications business unit. He is co-responsible for
the research cluster on network modelling, design and
evaluation (NetMoDeL). This research cluster deals
with fixed Internet architectures and optical networks,
Green-ICT, design of network algorithms, and techno-
economic studies.

Mario Pickavet is professor at Ghent University since
2000 where he is teaching courses on discrete math-
ematics, broadband networks and network modelling.
He is leading the research cluster on Network Design,
Modelling and Evaluation, together with Prof. Didier
Colle. In this context, he is involved in a large number
of European and national research projects, as well as
in the Technical Programme Committee of a dozen of
international conferences.

Piet Demeester is a professor at Ghent University and
director of IDLab, imec research group at UGent. ID-
Lab’s research activities include distributed intelligence
in IoT, machine-learning and datamining, semantic
intelligence, cloud and big data infrastructures, fixed
and wireless networking, electromagnetics and high-
frequency circuit design. Piet Demeester is a Fellow of
the IEEE and holder of an advanced ERC grant.

