
 Open access  Proceedings Article  DOI:10.1109/ICDE.2003.1260828

Profile-driven cache management — Source link 

Mitch Cherniack, E.F. Galvez, Michael J. Franklin, Stanley B. Zdonik

Institutions: Brandeis University

Published on: 05 Mar 2003 - International Conference on Data Engineering

Topics: Cache algorithms, Cache, Cache pollution, Cache invalidation and Bus sniffing

Related papers:

 Using latency-recency profiles for data delivery on the web

 Personalized queries under a generalized preference model

 Case-Based User Profiling for Content Personalisation

 A framework for expressing and combining preferences

 Foundations of preferences in database systems

Share this paper:    

View more about this paper here: https://typeset.io/papers/profile-driven-cache-management-
1draxc8fd8

https://typeset.io/
https://www.doi.org/10.1109/ICDE.2003.1260828
https://typeset.io/papers/profile-driven-cache-management-1draxc8fd8
https://typeset.io/authors/mitch-cherniack-51jvvj45uk
https://typeset.io/authors/e-f-galvez-sqg46gprp1
https://typeset.io/authors/michael-j-franklin-24u9sf7woe
https://typeset.io/authors/stanley-b-zdonik-4rxj753ayl
https://typeset.io/institutions/brandeis-university-1cpsbyy3
https://typeset.io/conferences/international-conference-on-data-engineering-12yajil8
https://typeset.io/topics/cache-algorithms-u99b01nk
https://typeset.io/topics/cache-1i1l9v6x
https://typeset.io/topics/cache-pollution-ntf1qyqg
https://typeset.io/topics/cache-invalidation-1fzr21ij
https://typeset.io/topics/bus-sniffing-1k6aofbl
https://typeset.io/papers/using-latency-recency-profiles-for-data-delivery-on-the-web-3yzu8rrulr
https://typeset.io/papers/personalized-queries-under-a-generalized-preference-model-3u2rerw3qf
https://typeset.io/papers/case-based-user-profiling-for-content-personalisation-1otommi6d2
https://typeset.io/papers/a-framework-for-expressing-and-combining-preferences-1hlu3qyjxi
https://typeset.io/papers/foundations-of-preferences-in-database-systems-k8yzoqjie6
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/profile-driven-cache-management-1draxc8fd8
https://twitter.com/intent/tweet?text=Profile-driven%20cache%20management&url=https://typeset.io/papers/profile-driven-cache-management-1draxc8fd8
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/profile-driven-cache-management-1draxc8fd8
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/profile-driven-cache-management-1draxc8fd8
https://typeset.io/papers/profile-driven-cache-management-1draxc8fd8


Profile-Driven Cache Management

Mitch Cherniack

Brandeis University

Waltham, MA 02454

mfc@cs.brandeis.edu

Eduardo F. Galvez

Brandeis University

Waltham, MA 02454

eddie@cs.brandeis.edu

Michael J. Franklin

University of California

Berkeley, CA 94720

franklin@cs.berkeley.edu

Stan Zdonik

Brown University

Providence, RI 02912

sbz@cs.brown.edu

Abstract

Modern distributed information systems cope with disconnec-

tion and limited bandwidth by using caches. In communication-

constrained situations, traditional demand-driven approaches are

inadequate. Instead, caches must be preloaded in order to mitigate

the absence of connectivity or the paucity of bandwidth. In this pa-

per, we propose to use application-level knowledge expressed as

profiles to manage the contents of caches. We propose a simple,

but rich profile language that permits high-level expression of a

user’s data needs for the purpose of expressing desirable contents

of a cache. We consider techniques for prefetching a cache on the

basis of profiles expressed in our framework, both for basic and

preemptive prefetching, the latter referring to the case where stag-

ing a cache can be interrupted at any point without prior warn-

ing. We examine the effectiveness of three profile processing tech-

niques, and show that the rich expressivity of our profile language

does not prevent a fairly simple greedy algorithm from being an ef-

fective processing technique. We also show that for a large shared

cache, multiple clients’ profiles can be combined into a single su-

perprofile that is representative of them all, but that when the num-

ber of clients with profiles is significantly large, a randomized ap-

proach is more scalable than a greedy approach. We believe that

profiles, as described in this paper, are an enabling technology

that could spawn a rich new area of research beyond cache man-

agement into network data management in general.1

1. Introduction

Modern distributed information systems cope with

disconnection and limited bandwidth by caching. In

communication-constrained situations, traditional demand-

driven approaches are inadequate. Instead, caches must be

preloaded to mitigate the absence of connectivity or the

paucity of bandwidth. In this paper, we propose to use

application-level knowledge expressed as profiles to man-

age the contents of caches.

User profiles are used by many applications to specify

information to deliver to users (e.g., AvantGo). We extend

this notion to provide data management hints for preloading

and prestaging caches in distributed environments. For us,

1This work was supported in part by the National Science Foundation

under NSF Grant number IIS00-86057.

a profile is not a demand for data, but a pragma or hint of

what might be useful to prefetch closer to the user.

There are many scenarios in which such hints can be use-

ful. If a client machine that is connected to a data source by

a low-bandwidth link, a client-side cache could be used to

hide access latency by using slack bandwidth to bring useful

data closer to the point of use. Disconnected use is a more

extreme example in which prefetching must be done while

a device is connected to allow access at times when it’s not.

Another example involves a cluster of users connected to a

common node that is itself connected to one or more data

sources across a thin pipe. The latency introduced by the

thin pipe can be reduced by intelligent use of a cache. In all

of the above scenarios, the system must choose subsets of

the items of interest to prefetch. A simple listing of items,

as provided in other profiling schemes, is insufficient since

it provides no information about relative value and interde-

pendencies among the data items.

In this paper, we present a profile specification scheme

that allows us to identify items of interest, but also allows

us to express their relative importance through weighting.

Furthermore, our scheme supports the specification of data

dependencies (e.g., we are able to say that directions to a

hotel from the airport are only useful in the presence of the

corresponding airline and hotel reservations). Finally, we

add the ability to specify thresholds, as in up to three restau-

rant recommendations are useful while any more are not.

All three of these extensions to profile formulation reflect a

global view of how a selected item relates to other selected

items. Extended profiles such as these will allow us to fill

our cache with a much more accurate set of objects. This

paper makes three fundamental points towards this end:

Specification: We propose a simple language that separates

the expression of interesting objects from their utility value.

Utilities can be expressed with primitives that handle the

three forms of dependency given above.

Algorithms: We present and compare some heuristic tech-

niques for filling a cache based on our extended profiles.

Profile Composition: We discuss how to combine several

profiles into one superprofile that subsumes its constituents

(as is required when a cache is shared by multiple users).

1



This study will show that profiles with dependencies and

thresholds are easily expressed, and that a simple greedy al-

gorithm does a good job processing profiles to select items

to prefetch into a cache. We look at basic cache prefetch-

ing, as well as preemptive cache prefetching, which takes

into account the possibility that prefetching may get inter-

rupted prematurely. We then show for shared caches with

very large “superprofiles”, that a more scalable approach is

to use a randomized algorithm (simulated annealing).

2. Profile-Driven Cache Prefetching

Two applications of profile-driven cache prefetching are

data recharging and thin pipe environments. Both applica-

tions need to allocate limited cache space to data objects.

2.1. Example Applications

Data Recharging: Data recharging [9] is best understood

in the context of mobile computing environments. Mo-

bile computers have two fundamental renewable resources:

power and data. The goal of data recharging is to make

recharging data from the data grid as simple and robust as

recharging power from the power grid. Based on a user pro-

file, data recharging middleware gathers data of interest to

a user, and when the user next connects to the network, this

data is delivered to the user’s mobile device. In this case,

the profile would reflect some aspect of the user’s context

(e.g., location, workflow) and data delivered would depend

on available resources on the mobile device (e.g., memory,

applications). The order in which items are delivered also

matters if unplanned disconnection is possible.

In the mobile environment, computers are often

memory-limited. Thus, given a large amount of potentially

interesting data, a data recharging system must make deci-

sions about what subsets of this data are to be allocated to

the limited memory resource.

Thin-Pipe Environments: In this situation, the client is

connected to the network through a thin pipe. A thin pipe

can be a result of a bandwidth constrained connection or a

heavily overloaded server. The essential characteristic here

is that using the pipe introduces very high latency. Inserting

a cache at the client end attempts to hide this latency. An

item whose access is extremely likely is prefetched in order

to eliminate the latency of its first access. Prefetching is

inherently predictive, and profiles support our prediction.

2.2 Shared Caches

In many networked environments, caches are shared

among multiple users and cache contents must be managed

in a way that maximizes the benefit for the user community

as a whole. The applications described above have shared

cache analogs. In data recharging, we assume that users can

PROFILE Traveler
DOMAIN
RC = related:www.hertz.com
Sh = "shuttle schedules" AND "airport" AND "Boston"
Di = "directions to downtown Boston" AND "airport"
Ho = "Hotel" AND "downtown Boston"
Re = "Restaurant Review" AND "downtown Boston"
UTILITY
U (Re) = 1
U (RC [#Di

�
0]) = UPTO (2, 2, 0)

U (Sh) = UPTO (1, 3, 0)
U (Di [#Ho

�
0]) = UPTO (1, 1, 0)

U (Ho [#Di
�

0 OR #Sh
�

0]) = UPTO (1, 2, 0)
END

Figure 1: A Profile For Data Recharging

connect to well-defined charging stations. These charging

stations would maintain a shared cache that would service

users who are likely to connect there in the future. For thin

pipes, a shared cache is placed between the connection and

a user community. This cache is used to mitigate the latency

effects of the thin pipe.

2.3. A Profile Language and Example Profile

To illustrate our profile language, we present an example

profile in Figure 1. Observe that the profile specification is

broken into two parts: the Domain clause (DOMAIN) de-

fines and names sets of objects of interest (domain sets);

and the Utility clause (UTILITY) specifies the relative val-

ues of objects contained in each domain set. The Utility

clause distinguishes our notion of profiles from those typi-

cally found in publish/subscribe systems. We will explain

the intuitive meaning of these profiles here as an informal

means of introducing our profile language. A complete for-

mal semantics of our profile language can be found in [10].

Profile Traveler might be used to drive data recharg-

ing for a traveler about to travel to Boston. Suppose the

traveler wants to stay downtown. She needs to get from the

airport to a downtown hotel, either by rental car or a shuttle.

For a shuttle, she needs a schedule for a company offering

shuttle service. For a rental car, she needs rate information

for one or more rental car companies and driving directions

from the airport to downtown. Even if she takes a shuttle

downtown, directions serve some use as they tell her a bit

about how to get about the city. She also needs informa-

tion about downtown hotels, but only if she has received a

shuttle schedule or directions telling her how to get to them

Finally, she would like to see reviews for nearby restaurants.

The Domain clause of Traveler identifies 5 domain

sets specified by expressions resembling inputs to a search

engine.2 As with a query, declarative specifications of do-

main sets free profile authors from having to locate the data

2As we describe elsewhere [10], any query-like language can be used

to express domains in our profile language framework. We have chosen

search engine inputs for this example for simplicity.

2



that interests them (the traveler may not care whether direc-

tions to a downtown hotel are generated by Mapquest [16]

or found on a hotel web page), and makes the profile proces-

sor responsible for finding this data. In this profile, RC is a

set of rental car company web pages that (presumably) offer

details about rates and policies, Sh is a set of shuttle sched-

ules for shuttles heading to downtown from the airport, Di
is a set of web pages, text files etc. that give directions from

the airport to downtown, Ho is a set of web pages for ho-

tels located in downtown Boston, and Re is a set of reviews

for restaurants also located in downtown Boston. The Util-

ity clause of Traveler specifies 5 utility “equations” (one

for each domain set) that capture the data values and depen-

dencies previously described. Every restaurant review has a

value of 1. The value of rental car web pages (RC objects) is

dependent on the presence of Di objects in the same cache:

the condition, “[#Di ✁ 0]”, is true if the number of Di
objects in the cache (#Di) is greater than 0. This reflects

the dependency of the value of rental car data on having

driving directions. The value of RC objects also depends on

how many of them appear in the cache. “UPTO (2, 2,
0)” specifies that the first two RC objects in the cache carry

a value of 2, and that any more found in the cache have no

value. This reflects the preference that having 2 rental car

web pages in the cache is useful (so that rates and policies

can be compared), but that any more than this is unneces-

sary. UPTO ✂☎✄✝✆✟✞✠✆✟✡☞☛ is a threshold operator: up to ✄ ob-

jects have a value of ✞ each, and every object beyond ✄ has

a value of ✡ . Sh, Di and Ho objects are defined similarly to

RC objects: up to 1 shuttle schedule has value 3; up to 1 set

of directions to downtown has value 1 provided that a hotel

web page is in the cache; and up to 1 hotel web page has

value 2, provided that either a set of directions or a shuttle

schedule are also in the cache. Thus a cache consisting of

two rental car web pages, one set of directions and a hotel

web page would have overall value of ✌ ( ✍✏✎✑✍✏✎✓✒✔✎✑✍ ), and

a cache consisting of one shuttle schedule, one rental car

web page and two restaurant reviews would have an overall

cache value of ✕ ( ✖✗✎✙✘✗✎✙✍ ).
The Traveler profile demonstrates two desirable fea-

tures of profile languages: data dependencies and thresh-

olds. In Figure 2 we show three ways that Traveler
might be expressed in a profile language lacking these fea-

tures. T ✚ sets utility values for each domain equal to their

initial value in Traveler. T ✛ values domains according

to a ranking of the maximum values that those domains can

take according to Traveler. For example, Sh is the most

valuable domain (as an object in Sh can have value 3), and

therefore is given the highest value of 5. Finally, T ✜ clusters

dependent objects in Traveler into single conglomerate

objects. As dependencies exist between Ho, Sh, Di and

RC, they are combined into a single domain of megaobjects,

with the idea that an object of one simple domain (e.g., Ho)

PROFILE T ✢
DOMAIN
...
UTILITY
U (Re) = 1
U (RC) = 2
U (Sh) = 3
U (Di) = 1
U (Ho) = 2

END

PROFILE T ✣
DOMAIN
...
UTILITY
U (Re) = 2
U (RC) = 4
U (Sh) = 5
U (Di) = 2
U (Ho) = 4

END

PROFILE T ✤
DOMAIN
...
UTILITY
U ( ✥ Ho,Di,Sh,RC ✦ ) = 8
U (Re) = 1

END

(a) Initial Values (b) Ranking (c) Clustering

Figure 2: Traveler Without Dependencies, Thresholds

can only be placed in the cache if it is accompanied by an

object of each other domain in the conglomeration. The size

and value of these megaobjects is their combined size and

value according to Traveler.

Table 1 shows the optimally valued cache of 5 objects

according to the Traveler profile of Figure 1 and the

three alternative profiles of Figure 2, and the “real” values

of these caches according to the Traveler profile that

includes dependencies and thresholds. Observe that both

T ✚ and T ✛ would fill 5 object caches with what they assess

to be the most valuable objects (shuttle schedules), leaving

both caches with a real overall value of 3. Both profiles

fail to produce a better cache because they are unaware of

the threshold that limits the number of shuttle schedules that

have value. Even if T ✛ had ranked Rewith the highest rank-

ing (restaurant reviews are the only objects that have value

no matter how many of them are placed in the cache), the

value of its 5 object caches would only be 5. T ✜ ’s strategy

of clustering dependent objects into a single conglomerate

object works reasonably well for a 5 object cache, but note

that this approach can never result in a cache with differing

numbers of Ho, Di, Sh and RC objects, as is needed to pro-

duce the optimally valued cache (which has 2 RC objects,

and no more than 1 of any other).

Data dependencies and thresholds are just some of the

desirable features defined in our profile language. Other

features demonstrated by the Traveler profile include the

separate specifications of the objects of interest, and the rel-

ative worth of these objects, and QoS-style weighted utility

values (as opposed to priority lists). This list is not exhaus-

tive; a comprehensive list of profile language desiderata is

presented elsewhere [9], as is a formal specification of our

profile language framework [10].

In practice, we expect profiles to describe many more do-

main sets with more complex utility value expressions than

was demonstrated with the Traveler profile. We con-

sider it unlikely that most users will write profiles manually

(the same could be said for SQL). Instead, we expect that

a profile-generation system [7] with good interfaces could

support users to this end. Such a system could rely on li-

braries of parameterized profiles that are built and extended

3



Profile Best 5 Object Cache
Value using

Traveler
Traveler 1 Sh, 1 Ho, 1 Di, 2 RC 10

T ✢ 5 Sh 3

T ✣ 5 Sh 3

T ✤ 1 ✧ Ho,Di,Sh,RC ★ , 1 Re 9

Table 1: Best 5 Object Caches of Profiles of Figure 2

by experts. The key idea is that a declarative profile lan-

guage is needed to facilitate this process. Finally, we rec-

ognize that profile-driven cache management will have to

reconcile the data needs of thousands of users, as specified

with thousands of profiles. We consider techniques for pro-

cessing multiple profiles in Section 3.3.

3. Profile Processing

We consider three profile-driven prefetching problems:

Non-Preemptive Prefetching, Preemptive Prefetching, and

Prefetching for Shared Caches. Non-preemptive prefetch-

ing is standard prefetching where a cache is filled with a set

of objects that are likely to be accessed by a client. Preemp-

tive prefetching allows prefetching to be interrupted prior

to completion. This is relevant for data recharging, where

a client can “unplug” his device from a network connec-

tion at any time without warning. For preemptive prefetch-

ing, what matters is not only the cache’s final contents but

the order in which objects are placed in the cache, as ob-

jects placed into the cache early are the most likely to be

present in a partially filled cache resulting from preemption.

Prefetching for shared caches requires reconciling multi-

ple (and potentially competing) client profiles to prefetch

a cache that best meets the needs of all clients.

3.1. Non­Preemptive Cache Prefetching

Non-Preemptive Cache Prefetching (NCP) uses profiles

to determine how to prefetch caches to achieve maximum

utility value. Assume for any profile ✩ , that its value func-

tion ✪✬✫ , maps any set of objects (i.e., a cache) to its value

according to ✩ . Then the Non-Preemptive Cache Prefetch-

ing problem (NCP) is defined as follows:

Definition 3.1 (NCP) Given a finite set of objects (“candi-

date object set”) ✭✯✮✱✰✳✲ ✚ ✆✵✴✬✴✵✴✬✆✶✲✸✷✠✹ such that ✺✻✂✼✲✸✽✾☛ is the

size of object ✲✸✽ , a profile ✩ , and a cache capacity ✿ , deter-

mine subset, ✭❁❀❃❂❄✭ , that satisfies the constraint,

❅
❆❈❇❊❉●❋ ✺✻✂✼✲❍☛❏■❑✿

and that maximizes ✪✬✫▲✂▼✭ ❀ ☛ .
NCP is a variation of the knapsack problem [20] where

an object’s size and utility is analagous to its weight and

Possible Cache Resulting From Greedy Cache Utility

(a) ✧✬◆❈❖ ✢❈P ❖✻◗ ✢❈P❙❘✸❚❯✢❱P✾❲✬❳✵✢❈P❯❲✬❳❱✣ ★ 10

(b) ✧✵◆❨❖ ✢ P ❖✻◗ ✢ P❯❲❬❩ ✢ P❙❘✸❚ ✢ P✾❲✬❳ ✢ ★ 9

(c) ✧✵◆❈❖ ✢❈P ❖✻◗ ✢❈P❯❲✬❩✸✢❭P❯❲❬❩✵✣✵P✾❘✸❚❙✢ ★ 8

(d) ✧✬◆❈❖ ✢❈P ❖✻◗ ✢❈P✾❲❬❩✳✢❱P❯❲✬❩✵✣✵P❯❲✬❩❨✤ ★ 8

Figure 3: Possible Caches from Applying GREEDY

value using classic terminology. Unlike the knapsack prob-

lem, the value function for NCP ( ✪ ✫ ) must map sets of ob-

jects (rather than individual objects) to values because the

value of an individual object can vary according to its con-

text (i.e., the other objects that have been put into the cache)

due to data dependencies and thresholds. We examined the

effectiveness of three standard optimization heuristics: a

greedy technique, a randomized technique (simulated an-

nealing), and branch-and-bound.

A Greedy Algorithm (GREEDY): The greedy algorithm

for NCP (GREEDY) selects one object at a time to add to a

cache, that adds the most value per byte to the cache of pre-

viously chosen objects. In the case of ties, GREEDY selects

the smallest object. To demonstrate, consider the applica-

tion of GREEDY to the Traveler profile in the context of

data recharging. Suppose that the set of candidate objects,

is the set of equally-sized objects,

✭❪✮❪✰✬❫✸❴❍✚✸✆✶❫✸❴❬✛❊✆✟❫✸❴ ✜ ✆✶❫✸❵✬✚✸✆✶❫✸❵❨✛❍✆❱✺❬❛❜✚✳✆❱✺✳❛❝✛❊✆✶❞❡✚✸✆❭❞❢✛❊✆❭❛❜✚✳✆❭❛❣✛✸✹
such that ❫✸❴ ✚ , ❫✳❴ ✛ and ❫✸❴✳✜ are restaurant reviews, ❫✳❵ ✚ and❫✸❵ ✛ are rental car web pages, ✺✳❛ ✚ and ✺✳❛ ✛ are shuttle sched-

ules, ❞ ✚ and ❞ ✛ are directions to Downtown and ❛ ✚ and ❛ ✛
are hotel web pages. For its first object, GREEDY would

choose a shuttle schedule (e.g., ✺✳❛✠✚ ) as this object adds

maximal value (3) to an empty cache. Then GREEDY would

choose a hotel web page (e.g., ❛❣✲❊✚ ), as this object adds max-

imal value (2) to a cache consisting only of a shuttle sched-

ule. GREEDY has a choice for the third chosen object, as

both restaurant reviews and directions add 1 to the existing

cache. If it chooses the latter, it will finish with the optimal

cache shown in Figure 3a. If it chooses the former, then

it will make the same choice with the same consequences

for its fourth object and therefore finish with a suboptimal

cache of value 9 (Figure 3b) or 8 (Figures 3c and 3d).

Simulated Annealing (SA): Simulated Annealing (SA) is

a randomized algorithm that statistically simulates the slow

cooling of a physical system [22]. The algorithm works by

choosing an initial state (the “current state”) within a state

space consisting of all possible solutions, and then perform-

ing a random walk beginning at this state. The walk consists

of choosing a random neighbor, and proceeding to make

this neighbor the current state if it has greater value than the

current state, or with some non-zero probability that grad-

ually decreases over time. Applied to profile-driven cache

4



prefetching, states denote sets of candidate objects that to-

gether can fit in the given cache. The value of a state is the

value of its associated set of objects according to the given

profile. A move in the state space corresponds to the act

of replacing objects in the associated set, with one or more

drawn from the candidate object set (that fit in the cache that

remains when the initial objects are removed).

The key parameters that affect the results of running sim-

ulated annealing are the initial temperature, ❤ , and the con-

ditions for decreasing the temperature. The latter can be

based on a timeout, or on a degree of convergence (i.e.,

stopping when the difference in value between a state and

its chosen neighbor is below some threshold). Because the

difference in value between one cache state and its neigh-

bor is likely to be relatively low (given that they will dif-

fer in just a few out of several hundred objects), we based

changes in temperature on timeouts. We explored three dif-

ferent choices of initial temperature and timeouts, each of

which required SA to run for roughly 5 minutes before set-

tling on a cache’s contents. Of these, we found the values

produced to be close to the same for all profiles, but that

setting the initial temperature to be 5, and the timeout to

be 1 minute worked best in most cases. Therefore, for our

experiments in Section 4, we run simulated annealing with

these temperature and timeout settings.

Branch-and-Bound (BnB): Branch-and-bound (BnB)

searches a tree of all possible solutions in a depth-first

manner, but selectively pruning the search tree whenever

it is determined that an unvisited subtree cannot possibly

contain a solution better than the best seen thus far. Applied

to profile-driven cache prefetching, every path from the

root to a leaf node in the search tree represents one possible

cache of objects chosen from the candidate object set. Each

node denotes a (domain, count) pair, ✂▼✐❥✆✟❦❙☛ , and every path

through that node represents a solution that includes the ❦
smallest objects in the candidate set that belong to domain✐ (and no others from domain, ✐ ). Each level of the tree

contains only nodes for some given domain,

✂✼✐❥✆❱❧▲☛❈✆❬✂✼✐❥✆❱❧♥♠♦✒✳☛❈✆✬✴✵✴✵✴✵✆✬✂✼✐✑✆✵✒❬☛❨✆✬✂▼✐❥✆✶✘✻☛
such that ❧ is the largest number of objects from ✐ that

can fit in the cache. While searching this tree of solutions,

the branch-and-bound algorithm we implemented prunes an

unvisited subtree if all paths from the root to leaf nodes of

the subtree specify object sets that are guaranteed not to fit

in the cache. For example, let the set of domains defined for

a given profile be ✰❬✐ ✚ ✆✬✴✵✴✵✴✵✆✶✐q♣r✹ , and let the path from the

root to the current node in the search tree be

✂▼✐ ✚ ✆ts ✚ ☛❨✆✵✴✬✴✵✴✵✆❬✂✼✐✈✉✇✆✾s❬✉❊☛❈✴
If the total size of the set consisting of the s ✚ smallest ob-

jects in ✐①✚ , the s✬✛ smallest objects in ✐q✛ , and so on up to thes ✉ smallest objects in ✐ ✉ is larger than the cache capacity,

then there is no need to visit any of the nodes in any subtree

of ( ✐ ✉ , s ✉ ). A second pruning trick is based on cache value

bounds. Let ✐ be any domain in the set, ✰❬✐✈✉❈② ✚ ✆✵✴✬✴✵✴✵✆❭✐q♣③✹ .
Let ✪④✂▼✐❥✆ts ✚ ✆✵✴✬✴✵✴❨✆✾s❬✉❊☛ be the maximum number of objects

from domain ✐ that could fit in the cache containing the s ✚
smallest objects of ✐ ✚ , the s ✛ smallest objects of ✐ ✛ etc. If

the value of the cache denoted by the path,⑤ ⑥ ⑦⑨⑧ ✢❈⑩⑨❶✵✢✟❷✾⑩✶❸❙❸❙❸✟⑩ ⑦⑨⑧❺❹ ⑩❻❶ ❹ ❷✾⑩⑦⑨⑧ ❹❱❼ ✢ ⑩t❽ ⑦❻⑧ ❹❱❼ ✢ ⑩❾❶✵✢❭⑩✶❸❙❸❙❸✶⑩❾❶ ❹ ❷▼❷✾⑩✟❸✟❸✟❸❙⑩ ⑦⑨⑧➀❿ ⑩✾❽ ⑦⑨⑧➀❿ ⑩❾❶✵✢❱⑩✟❸✟❸❙❸✟⑩❾❶ ❹ ❷✼❷
is less than the best cache value seen thus far, then the en-

tire subtree rooted at ✂✼✐ ✉ ✆✾s ✉ ☛ can be pruned, as no cache

represented by a path emanating from this node can exceed

the value of the cache denoted by ➁ .

Given the size of the search tree involved for non-trivial

profiles (the number of nodes will be the product of the

number of objects that can fit in a cache for each domain),

branch-and-bound searching quickly becomes infeasible.

To make it feasible, we terminate searching after 10 min-

utes. To increase the likelihood of an interrupted search

finding a good solution, we use a trick from [14] whereby

domains are sorted in the order generated by GREEDY, and

the search tree is constructed so that the highest level of the

tree contains nodes representing the most valuable domains.

The search is then conducted in a postorder, rather than pre-

order traversal of the tree. This biases the search to favor

caches with more objects from more valuable domains.3

3.2. Preemptive Cache Prefetching

Preemptive Cache Prefetching (PCP) resembles NCP,

but adds the possibility that cache prefetching can be pre-

empted prior to filling the cache. For example, for data

recharging to truly resemble battery recharging, it must be

possible to “unplug” a device prior to its being fully charged

(i.e., before its cache is full) and still end up with useful data

in the cache. This implies that not only is the set of objects

chosen to fill a cache important, but so too is the sequence

in which these objects are put in the cache given that this

determines what are the potential partially-filled caches re-

sulting from premature disconnection.

To evaluate PCP strategies, we defined a “goodness”

function ( ➂✳✫✸➃ ✫❨➄ ) that scores the sequence of objects chosen

by any algorithm for placement in a cache. This function is

defined in terms of a profile, ✩ , and a preemption probabil-

ity, ✩❣❫ , which is the probability that cache prefetching will

be interrupted prior to completion. If ✩❝❫ is 0, then prefetch-

ing always results in a full cache and PCP reduces to NCP

(i.e., only the utility value of the final contents of the cache

3Note that BnB can only be applied to monotonic profiles: profiles for

which the value of a cache can never decrease as a result of adding on

object. We believe that non-monotonic profiles are unlikely in practice,

and therefore all experiments described in Section 4 assume monotonic

profiles.

5



f  ({o1})p

f  ({o1, o2})p

f  ({o1, o2, o3})p

p

o1 now in the cache

o2 now in the cache o3 now in the cache

s(o1) s(o2) s(o3)

Utility

value of

cache (f  )

Bytes Sent (x)

Figure 4: Bytes Sent vs Overall Cache Utility

matters in measuring the goodness of the result). On the

other hand, if ✩❣❫➅✁➆✘ , then goodness measures must also

consider the utility value for partially filled caches.

Definition 3.2 [Sequence Goodness] Given a profile, ✩ , a

preemption probability, ✩❝❫ , and some ordering of objects,➇ ✮③➈➉✲❊✚✸✆✵✴✬✴✵✴✵✆❭✲ ✷q➊ , the goodness of
➇

wrt ✩ and ✩❝❫ is:

➂ ✫✳➃ ✫✵➄ ✂ ➇ ☛➋✮➌❴✸✚✏✎✙❴✳✛
such that:

❴❍✚➍✮ ✂❙✒➎♠➏✩❝❫❍☛❺✂▼✪ ✫ ✂▼✭ ❀ ☛✶☛❈✆ and

❴ ✛ ✮ ✩❝❫r✂❍➐⑨➑➓➒➔❾→❊➣✇↔❭➐ ❆ ➔✼↕❯➙ ➛✾➜ ➐⑨➝ ❆❱➞ ➃➠➟➠➟➠➟ ➃ ❆ ➔☎➡ ➞✟➢ ↕☎↕↔❱➐ ❆❭➞ ↕ ②④➟➠➟➠➟ ② ↔❭➐ ❆ ➒ ↕
☛❨✴

Intuitively, ❴✸✚ is the value of a full cache ( ✪ ✫ ✂▼✭ ❀ ☛ ) times

the probability that cache prefetching is not preempted

( ✒③♠✓✩❝❫ ), and ❴✳✛ is the probabilistically weighted average

of values for all non-full caches, assuming that preemption

is equally likely to occur after any number of bytes have

been transmitted. Figure 4 illustrates how ❴✳✛ is calculated

given the sequence of objects ➈➤✲❊✚❍✆✶✲✸✛❊✆✶✲ ✜➥➊ . The graph

shown plots the value of the cache after each byte of an

object is sent. Note that the curve shown in Figure 4 is

stepwise linear, and further, every line has either 0 or infi-

nite slope. This is because the value of a cache does not

change while a given object is in the process of being de-

livered to the cache, but increases by the added value of

the object once the entire object is contained in the cache.

Thus, the value of the cache will be 0 until the 1st object is

delivered (for bytes ✒➋✴✵✴✬✴✶✺✻✂✼✲❊✚✬☛ ), ✪ ✫ ✂❯✰✳✲❊✚❬✹✸☛ until the 2nd ob-

ject is delivered (for bytes ✂t✺❢✂▼✲❊✚✵☛➦✎➓✒❬☛❜✴✬✴✵✴✵✂t✺✻✂✼✲❊✚✬☛❃✎➅✺✻✂✼✲✸✛❬☛✟☛ ),✪ ✫ ✂❙✰❬✲❊✚✸✆✶✲✸✛✸✹✸☛ until the 3rd object is delivered (for bytes✂▼✺✻✂✼✲❊✚✬☛➀✎➧✺✻✂▼✲✸✛✬☛❏✎➨✒❬☛❜✴✬✴✵✴✬✂t✺✻✂✼✲❊✚✬☛❺✎❪✺✻✂✼✲✸✛✳☛➀✎➩✺❢✂▼✲ ✜ ☛✶☛ ), and so

on. Generalized over all objects that can appear in a non-

full cache ( ✰❬✲ ✚ ✆✵✴✬✴✵✴✵✆❭✲✸✷✇➫ ✚ ✹ ), and weighted by the probabil-

ity that prefetching will be preempted, we get ❴ ✛ .
Definition 3.3 (PCP) Given a finite set of objects ✭ , such

that for any object ✲➯➭✑✭ , ✺✻✂✼✲❍☛ is its size, a profile ✩ , a cache

capacity ✿ , and a preemption probability ✩❣❫ , determine the

sequence,
➇ ✮③➈➲✲❊✚✳✆✵✴✬✴✵✴✬✆✶✲ ✷➅➊ , (that is a permutation of

any subset of ✭ , ✭ ❀ ✮➳✰✳✲ ✚ ✆✬✴✵✴✵✴✵✆✶✲✸✷❜✹ ) that satisfies the con-

straint, ✷❅
✽❾➵ ✚ ✺✻✂▼✲ ✽ ☛❏■❄✿➸✆

and that maximizes the value of ➂✳✫✸➃ ✫❨➄❊✂▼✭ ❀ ☛ .
In Section 4.3, we compare 3 heuristic algorithms that

approximate solutions to PCP. These algorithms are ordered

versions of the algorithms used for NCP, in that they simply

take the results that the algorithms produce for NCP and

order them according to the GREEDY algorithm.4

3.3. Prefetching for Shared Caches

For a shared cache, there can be multiple clients (each

with data requirements specified in a profile) competing to

influence the contents of the cache. The profile processing

algorithms described in the previous sections all assume a

single profile as input, and therefore must be adapted to de-

termine the contents of a shared cache. One way to accom-

plish this is to merge ➺ profiles into one superprofile that is

representative of them all. This would require first normal-

izing individual profiles so that utility values are compara-

ble between profiles. There are many statistical techniques

that can be used to normalize utility values (e.g., z-scores

[18]), and therefore we assume that profiles have already

been normalized for the purpose of this discussion.

In merging individual normalized profiles, we assume

that the value of an object that is of interest to multiple

clients is the sum of values it takes in those clients’ pro-

files.5 This means that a superprofile can be constructed

simply by appending the domain and utility equations of

the individual profiles that comprise it. The value of a given

object, then, would be the sum of all values it takes from

utility equations in the superprofiles. This approach nicely

handles the case where two profiles define domains that are

either equal or intersecting, but that are named or defined

differently. For example, if a profile expresses interest in

Truck Rental web sites, then the Hertz web page contain-

ing information about renting cars and trucks would have a

utility value which is the sum of values it takes in this pro-

file and the Traveler profile (according to domain, RC)

for any superprofile that combines them. The downside to

this approach is the size of the superprofile that results - es-

pecially when the number of client profiles from which it

is built is very large. We explore how well cache prefetch-

ing algorithms scale to handle superprofiles (and comprably

scaled candidate object sets and cache sizes) in Section 4.4.
4Obviously, GREEDY is already ordered and need not be changed.
5It would be equally acceptable to average the values that the object

takes from different profiles, but this amounts to dividing the sums by the

same constant (the total number of profiles that constitute the superprofile).

6



Parameter Value

Cache Size 64 MB

# Profiles 96

Domains / Profile 20

Object Size 30% 34% 28% 4% 4%

Distribution 47 KB 95 KB 138 KB 207 KB 268 KB

Avg Object Size 104 KB

Candidate Set

Cardinality
12800

Table 2: Parameters for NCP & PCP

4. Experiments

Our experiments compare the effectiveness of GREEDY,

SA and BnB for NCP and PCP. The algorithms were written

in Java 1.3.1, and run on Linux-based Pentium III and IV

workstations with 512MB of RAM.

4.1. Experiment Environment

Common Parameters: Table 2 gives the parameter set-

tings that were constant for the unshared cache, NCP and

PCP experiments we present in Section 4.2 and 4.3. We

fixed the cache size to be 64 MB, as this is a typical mem-

ory size for current PDA’s: the most obvious choice of de-

vice for data recharging. Each experiment ran over 96 ran-

domly generated profiles (as described below), and each of

these profiles included 20 domain definitions and accompa-

nying utility equations. Every experiment assumed a can-

didate object set consisting of roughly 12800 objects (and

distributed in size as specified in the table).6 The size distri-

bution was determined by downloading the 50 most popular

web site homepages (including images and any necessary

files for correct display) as rated by Media Metrix [17] for

December 2001. We divided the range of sizes for these

pages into five equally sized intervals, and for each interval

calculated the average homepage size as well as the percent-

age of homepages that fell in that interval. The cardinality

of the candidate object was set so that each domain set in

the profile was represented and assigned an equal number

of objects that fit the distribution shown in Table 2. The to-

tal size of all objects for each domain exceeded the size of

cache, so that algorithms were free to choose objects based

on their policy rather than object availability. Given the av-

erage size of objects of 104 KB, this amounted to a candi-

date set cardinality of about 12800.

Random Profile Generation: For these experiments, 96

monotonic profiles were randomly generated, each with 20

domains and 20 utility equations. For each profile, 20% of

its utility equations are flat (i.e., of the form U (A) = k)

and 80% are non-flat equations, which have the form,➻ ✂☎➼①➽➠➾r➚➨➪➉➶▲➹☎☛➘✮ ➻▲➴✻➷❝➬ ✂☎✄✝✆✔✞✠✆●✡➸☛❨✴
6Of course, this object set was modelled and not explicitly created as it

would not have fit in 512 MB of memory.

Non-flat utility equations subsume utility equations with no

dependencies ( ➶ could be set to be 0) as well as utility equa-

tions with no thresholds ( ✄ could also be set to be 0).7

The values of ➶ , ✄ , ✞ and ✡ in non-flat utility equations

determine how objects of a given domain type change in

value as more get added to a cache, as categorized below:

Immediate vs Delayed Gratification: The value of ➶ deter-

mines how quickly A objects acquire value as B objects get

added to a cache. If ➶ is very small (e.g., 0 or 1), the util-

ity equation for A objects exhibits immediate gratification,

whereas larger values of ➶ (e.g., 10-15% of the size of the

cache) result in utility equations with delayed gratification.

Appreciating vs Depreciating: The relative values of ✞ and✡ determine whether or not the value of an A object tends

to appreciate or depreciate in value as the cache contains

more objects. If ➮➱ ✁✃✒ , the utility equation for A objects

is depreciating. If ➮➱➩❐ ✒ , the utility equation is appreciat-

ing. An appreciating utility equation might be used to give

value to an object that gains importance as it becomes part

of a larger collection, such as emails reporting system prob-

lems (several reports of the same problem suggest that the

problem is system-wide).

Quickly vs. Slowly Accelerating: Finally, the value of ✄ in-

dicates whether a utility equation appreciates/depreciates in

value quickly or slowly. If ✄ is very small (e.g., 1), the util-

ity equation for A is quickly accelerating. If ✄ is large (e.g.,

50), then the utility equation for A is slowly accelerating.

The 96 randomly generated profiles fall into 24 different

profile “classes” of 4 profiles each, with each class distin-

guished by their preset values for ➶ , ✄ and ➮➱ in their non-

flat equations. Specifically, for any given class, ➶ is fixed

to be either ✘ , ✕ , or ✍❊✕ , ✄ is fixed to be either ✕ or ✍❢✕ and ✞
and ✡ are fixed to be randomly generated numbers between✘ and ✒❬✘❊✘ such that ➮➱ is either

✚✚❙❒ ,
✚✛ , ✍ , or ✒❬✘ .

4.2. NCP: Unshared Caches

We ran each algorithm described in Section 3 on each of

the 96 randomly generated profiles and normalized the re-

sults by specifying each algorithm’s score as a percentage

of the score generated by GREEDY. Then for each profile

class, we averaged the normalized scores for the four pro-

files from that class. The results are shown in Table 3. Note

that because of normalization, an algorithm does better than

GREEDY when its score is more than 100.

From Table 3, we can see that GREEDY produced the

highest value caches for 14 of the 24 profile classes. SA
produced the highest valued caches for the remaining 10

classes. Therefore, the simplest and fastest algorithm8 was

7Note that ensuring that conditions are of the form, “#B ❮Ï❰ ” ensures

that profiles containing these equations are monotonic.
8With profiles of this size, GREEDY completed in a few seconds,

whereas SA ran for 5 minutes and BnB ran for 10 minutes.

7



Ð Ñ SA BnBÒ Ó
48.3 10.5Ò Ô❬Ó
71.6 13.4Ó Ó
54 78.8Ó Ô❬Ó

62.5 68.6Ô✬Ó Ó
45.5 81.3Ô✬Ó Ô❬Ó
69.7 72.2

(a) Depr: ÕÖØ×ÚÙ Ò

Ð Ñ SA BnBÒ Ó
79.1 52.5Ò Ô❬Ó
84.4 37.7Ó Ó
82.8 72.3Ó Ô❬Ó
90.6 63.1Ô❬Ó Ó
87.5 80.9Ô❬Ó Ô❬Ó
96.9 74.2

(b) Depr: ÕÖ✓× Ô

Ð Ñ SA BnBÒ Ó
108 51.5Ò Ô✬Ó
93.2 59.5Ó Ó

131.7 63Ó Ô✬Ó
121.8 66.6Ô❬Ó Ó
124.2 62.5Ô❬Ó Ô✬Ó
104.5 68.9

(c) Appr: ÕÖØ× Ò❍Û Ó

Ð Ñ SA BnBÒ Ó
128.1 72.7Ò Ô✬Ó
94.9 79.2Ó Ó
207.4 78.6Ó Ô✬Ó
107.2 83.3Ô❬Ó Ó
128.9 70.3Ô❬Ó Ô✬Ó
105.2 77

(d) Appr: ÕÖÜ× Ò❊Û Ù
Table 3: Normalized NCP Scores: Depreciating and Appreciating Utility Equations

also the most effective, dispelling the notion that expres-

sive profiles require complex processing to be effectively

used. As can be seen in Table 3, SA beat GREEDY when the

profiles processed were predominantly composed of appre-

ciating utility equations (Table 3c and d). In fact, SA beat

GREEDY in 10 of the 12 profile classes of this form. SA did

especially well when ✄ was small, producing the best cache

for all 6 classes of appreciating profiles with ✄➥✮Ý✕ .
SA’s relative success with appreciating profiles can be

explained as follows. GREEDY, by nature, performs no

lookahead and thus it will never choose to place an object

from a low-valued domain in the cache, even if objects from

that domain can become more valuable as the cache gets

filled with more objects. But for appreciating profiles, the

best caches will often be those that contain objects from do-

mains that initially have low value, but that increase in value

as more of them are put into the cache. Whereas GREEDY
will never choose these low-valued objects, with some non-

zero probability, SA will select a random cache that in-

cludes enough of these low-valued objects that they take

on a higher value. When ✄ is small, the number of objects

required to be in the cache before these objects increase in

value is also small, and the probability of randomly choos-

ing a cache with ✄ of these objects increases. Hence, SA
consistently produces better quality caches than GREEDY
when ✄ is small and utility equations are predominantly ap-

preciating. It should be pointed out that GREEDY’s poor

performance with profiles with appreciating utility equa-

tions also had to do with the way we chose random values

for ✞ and ✡ . For both appreciating and depreciating utility

equations, we first chose a random value between 50 and

100, and this became the value of what was supposed to be

the larger of ✞ and ✡ ( ✞ for depreciating equations and ✡
for appreciating equations). The value of the smaller vari-

able was then calculated using the ratio, ➮➱ , set by the profile

class. Therefore, for appreciating utility equations such that➮➱ ✮Þ✘▲✴❾✒ , ✞ is never greater than 10, and for appreciating

utility equations such that ➮➱ ✮➧✘❝✴ ✕ , ✞ is never greater than

50. Given that values for flat utility equations were random

values between 0 and 100, with high probability the values

for these objects were greater than ✞ , and therefore, these

objects were far more likely to be chosen by GREEDY.

It is also interesting to note the poor performance of

Branch-and-bound (BnB), having the lowest scores for 20

of the 24 profile classes. BnB does poorly at profile-driven

prefetching because it doesn’t scale: the search tree that the

algorithm has to traverse has a height of 20 (one level per

domain), and a degree of 640 (one per object in the can-

didate set belonging to any given domain). Therefore, the

search tree consists of ß❊à❢✘ ✛✶❒ nodes! After 10 minutes (at

which point we cut off its search), BnB was never left with

a cache with objects from more than 3 domains. Therefore,

we did not include BnB in our algorithm analysis for super-

profiles (Section 4.4).

4.3. PCP: Unshared Caches

Table 4 shows “goodness” calculations (Definition 3.2)

for GREEDY, SA and BnB over all 24 profile classes as-

suming preemption probabilities of ✩❣❫Ø✮Þ✘▲✴ á , (likely pre-

emption), ✩❝❫â✮✃✘▲✴➠✕ , (equally likely preemption and com-

pletion), and ✩❝❫Ï✮ã✘▲✴❾✒ , (unlikely preemption). As with

the NCP results, we have normalized the goodness values

by expressing them as percentages of the goodness values

achieved by GREEDY. The table shows, for each profile

class, the average of these normalized values over the the

four profiles belonging to that class. Once again, GREEDY
produces better caches for more profile classes than SA and

BnB, producing the best caches for ✒✳✌❢ä❍✍✸à profile classes

when the probability of preemption is high, for ✒❬✕✻ä❍✍✸à pro-

file classes when the probability of preemption is moderate,

and for ✒✬à✇ä❍✍❍à profile classes when the probability of pre-

emption is low.

By comparing tables 3 and 4, it becomes clear that the

algorithm that does best for NCP usually does best for PCP

when given the same parameter settings. The only four

cases where this is not the case are listed below:

✂✟✒❬☛å➶➥✮Ý✍❊✕❡✆æ✄ç✮➓✍❊✕▲✆ ➮➱ ✮➌✘▲✴❾✒❊✆ and ✩❣❫③✮➌✘▲✴ á✂t✍❊☛å➶➥✮Ý✍❊✕❡✆æ✄ç✮➓✍❊✕▲✆ ➮➱ ✮➌✘▲✴❾✒❊✆ and ✩❣❫③✮➌✘▲✴➠✕✂▼✖❢☛å➶➥✮Ý✍❊✕❡✆æ✄ç✮➓✍❊✕▲✆ ➮➱ ✮➌✘▲✴➠✕❡✆ and ✩❣❫③✮➌✘▲✴ á✂✼à✻☛å➶➥✮Ý✕❡✆ ✄ç✮➓✍❊✕▲✆ ➮➱ ✮➌✘▲✴❾✒❊✆ and ✩❣❫③✮➌✘▲✴ á
where for each, SA has produced the best result for NCP

and GREEDY has produced the best result for PCP. Figure 5

illustrates what is happening in these cases. The graph in

this figure shows how GREEDY, SA and BnB give value to

8



a cache over “time”9 for the case where ➶♦✮➆✍❊✕ , ✄♦✮è✍❊✕ ,
and ➮➱ ✮é✘▲✴❾✒ . Note how SA produces the highest value

cache once the cache is filled, but that GREEDY usually pro-

duces the best partially filled caches,10 thereby confirming

the anomalous results.

The explanation for cases (1)-(3) is as follows: for each

of these cases, ➶â✮ê✍❢✕❡✆✶✄✓✮ê✍❊✕ and the profiles are appre-

ciating. For appreciating profiles, when ✄ and ➶ are large,

it likely will take a while (i.e., many objects placed in the

cache) before a random algorithm produces a cache with

sufficient numbers of objects of domains with appreciating

utility values to give high value to those objects. There-

fore, what is common to these cases is that SA produces

a cache that has relatively low value for a long time, and

then increases in value suddenly, overtaking the value of

the cache produced by GREEDY by the time the cache is

full. Because the value of the cache produced by SA was

low for so long, the area under the curve is less for SA than

for GREEDY. Case 4 is more subtle. Note that for ➶Ú✮è✕ ,✄❪✮➉✍❊✕ , ➮➱ ✮ë✘▲✴❾✒ and ✩❣❫➅✮ë✘❝✴ á , SA beats GREEDY for

NCP but loses to GREEDY for PCP. On the other hand, if➶❄✮✃✍❊✕ (and all other parameters are the same), SA beats

GREEDY for both NCP and PCP. When ➶➓✮✯✕ instead of➶➳✮é✍❢✕ , it takes fewer objects in the cache to give high

value to those with appreciating utility values. Thus, one

might think that with ➮➱ ✮❪✘❝✴ì✒ , an early and sharp increase

in object value would lead SA to beat GREEDY for PCP. But

in fact the opposite is true: GREEDY beats SA for PCP in

this case, but loses to SA when ➮➱ ✮➧✘▲✴➠✕ (i.e., when the in-

crease in object value occurs at the same time, but to a far

lesser degree). The explanation for this phenomenon again

lies with the way we generate random values for ✞ and ✡ .

Always, our technique is to first generate a random value

between 50 and 100, assign it to the variable that is sup-

posed to be larger (for appreciating equations, ✡ ), and set

the value of the other variable according to the value of ➮➱
associated with the profile class. Note that when ➮➱ ✮í✘▲✴❾✒ ,
this means that ✞ will always be less than or equal to 10, but

when ➮➱ ✮✃✘❝✴ ✕ , ✞ can be as high as 50. Therefore, when➮➱ ✮ë✘❝✴ì✒ , the initial values of the cache produced by SA
are so low, that when ✩❝❫ is large (thus favoring early values

of the cache in calculating goodness), even a sharp increase

in object value is not enough to make SA beat GREEDY for

PCP. On the other hand, when ➮➱ ✮➌✘▲✴➠✕ , initial values of the

cache are large enough that SA beats GREEDY at PCP.

The key lessons learned from our experiments for NCP

and PCP is that despite the apparent complexity of profiles

that include data dependencies and thresholds, a fairly sim-

ple and fast algorithm (GREEDY) works quite well in pro-

cessing such profiles to decide what to prefetch into a cache.

Further, the cases where SA produces a better cache than

9Time is measured by “MB in the cache” to equalize data transfer rates.
10The corresponding graphs for cases 3 and 4 exhibit the same property.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 10 20 30 40 50 60 70

U
til

ity
 V

al
ue

MB Sent

GREEDY
SA
BnB

Figure 5: Partial Cache Values ( ➶➥✮➓✍❢✕❡✆✶✄➥✮➓✍❊✕▲✆ ➮➱ ✮➓✘❝✴ì✒ )
GREEDY (profiles with predominantly appreciating utility

equations) are arguably, unlikely to occur in practice.

4.4. NCP: Shared Caches

As we pointed out in Section 3.3, prefetching algorithms

that assume a single profile and an unshared cache can be

adapted to work with multiple profiles and a shared cache

by merging the multiple profiles into a single superprofile

that is representative of them all. The merged profile can

then be used as input to each of the prefetching algorithms

described in Section 3.

One complication brought on by profile combination is

the fact that different profiles may define domains that in-

tersect or that are even equivalent, even though they are

defined differently. In other words, for superprofiles we

must assume that any given object can belong to multiple

domains.11 This means that GREEDY must be adapted so

that it always chooses an object that gives the most added

value to the cache according to all of the utility equations

that give it value. (SA, because it chooses objects randomly,

need not be altered.)

We refer to the greedy algorithm that allows for objects

to belong to multiple domains as GREEDY ↔❯î ✫ . GREEDY ↔❯î ✫maintains 3 data structures as it uses an input superprofile

to determines the contents of a cache:

ï✙ð
: a Boolean membership matrix that specifies all of

the domains to which each object belongs. Thus,
ð

is

an ➺qñ❁ò matrix such that ➺ is the size of the candidate

object set, ò is the number of domains defined by the

superprofile, and ð ➽ ❦❱✆ts❊➹➋✮ó✒ iff object, ✲ ✽ , belongs to

domain, ✐➯ô ;
ï♦õ : an added value vector that specifies for each of theò domains, the change in value that would result from

adding an object from the domain to the current cache.

Note that unlike the membership matrix which can be

computed statically, the added value vector must be re-

computed every time an object is added to the cache;

and

11For single profiles it is more reasonable to assume disjoint domains.

9



pr = 0.9 pr = 0.5 pr = 0.1

( ➶ , ✄ ) SA BnB SA BnB SA BnB

(0, 5) 60.3 12.5 53.7 11.7 49.3 11.2

(0, 25) 84.0 15.8 78.3 14.9 74.4 14.3

(5, 5) 61.7 82.7 58.0 80.5 55.5 79.1

(5, 25) 70.5 73.8 66.0 71.2 63.0 69.5

(25, 5) 53.6 85.7 49.6 83.5 47.0 82.1

(25, 25) 72.4 77.5 71.2 74.7 70.4 72.9

Depr: ➮➱ ✮❪✒✬✘

pr = 0.9 pr = 0.5 pr = 0.1

( ➶ , ✄ ) SA BnB SA BnB SA BnB

(0, 5) 84.0 56.7 81.3 53.8 79.5 51.9

(0, 25) 90.3 42.1 87.1 39.8 85.0 38.3

(5, 5) 81.6 78.2 82.4 74.9 82.8 72.8

(5, 25) 88.3 68.3 90.2 65.0 91.5 62.8

(25, 5) 85.5 88.7 87.8 84.7 89.3 82.2

(25, 25) 95.9 82.5 98.1 78.9 99.6 76.7

Depr: ➮➱ ✮Ý✍
pr = 0.9 pr = 0.5 pr = 0.1

( ➶ , ✄ ) SA BnB SA BnB SA BnB

(0, 5) 113.5 61.1 110.3 55.3 108.4 52.0

(0, 25) 96.2 68.0 94.5 63.0 93.5 59.9

(5, 5) 121.7 69.2 128.2 65.1 132.2 62.5

(5, 25) 111.6 75.0 118.8 70.6 123.5 67.9

(25, 5) 116.6 72.8 121.5 66.6 124.5 63.0

(25, 25) 98.1 77.0 102.6 72.9 105.5 70.3

Appr: ➮➱ ✮❑✘❝✴ ✕

pr = 0.9 pr = 0.5 pr = 0.1

( ➶ , ✄ ) SA BnB SA BnB SA BnB

(0, 5) 118.8 77.4 124.9 74.9 128.9 73.2

(0, 25) 91.2 84.4 93.9 81.8 95.7 80.2

(5, 5) 181.5 82.0 200.5 79.7 213.0 78.2

(5, 25) 95.8 87.4 103.1 85.4 108.0 84.1

(25, 5) 114.1 75.6 124.0 73.1 130.4 71.4

(25, 25) 91.6 81.3 99.8 79.1 105.2 77.6

Appr: ➮➱ ✮➌✘▲✴❾✒
Table 4: Normalized PCP Scores: Depreciating and Appreciating Utility Equations

ï ➇
: a size vector that specifies the size of each of the ➺

objects in the candidate object set.

GREEDY ↔❙î ✫ begins by initializing the membership ma-

trix, added value vector (relative to an empty cache) and

size vector. It then chooses one object at a time to add to

the cache, by following the steps below:

1. First, it computes the ➺ element vector, ✿ ✚ ✮ ð➳ö❊õ
.

For any object, ✲ ✽ , ✿➎✚❊➽ ❦t➹ is the value that object would

add to the current cache if it were inserted (without

replacing any existing object in the cache).

2. Next, it computes the ➺ element vector, ✿❺✛①✮ó✿➎✚✬ä ➇ .

For any object, ✲✸✽ , ✿ ✛ ➽ ❦t➹ is the value per byte that ob-

ject would add to the current cache.

3. Next, it finds the maximum value in ✿❺✛ , ✿❺✛❊➽ ❦▼➹ , and

designates object ✲ ✽ as the next object to add to the

current cache.

4. Next, it updates the added value vector to reflect do-

main values relative to the new cache.

5. Finally, it removes column ❦ from ð to reflect that ob-

ject, ✲ ✽ , is no longer eligible to be added to the cache.

This process is repeated until the candidate object set con-

tains no more objects that can fit in the remaining cache

and that add value to the cache. Note that GREEDY ↔❯î ✫is far more expensive than GREEDY (which simply cy-

cled through the added value vector looking for the do-

main which added the most value to the cache), as it re-

quires a matrix-vector multiplication be performed for ev-

ery object chosen. We use some tricks to reduce the cost

of GREEDY ↔❯î ✫ . For one, we partition the set of candi-

date objects into classes, where objects in a given class be-

long to the same set of domains. This allows us to reduce

the size of one dimension of the Boolean matrix (from the

number of objects in the candidate object set to the num-

ber of classes). Also, every time an object is added to the

cache, we keep track of which domains have their values

affected. For example, in the case of the Traveler pro-

file of Figure 1, adding a Di object to an empty cache only

changes the values for domains RC, Di and Ho. Any class

whose objects do not belong to any of the affected domains

need not be included in the matrix calculation (objects of

such classes would add the same value to the new cache

as they did to the previous cache). While these tricks re-

duced the cost of GREEDY ↔❯î ✫ somewhat, our experiments

showed that this new version of GREEDY ↔❯î ✫ still does not

scale. We ran GREEDY ↔❯î ✫ assuming superprofiles of in-

creasing size (with candidate object sets, classes and cache

sizes increasing proportionally in the size of the superpro-

file) and recorded the time GREEDY ↔❯î ✫ required to deter-

mine a cache. We also measured the value of the cache

constructed by GREEDY ↔❯î ✫ and compared it to that pro-

duced by SA which was allowed to run for 30 minutes (by

setting its temperature to 30 and its timeout to 1 minute).

The results are shown in Table 5. Each row in the table

shows a run of GREEDY ↔❯î ✫ with a superprofile of size, ➺ ,

where ➺ denotes the number of single profiles merged to

construct the superprofile. Single profiles are chosen ran-

10



Profiles in

Superprofile
GREEDY ÷tø❈ù SA

SA Normalized

Cache Value

25 1.1 sec 30 min 73.5

50 13.4 min 30 min 71

75 73 min 30 min 85

100 210 min 30 min 84

Table 5: Execution of GREEDY ↔❯î ✫ and SA on Superprofiles

domly from the 96 randomly generated profiles described

in Section 4.1. All other parameters were determined as

functions of ➺ . The number of object classes was set to à❢✘ ➺
(i.e., twice the number of domains), under the assumption

that domains in a superprofile can usually be clustered into

disjoint sets of related topics, and that objects from the can-

didate set that belonged to multiple domains would belong

to domains from a single cluster. As the number of disjoint

clusters is bounded by the number of domains, we set the

number of classes to be twice the number of domains (also

accounting for objects that belonged to a single domain).

Each object class was assumed to contain 5000 objects, dis-

tributed in size according to the distribution shown in Fig-

ure 2. The cache size was set to be to the maximum of ✒❬✘❊✘ ➺
MB and ú GB. 100 MB per client is widely considered to

be a useful metric for determining the size of a shared web

proxy cache [13]. ú GB is the size of the shared web proxy

cache employed at Brandeis (serving 3000 clients). And the

average number of domains that classes included was set to

2. Given that there are ✍❍✘ ➺ domains in all, this means that

for any class, ❦ and Domain, ✐ ô , that
ð ➽ ❦❱✆✾s❍➹✠✮➩✒ with prob-

ability,
✚✚❙❒ ✷ .

As Table 5 shows, GREEDY ↔❯î ✫ scaled to ➺ ✮û✌❊✕ be-

fore its execution time took more than 3 hours. On the

other hand, SA (which always ran in 30 minutes) produced

competitive results with GREEDY ↔❯î ✫ , suggesting that a ran-

domized approach is better suited for large scale cache

prefetching problems. This raises the possibility of two-

tiered prefetching: data recharging might use GREEDY to

decide what to prefetch into an individual device cache, but

SA to manage the shared cache from which multiple data

recharging clients draw.

5. Related Work

Our notion of profiles is unique in that it combines a lan-

guage for specifying predicates over data items with a rich

language for specifications of the user’s preferences, prior-

ities, and requirements. User profiles for Web-based appli-

cations (such as Yahoo, PointCast [21], etc.) are typically

fairly simple, allowing the user to specify particular cate-

gories of information (channels) that they are interested in

receiving. This approach to building information dissem-

ination systems (publish/subscribe [19]) typically uses a

walled garden approach in which the data that can be deliv-

ered to the user is restricted to that found on specific content

sites. Most systems allow simple, channel-specific predi-

cates to identify channels of interest to users (e.g., to specify

particular companies for stock prices). The Grand Central

Station system [15] developed at IBM Almaden provides a

more general form of predicates over its channels, and is

therefore closer to our notion of the domain specification

portion of a profile.

User profiles for text-based data have been extensively

investigated in the context of Information-Filtering and Se-

lective Dissemination of Information research [12]. The

systems in these areas use techniques from the Information

Retrieval (IR) world for filtering unstructured text-based

documents [4]. In general, IR profile systems use either a

Boolean model or a similarity based model. In the Boolean

model a user profile is constructed by combining keywords

with boolean operators (e.g., And, Or, Not), and an “ex-

act match” semantics is used — a document either satisfies

the predicate or not. Similarity-based models use a “fuzzy

match” semantics in which the profiles and documents are

assigned a similarity value. A document whose similarity

to a profile is above a certain threshold is said to match

that profile. The Stanford Information Filtering Tool (SIFT)

[23], is a well-known content-based text filtering system for

Internet News articles. With the advent of XML, filtering

of web-documents based on structure as well as content has

become more feasible. The XFilter system [3] is a recent

example of such a filtering system. XFilter, however, has

no notion of variable utility as exists in our profile model.

One recent effort that has investigated the representation

of variable utility is the user preference framework pro-

posed by Agrawal and Wimmers [1]. This model allows

users to specify numeric weights for entities or sets of enti-

ties and provides a well-defined mechanism for combining

sets of preferences. This model, however, provides no no-

tion of thresholds or dependencies and this work did not

address the performance and scalabablity of algorithms for

exploiting the preference information.

All of the work discussed above was focused on improv-

ing the relevance of data returned by search or delivered

to users via push-based dissemination. Profile information

has also been used in a limited way to direct the manage-

ment of caches. Early work in this area was the “quasi-

caching” system of Alonso et al.[2], in which specifica-

tions of user requirements in terms of data quality were

used to reduce the amount of data sent from a server to

update client caches. More recently, a cache maintenance

technique that exploits user specifications of preferences in

terms of the tradeoff between latency and recency were pre-

sented in [5]. Due to the emphasis on cache consistency

in this work, the language for describing user preferences

in these systems is limited to specifying quality constraints.

Our notion of profiles is focused on priorities and dependen-

cies amongst items, but can be extended to incorporate such

quality constraints. An alternative approach to maintaining

11



the recency of cache contents is the notion of “data freshen-

ing” [11]. Rather than determining update priorities based

on user preferences, this work determines the refresh rates

based on how often the underlying data elements change.

Recent work [6] has used user profiles to achieve more ef-

fective freshening policies.

6. Conclusions

We propose a simple profile language that permits high-

level expression of a user’s data needs for the purpose of

expressing desirable contents of a cache. We consider tech-

niques for cache prefetching on the basis of profiles ex-

pressed in our framework, both for basic and preemptive

prefetching, the latter referring to the case where staging a

cache can be interrupted at any point without prior warning.

We examine the effectiveness of three techniques in par-

ticular: a greedy approach, a randomized approach (simu-

lated annealing), and branch-and-bound, and show that the

greedy approach is fast and effective for moderately sized

profiles, but that the randomized approach scales better for

shared caches with extremely large superprofiles. We view

this work as a migration of data management ideas and

techniques, characterized by their use of data and applica-

tion semantics to drive the management of shared resources,

into the wide-area network setting. We believe that profiles,

as described in this paper, are an enabling technology that

could spawn a rich new area of research beyond cache man-

agement into network data management in general. The use

of rich, declaratively specified profiles to drive data man-

agement policy promises benefits similar to the profound

effect that declarative queries had on database system tech-

nology. This paper is a first step in that direction.

Acknowledgements

We would like to thank David Brooks and Ajay Daptardar

for implementing the algorithms presented in this paper.

References

[1] R. Agrawal and E. L. Wimmers. A framework for expressing

and combining preferences. In W. Chen, J. F. Naughton, and

P. A. Bernstein, editors, Proceedings of the 2000 ACM SIG-

MOD International Conference on Management of Data,

May 16-18, 2000, Dallas, Texas, USA, volume 29, pages

297–306. ACM, 2000.
[2] R. Alonso, D. Barbará, and H. Garcia-Molina. Data caching

issues in an information retrieval system. TODS, 15(3):359–

384, 1990.
[3] M. Altinel and M. J. Franklin. Efficient filtering of xml doc-

uments for selective dissemination of information. In A. E.

Abbadi, M. L. Brodie, S. Chakravarthy, U. Dayal, N. Kamel,

G. Schlageter, and K.-Y. Whang, editors, VLDB 2000, Pro-

ceedings of 26th International Conference on Very Large

Data Bases, September 10-14, 2000, Cairo, Egypt, pages

53–64. Morgan Kaufmann, 2000.

[4] N. J. Belkin and W. B. Croft. Information filtering and infor-

mation retrieval: Two sides of the same coin? Communica-

tions of the ACM, December 1992, 35(12):29–38, December

1992.

[5] L. Bright and L. Raschid. Using latency-recency profiles

for data delivery on the web. In VLDB 2002, Proceedings of

the 28th International Conference on Very Large Databases,

August, 2002, Hong Kong, China, 2002.

[6] D. Carney, S. Lee, and S. Zdonik. Scalable application-

aware data freshening. In Proceedings of 18th International

Conference on Data Engineering (ICDE), 2002. To appear.

[7] U. Cetintemel, M. J. Franklin, and C. L. Giles. Self-adaptive

user profiles for large-scale data delivery. In Proceedings

of the 16th International Conference on Data Engineering,

28 February - 3 March, 2000, San Diego, California, USA,

pages 622–633. IEEE Computer Society, 2000.

[8] W. Chen, J. F. Naughton, and P. A. Bernstein, editors. Pro-

ceedings of the 2000 ACM SIGMOD International Confer-

ence on Management of Data, May 16-18, 2000, Dallas,

Texas, USA, volume 29. ACM, 2000.

[9] M. Cherniack, M. J. Franklin, and S. Zdonik. Expressing

user profiles for data recharging. IEEE Personal Commu-

nications: Special Issue on Pervasive Computing, August

2001.

[10] M. Cherniack, M. J. Franklin, and S. Zdonik. Profile-driven

data management. Technical report, Brandeis University

Department of Computer Science, December 2001.

[11] J. Cho and H. Garcia-Molina. Synchronizing a database to

improve freshness. In Chen et al. [8], pages 117–128.

[12] P. W. Foltz and S. T. Dumias. Personalized information de-

livery: an analysis of information filtering methods. Com-

munications of the ACM, December 1992, 35(12):51–60,

December 1992.

[13] Isaserver faq. http://isaserver.org.

[14] J. J.Burg, J. Ainsworth, B. Casto, and S.-D. Lang. Experi-

ments with the ’oregon trail knapsack problem’.

[15] Q. Lu, M. Eichstaedt, and D. A. Ford. Efficient profile

matching for large scale webcasting. In 7th International

WWW Conference, April 1998, 1998.

[16] http://www.mapquest.com.

[17] http://www.mediametrix.com.

[18] D. A. Menasc and V. A. Almeida. Capacity Planning for

Web Performance. Prentice Hall, 1998.

[19] B. M. Oki, M. Pflgl, A. Siegel, and D. Skeen. The informa-

tion bus - an architecture for extensible distributed systems.

Symposium on Operating Systems Principles (SOSP), pages

58–68, 1993.

[20] C. Papadimitriou. Computational Complexity. Addison-

Wesley, 1994.

[21] S. Ramakrishnan and V. Dayal. The pointcast network. In

L. M. Haas and A. Tiwary, editors, SIGMOD 1998, Pro-

ceedings ACM SIGMOD International Conference on Man-

agement of Data, June 2-4, 1998, Seattle, Washington, USA,

page 520. ACM Press, 1998.

[22] E. Rich and K. Knight. Artificial Intelligence. McGraw-Hill,

1991.

[23] T. W. Yan and H. Garcia-Molina. The sift information dis-

semination system. TODS, 24(4):529–565, 1999.

12




