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Abstract

As the size and complexity of software continues to grow, it will be neces-
sary for software construction systems to collect, maintain, and utilize much more
information about programs than systems do now. This dissertation explores com-
piler utilization of pro�le data.

Several widely held assumptions about collecting pro�le data are not true.
It is not true that the optimal instrumentation problem has been solved, and it is not
true that counting traversals of the arcs of a program ow graph is more expensive
and complex than counting executions of basic blocks. There are simple program
ow graphs for which �nding optimal instrumentations is possibly exponential. An
algorithm is presented that computes instrumentations of a program to count arc
traversals (and therefore basic block counts also). Such instrumentations impose
10% to 20% overhead on the execution of a program, often less than the overhead
required for collecting basic block execution counts.

An algorithm called Greedy Sewing improves the behavior of programs on
machines with instruction caches. By moving basic blocks physically closer together
if they are executed close together in time, miss rates in instruction caches can be
reduced up to 50%. Arc-count pro�le data not only allows the compiler to know
which basic blocks to move closer together, it also allows those situations that will
have little or no e�ect on the �nal performance of the reorganized program to be
ignored. Such a low-level compiler optimization would be di�cult to do without
arc-count pro�le data.

The primary contribution of this work is the development of TypeSet-
ter, a programming system that utilizes pro�le data to select implementations of
program abstractions. The system integrates the development, evaluation, and se-
lection of alternative implementations of programming abstractions into a package
that is transparent to the programmer. Unlike previous systems, TypeSetter does
not require programmers to know details of the compiler implementation. Experi-
ence indicates that the TypeSetter approach to system synthesis has considerable
bene�t, and will continue to be a promising avenue of research.
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Chapter 1

Introduction

The `ideal system of the future' will keep pro�les associated with source
programs, using the frequency counts in virtually all phases of a pro-
gram's life. : : : [I]f it is to be a frequently used program the high counts
in its pro�le often suggest basic improvements that can be made. An opti-
mizing compiler can also make very e�ective use of the pro�le, since it of-
ten su�ces to do time-consuming optimization on only one-tenth or one-
twentieth of a program. [28]

In spite of the fact that Knuth made this pronouncement twenty years ago,
and in spite of the fact that programmers routinely `optimize' programs by hand
based on pro�le data, Knuth's Dictum (as we will call it) still has not been fully
implemented in an automated pro�ling system nor shown to be undesirable.

This dissertation examines the issues surrounding the utilization of pro�le
data in the compilation of source code. This is a larger subject than that of gen-
erating or collecting pro�le data. It requires asking, at a minimum, the following
questions: Given that pro�le data exists for a program, how might a compiler make
use of that data to produce better executable code? What kinds of pro�le data can
be generated/collected? What kinds of pro�le data are useful? How expensive is this
pro�ling?.

We start with two hypotheses:

1. Collecting pro�le data need not be prohibitively expensive.

2. Compilers can pro�tably use pro�le data at all levels of the compilation process.

Compilers that emit pro�ling code have been at least partially implemented by most
modern systems. But no systems of which I am aware utilize a program's pro�le data
throughout the compilation process. Furthermore, while these hypotheses might be
accepted in a general way, there are still some misconceptions about the cost of
pro�ling, and room for improvement in the pro�ling algorithms themselves.
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1.1 Past uses of pro�le data

The collection and use of pro�le data has a long history, beginning with
Knuth's 1971 paper [28]. In this paper, the term `pro�le' was �rst used, and de�ned
to be the collection of execution frequency counts taken during executions of a pro-
gram. Since that time, the term `pro�le data' has come to mean any quantitative
information gathered about the run-time behavior of a program, including execu-
tion counts of the program and its sub-parts, reference counts of the program's data
objects, and real-time measures of algorithm executions.

Knuth's examination of execution pro�les of running user programs uncov-
ered two facts: (1) Most programmers do not know where their programs spend most
of the time; and (2) even when programmers analyze their programs, they still don't
know where their programs spend most of the time due to the fact that programmers
almost never have access to su�cient information about system and library functions
to deduce the runtime resources they consume. For example, a major culprit in the
FORTRAN environment in which Knuth did his study was the formatting routines
in the I/O statements.

Another result of Knuth's study was the rule-of-thumb that said that 90%
of a program's time is spent in 10% of the code, variously called the 90-10, or 80-20,
rule. Knuth never used either of these numbers but reported that in his studies 50%
of the time was spent in 4% of the code. In fact, the actual numbers are di�erent
for each program. The 90-10 rule, or whatever you want to call it, is one of the
guiding principles on which manual program optimization is based: �nd that section
of your program that takes most of the runtime resources, and either modify the
algorithm itself (e.g., change a bubble-sort into a quick-sort) or make the existing
algorithmmore e�cient at the low level (e.g., hoist common expressions out of loops,
do strength reduction on the index variables, turn repeated array indexing operations
into pointer operations, etc.).

After Knuth's 1971 paper, Dan Ingalls published two papers describing
descendants of the FORDAP pro�le tool used by Knuth. FORDAP was a basic-block
counting pro�ler. The �rst technical report [23] gives details of how the FORTRAN
Execution Time Estimator (FETE) adds execution time estimates to the frequency
count displays of FORDAP. This enhancement was prompted by the obvious fact
that not all statements are created equal. For example, the FORTRAN statement

A = B(I)

will execute at vastly di�erent speeds depending on whether B is an array or a
function. FETE used a value based on `weights' assigned to expression operators
and statement classes to give a rough estimate of the execution time. FETE was not
sophisticated enough to handle calls on user functions. If, in the example above, B
is not an array but a call on a function, FETE will count it as an array reference
unless B is a standard FORTRAN function.
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Ingalls' second paper [22] describes FORTUNE, which is simply a renamed,
product version of FETE. FORTUNE and FETE modi�ed the source program so
that it contained FORTRAN statements incrementing elements of an array of coun-
ters. These counting statements were placed essentially at the beginnings of basic
blocks. The analyzer reported statement execution counts and estimates of execution
time for each statement.

Prof [5], a pro�le collector for C, Pascal, and FORTRAN programs on
the UNIX system is an example of pro�ling tools in current use. Prof samples the
program counter via timer interrupts to estimate the amount of time spent between
the symbols of the program. Prof 's usability has been enhanced by Gprof , a program
developed at Berkeley by Graham, Kessler and McKusick [16]. Gprof explicitly
concentrates on procedure calls, providing both frequencies for calls through counting
and estimates of the time spent in each procedure. Timing estimates are derived by
sampling the program counter, as in prof . After the user's program has run, a
separately invoked post-pass analyzer distributes timing estimates to the program's
procedures based on the static and dynamic call graphs.

There has been a small amount of research published about the best way to
pro�le a program. In the �rst volume of his Art of Programming series, Knuth gives
the algorithm for determining a minimal instrumentation of a program for collecting
the execution counts of arcs. Knuth and Stevenson [30] (about which more will be
said later) published the de�nitive algorithm for �nding a minimal instrumentation
of a program that counts the execution of its basic blocks. Cheung [7] concurrently
developed algorithms for �nding minimal instrumentations that count the frequency
of execution paths through a program. A paper by Sarkar [42], without referencing
this body of work, developed an algorithm for instrumenting a program based on its
dependence graph.

There has been some research into the potential uses of pro�le data. Gilbert
Hansen's research [17] is an early investigation into behavior-driven optimization. He
hypothesized that, for certain classes of software, the optimization of a program could
be done at run-time more economically than at compile-time. Instead of the usual
compile-a-�le paradigm that most compiler systems utilize, Hansen's \adaptive"
compiler consisted of two \phases". The �rst phase generated an interpretable form
of a FORTRAN program in a fast, one-pass compilation (it produced `quads' as the
interpretable form). The second part consisted of an interpreter and optimizer loaded
with the compiled program. When the interpreter detected that a basic block was
being executed su�ciently often, interpretation was suspended while the optimizer
was invoked to compile the basic block to a lower level. If a basic block were executed
often enough, it would eventually be compiled down to machine language.

The one-pass compiler annotated each basic block with information about
its size and complexity so the interpreter could predict pro�table optimizations. The
system was designed to expend e�ort only on optimizations that had a high proba-
bility of paying for themselves through improved execution of the program. There
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were four levels of optimizations, three of which were performed on the interpretable
form (constant folding, common subexpression elimination, and moving invariants
out of loops), and the �nal of which compiled the quads resulting from the �rst three
optimizations into machine language, an `optimization' he called `fusion'. Therefore,
the optimizer would be invoked up to four times on a basic block, each time optimiz-
ing it further. When the basic block had been optimized as much as possible in its
interpreted form, the �nal optimization would compile it to machine language. At
this time, several machine-dependent optimizations would also be applied and execu-
tion would become `threaded'; i.e. a mixture of interpretation and direct execution
in which the program has been `fused' into the interpreter.

It is not surprising that Hansen's one-pass compiler executes more quickly
than optimizing, multi-pass compilers. What is surprising is that those initial savings
were almost never depleted. That is, the time required to do the one-pass compilation
to `quads', plus the time for interpretation and intermittent optimization was almost
always less than the time required to do a full optimization of the original program
plus the execution time of the optimized program!

Hansen's system is appropriate for compiling and running throw-away, run-
once programs; e.g. in a student programming environment, the overall CPU utiliza-
tion is decreased. It is not an appropriate system for constructing software designed
to be run many times (e.g. editors, the operating system, the adaptive compiler
itself). The success of this system depended on the ratio of the number of compila-
tions to the number of executions being very close to one. If a program is executed
many times, it then becomes pro�table to compile and optimize the whole program
once.

Hansen's research lends credence to our contention that pro�le-driven op-
timization is a useful adjunct to `traditional' compilation. If his adaptive compiler
could use heuristics to predict the future behavior of a program successfully enough,
a static compiler using those same heuristics with complete pro�le data should do
better. The major point is that, whereas the adaptive compiler system is forced to
make the assumption that the performance of the program in the immediate past is
predictive of its performance in the immediate future, a static compiler can accumu-
late pro�le data, smooth out anomalous behavior over several runs of the program,
and make the more accurate assumption that the average past performance of the
program is a good predictor of its average future behavior.

There has been a large amount of research using pro�le data to improve
virtual memory performance. Most of this work has depended on pro�le data in the
form of an address trace and has improved program performance by reorganizing the
modules of programs to minimize page faults (Ferrari [12] gives a summary of this
early work). Nearly all of this research has concentrated on post-compilationmodule-
level reorganization of a program. There have been some techniques developed to
reorganize programs dynamically based on their behavior. For example, K. D. Ryder
[39] and J.-L. Baer and G. Sager [2] used dynamically collected pro�le data to
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allocate physical memory for programs running on virtual systems.
In spite of all the use of pro�le data to improve program performance in

various ways, modern programmers wishing to improve the performance of their pro-
grams using pro�le data have limited options. In almost every system that provides
any pro�ling capability at all, it is still up to the users to analyze the data and
manually reorganize or rewrite their programs based on that data.

1.2 Research Contributions

This dissertation presents several results related to the use of pro�le data,
ranging from exactly how pro�le data should be collected, to actual uses of pro�le
data in languages and their compilers.

Since at least the mid-seventies the problem of e�cient pro�le collection
via code instrumentation has been considered a solved problem. This research dis-
covered problems with the solutions, and results are presented here that show that
old assumptions about pro�ling are incorrect. Speci�cally, it is not the case that
counting the execution frequencies of transfers of control in a program is expensive:
it is often cheaper than simply counting execution frequencies of the basic blocks in
a program. Also, I show that the algorithms that have heretofore been considered
`optimal' are not only not optimal, but that optimality is di�cult to achieve. In
Chapter 2, I present an algorithm that �nds better instrumentations of programs.

A di�cult problem from past research has been improving the performance
of a program in a paging environment. While paging is no longer the issue that it once
was, caching in a memory hierarchy has taken its place. In Chapter 3 I demonstrate
that a dramatic percentage of the improvement in the instruction-cache behavior of
a program can be obtained by reorganizing a small percentage of the actual code.

Users should be able to declare a variable to be of some abstract type
without worrying about the implementation. Unfortunately, it has turned out to
be very di�cult to design an e�cient system with this capability. In Chapter 4 I
present the design of a system which uses pro�le data to assign implementations to
variables. With appropriate language extensions that allow the writer of alternative
implementations to specify what kinds of pro�le data are needed and how it is to
be evaluated, the user can declare variables to be of a generic type (e.g. Set(int))
and let the system decide, based on the pro�le data, which implementation to use
for the variable.
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Chapter 2

Pro�ling Techniques

How do I count thee?
Let me love the ways : : :

(apologies to Ms. Browning)

Programmers' intuitions about the runtime behavior of their programs are
notoriously bad. Pro�ling counteracts this de�ciency by providing objective mea-
sures.

After a brief discussion of various pro�ling techniques, we will focus on the
insertion of counting code in programs as the technique of choice. We will see that
the traditional solutions to the minimal instrumentation problem are not optimal.
An algorithm that is more nearly optimal is presented, with evidence to show that
true optimality may be quite di�cult to achieve.

2.1 Pro�ling techniques

When designing a pro�le data collection system, two questions must be
answered: how, and how much? This work explores the use of software instrumenta-
tion to collect pro�le data. This is in contrast to, say, using specialized hardware to
monitor a system from `outside'. Such specialized hardware has been built, but com-
puter manufacturers that provide it do not provide high-level language programmers
with useful tools that can take advantage of such equipment. Tools such as in-circuit
emulators or digital oscilloscopes are primarily useful to the electrical engineer or, at
best, to the writer of peripheral device drivers. There is no evidence to suggest that
such specialized hardware can provide better data than software instrumentation can
provide for high-level language applications.

There are three ways pro�le data can be collected with software instru-
mentation: monitoring, tracing, and counting. All three methods are discussed in
detail below. Monitoring requires some hardware support, usually in the form of a
countdown-timer interrupt. Tracing refers to recording in memory or on some exter-
nal media the sequence of relevant operations of the program or system. Counting is
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implemented with code inserted into the program to increment (an array of) counters
to record the execution frequencies of the program.

The answer to the `how much' question depends on the granularity of the
pro�le data for any particular program. There are basically four granularities in
use: procedure, basic block, statement, and instruction level granularities. There
are many variations on these themes, but this gives us enough framework to discuss
several pro�ling techniques.

2.1.1 Monitoring

A histogram of program execution is generated by observing the value of
the PC (program counter) at frequent intervals (hence the alternative name of `PC
sampling'). There are three parameters for programmers to specify for monitoring:
the area (i.e. address range) of the program that is to monitored, the number of data
points to be generated for that address range (the granularity), and the sampling
frequency.

For example, a programmer may specify that addresses in the range 0x2000
and 0x100000 are to be monitored, and that 65,536 data points are to be gener-
ated. So 0x100000� 0x2000 = 1; 040; 384 addresses are divided into 65,536 regions,
meaning that one data point will represent 15 addresses: we say that the measure-
ment granularity is 15. On most machines, more than one instruction can �t in a
range of 15 addresses, particularly when the machine is byte-addressable. There-
fore, information about multiple basic blocks totally contained in a single 15-address
range, or about basic blocks that straddle the boundaries of multiple blocks, will be
fuzzy, at best. The goal is to choose a granularity that does not generate too much
information1 and yet captures su�cient information about the program to make
reasonable deductions about its performance.

Choosing a good sample rate is also fraught with tradeo�s. If the interrupts
occur too infrequently, too much of the program's behavior will occur between the
interrupts. If interrupts occur too frequently, the program's execution will be totally
swamped by the interrupt overhead. Finding the proper value is hit-or-miss, and
there are no published statistical studies showing what range of interrupt frequencies
su�ciently capture the behavior of a program.

One problem shared by almost all pro�ling techniques is that of measuring
system overhead. There is no way that a program in a multiprogramming environ-
ment can reasonably measure the behavior of the operating system activity due to
the executing program. The best that can be hoped for is some measure of the
frequency of the system function calls during the program's execution.

All monitoring implementations depend on the sequentiality of instruction
execution to extrapolate the statistical samples into information about the program's

1Make the granularity one, and the pro�le data tables will be at least as large as the program

and possibly four times larger than the program.
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execution. Since there is no single register that can be sampled to derive a pro�le
of a program's data reference behavior, it is extremely di�cult to derive measures
of a program's use of data with monitoring. Even continuous monitoring of, say,
a data bus (which would certainly demand hardware support) cannot provide very
interesting information. For example, tracing the data references in the area of
memory devoted to the execution stack provides little information. Since the stack
varies dynamically as the execution of the program proceeds, functions and their
associated data are not guaranteed to map into the same addresses, nor is there any
guarantee that a given sequence of addresses will always be used by a given function.
To understand the memory reference behavior of a program's stack memory requires
some knowledge of the program's dynamic call tree, something a simple memory
monitor cannot provide.

2.1.2 Tracing

Very often, simply knowing how many times a function was called, or having
an estimate of how much time each function consumed, is not su�cient. Questions
such as \how often was event X followed by event Y" turn out to be important
in some contexts. In studies of a program's performance in a paging system, the
question takes the form \What is the sequence of page references?", and similarly
in cache performance studies the question is \What is the sequence of cache line
references?". Both kinds of studies have traditionally used address traces (both
instruction and data) of actual program executions to answer these questions.

There are three ways to gather traces (without special hardware assistance):

1. Instrument the code. This is a messy and laborious technique, particularly if
the instrumentation must not interfere with the generated addresses. The trace
can be considered legitimate for most purposes only if the recorded addresses
are the same as they would be if there were no instrumentation code.

2. Simulation. Sometimes it is simpler to write a simulator for the machine in
question. Each instruction simulated can then produce a trace of the instruc-
tion's address, all data references generated by the instruction, and perhaps
other information such as timing estimates.

3. Single-stepping. Some microprocessor architectures have a single-step feature
that interrupts a process after each instruction executed. A separate process
(in a separate address space) handles the interrupt and generates the trace of
address references.

Tracing a program usually is quite expensive, causing instrumented pro-
grams to run anywhere from 2 (if you're lucky) to 10 times slower, depending on
the actual method of tracing and the number of execution features being traced.
Furthermore, tracing can produce tremendous amounts of data. With memories and
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programs getting larger, it may take many millions of instructions of trace data to
capture interesting e�ects. Borg et al. report that some interesting characteristics
of traces were not apparent until several billion instructions had executed [6]. Com-
paction techniques can alleviate some of the problem as I have demonstrated [41],
but the management and assimilation of huge amounts of data is always di�cult.

Again, even if these problems are solved, the trace of a program on a virtual
memory system is not su�cient for capturing e�ects introduced by the operating sys-
tem. Tracing the operating system alone may not provide the necessary information
either. Tracing a complete system across system calls and interrupts is a gargantuan
task, and produces a prodigious amount of information in a small amount of time.
Agarwal, Sites, and Horowitz instrumented a processor's micro-code to collect such
system-level traces [1], but it is di�cult for programmers to utilize this technique to
gain an understanding of how their programs and the system interact.

2.1.3 Counting

Many, if not most, compilers now have the ability to insert counting code
into users' programs and provide very precise information about the number of times
lines, basic blocks, or functions are called. The actual instrumentation is quite
simple, even for separately compiled units of a program. Since this is my preferred
method of collecting pro�le data, I discuss it in more detail in the next section.

Counting executions of functions is probably the least useful granularity.
Programmers learn which are the most frequently called functions, but that may
bear very little relation to the location of the most frequently executed inner loop.
Counting lines is not always su�cient since \lines of code" are artifacts of particular
languages and the styles of individual programmers. For example, some programs
written in C can have many basic blocks concealed on a single line of code due
to some programmers' proclivity for using C's conditional expression construct in
deeply nested macros. The net result is insu�cient information when more than one
basic block is on a line, and superuous counts when basic blocks span lines.

Any modern compiler should implement some form of counting, and at a
minimum it should include basic block counting. In the next section, however, I
argue that counting execution frequencies of transfers of control (arc counting) is
best.

2.2 E�cient Counting

Most compilers that implement pro�ling via the insertion of code count
lines or, at best, basic blocks. However, there are some applications where basic
block counts are insu�cient. Examples include code reorganization to improve the
performance of multi-level memory hierarchies [21,35], jump optimization, and code
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Figure 2.1: Block counts are insu�cient. The sub-graph on the right is the same
as the sub-graph on the left with the addition of an arc from block C to block A.
Knowing the execution counts of the blocks does not allow the derivation of the arc
counts.

generation and register assignment [25]. Such optimizations and code transforma-
tions depend on knowing branch probabilities (i.e. arc frequencies) and can make
only imprecise use of block counts. Arc frequencies frequently cannot be deduced
from block frequencies; an example program graph is in Figure 2.1, where knowing
that each block is executed n times does not provide enough information to deter-
mine the number of times, say, execution of block A is followed by execution of
block D. This is not a contrived example. Also shown in Figure 2.1 is an actual
program ow-graph (PFG) that contains the problematic graph. This ow graph
was generated frequently by a Pascal compiler for while loops.

Therefore, arc frequencies, not just block frequencies, are desired, although
historically block frequencies have been considered more desirable. To elaborate fur-
ther on the problem of minimal instrumentation for arc counts, we will need some
de�nitions. We assume that the execution cost of inserted instrumentation code
is constant and non-zero; call this cost KI . In Section 2.5, we will discuss some
subtleties in instrumentation code, but for the moment we will assume that each
instance of instrumentation code is exactly the same (e.g., a memory-to-memory in-
crement operation, or an equivalent sequence of operations). When instrumentation
is inserted in code, it may be necessary to insert a jump instruction to maintain
the semantics of the code. We will assume that the execution cost of this jump
instruction is also constant, KJ > 0.
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A program owgraph is

� a set V of basic blocks, the vertices of the graph;

� a set E of directed edges, which are pairs of vertices, e = (src(e); snk(e)). We
say that the edge e leaves src(e) and enters snk(e), the source and sink of the
edge, respectively. The edge is an exit arc of src(e) and an entrance arc of
snk(e).

� a distinguished edge of the graph, e0; we assume, without loss of generality,
that snk(e0), the entrance block of the graph, has no other predecessors, and
src(e0), the exit block of the graph has no other successors; each owgraph has
exactly one entrance block and exactly one exit block.

For each edge e of the graph, F (e) is the frequency count of e; J(e) is a
boolean function that is true if e is an out-of-line jump arc, and false if e is a fall-
through arc; C is a function that maps edges into instrumentation costs. C(e) is the
cost required to instrument edge e, and depends on F (e), KI , and KJ ; speci�cally,
C(e) = CI(e) = F (e)KI if it is not necessary to insert a jump instruction, or C(e) =
CJ(e) = F (e)(KI +KJ) if a jump instruction is required.

Each block v is the sink of at most one fall-through arc, and the source of
at most one fall-through arc. There is no limit on the number of arcs for which a
block is a sink or a source. We de�ne in(v) to be the set of predecessors of v, and
out(v) to be the set of successors of v. We say that an arc e is crowded at its sink if
jin(snk(e))j > 1. Likewise, it is crowded at its source if jout(src(e))j > 1. If an arc
is crowded both at its source and at its sink, we simply say that it is crowded. We
de�ne the predicates e:crowdedSnk, e:crowdedSrc, and e:crowded on the edge e for
these conditions.

The remainder of this discussion assumes that KJ > 0 and KI > 0; all of
the examples we will display assume KJ = KI = 1.

All of the following algorithms take advantage of the fact that, given a
program ow graph, all execution frequencies of the arcs and nodes can be derived if
we know an appropriate jEj � jN j + 2 arc frequencies. Such a subset of arcs can be
selected by �nding those arcs that form the complement of a (non-directed) spanning
tree in the ow graph. If the arcs have associated costs, then a minimal (maximal)
cost subset of arcs can be found by taking those arcs that form the complement of a
maximal (minimal) spanning tree in the program ow graph; a proof can be found
in Knuth, Vol 1., page 368 [29]. I refer to the algorithm for �nding a spanning tree
as the SPAN algorithm, and to the algorithm for �nding the minimal (maximal)
spanning tree as MINSPAN (MAXSPAN). All of this, with the exception of the
arc characterization function J and slight di�erences in notation, is consistent with
previous work.



12

2.2.1 Basic block counts

The most commonly implemented instrumentation technique counts the
number of executions of every basic block, which we'll refer to as FULLNODE.
Techniques that count every line or every programming language statement are even
more ine�cient variants of this technique. FULLNODE has the advantage of being
the easiest to implement, but the disadvantage of being ine�cient: a program can
easily be slowed down by as much as 50% to 100%, depending on the execution cost
of the instrumentation and the average size of a program's basic blocks.

However, it is not necessary to instrument each and every basic block to get
complete block counts. Knuth and Stevenson [30] and Cheung [7] present algorithms
that compute a minimal subset of basic blocks that when instrumented provide
su�cient data to recover the execution frequencies of all other basic blocks. (Cheung
also contains a much more detailed study of minimal instrumentation, including
minimal instrumentation for determining path coverage.) A TypeSetter version
of Knuth and Stevenson's algorithm is included in Appendix A. I will refer to this
algorithm as the K-S instrumentation algorithm.

Conceptually, the K-S algorithm is a graph transformation followed by an
application of a spanning tree algorithm. Given a program-ow graph with basic
blocks V and edges E, the relation � between basic blocks is de�ned to be the
smallest equivalence relation such that a � b if there exists vertex c and arcs c! a
and c! b. A reduced graph is produced whose vertices Vr are the equivalence classes
of the original graph, and whose edgesEr correspond one-to-one with the basic blocks
of the original graph; for each basic block b 2 V , there exists an edge in Vr from
the equivalence class containing b to the class containing the successors of b (by
construction, they are all in the same class).

SPAN is applied to the reduced graph to �nd a spanning tree, and those
edges of Er not in the spanning tree specify the nodes in V that need to be instru-
mented. The K-S algorithm also computes the expressions that will later allow the
frequencies of all nodes to be computed in one pass.

If we have some notion of the execution behavior of the program, then each
node v of a program ow graph can be assigned an instrumentation cost, KIF (v). A
minimal cost instrumentation of the program ow-graph can be found by following
the steps for the K-S algorithm, but using MAXSPAN to �nd the spanning tree
rather than SPAN. We'll call the minimum cost algorithm MINNODE.

2.2.2 Arc counts

A naive implementation of arc counting in a program ow graph would
be to instrument each and every arc of the original graph. This would provide
the necessary counts, but rather expensively. The cost comes from two facts: (1)
jEj > jV j, meaning more space would be required by the instrumentation code;
and, (2) to instrument some arcs requires the creation of a new basic block, and the
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addition of a jump instruction. For such arcs, the instrumentation cost would be
KI +KJ , whereas the instrumentation cost for all nodes is simply KI . These facts
have contributed to a commonly held belief that arc counting is too expensive and
complicated for practicality. As we shall see, this simply is not the case.

As in the case of basic block counts, it is not necessary to measure each
and every arc to derive the number of times each was traversed. A minimum set
of arcs to be measured in a graph consists of those arcs not in the spanning tree
constructed by SPAN, and the minimal cost instrumentation is the set of arcs that
form the complement of the spanning tree found by MAXSPAN. We will call the
resulting algorithm MINARC.

As it stands, MINARC is too expensive. As noted above, instrumenting an
arc requires the creation of a new basic block that is inserted in the arc between its
source and sink nodes. For jump arcs, this new basic block must also contain a jump
to the original target of the arc; this jump adds to the cost of the instrumentation.
This cost is often ameliorated by using transformations to turn arc measurements
into node measurements wherever possible. For instance, if an edge that is to be
instrumented represents the fall-through of one basic block into another, and the
edge is the only edge leaving the source block, then the instrumentation can be
inserted in the edge's source block; similarly, if the edge is the only edge entering the
target block, then the instrumentation can be inserted in the edge's target block.

Procedure 1 implements a heuristic algorithm using these transformations
to reduce the cost of pro�ling arc traversals, where
ISINK(e)=Add instrumentation code to the front of the block snk(e).
ISOURCE(e)=Add instrumentation code to the front of src(e).
and
ISPLIT(e)=Replace edge e with a new basic block ve and edges e1 = (src(e); ve) and
e2 = (ve; snk(e)). Furthermore, T (e1) = T (e2) = T (e), and F (e1) = F (e2) = F (e).
(As we will see, determining C(e1) and C(e2) is problematic.)

These transformations allow us to keep the problem relatively simple. If
we added transformations that allowed us, say, to move basic blocks to remove jump
instructions, or to make the most frequent arc out of a block the fall-through arc
from that block, the problem would be much more complicated. To keep the problem
simple, we assume that the linear order of basic blocks in memory will remain the
same throughout the process of instrumenting the program. Our only options are to
determine where to add instrumentation code.

Before the MAXSPAN algorithm can be applied to the program ow graph
to �nd which arcs are to be instrumented, the cost of instrumenting each arc must
be estimated. If at all possible, we would like to insert instrumentation code without
introducing extra control ow logic or extra basic blocks, so if we can identify where
the above transformations can be applied, we can more accurately estimate the
cost of instrumenting an arc. This leads to the following heuristic cost estimation
algorithm.
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Procedure 1 Instrumenting an arc:

Input: An arc that is to be instrumented.

Result: Instrumentation code is added to the PFG to count executions of the arc.

Method:

Instrument(Arc e)
f

if not e.crowdedSrc then ISOURCE (e);
elsif not e.crowdedSnk then ISINK (e);
else ISPLIT (e);
endif ;

g

2

Function 2 Estimate cost of instrumenting an arc:

Input: An arc in the PFG.

Output: An estimate of the cost of instrumenting the arc should it be chosen for
instrumentation.

Method:

InstrumentationCost(Arc e)
f

if not e.crowded then
return KI � F (e);

elsif not J (e) then
return KI � F (e);

else return (KI +KJ) � F (e);
endif ;

g

2

If the instrumentation code can be appended to a basic block, then the cost
of instrumenting the arc e is the cost of the instrumentation code itself, KI , times
the frequency of execution F (e). If the arc is a fall-through arc then the cost is still
KIF (e) even if the arc is crowded: the instrumentation can be inserted between the
two blocks. In all other cases, the source block of the arc will be jumping to the
instrumentation code, which will itself have to jump to the sink block; therefore,
the cost of instrumenting the arc is (KI + KJ)F (e), where KJ is the cost of the
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Figure 2.2: Another graph with cheaper instrumentation.

jump instruction. We will call MINARC augmented with the heuristic placement
algorithm MINARC0.

This approach looks good, and I will present results below to show that it
is e�ective, but there is nothing to suggest that it is complete or produces minimal
instrumentations. Rather, it is a set of ad hoc rules for utilizing the results of the
MINARC algorithm. That it is not complete can be seen from Figure 2.22. If arc
c is to be instrumented, and if the execution frequencies of a or b can be derived
independently of c, then the instrumentation on c can be moved into the node A.
The frequency of arc c is then F (c) = F (A)� F (a), since F (a) = F (b).

This suggests another way of asking the question. We have an algorithm
that will �nd the minimum set of nodes for computing node counts, and an algorithm
for �nding a minimum set of arcs for computing arc (and therefore node) counts: is
there an algorithm that will �nd a minimum set of nodes and arcs for computing
execution frequencies for a program ow graph?

An extension to the above algorithms produces a candidate algorithm,
which I'll (presumptuously and inaccurately) call OPT. Given a ow graph (V;E),
we construct a new one (V 0; E 0) as follows. For each node in V we create a corre-
sponding node v0 2 V 0. For each arc e = v1 ! v2 2 E, we construct a basic block
v0e 2 V

0 and two arcs v01 ! v0e and v
0
e ! v02 in E

0. So jV 0j = jV j+ jEj and jE 0j = 2jEj.
The K-S algorithm applied to the new graph (V 0; E 0) will yield a minimum

set of nodes in V 0 required to compute all frequencies of all nodes in V 0. Since each
node selected for instrumentation in V 0 corresponds to either a node or an arc of the
original graph, we also have a minimum set of nodes and arcs of (V;E) from whose
measurement we can compute all other execution frequencies of nodes and arcs in F .
We extend the algorithm to �nd the minimal cost set of nodes and arcs by assigning
the same costs to the nodes in (V 0; E 0) as are estimated for the nodes and arcs in
(V;E) from which they are constructed. Therefore, if a node v0 2 V 0 corresponds to

2Thanks to Jim Wilson of Cygnus Corporation for pointing this example out and for taking the

time to convince me it was worth a second look.
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MINARC
n1! n2 100
n3! n4 27
n4! n5 27
n5! n3 54
n5! n6 81
n2! n3 80
n2! n4 80
total 449

MINOPT
n1 100
n3! n4 27
n4! n5 27
n5! n3 54
n5! n6 81
n3 67
n4 67
total 423

n1

n2

n6

n5

n4

n3

61,J100,F

27,J

27,F

27,F40,J

81,F

40,J

40,J

40,J

81,J

100,J

Figure 2.3: A program ow-graph for which MINARC is not optimal

node v 2 V , then C(v0) = C(v) (which is always KI). If a node v
0 2 V 0 corresponds

to the arc e 2 E, then C(v0) = C(e). By assigning these costs and invoking a
maximal spanning tree algorithm, we �nd the minimal cost instrumentation using
nodes and arcs.

That this algorithm, which we'll callMINOPT, is not equivalent to MINARC0,
and can sometimes improve on the measurement costs of a program graph is easily
proved. In Figure 2.2 MINOPT always instruments node A instead of arc c, unless
of course c is executed a lot less than once per execution of A.

Finding PFG instances on which MINOPT produces di�erent instrumen-
tations than MINARC0 is a bit more di�cult. Figure 2.3 is the second simplest sub-
graph I have found that demonstrates this di�erence (the simplest is Figure 2.2). In
Figure 2.3 each arc is labeled with an execution frequency, and with whether it is
a jump arc or a fall-through arc. The two tables show the results of the MINARC0

and MINOPT algorithms. The �rst column contains the objects chosen to be mea-
sured, and the second column contains the cost of measuring that object (assuming
KI = KJ = 1). The major di�erence in the results of the two algorithms is that
MINOPT has chosen two nodes to measure, while MINARC0 can choose only arcs,
and then look for transformations to decrease the cost. The instrumentation trans-
formations described previously do not help MINARC0 in this example. The only
one that applies is ISOURCE(n1! n2).
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Figure 2.4: The problem con�guration

While MINARC0 does almost as well as MINOPT, it is heuristic and not
minimal. MINOPT is provably minimal (with respect to a set of instrumentation
cost estimates), and can �nd instrumentations that would be di�cult to characterize
easily as post-transformations for MINARC. Given that the complexity of both MI-
NARC and MINOPT is O(jEj log jEj) MINOPT is to be preferred for its simplicity
and minimality.

2.2.3 The `optimal' algorithms are not optimal

The assignment of minimal instrumentation costs to the edges of a program
owgraph has been glossed over in the literature. In fact, such an assignment cannot
always be done unambiguously so as to guarantee a minimal solution. That is to say,
all optimal solutions shown in the literature are optimal with respect to a speci�c in-
strumentation cost assignment on the arcs. But until this time no one has examined
the question of how those costs are assigned, or even if they can be assigned, and
whether such an assignment still permits an e�cient optimal solution. For instance,
Cheung mentions that instrumenting some arcs requires extra ow-control instruc-
tions, [7, pp. 38-39], but his algorithms assume that these costs can be assigned in
linear time, and that the cost of instrumenting one arc does not a�ect the cost of
instrumenting other arcs.

That these assumptions do not hold for even very simple cases can be seen
in Figure 2.4 where the arcs to node C are both jump arcs and are both crowded.
The cost assignment algorithm described above would assign instrumentation costs
of F (A ! C)(KI +KJ) and F (B ! C)(KI +KJ) to the arcs. However, if either
or both arcs are chosen for instrumentation, it is obvious that one of them does not
have to jump to block C, but rather can create a new basic block that simply falls
through to C. In Figure 2.5 we assume that both arcs going to basic block C are
to be instrumented. The arc B ! C is instrumented by placing its instrumentation
code in a separate basic block which falls through to the basic block C. The instru-
mentation for the arc A! C cannot be so con�gured and hence must use the more
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Figure 2.5: ISPLIT vs. ISPLITCHEAP

expensive method for splitting the arc. We can add this transformation to our list
of transformation heuristics on page 13:

ISPLITCHEAP(e): Replace edge e with a new basic block ve and edges e1 =
(src(e); ve) and e2 = (ve; snk(e)); J(e1) = J(e) and J(e2) = false.

If in order to instrument edge e we must use ISPLIT(e), then the instrumentation
cost assigned to edge emust be CJ(e) = F (e)(KI+KJ). If we use ISPLITCHEAP(e),
then the cost is CI(e) = F (e)KI .

Given the above example, it is easy to see that assigning an accurate in-
strumentation cost to an arc when all that is known is that arc's frequency is not
possible: we do not know until the completion of the algorithmwhich set of arcs must
be instrumented, and therefore we don't know whether an arc will need to be ISPLIT
or whether it can be ISPLITCHEAP. Surprisingly, it is not possible to assign correct
instrumentation costs to the arcs in the above situation even when the frequencies
of all arcs entering a node are taken into account. A proof by counter-example is
given below in Section 2.4.

The two-step process of assigning instrumentation costs to arcs and then
applying a maximal spanning tree algorithm does not always produce an optimal
instrumentation. There may be a polynomial-time algorithm for �nding an optimal
instrumentation, but as of this writing, I do not know what it is. If there are p
instances of nodes like C in Figure 2.4, then �nding the optimal instrumentation
could require examining 2n

p

spanning trees, trying all n cost assignments at each of
the p problem nodes. I conjecture that the problem is NP-complete. A fruitful line
of search for a proof might begin with Szymanski's NP-completeness proof for the
variable-span branching problem [47], which has some of the same characteristics as
the instrumentation-cost problem.
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Even so, �nding the optimal minimal-cost solution in practice does not
result in su�ciently more e�cient instrumentations to warrant an intense search for
a general solution. MINOPT works quite adequately in practice. The non-optimality
of the solution matters little because

� we show in Section 2.3 that pro�ling requires less than 20% overhead, anyway;

� the problem con�guration arises only under unusual circumstances (it occurred
in only 2.4% of the 20457 basic blocks in our experiments); and,

� of those instances in which it does occur, the performance degradation is esti-
mated to be less than 1%.

Throughout, whenever I refer to `optimal instrumentation' algorithms, I mean opti-
mal with respect to the instrumentation estimates.

2.3 Empirical data

I created a system that inserts optimal arc-counting in programs and used
it to instrument several C programs by some of the algorithms mentioned in the
previous section. The programs were �rst instrumented without the bene�t of pro-
�le data; the frequencies of all arcs and nodes was one, resulting in a more-or-less
random selection of instrumentation points by the algorithms (`random' in the sense
that the selected instrumentation points were the result of vagaries of selecting a
spanning tree from quick-sorting equi-valued elements). Next, a heuristic was used
to assign relative frequencies to arcs: back-arcs and their target nodes were given
higher frequencies than the rest on the assumption that a back-arc indicates a loop.
Finally, pro�le data was used to compute a minimal-cost instrumentation.

The results are presented in Table 2.1. Four programs were compiled with
gcc -O and instrumented: intmm, an integer matrix multiply; compress, the UNIX
compression utility; tro�, the UNIX typesetting program; and cc1 of the gcc com-
piler. The �rst column for each program shows the running time of the program in
CPU seconds, while the second column shows the running times of the instrumented
versions of the programs expressed as a percentage of the original running time (more
precisely, if N is the running time of the program without any instrumentation, and
P is the running time of the program with instrumentation inserted, then the second
column = 100� ((N=P )� 1). All programs were run on a Sun 3/140 and were com-
piled with the GNU C compiler, version 1.37.1. All running times are the average of
10 runs to smooth out system-dependent uctuations.

The intmm program had no input data, and the contents of the matrices
were initialized the same for each run (whether they were or not would not have
made any di�erence to the running of the algorithm). The running times shown
reect the best that the various instrumentations could do for that program based
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means intmm compress tro� cc1

not instrumented 29.06 17.03 96.91 28.91
prof 29.93 3.0% 18.37 7.9% 127.91 32.0% 36.08 24.8%
gprof 31.45 8.2% 21.22 24.6% 164.81 70.1% 46.38 60.4%

FULLNODE 32.08 10.4% 26.78 57.3% 175.18 80.8% 42.40 46.7%
random 31.92 9.8% 20.58 20.8% 138.83 43.3% 36.40 25.9%

MINNODE heuristic 31.83 9.5% 21.32 25.2% 139.97 44.4% 37.55 29.9%
pro�le 31.73 9.2% 19.90 16.9% 130.44 34.6% 35.72 23.6%
random 33.36 14.8% 20.83 22.3% 131.40 35.6% 36.46 26.1%

MINARC0 heuristic 33.38 14.9% 20.26 19.0% 131.68 35.9% 37.01 28.0%
pro�le 33.32 14.7% 19.94 17.1% 117.40 21.1% 35.21 21.8%
random 33.31 14.6% 20.39 19.7% 131.24 35.4% 36.35 25.7%

MINOPT heuristic 32.93 13.3% 20.15 18.3% 141.56 46.1% 37.85 30.9%
pro�le 31.89 9.7% 19.89 16.8% 118.99 22.8% 34.90 20.7%

Table 2.1: Pro�ling overhead

on the pro�le data: the pro�le would be exactly the same each run. MINOPT's 9.7%
overhead vs. MINARC0's 14.7% reects the fact that the inner loop in intmm mirrors
exactly the situation in Figure 2.2. MINOPT was able to �nd an instrumentation
that did not require the expensive arc-splitting that MINARC0 was required to do.

For each of the other three programs, di�erent input was used to create the
pro�le data than was used create the numbers in the table. For compress, the pro�le
data was generated by compressing compress.c, the source �le for the utility. The
numbers in the table are from compressing /usr/dict/words, a 200Kb �le containing
a sorted list of 25,144 words. Tro� 's pro�le data was created by typesetting a 48Kb
language reference summary, and the numbers in the table are from typesetting a
190Kb technical report on a bibliographic database browser [49].

The cc1 pro�le data was created by compiling gcc.c, the 23Kb source �le
for the process-dispatching front-end of the gcc compiler, and combine.c, a 46Kb
source �le for compile-time constant expression evaluation for the same compiler.
The measured run compiled cccp.p, the 73Kb source �le for the Gnu C-preprocessor.
The sizes of the source �les are after all pre-processing commands and all comments
were stripped.

Using di�erent input for pro�ling than for timing runs is necessary to con-
vince us that we simply aren't `training' the pro�le algorithms to a speci�c program.
However, it does introduce some anomalies in the numbers in Table 2.1. For instance,
MINARC0, using pro�le data to instrument tro� , resulted in the instrumented pro-
gram taking 21.1% longer to run than did the uninstrumented version. This contrasts
with MINOPT using pro�le data on the same program: the instrumented version of
tro� required 22.8% longer (the di�erence is statistically signi�cant and not due to
variations in measurement). Obviously, the instrumentation selected by MINOPT
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intmm compress tro� cc1
prof 36813 44189 66309 324357
gprof 20992 25304 42128 204160

FULLNODE 88 1492 10332 68636
MINNODE 56 796 6336 48216
MINARC0 56 808 6408 49040
MINOPT 56 808 6408 49040

Table 2.2: Comparison of pro�le data size requirements

does not do as well on the set of tro� input as did the instrumentation selected by
MINARC0. Such variation due to variations in the input are to be expected.

The numbers also indicate that the heuristic I used to try to guess which
would be the heavily used arcs and nodes in the PFG is quite inadequate: it is better
simply to accept a random assignment (i.e., if there is no pro�le data available).
Perhaps a closer analysis of average aggregate program behavior could produce a
heuristic that would do better than just random chance.

From the data presented in Table 2.1 we can see that MINOPT is de�-
nitely competitive with MINNODE, compares favorably with prof and gprof , and
is de�nitely better than FULLNODE, the traditional technique for instrumenting
programs.

Another bene�t of MINOPT is demonstrated in Table 2.2. It shows the
number of bytes required for the generated pro�le data. In all fairness, comparing
the output of prof and gprof with the others is comparing apples and oranges. You
can't get execution counts of basic blocks from prof or gprof, but then you can't get
timing estimates from the others. Howver, the di�erence between FULLNODE and
the MIN algorithms is signi�cant.

2.4 Counter-example

In general, it is not possible to assign instrumentation costs to arcs in such
a way that an optimal instrumentation can be found using MAXSPAN. To prove
this, it su�ces to show that there exists one program ow graph for which this is
true. To this end, we construct a subgraph and show that for any instrumentation
cost assignment algorithm, the subgraph can be embedded in a larger graph that
causes MAXSPAN to select a non-optimal instrumentation.

Figure 2.6 shows a portion of a program ow graph that satis�es the criteria.
Basic block C has two entering arcs that are both crowded jump arcs. We more-or-
less arbitrarily assign execution frequencies to the arcs. The arc A! C is executed
200 times, the arc B ! C 90 times. We assume that the cost of instrumentation
KI = 1 and the cost of a jump instruction KJ = 1. The values for these constants
could be any non-zero value and we would still be able to �nd our counter-example,
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Figure 2.6: The problem con�guration.
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Figure 2.7: Case 1: Estimating that the most frequent arc is split expensively.

but that is not necessary to prove here: we need to show only that there exists one
graph for which the algorithm is non-optimal.

The graph surrounding the sub-graph in Figure 2.6 is not shown, but is
constructed such that the MAXSPAN algorithm will put nodes A, B, and C in the
spanning tree last. This is easily done by creating the surrounding PFG such that
each node has at least one entrance or exit arc with a frequency count higher than
any arcs in the sub-graph. The nodes in the sub-graph are added to the spanning tree
by selecting the arc in the sub-graph with the largest frequency. The arc is chosen
from among all of the arcs shown in Figure 2.6, including the entrance and exit arcs
of all three nodes. Exactly three of these arcs will be selected by the algorithm to
complete the spanning tree.

Before invoking MAXSPAN, instrumentation costs must be assigned to
each arc. The question is: does there exist an algorithm for assigning costs to the
arcs A! C and B ! C that has as its inputs only the frequencies of those arcs?
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Figure 2.8: Cases 2 and 3: Estimating that the least frequent arc is split expensively,
or that both arcs are split expensively.
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Figure 2.9: Case 4: Estimating that neither arc is split expensively.



24

If such an algorithm existed it would produce one of four results: it would
assign the expensive-split cost to A, assign it to B, assign it to both arcs, or assign
it to neither. Figures 2.7 through 2.9 show that no matter which assignment is
made, there exists a consistent set of arc frequencies which will cause the MAXSPAN
algorithm to mis�re and select the wrong arcs for instrumentation { wrong in the
sense of being non-optimal. In each �gure, each arc is labeled with its frequency,
and with its cost estimate in parenthesis if di�erent from the frequency times KI .
For example, in Figure 2.7 the arc A! C has frequency 200, but its assigned cost
is KI +KJ = 2 times that, or 400. Given these instrumentation cost assignments,
the arcs selected by the MAXSPAN algorithm are shown in bold. So in Figure 2.7,
the cost of measuring the sub-graph is 1 + 40 + 51 + 101 + 1 + 289 + 1 = 492. The
dashed lines show a better spanning tree resulting in a cheaper instrumentation: in
Figure 2.7 that cheaper instrumentation would cost 1+40+51+101+200+1+1 = 395.

Figure 2.8 shows a set of frequencies for which guessing that the least
frequent arc (B ! C) is expensively split, or that both arcs are expensively split,
will also fail. Again, the bold arcs are the ones chosen by the MAXSPAN algorithm
for inclusion in the spanning tree, while the dashed lines show a better selection, one
resulting in a cheaper instrumentation.

Figure 2.9 shows that assuming both arcs will be ISPLITCHEAP (an im-
possibility in actuality) does not work either. The arcs selected by MAXSPAN result
in an instrumentation that costs 1 + 1 + 101 + 200+ 180 + 11 + 1 = 495. If neither
A! C nor B ! C is put in the spanning tree, then both will be measured. After
the MAXSPAN algorithm chooses them for instrumentation, it is easy to see that
of the two it is better to ISPLITCHEAP the most heavily used arc; hence the cost
of 180 for instrumenting the lesser executed arc B ! C. It would have been better
not to measure B ! C, as shown by the dashed lines. This better instrumentation
would cost only 1 + 100 + 1 + 101 + 200 + 11 + 1 = 415.

Therefore, an algorithm for assigning instrumentation estimates to arcs does
not exist that has as its only inputs the frequencies of all arcs entering a node and
that depends on the MAXSPAN algorithm to �nd the minimum instrumentation.

2.5 Problems with counting

There are several complications that must be considered when implement-
ing a pro�ling system. The �rst is determining the point during compilation when
the pro�ling code is to be inserted. The system I used operated on the assembly
language output of the GNU C compiler. However, if the pro�ling code is inserted
earlier by the compiler, then it is easy to �nesse some of the task of counting. For
instance simple loops (i.e., reducible sub-graphs with no mid-loop exits) that are ex-
ecuted a compile-time constant number of times do not need to increment a counter
on each execution of the loop. In general, if the execution frequency of an arc in a
program ow graph is known a priori that arc can be removed from the program-ow
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graph prior to computing the set of instrumentation points. If the removal of the arc
results in dis-connected sub-graphs, each sub-graph is treated separately. Even when
the loop is not executed a constant number of times, but where strength-reduction
can hoist the count increment out of the loop, the loop need not be instrumented.
Rather the number of executions can be counted outside the loop and the counter
incremented only once. Sarkar [42] shows one method for doing this using depen-
dency graphs. However, it is impossible to tell from his paper exactly how much
counting overhead is actually reduced by his technique. Further study and better
numbers are needed here.

All of the the results in Section 2.3 computed each function's instrumenta-
tion assuming that the number of times each function was called had to be counted.
That is, the functions were instrumented one at a time without knowledge of how
or from where the function was called3. However, if we have pro�led the entire pro-
gram, the number of times a function is executed is simply the sum of the execution
frequencies of all call sites that call this function: there is no reason to recompute
that number in the instrumentation of the function. Not all programs execute syn-
chronously, as we have implicitly assumed throughout this discussion, nor do all call
sites call only one function. If functions are called indirectly, for example by inter-
rupt handling facilities, then it is mandatory that each function be instrumented
separately to compute the number of times it was called.

The point to be made here is that these optimizations are possible only if
the instrumentation code is inserted prior to the optimizing passes of the compiler.

Another problem for post-pass instrumentation is related to the machine
architecture. If the processor's instruction set makes use of condition ags, and if the
life of condition ag values extends across basic blocks, then the pro�le code must
preserve those values. This can be done either by saving and restoring the values
of the condition ags around the instrumentation code (the method used in our
experiments), using an instrumentation sequence that does not change the setting of
the condition ags, or by scanning the basic block and inserting the instrumentation
just before the �rst instruction that kills but does not use the condition ags [50].
This situation is much more naturally handled in the compiler proper than in a
post-processor.

2.6 Conclusions

I have demonstrated that counting arcs is as cheap as counting nodes, and
cheaper than counting every node. The MINOPT algorithm produces instrumenta-
tions that take 50-70% of the space required by instrumentations produced by the
FULLNODE algorithm, execute in 70-80% of the time and provide signi�cantly more

3This method was encouraged by tro�, the only widely-used non-interactive program I know of

that uses inter-procedural gotos as a major form of control ow.
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information. MINOPT's instrumentations require approximately the same amount
of time as MINNODE's and require slightly less space, but, again, they provide sig-
ni�cantly more information. (In the next section I present an optimization that uses
arc counts and would not work with only node counts.) MINOPT should be the
instrumentation algorithm of choice for compilers/systems.
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Chapter 3

A Low-level Use: Code

Reorganization for Instruction

Cache Performance

3.1 Instruction cache utilization

If a compiler has pro�le data available there are simple optimizations that
can take advantage of the data. This chapter explores a simple optimization that
requires pro�le data. Speci�cally, I will show how to utilize information about the
runtime behavior of a program to enhance the performance of that program on
architectures with an instruction cache.

There have been many investigations into improving computer performance
by reorganizing programs' address spaces on virtual memory machines. In this chap-
ter, I address the question of whether reorganization can be bene�cial for machines
with caches and examine the costs required to achieve improved performance. If an
inexpensive way can be found to reorganize the address space of a program such that
a small cache with code reorganization can have the performance of a larger cache
without reorganization, the smaller inexpensive caches would be a more competitive
choice.

Instructions that are executed close together in time are temporally local.
Instructions that are close together in the address space are physically local. A
cache turns temporal locality into physical locality by holding the most recently
executed instructions in faster memory. Exactly how a cache should be implemented
in hardware and which strategies for replacing the data in the cache are topics
that have received a great deal of study. For an overview of cache designs and
organizations, see Smith's survey article [45].

If we let C represent a cache, where each line i of the cache has an address
C(i):addr and contents C(i):instr (the contents is an instruction for instruction
caches), then when address a is referenced, the cache is examined to see if a is
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Figure 3.1: Removing cache contention by reorganizing

already in the faster memory. If a = C(i):addr for some i, then the contents of that
line is returned as the contents of the referenced memory address.

A fully-associative instruction cache is one that searches in parallel each
line of the cache for the referenced address; i.e., if C(i):addr = a for some i, then
return C(i):instr. In a direct-mapped instruction cache, on the other hand, the
address and its contents can be in only one line of the cache. Which line is (usually)
determined by the low-order bits of the address; i.e., if C(lower bits of a):addr = a
then return C(lower bits of a):instr. Where in a fully associative cache an address
and its contents can be placed in any line of the cache, in a direct-mapped cache,
an address and its contents can be put in only one place; hence the name direct-
mapped. The hardware required to do the parallel search is expensive to build, while
a direct-mapped cache is much simpler and less expensive.

In either case, we are interested in several statistics as indicators of how
well a cache performs. A critical statistic is the miss ratio: the number of times an
address was referenced and it was not found in the cache. The dual of the miss ratio
is the hit ratio: the number of times an address was referenced and found in the
cache. By de�nition, then, miss ratio = 1� hit ratio.

There are only two ways to improve the performance of a program in a
cache: (1) decrease the probability that frequently-executed sections of the program
compete for cache resources (Figure 3.1); and (2) increase the amount of useful
information in the cache (Figure 3.2).

In Figure 3.1, assume the code at block A and the code at block B are the
active portions of a loop. Assume further that, due to the size of the infrequently
executed block C, blocks A and B are mapped to the same locations in the direct-
mapped cache, as shown on the left. The loop containing these blocks can be made
more e�cient by moving A and B with respect to one another so that they do not
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conict in the cache, as shown on the right.

In Figure 3.2 assume the blocks A, B, and C are of such a size that A
and B could �t in a cache line. The cache lines on the left represent one way they
might map into a direct-mapped cache, with the side-e�ect of loading infrequently
executed code from block C into both lines. In the cache on the right the initial
cache miss that loads the code from A also loads B, saving at least one cache miss
in the execution of the loop; also, infrequently executed code from C takes up much
less space.

For a fully associative cache there may be ways of reorganizing a program
to improve its performance with respect to (2); little can be done as far as (1) is
concerned. With direct-mapped caches, however, both (1) and (2) suggest easy ways
to gain performance improvement. In a direct-mapped cache, contention is a function
of the addresses of the competing program segments, which is easily controlled by a
loader and/or compiler.

Mark Hill argues that direct-mapped caches are not only cheaper and eas-
ier to build [20], they also can give equivalent performance as more complex cache
arrangements for the same silicon acreage invested. I have developed an algorithm
called Greedy Sewing that uses arc counts to reorganize code for improved perfor-
mance in direct-mapped caches, and that is independent of the parameters of the
target cache.

While there have been published results for organizing data in memory to
improve cache performance, there has been little published regarding rearranging the
instruction space. For instance Janet Fabri [11] and K. O. Thabit [48] both discuss
methods for improving the cache behavior of a program's data accesses, but say little
about the behavior of the code itself.

Some recent work on code reorganization include Scott McFarling's work
at Stanford [34], work done at Hewlett-Packard by Pettis and Hansen [36], and Hwu
and Chang's work on combining reorganization with the in-lining of procedures [21].
McFarling's work di�ered from mine by concentrating on positioning basic blocks
based on their frequency counts and by utilizing knowledge of the target cache. Hwu
and Chang extended my work by doing actual in-lining (as opposed to my pseudo-
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inlining). Pettis and Hansen pretty much duplicated my work, with the exception
that their algorithm reorganizes the entire program instead of just those areas where
the vast majority of the improvement is gained.

3.2 Greedy Sewing

A program control-ow digraph (or program ow graph or PFG for short)
is a set of basic blocks V and directed arcs E. If e = v ! w for nodes v; w 2 V
then we de�ne src(e) = v and snk(e) = w. Associated with each arc e (basic
block v) in the graph is a positive integer F (e) (F (v)) representing the number
of times this arc (basic block) was executed during the execution of the program
(so S =

P
e2E F (e) =

P
v2V F (v)). Associated with each basic block v are functions

onThread(v) that returns the thread that basic block v is on, onHead(v) that returns
true if the block v is at the head of its thread, and onTail(v) that returns true if
v is at the tail of its thread. Given threads t; s 2 T , we de�ne the procedure
append(t,s1,s2,: : : ) to concatenate the threads si in order onto thread t, and delete
threads si from T . The functions first(t) and last(t) return the �rst and last blocks,
respectively, on the thread t.

The basic idea is to sew threads together such that the order of the basic
blocks in a thread tends to improve the correspondence between the static spatial
locality of basic blocks with their dynamic temporal locality. We de�ne the function
canStitch(u,v) to return true if the nodes u and v can be concatenated onto the same
thread; this is true only if u 6= v and onHead(u) and onTail(v) are both true.

We de�ne the procedure Stitch(e) to `sew' two threads together:

Procedure 3 Stitching Basic Blocks:

Input: An edge e in a PFG; a set of threads of basic blocks T .

Result: If the source and sink blocks of e can be concatenated, the set T is modi�ed
such that it contains one less thread due to the concatenation of the two member
threads.

Method:

Stitch(e: Arc)
begin

if canStitch(e) then
append( onThread(src(e)) , onThread(snk(e)));

end

2

Using these functions, we are now ready to lay out a preliminary version of
the Greedy Sewing algorithm.
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Algorithm 4 Greedy Sewing Algorithm(1):

Input: A PFG (V;E), and a parameter p such that 0 � p � 1; and a set T of threads
that are initialized such that each basic block is on its own thread; after initialization
onHead(v) and onTail(v) are true for all v 2 V .

Result: The set of threads T is modi�ed to indicate the relative ordering of the basic
blocks in V . A thread t 2 T speci�es the order in which the basic blocks are to
be placed contiguously in memory. There is no implied ordering of basic blocks on
di�erent threads.

Method: The parameter p is used to specify what portion of the arcs will be examined.
That is, a set of arcs A will be processed where for all a 2 A; F (a) � F (b) for all
b =2 A, and

P
a2A F (a) < p �

P
e2E F (e). That is, setting p = :90 would cause the

main loop of the algorithm to be repeated until su�cient arcs had been processed
to account for 90% of all arc traversals. This means that usually 5-10% of the arcs,
and even fewer basic blocks, need be reorganized.

Greedy(p: real; A: Set(Arc))
begin

assert(0 � p � 1);
S  p�

P
e2A F (e)

s 0
while (s < S) do

Select e 2 A such that F (e) is maximum.
E  E � feg
s s+ F (e)
if canStitch(src(e), snk(e)) then

Stitch(src(e), snk(e))
endwhile

end

2

In preliminary tests of the greedy algorithm, several situations were ob-
served that this simple algorithm did not handle adequately. While the majority of
program improvement comes from the simple version of Greedy Sewing, it does not
take very many special cases to eat into those savings. Based on observations in these
preliminary runs, the simple algorithm was enhanced with some checks for special
cases. For instance, consider the ow graph in Figure 3.3. If the path A! B ! D is
the more frequently executed path, then the thread ABD will be formed (1). Since
C cannot be sewn to either A or D now, it remains a singleton thread (2). If it is
very infrequently executed, then it makes little di�erence where C is placed relative
to the thread ABD. However, if the path A! C ! D is only slightly less frequently
executed than the path A! B ! D, and if the sum of the sizes of A, B, C, and D
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Figure 3.3: Two threads from if-then-else

are small enough that they might all �t in a cache, then the single thread ABCD in
Figure 3.3(3) is preferable over the two threads (1) and (2).

Since the Greedy Sewing Algorithm is general and does not depend on any
particular cache con�guration or size, it cannot know whether any set of basic blocks
will �t in a cache, and so uses a heuristic to attempt to capture instances of this
con�guration of basic blocks. The function isSmallEquiCondl checks for basic blocks
matching exactly this con�guration|i.e. the basic block ends with a conditional
jump instruction, the two arms of the conditional have at most one basic block in
them and are very nearly equi-probable|and when found the procedure StitchCondl
creates the longer thread. The actual mechanics of putting a small if-then-else on a
thread is straightforward in procedure StitchCondl (see the next page).

A second common, but more complicated, situation is pictured in Figure 3.4
where a procedure P is called from a basic block A. We want to concatenate block
Pr with block B because the same considerations that applied to the previous if-
then-else example apply here: if the frequent path through the procedure is small
enough such that A, the frequently executed portions of P, and B could �t in the
cache, then we would like to construct the thread shown on the right of Figure 3.4.
The procedure StitchCall e�ectively constructs the arc Pr ! B such that Pr and
B are eventually made contiguous. When the bottom of A is sewn to the top of
P0, we say that procedure P has been pseudo-inlined. A basic block containing a
single jump instruction is inserted between the call and the target to maintain the
semantics of the original code.

That is the simple view of pseudo-inlining. It is complicated by the fact that
at the time we invoke StitchCall on the arc e (using the notation in the example in
Figure 3.4, it will be one of arc A! B or arc A! P0, depending on the vicissitudes
of the sorting algorithm) we have not yet encountered the return block Pr, and may
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Function 5 isSmallEquiCondl:

Input: An arc e 2 E.

Output: Returns true if src(e) is the head of a small if-then-else with approximately
equi-probable true and false arms. A global constant � de�nes what is meant by
equi-probable.

Method:

isSmallEquiCondl(e : Arc) return boolean

begin

if src(e) ends with a conditional branch (and therefore has
two exit arcs e and w)

and snk(e) has one exit arc ex
and snk(w) has one exit arc wx

and snk(ex) == snk(wx) ��they go to the same block
and snk(ex) != src(e) ��they do not make a loop
and snk(ex) != src(ex)
and (jF (e) � F (w)j=(F (e) + F (w))) < �
then

return true

else

return false

end

2

Procedure 6 StitchCondl:

Input: An arc e 2 E that is one arm of a basic block that ends in a conditional
branch instruction. Assumes that isSmallEquiCondl(e) is true.

Result: A new thread is added to T that contains the four basic blocks of the if-
then-else.

Method: Let w and ex be de�ned as in the function isSmallEquiCondl. Then a new
thread is created by concatenating

append(onThread(src(e)),
onThread(snk(e)),
onThread(snk(w)),
onThread(snk(ex))).

2
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Figure 3.4: Pseudo-inlining

not encounter it if it is not one of the hot spots of the program. During the normal
operation of Greedy Sewing all blocks ending with a return instruction will end up
at the tail of a thread: there are no exit arcs from a return block. At the same time,
we do not want basic block B, the one following the call instruction, to be threaded
with a less frequently occurring basic block.

Let the function target(v) return the basic block that is the target of the
call instruction that ends block v (unde�ned otherwise), and let returnsTo(v) be the
basic block to which the called procedure returns. Then, whenever an arc e is selected
for which isCall(src(e)) is true (i.e. the basic block src(e) ends with a call instruc-
tion), the procedure StitchCall (Procedure 7) modi�es block B = returnsTo(src(e))
so that onHead(B) is false (even though B is still (on) a singleton thread) and adds
src(e) to a set of remembered basic blocks R. At the end of the Greedy Sewing
Algorithm, the procedure append R blocks (Procedure 8) is invoked to append all of
the blocks r 2 R to the appropriate threads.

The entire Greedy Sewing Algorithm used in our experiments is given in
Algorithm 9.

3.3 Results

I used the pro�le-collection techniques of the previous chapter to collect
arc frequencies of several programs. After pro�le data was collected, the program
reorgBBs then read the original assembly language �les and reorganizes them based
on that pro�le.

3.3.1 The Programs and Traces

There were three programs chosen for experimentation and each program
had four versions created: the normal, unreorganized version produced by the Gnu
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Procedure 7 StitchCall:

Input: An arc e 2 E such that isCall(src(e)) is true.

Result: The target of the call in src(e) is pseudo-inlined into the thread containing
src(e). The set of threads T and the set of remembered basic blocks R are modi�ed
so that the pseudo-inlining can be completed later.

Method:

StitchCall(e : Arc)
begin

assert(isCall(src(e)))
t target(src(e))
r  returnsTo(src(e))
append(onThread(src(e),t))
onHead(r)  false;
add src(e) to R
end

2

Procedure 8 append R blocks:

Input: The set R of return blocks; the set of threads T.

Result: The threads containing the return blocks are appended to the threads con-
taining the corresponding call blocks. All return blocks are at the head of a thread,
even though StitchCall modi�ed them to appear otherwise.

Method:

append R blocks(R: Set(Node))
begin

for each e 2 R do

append(onThread(e), onThread(target(e)))
endfor

end

2
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Algorithm 9 Greedy Sewing Algorithm(2):

Input: A PFG (V;E); a parameter p such that 0 � p � 1; and a set of threads T
that are initialized such that each basic block is on its own thread; after initialization
of T onHead(v) and onTail(v) are true for all v 2 V .

Result: The set of threads T is modi�ed to indicate the relative ordering of the basic
blocks in V .

Method: The parameter p is used to indirectly specify what portion of the arcs will
be examined.

Greedy(p: real; E : Set(Arc))
begin

S  p�
P

e2E F (e)
s 0
R  ;
while (s < S) 'do

Select e 2 E such that F (e) is maximum.
E  E � feg
s s+ F (e)
if isSmallEquiCondl(e) then

StitchCondl(e)
else if isCall(e) then

StitchCall(e)
else if canStitch(src(e), snk(e)) then

Stitch(src(e), snk(e))
endwhile

append R blocks(R);
end

2
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trace length trace length reorganized
name unreorganized p = :80 p = :90 p = :95
SCRUNCH 9,405,156 9,656,437 9,715,946 9,693,277
TROFF 8,059,174 8,343,440 8,325,470 8,338,350
CC1 8,263,593 8,268,313 8,293,376 8,301,226

Table 3.1: Summary of traces: number of instruction words fetched

number of number of blocks reorganized
name basic blocks p = :80 p = :90 p = :95
SCRUNCH 1,233 22 (1.8%) 27 (2.2%) 32 (2.6%)
TROFF 4,000 149 (3.7%) 207 (5.2%) 318 (8.0%)
CC1 26,407 727 (2.8%) 1,317 (5.0%) 1,939 (7.3%)

Table 3.2: Summary of traces: number of basic blocks

C compiler, and three reorganized by the Greedy Sewing Algorithm with p set to
.80, .90, and .95. A summary of the programs, the basic block counts, and trace
sizes is in Tables 3.1 and 3.2. I collected a trace of each of these twelve programs
which were then used as input to Mark Hill's DineroIII cache simulation program
[19]. Each trace was simulated on eleven di�erent cache con�gurations: 256 bytes
with 4 and 8 byte blocks; 1024 byte cache with 4, 8, and 16 byte blocks; and 4096
byte cache with 4, 8, and 16 bytes, each using single associativity (direct-mapped)
and two-way set associativity.

The �rst program was scrunch, a Hu�man encoding algorithm. The pro�le
was generated by scrunching a 200K spelling dictionary. The trace was created by
scrunching scrunch.c, a 42Kb C source �le.

A second program, tro�, was chosen because of its wide use in UNIX envi-
ronments. The pro�le was generated by tro� ing three separate technical documents,
chosen to represent a broad and typical use of the program. The �rst document con-
sisted of 103K bytes after being preprocessed by tbl, eqn, and grn, This included
1933 lines (32K bytes) of tro� commands, the remainder being plain text. The
other two documents totaled 228K bytes and contained 4004 lines (73K bytes) of
preprocessed tro� commands. The trace was created by tro� ing a reduced version
of the �rst document of length 7705 bytes, of which 273 lines (2728 bytes) were tro�
commands.

A third program was the Gnu C compiler itself. The pro�le was collected of
the compiler compiling three Gnu C source �les: toplev.c, loop.c, and recog.c. They
totaled 79K bytes, with 20, 12, and 15 C function de�nitions, respectively. The
trace was collected while compiling genemit.c, a 6Kb �le containing nine function
de�nitions.
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Figure 3.5: Scrunch miss rates and percent improvement

3.3.2 Miss Rates

Figures 3.5, 3.6, and 3.7 are histograms of the results of running the traces
of the programs through the cache simulator. (Since the reorganization algorithm
didn't take any cache parameters into account, the same traces are used in all eleven
simulation runs for each program.) They show the miss rates for the four versions
of each program on each of the eleven cache con�gurations. The leftmost bar of
each group of four is the average miss rate of the unreorganized program. The other
three of the group, from left to right, are the average miss rates for the reorganized
versions for p = 80%, 90%, and 95% respectively. The cache con�guration is noted
beneath each group. Figures 3.5, 3.6, and 3.7 show the improvement in miss rates
of the reorganized versions over the miss rates of the unreorganized versions (i.e.
1� (Mr=Rr)=(Mu=Ru)).

There are instances where reorganization can buy the (miss rate) equivalent
of a larger cache. For example, looking at Figures 3.5, 3.6, and 3.7 we see that the
reorganized programs using a 256 byte cache with 8-byte blocks consistently had as
good as or better miss rates than its unreorganized version running in a 1K cache
with 4-byte blocks.
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3.3.3 Performance improvement

Let Ru be the number of instruction fetches on the original, unreorganized
program, and let Rr be the corresponding number for a reorganized version. For the
sake of these estimates, we will assume R = Ru = Rr. We see from Table 3.2 that
this is not strictly true, but they are su�ciently close for our purposes here. Let
Mu be the number of cache misses and Hu the number of hits when the original,
unreorganized program is run, and Mr and Hr be the corresponding values for the
reorganized program. De�ne the miss rates mu = Mu=R and mr = Mr=R, and
let m� = mu �mr be the di�erence in miss rates. Let th be the time required to
handle a cache hit, and let tm be the time required to handle a cache miss. The
running time of the original program is then Tu = thhu + tmmu and the improved
running time is Tr = thhr + tmmr. Finally, de�ne f = tmm�=Tu, the fraction of the
original program's time taken up by cache misses that are turned into cache hits,
and K = tm=th the ratio of the cost to handle a miss to the cost to handle a hit.
Then by Amdahl's Law:

Tr=Tu = (1� f) + f=K: (3:1)

We can now estimate the improvements in performance from reorganization
taking our example from the speci�cation of the SPUR memory architecture [18].
In general, the cost of a miss is very high on multi-processor, shared-bus systems
due to bus contention or the length of the cache line. SPUR has a 512-byte on-
chip cache and 128Kb o�-chip cache. According to Mark Hill, a miss in the on-chip
cache costs three times as much as a hit, assuming the instruction to be in the
o�-chip memory cache [20]. Let us assume the on-chip cache shows a normal miss
rate of about 20%, and that we can improve that to 15% by reorganizing. Then
f = 3�:05=(3�:20+:80) = :107. Plugging this into (1) above, we get Tr=Tu = :929, i.e.
the program executes in only 92.9% of the time of the original, a 7.1% improvement.
The maximum possible improvement is 29.6% assuming the unattainable miss rate
of 0%.

For the SPUR architecture, an o�-chip cache miss will cost 12 to 20 times
that for handling a cache hit. SPUR therefore has a very large mixed cache to combat
this penalty. If we assume that reorganization can reduce SPUR's miss rate by an
absolute 0.25% (e.g. from 1% to 0.75%), then, assuming K = 17 (a number lifted
from Katz and Eggers [26]), f = 17 � :0025=(17 � :01 + :99) = :0366. Plugging this
into (1) above, we get Tr=Tu = :966, a 3.4% improvement in performance. This is in
addition to the performance improvement for the on-chip cache noted above. With
these assumptions, we predict reorganization can improve SPUR's performance by
about 10%.

This prediction is consistent with other numbers recently published for
similar systems. Pettis and Hansen [36] at Hewlett-Packard Laboratories report
10%-26% improvement on a machine with a 16Kb uni�ed cache (the HP-UX 825).
When they increased the cache size to 128Kb, the improvements decreased to less
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than 10% on the HP-UX 835; all �ve benchmarks' improvements averaged 5%, but
with a very wide range of di�erences (0.8% to 9.3%). Their study concentrated on
placing code to improve cache performance utilizing information about the size of
the cache. They also used arc counts, rather than node counts, but their algorithm
operated over the whole program, not just the hot spots. They also counted each
and every arc in the ow graph, which may account for the compiler going twice as
slowly when instrumenting the program. Their algorithm for positioning the code
slowed the compiler down by about 15-20%.

Figures 3.8, 3.9, and 3.10 show the theoretical improvement in execution
performance of the reorganized versions over the original unreorganized versions
when the cost factor K = 2, 3, 4, 5, 6, 7, 10, 15, 20, and 25. Each graph has a
column for each of the eleven cache con�gurations. A line within a column plots the
expected performance of the indicated program on that cache when reorganized with
the three values p = :80; :90; :95 moving from left to right. K = 2 is the very top
line in each column, and K = 25 is the bottom-most line in each column, yielding a
range in which I expect reorganization to improve the performance of the programs.
So we see that for a 1K cache with 4-byte blocks and K = 2, a version of scrunch
reorganized with p = 80% would take about 97% as long as the unreorganized version
(the left end of the topmost line in the third column from the left). It would take
only about 77% as long if K = 25 (the left end of the bottom line in that column),
and only about 38% as long when K = 25 and p = 95% (the rightmost end of the
bottom line in that column).

3.4 Limitations

The algorithm for StitchCall is not quite correct, since it does not handle
nested procedure calls correctly. The net e�ect on the numbers is not at all clear,
but it should be slight in whichever direction it goes. There simply were not that
many sequences of nested procedure calls that could �t in a cache in the code I used
as test cases. This would not be true in languages that encouraged the use of many
small procedures, e.g., C++.

Furthermore, it is not clear whether pseudo-inlining a procedure in only one
location is su�cient. Further tests should be performed to determine whether it is
worthwhile to copy the main thread of execution of a frequently executed basic block
into multiple locations. If I had to guess as to which would have the most e�ect on
the results|correcting the nested procedure call problem or making multiple copies
of threads of procedure execution|I would say that thread copying would probably
have more e�ect.

There is a potential problem in isSmallEquiCondl in that it will not handle
correctly a small if-then-else where one of the arms of the conditional is empty, and
the common exit block loops on itself. This situation never arose in my experiments,
and so the potential problem was not detected until this writing.
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Figure 3.8: Scrunch performance for K = 2, 3, 4, 5, 6, 7, 10, 15, 20, and 25



44

Figure 3.9: Tro� performance for K = 2, 3, 4, 5, 6, 7, 10, 15, 20, and 25
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Figure 3.10: Cc1 performance for K = 2, 3, 4, 5, 6, 7, 10, 15, 20, and 25
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I have not considered many of the parameters for designing a cache that
may be relevant. For example, I have not considered the increase in bus contention
caused by going to a larger block size. Nor have I considered alternative cache
management strategies such as sub-block placement. My goal was simply to explore
improving the performance of the cheapest of these design alternatives with simple
compiler enhancements.

I have not considered cache e�ects such as cold start misses or cache ushes
due to system interrupts or context switches. I did not consider any parameters of
the target caches when reorganizing code. It was not clear at the beginning of this
research how much the parameterization of the algorithms by the cache characteris-
tics would bene�t the program's performance; hence I went for the simple solution
�rst.

I haven't solved the problem of case statements satisfactorily. Currently, it
is possible for the reorganizer to move the code around to such an extent that the
jump table can end up quite a distance away from one or more of its targets. On the
68020, this presents a practical problem since jump tables with half-word pc-relative
entries are much faster than full word entries. If an item of a case is a \hot spot", it
is very di�cult to relocate it and still satisfy the distance constraint of jump tables.
The only program that gave me real problems was the Gnu C compiler, for which I
generated full-word jump table entries. This does not change any of the miss rate
results signi�cantly, but in real life, it would be an unacceptably slow implementation
due to the slower execution of the table jump.

Finally, there are architectures that present di�culties for the Greedy Sewing
algorithm. An example is the MIPS-X instruction set [8], which has asymmetric
conditional branch instructions. Due to the nature of the MIPS-X pipeline, each
conditional branch instruction is followed by two instructions that are fetched before
the CPU has determined whether the branch will be taken. Each conditional branch
instruction also has a squash bit that, if `on', prevents the execution of these two in-
structions if the branch is not taken. Both of these delay slot instructions are always
executed whenever the branch is taken: there is no way to squash their execution
when the branch is taken. This makes sense if all programs follow the pattern of
code generated by most compilers, where the conditional test is at the `bottom' of
the loop and the conditional branch is, therefore, almost always taken.
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However, the results of Greedy Sewing's reorganization described here turns
those statistics upside down. The algorithm almost guarantees that the head and tail
of a frequently-executed loop will be made contiguous, and that execution will almost
always fall through the conditional test to the head of the loop: the conditional
branch is almost never taken. This leaves three options: (1) �ll the delay slots
as is currently done by MIPS-X compilers, followed by a jump instruction to the
infrequent target (normally the loop-exit); (2) reverse the sense of the conditional
and try to �ll the delay slots with instructions that don't have to be squashed when
the branch is not taken (because there is no squash bit for this direction); or, (3)
punt and put no-ops in the delay slots.

Option (1) puts infrequently executed instructions right in the middle of
high-frequency basic blocks, working against one of the aims of reorganization (better
cache utilization in high frequency code). Option (2) sounds plausible, but it is
di�cult to �nd instructions that can always be executed no matter which way the
branch goes. It may be possible to generate instructions to un-do the e�ects of
the delay-slot instructions when the branch is �nally taken, but this begins to get
complicated and presents the possibility of really slowing down a frequently executed
inner loop. Option (3) is an obvious loss. McFarling [34] implemented option (1),
and reports that the size of repositioned code increases about 14%.

Due to the fact that the available MIPS-X compilers �lled the delay slots
before emitting assembly language code requiring my software to have a MIPS-X
assembly language parser, and given the fact that the only pro�le data I had was the
basic block counts generated by their compiler, applying Greedy Sewing to MIPS-X
code was too far outside the reach of this research.

3.5 Conclusions

Pro�le driven code reorganization de�nitely improves the performance of
programs. In envisioned programming environments where pro�le data is a perma-
nent part of the information manipulated by both programmer and compiler, these
improvements would come simply and cheaply. My experiments have shown im-
provements in miss rates on the order of 30% to 50%, and sometimes as high as 50%
to 80%. These �gures were obtained by relocating only 3% to 8% of the basic blocks
of typical programs.
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Chapter 4

A High-level use: Implementation

selection of abstract data types

In the previous chapter, I demonstrated one way in which pro�le data could
be used pro�tably by an optimizing compiler at a low level. Code reorganization is
attractive since it improves performance at a small cost, that cost being the time it
takes to decide the order in which to emit a few of the basic blocks of a program.

In this chapter, we will look at what a compiler might do with pro�le data
at a very high level. Speci�cally, I developed TypeSetter, a system for selecting
implementations for abstract data type representations and functions. By assuming
that pro�le data exists for a program, we have seen that low-level program trans-
formations can use very simple algorithms to achieve improvements comparable to
much more complicated algorithms. With TypeSetter I tested whether compara-
ble simpli�cations could be made in selecting implementations of high-level abstract
data types.

4.1 The Problem

Before stating the problem, it is useful to di�erentiate between two classes
of programmers that would make use of TypeSetter. The User of TypeSetter
would write a program using only the available abstract data types, and would not
be concerned with how those abstractions were eventually implemented (as long as
the implementations were relatively inexpensive, of course). The Implementor is
the programmer that adds implementations to the TypeSetter system. I do not
envision that TypeSetter can be (or should be) an extensible language system at
the User level. If new implementations are to be added, it is an enhancement to
the system, and not simply the shipment of a new library. This di�erence between
User and Implementor allows us to discuss e�ciently the di�erence between using
an abstraction and implementing it by referring to the speci�c programmer.

The general problem can be stated simply: what is the most e�cient imple-
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mentation of a User's program? This includes selecting the most e�cient instruction
sequences as well as the best implementations for the program's data structures.
Most compilers completely side-step this latter problem by giving the programmer a
speci�c set of data types with unique implementations and letting the programmer
construct the necessary data structures with the pre-de�ned data types provided by
the system.

For example, there are many ways sets of objects might be implemented:
linked lists of various kinds, bit maps, arrays, trees organized by various techniques,
etc. Which of these implementation should be used for a particular program depends
on the algorithms used in the program and the characteristics of the data. For the
most part, letting the compiler select which implementation to use based only on
static declarations has proven viable, but di�cult and expensive. The problem is
di�cult even when attention is focused on a small set of abstractions, as the SETL
language e�ort has shown [46,51]. Barstow's PECOS system [3,4] is an attempt to
collect a database of rules and heuristics that allow a programmer's speci�cation of
a program to be given an implementation. Elaine Kant [24] extended the system to
consider rules and heuristics regarding the e�ciency of various implementations.

My approach is to assume that programming environments of the future
will be collecting and maintaining much more information about a program than
the programmer's static declarations. In particular, the collection and utilization of
pro�le data will become a matter of course. In this chapter, I address the following
questions:

� Can pro�le data reduce the complexity of the representation selection problem
to a level that compilers can make such choices e�ectively?

� What information needs to be collected by the pro�le mechanism so the selector
can make e�ective choices?

� How much control over the collection of pro�le data can be put in the hands
of the designers and implementors of abstract data types?

� Is there a general algorithm for selecting representations that works for a wide
variety of abstract data types? That is, can we limit the overall task of the Im-
plementor to implementation of the ADT, speci�cation of what pro�le data to
collect, and speci�cation of the runtime resources used by the implementation?

Obviously all these questions are interrelated: for example, the selection
algorithm will inuence the kinds of pro�le data that will be necessary, and pos-
sibly the detail to which the Implementor must go to describe the behavior of an
implementation.

We are interested in improvements only from data representation selection,
in contrast to algorithm transformations, traditional examples of which include such
optimizations as code motion, �nite di�erencing, strength reduction, etc. (Low [31]
calls these representation dependent optimizations.)
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As an example, consider the implementation of:

S  S [ fa; b; cg

which may be more e�ciently implemented as

put a in S
put b in S
put c in S

depending on the representation selected for the set S. Consider also the boolean
expression:

X 2 (S1 [ S2)

which is usually much more e�ciently computed as

(X 2 S1) _ (X 2 S2)

For the purposes of this research, we will assume that such optimizations are discov-
ered by a high-level optimization module. This ignores problems introduced by the
interaction of this `higher level' optimization and our representation selection mech-
anism, but allows us to investigate the use of pro�le data in the selection process.
Assuming the latter is possible, the interaction problem can be investigated later.

Unlike Low, we do not want to limit expressions to be homogeneous in
representations. That is, in the expression

S1 S1 [ S2;

if S1 and S2 are two sets, it may be the case that they have two di�erent represen-
tations. We are interested in seeing if there are situations in which it is pro�table to
handle the overhead imposed. In this example, either

1. One of S1 or S2 must be converted to the same representation as the other, or

2. S1 and S2 are both converted to a third representation, or

3. a routine to take the union of objects of type itype(S1) and itype(S2) must be
generated by the compiler, or

4. there must already exist a procedure that can explicitly handle the union of
these two representations.

Larry Rowe [38] explored the problem of generating implementations and we will
not pursue it in this study. The TypeSetter prototype requires that the explicit
function must exist (corresponding to the fourth option above).

TypeSetter has been designed to allow experimentation with various
kinds of pro�le data in addtion to execution counts. For instance, knowing that the
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attempts to add an element to a set usually have no e�ect because the element is
already in the set may a�ect which implementation is chosen for that set. It is easy
in TypeSetter to count how many times the add-an-element function was called to
add an object already a member of the target set. It would be exceptionally di�cult
to determine analytically when such a situation holds.

The traditional metric (or objective function) used for selecting one repre-
sentation over another has been the space-time product, but there are complications
in dealing with parameters of the system in which the software is to be run. For
example, it may be that representation X is better as long as the amount of memory
used does not exceed physical memory limits, otherwise using the more compact
representation Y will cause less thrashing of the virtual memory system. The in-
e�ciency due to a denser encoding would be o�set by the improved performance
of the system as a whole. It is problematic how to specify these kinds of limits,
particularly those that depend on system parameters that are di�cult to pro�le or
can very dynamically and orthogonally to the actions of the program (e.g. dynamic
paging rates). Therefore, this study has not attempted to determine the `best' way
of characterizing program behavior. The system is designed such that each inter-
face function has exactly one evaluation function, which returns a real number that
represents the relative behavior of the interface function at a particular call site.

Also, this study limits itself to implementations that do not require auto-
matic changes to User-de�ned data structures; all abstract data types implemented
in the system will be `exomorphic'{only pointing to objects the user is manipulating.
For example, an exomorphic implementation of a list would manipulate only refer-
ences to the objects in the list. In contrast, an endomorphic implementation might
include the links of the list as part of the User object, one (set of) link(s) for each list
to which the object might belong. An endomorphic strategy might be particularly
attractive when, for example, it is known that each object can be on only one list at
a time.

The problem of generating or modifying structures to take advantage of
such implementations is orthogonal to the problem of using pro�le data to determine
which implementation is best. Once the use of pro�le data is shown to be viable,
then the same techniques can be applied to endomorphic implementations.

Programs that exhibit phase behavior are problematic. A user's program
could exhibit phase behavior by manipulating data one way early in the execution
of the program (say, during the initial construction of an aggregate variable) and
utilizing that data quite di�erently in later stages of the program (say, during access
and modi�cation of that aggregate variable). An interesting problem is the detection
of the behavior and the optimal points for changing the implementation of the ADT
from one representation suitable for the �rst phase into another representation more
suitable for the later phase. A general solution to this problem is beyond the scope
of our work. In our model, each static instance of a variable will have exactly
one implementation. We can approximate some of the advantages of phase behavior
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detection by limiting conversion from one representation to another at the assignment
of a variable. Consider the following:

Set(int) A;
:
: (section one)
:
�� end of phase one of program
:
: (section two)
:

It may very well be the case that the behavior of the program in section
one demands that the variable A be implemented as a singly-linked list, whereas the
behavior of section two would be more e�cient if A were implemented as a doubly-
linked list. In our current model,Awill be assigned only one implementation that will
minimize the cost of running the program. If the program looked like the following:

Set(int) A;
Set(int) B ;
:
: (section one uses A)
:
�� end of phase one of program
B = A;
:
: (section two uses B)
:

then we can look for the possibility of converting representations when B is assigned,
and releasing resources used by A. This would, of course, require live-dead analysis,
something that is currently beyond the prototype.

Another complication is introduced by user-de�ned functions. Consider the
following:
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main() f
Set(int) A;
Set(int) B ;
:
user fcn(A,B); �� call site 1
:
user fcn(B,A); �� call site 2
:
g

void user fcn(Set(int) X, Set(int) Y ) f
:
g

Under our model, A and B must have the same implementation since X can have
only one implementation (the same is true for Y ). It may very well be the case
that the program would perform better if there were two user functions, each with
a di�erent type signature. However, creation of multiple copies of the user function
are beyond the capabilities of the prototype. At any rate, the problem is again
orthogonal to the problem of using pro�le data, so we apply the general rule stated
above for variables to the signature of functions: each statically declared object in
the User's program will have exactly one representation associated with it during
the running of the program.

Real-time applications can impose severe constraints on the behavior of
a program, and are not considered further in this work. The work of Kenny and
Lin [27] provides an important parallel to our work in the area of real-time control.
In particular, we discuss later how their evaluation function generation techniques
could be used in our system to improve the precision and portability of evaluation
functions (see page 104).

4.2 Previous work

Typesetter is the �rst system to use a general technique for collecting
ADT-speci�c pro�le data, and using that data to choose implementations. Almost
all previous systems (with the exception of Low's) attempt to synthesize data rep-
resentations: Typesetter chooses the implementation of a function to use, and
thereby indirectly selects, but does not synthesize, the representations of the pro-
gram's variables.

Low did the original work on implementation selection using pro�le data
[31,32,33]. His system attempted to provide implementations for three abstractions:
sets, lists, and a ternary relation which is unique to the base language SAIL. Each
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partition the variables and expressions into equivalence classes (eq.c.);
determine which operations are performed on which eq.c.;
for each eq.c do

S  all representations ;
remove from S all representations which are not feasible;
�� may not have su�cient information at compile time
�� may require an operation not implemented in a rep.

predict time and space requirements for all s 2 S
for all s1; s2 2 S

if s1 requires both more time and space than s2 then
remove s1 from S

endfor
rank remaining representations in S by likelihood of being

the best representation; �� uses a cost fcn
use a hill�climbing heuristic to �nalize implementations

Figure 4.1: Low's algorithm

ADT had several implementations that could be used to implement the User's vari-
ables. Each of the functions making up the interface of an ADT was written in
assembler, and had associated with it an evaluation function that, given a frequency
of execution and an aggregate size (e.g., the number of elements in a set), would re-
turn an estimate of the cost of using the interface function. His evaluation functions
returned an estimate of the number of machine cycles and bytes required on any one
invocation of a function.

The system required four passes over a program, with human interaction as
one of the passes. The �rst step ran the subject program (using default implemen-
tations for the abstractions) with software monitoring inserted to collect a pro�le
of the performance of the program in terms of statement counts. The system then
prompted the user for information too di�cult or impossible to derive analytically
(e.g. \What is the average size of set foo?"). A penultimate static analysis pass
computed the possible contents of variables in terms of other variables. This had
the side-e�ect of partitioning the variables of program into equivalence classes; each
equivalence class identi�ed the variables that had to have the same implementation
as all other variables in the class.

Low's algorithm for selecting representations (Figure 4.1) uses call sites
solely for feasibility testing. Once a set of feasible assignments have been established,
then an initial set of implementations are assigned. The �nal heuristic (Rowe called
it incremental search) continually `perturbs' the assignment of implementations by
making changes that seem likely to improve the overall performance of the program
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and keeping only those changes that do.

Low says that his system could not take into account certain features of set
insertion (e.g., elements are always inserted in a speci�c order) and that he thinks
it would be hard to include. TypeSetter allows collecting this kind of informa-
tion (i.e. `the data is always added in increasing/decreasing/non-increasing/non-
decreasing/extremal order) as well as other information (e.g., sizes of sets, average
length of lists, etc.).

Low's system did not allow operators to work on multiple representations:
a union operator's two operands had to have the same representation. In our ap-
proach, a particular implementation function can be assigned to a call site if the
actual parameters at the call site can be assigned the types of the implementation
function's formal parameters. It is up to the Implementor(s) which of these mixed-
representation functions to implement.

TypeSetter explores several aspects of Low's general technique. Low's
ADT interface functions were written in assembler so he could make the evaluation
of an invocation of one of those functions as precise as possible. He did not want
to tackle the problem of writing evaluation functions for compiler-generated code.
Given that precision is lost in any estimation of future performance of a real program,
and that the performance of a function depends on more than just its frequency
of execution and the size of the aggregate-type object, Typesetter's evaluation
functions accept inexactness as inevitable, and assume that programs satisfying the
90-10 rule are skewed enough to make the loss of precision irrelevant to the �nal
decisions.

Also, TypeSetter's interface and evaluation functions are all in a higher-
level language (C++), and the evaluation functions are in terms of this language's
constructs. That is, whereas Low's system required the Implementor to count cycles
in instructions in order to write an evaluation function, TypeSetter's evaluation
functions are written in terms of the high-level language's constructs. TypeSetter
has not solved the problem of providing an evaluation of compiler-generated code,
rather it �nesses the whole problem by admitting up front that evaluation is inexact.
Precision is not possible a priori with compiled high-level language code (e.g., a
di�erent compiler's optimizer will produce di�erent code), but in exchange we get
portable, understandable, easily tuned code, both for the implementations of the
interface functions, but also for the evaluation functions.

And �nally, Low's system concentrated on �nding implementations for a
program's variables, using program structure solely to determine the feasibility of
the various implementations. TypeSetter turns that around, and concentrates on
�nding implementations for the interface functions, and lets that specify what the
implementation of the variables must be. Section 4.4.1 below explains this method
of implementation selection in detail.

The other major work relevant to TypeSetter is Hansen's work on adap-
tive compilation, which we already discussed in some detail in Chapter 1.1. Hansen's
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work is the primary justi�cation for this research in compiler utilization of pro�le
data, though Hansen's system was targeted toward `one-shot' compilation.

Other work relevant to what we are doing has concentrated primarily on
how to assign implementations analytically. That is, given some program speci�ca-
tion, most work has concentrated on �nding means for determining implementations
solely on the basis of that speci�cation.

Barstow's PECOS system [3,24] processes a program speci�cation via a
knowledge database of program transformation rules. The program is declaratively,
as opposed to imperatively, speci�ed. Kant's LIBRA system [24] extended PECOS
and attempted to apply the same rule-based, synthesizing approach to performance
prediction. The knowledge database was enhanced with rules about estimating po-
tential performance of partially constructed programs. Although LIBRA could allow
the use of pro�le data, it was neither integral nor essential to the approach.

Typesetter does not attempt to synthesize programs analytically, nor
does it attempt to work with program synthesis at as high a level as does PECOS.
Rather, my goal was to explore the possibility of providing implementation selection
in the context of modern day compilers. Rather than seek a Copernican revolution
and invent a totally new language in which to specify programs, I sought a more
evolutionary approach to give existing languages and systems as much capability as
possible.

Ramirez [37] used zero-one integer programming to assign implementations.
His approach required condensing the behavior of a program into two matrices s(i; j)
and t(i; j) where s is the estimated storage space consumed by implementation j
when used to implement variable (substructure, he calls it) i, and t is the corre-
sponding time estimate. His claim that the behavior of an implementation of an
ADT can be summarized by two numbers s(i; j) and t(i; j) is highly suspect. It
ignores, for example, how the behavior of a function or operator may change when
provided with arguments of di�ering implementations. That is, he assumes that if
implementation j is assigned to variable i, then t(i; j), the amount of time required
by that assignment, is independent of any other assignments. This is almost never
the case, particularly when operators can accept operands with di�ering implemen-
tations (e.g., a union of a set implemented as a bitmap with a set implemented as a
linked list). Typesetter moves the focus of evaluation functions from the variable
to the implementation of the interface functions. This allows the interacting costs
of assignments to be taken into account at the expense of losing the ability to use
zero-one integer programming to achieve an optimal solution.

Work within the SETL project [9,43] derives representations from declara-
tions in the language and from analysis; e.g., frequencies are estimated by an analysis
of the program text. I know of no work using pro�le data in the synthesis of SETL
programs.

The SETL optimizing compiler attempts to determine a good implemen-
tation of for the set and mapping abstractions in the language (there is only one
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representation for tuples). The default representation for sets and maps uses hash
tables. If the analysis can determine bases for the elements of the sets, or if the
programmer declares elements to belong to speci�c bases, then other more e�cient
implementations are possible for subsets of the bases. A subset can be represented
as a bit in the structures for the elements of the bases (if the bit is one, then the
element belongs to that subset, if zero, then not). If all elements of a base set are
assigned unique integers, then a subset can be implemented as a bit-map. Or a
subset might be represented with a separate hash table of pointers into the base set.

Straub's Taliere system improves on the optimization phase of the SETL
compiler by considering estimates of performance, including symbolic analysis of
execution frequencies. However, since he does not utilize pro�le data, the User must
answer questions1 of the form What is the average size of s*t in line 215? ; or even
What is the expected number of iterations in an average execution of the loop starting
at line 1235?. Even worse examples of the kinds of dialogue the system forces on the
User are questions about probabilities: What is the probability of the CASE statement
of line 1113 taking the alternative of line 1126? It seems extremely doubtful to me
that a User would know this information with any precision or con�dence without
pro�le data.

Weiss [51] worked on �nding types of recursive SETL variables, and pre-
sented methods for implementing such structures. However, he does not worry about
selection of `best' implementations by numeric criteria.

Sherman's dissertation [44] presents a very comprehensive approach to the
problem through language design. The primary contribution of his programming
language Paragon is the idea that implementations are subclasses, or re�nements, in
the ADT hierarchy (with multiple inheritance). That is to say, an implementation is
just a re�nement of an abstract data type and is speci�ed using the same notation as
that used to specify the abstraction. Paragon is an ambitious system that attempts
to solve many problems at once, including selection of a re�nement of an ADT based
solely on the program text. Presumably, pro�le data could be used, but he does
not discuss this in any depth. In the Paragon model, the User (our terminology) is
responsible for writing the complete evaluation function (Sherman calls it the policy
procedure) that selects the implementations of the variables of the program. This
puts the onus of selection on the wrong member of our programming duo. We have
attempted to design a system that puts the onus of implementation evaluation on
the Implementor, and selection of implementations for functions and variables on
the system, not on the User.

Rowe's system [38] approached the problem from the direction of selecting
an implementation from a description of the desired data relations and functionality.
His modeling domain language is implementation independent and is used to search
for implementations that satisfy the described relations and operations. In those
cases where there does not exist an implementation satisfying the description, Rowe

1The questions are taken from his dissertation.
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investigated ways of generating an implementation. However, he did not investigate
the use of pro�le data in his work.

4.3 TypeSetter: The System

In the discussion of the TypeSetter system, it is useful to distinguish
between di�erent modes of programmingwhich I identify by reference to two di�erent
programmer groups: the Users and the Implementors. Since Users need not be
as facile with the theory behind TypeSetter as Implementors need to be, the
distinction between them is not one simply of convenience of notation. Users write
programs that utilize the abstractions provided by the system; the system selects
from among the implementations installed by the Implementors.

Examples in the following sections are based on the existing prototype,
described in greater detail starting in Section 4.4. Language enhancements required
to support TypeSetter are not extensive and the notations should be relatively
transparent to anyone who has used an object-oriented programming language like
C++.

4.3.1 Formalities

An abstract data type (ADT) is a set of function signatures indexed by
function names. For each ADT, there is a set of representation types; we'll write
A 7! R to mean that ADT A can be represented by representationR; impl(A) is the
set of possible representations of A. A function signature has the form T0; T1; : : : ; Tn,
for n � 0 and types Ti. By convention, T0 is the type returned by the function. For
all signatures in ADT A, the Ti are themselves ADTs.

For each abstract function in an ADT, there is a set of implementation
functions. Like their abstract function counterparts, implementation functions con-
sist of a name and a signature. But where the abstract functions' parameter types
Ti are ADTs, the implementation functions' parameter types T 0

i are representation
types. Furthermore, Ti 7! T 0

i for all i.

Our task is to assign a representation type to each variable in a user's
program, and hence an implementation function to each call site in the program.

De�ne a program to be a set of variables V and function call sites C. Each
variable v 2 V has been declared to have one of the ADTs in T , atype(v). Each
function call site c 2 C consists of the name of an abstract function, absfcn(c), and
a list of actual argument variables actuals(c). When an implementation function
is assigned as the implementation of the abstract function at a call site, then the
implementation type of vj , the j

th actual, is assigned to be T 0
j, the j

th type in the
signature of the implementation function; i.e., itype(vj) = T 0

j .
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4.3.2 The ideal system

The prototype system is a subset of a larger vision. I have argued previously
that pro�le data should be collected all the time, and that the overhead for doing so
is quite minimal. Then the programming system would allow the user to develop a
debugged and e�cient program in the following steps.

During initial implementation and debugging, the User rarely needs to de-
cide the implementation of many, if not most, of the abstractions used in the program.
The TypeSetter system will utilize the simple program execution counts described
in chapter 2 to pick a reasonable implementation for the abstractions.

As the User's system is implemented, and its structure is tested with more
complex, more complete, and perhaps larger sets of input data, the actual imple-
mentation of the abstractions becomes more important (if for no other reason than
that debugging a slow program can be particularly aggravating). By this time, the
User will have gained enough experience with the program that he can conjecture
which implementations of the abstractions may be reasonably e�cient for the pro-
gram. This conjecturing is important only to the extent that it allows the User to
determine what additional informationmight be helpful to supply about the abstrac-
tions: TypeSetter will determine which implementations are actually best. This
additional information is supplied as part of the declarations of the variables, and is
discussed in more detail in section 4.3.5.

It is also true that simple execution counts are insu�cient for selecting an
implementation. Alternative implementations of abstractions are created by pro-
grammers to take advantage of the interaction of properties of the abstractions with
speci�c properties of sets of input data. Therefore, to determine that a bit-mapped
implementation of a set is preferred over a linked-list implementation requires know-
ing not only how the program makes use of the data (e.g., number of insertions vs.
number of deletions; the mix of element access and destructive operations; etc.) but
also requires some information about the input data itself (e.g., is it read in increas-
ing/decreasing order; is it `sparse'; is it locally dense; etc.). This information can
only be gathered directly and intentionally, and cannot be inferred from execution
counts except at great expense, if at all.

At this point in the development process, the abstractions in the program
are assigned pro�ling implementations, and a couple of runs of the instrumented pro-
gram (over whatever data it can handle at this stage of development) will provide
further data upon which TypeSetter can assign more e�cient implementations.
Once implementations are determined based on this data, development and debug-
ging of the program can proceed using this more appropriate implementation of its
abstractions.

The TypeSetter prototype described here has concentrated on imple-
menting only the intermediate step: using pro�ling implementations of abstractions
to collect abstraction-speci�c pro�le data that TypeSetter can use to select from
among a set of implementations. Lacking any pro�le information, the prototype al-
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ways links in the pro�ling implementations for all abstractions; running the program
then generates pro�le data for selecting more e�cient implementations on a future
run of the system.

4.3.3 ADTs

Among the ADTs available to programmers in TypeSetter there are the
usual built-in data types (e.g. integer, real, structures, arrays, pointers, etc.), each of
which has a �xed implementation in User's programs, and a library of more complex
abstract data types (ADTs) with implementations of functions that make up their
interface tailored to speci�c representations. Users, however, make no reference to
speci�c implementations of the functions or variables; they simply make use of the
publicly declared interface (or protocol) of the ADT. The compiler will then choose
implementations for the variables and functions to minimize a cost function based
on data collected by a pro�ling version of the ADT. TypeSetter supplies three
ADTs: sets, lists, and maps. (These correspond closely to the SETL data types of
�nite sets, tuples, and maps [43].) Their de�nitions below are in TypeSetter's
C++ dialect; in particular the �rst argument to a function is understood to be a
pointer to the object by which the function is invoked.

Sets The Set abstract data type is generic in the type of the contained objects,
which is denoted as Any. Figure ?? contains the de�nition of the Set ADT, and Fig-
ure 4.2 lists some possible implementations of exomorphic sets. Those with asterisks
are currently implemented in the prototype. There are many possible representa-
tions of Sets, a few of which are briey described in Figure 4.2. (The reader may
wish to compare this list with the implementations provided by the SETL compiler;
see pg. 57.)

Lists The List abstraction is generic in the type of the contained objects. Figure 4.3
lists the functions comprising the interface to the ADT. There are many possible
representations of Lists, a few of which are described briey in Figure 4.4.

Maps Maps, or �nite functions, are generic in the type of the domain element and
the type of the range element. Figure 4.5 lists the functions forming the interface
to the ADT, and Figure 4.6 lists possible implementations. Figure 4.6 lists a few of
the many possible implementations of Maps.
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�Linked list .

Doubly-linked list .

�Sorted linked list: A linked list on which the elements are maintained in sorted
order.

�Bit vector: Elements must be, or map to, integers. Requires knowing max and
min integers. Three variations: nofElements kept as part of the set, fast array
lookup element count for bytes, ditto for words.

Hash table: Useful when the key is not an integer, but an arbitrary collection of
bits. Information about the range of the hash function and the density of the
resulting hash values would help select good parameters for the hash table. For
sets of arbitrary objects, the programmer must supply a hash function.

Sorted array: Keeps a sorted list of the actual elements of a set. Requires knowing
max and min elements; knowing the maximum size of a set, and the average
size of sets may help select better parameters for the implementation.

Sorted variable length array: Ditto. Requires extra overhead for the dope vec-
tor.

Linked array: Requires knowing max and min elements, as well as the fact that the
elements tend to cluster. Optimizes space at the expense of time. To be used
in environments where reallocating sets due to growth or memory compaction
may be more expensive than just chasing pointers.

Figure 4.2: Possible implementations of sets (� in prototype)
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List(): The constructor of List.

boolean empty(): Returns true if the list is empty.

void makeEmpty(): The list is emptied.

boolean in(Any elt): Returns true if elt is in the list.

int cardinality(): Returns the size of the list.

void rest(List L): Removes the �rst element of the list.

Any first(List L): Returns the �rst element on the list.

append(Any e): The element e is appended to the list.

prepend(Any e): The element is pushed onto the front of the list.

delete(Any e): All instances of the element e are removed from the list.

sort(CmpFcn f(Any,Any)): The list is sorted in place using the comparison func-
tion f .

iterInit(Iterator i): Initialize an iterator over the list.

iterate(Iterator i, Any &elt): Assign elt the next element of the list in the
iteration and return true, else return false.

iterDone(Iterator i): Return true if an invocation of iterate would return
false.

iterCleanup(Iterator i): Return resources allocated to the iterator.

iterCopy(Iterator i, Iterator &j): The iterator i is copied into a new iterator
j.

Figure 4.3: Speci�cation of List ADT
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�Linked list.

Doubly-linked list.

Fixed-length array: Each list has an array of maximum size allocated for it.

Linked array: The list is kept in a list of arrays, each sub-array allo-
cated/deallocated as the list is manipulated. Requires knowing max and min
elements, as well as the fact that the elements tend to cluster. Optimizes space
at the expense of time. To be used in environments where reallocating lists
due to growth or memory compaction may be more expensive than just chasing
pointers.

Figure 4.4: Possible implementations of lists (� in prototype)
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Map(): The constructor of Map.

boolean empty(): Returns true if the map is empty.

void makeEmpty(): The map is emptied.

boolean inDomain(Any elt): Returns true if e is in the domain of the map.

boolean inRange(Any elt): Returns true if e is in the range of the map.

int cardinality(): Returns the size of the map the number of elements de�ned
in the range).

define(Any d, Any r): The element d is added to the domain of the map so that
it returns the element r.

delete(Any e): All instances of the element e in the domain are removed from the
map.

sort(CmpFcn f(Any,Any)): The map is sorted in place using the comparison func-
tion f .

iterInit(Iterator i): Initialize an iterator over the map.

iterate(Iterator i, Any &d, Any &r): Assign d the next element in the do-
main of the map, r the corresponding element in the range, and return true;
else returnfalse.

iterDone(Iterator i): Return true if an invocation of iterate would return
false.

iterCleanup(Iterator i): Return resources allocated to the iterator.

iterCopy(Iterator i, Iterator &j): The iterator i is copied into a new iterator
j.

Figure 4.5: Speci�cation of Map ADT
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�Linked map: The map may be singly or doubly linked, and consists of pairs of
elements as related by calls to de�ne.

Fixed-length array: Each map has an array of maximum size allocated for it, if a
maximum size is know. The array is two dimensional, one each for the domain
and range.

Linked array: The map is kept in a map of arrays, each sub-array allo-
cated/deallocated as the map is manipulated.

Hash table: Hashed by domain elements for faster lookup.

Binary tree: So seeks on domain elements are O(logn), for n the number of ele-
ments in the domain.

Figure 4.6: Possible implementations of maps (� in prototype)
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4.3.4 Iterators

In a complete language de�nition, much of the functional interface for itera-
tion would be hidden from the Users with some syntactic sugar. I envision something
close to the Alphard paradigm for iterators, and the User would write something like
the following to have the compiler invoke the appropriate iteration functions.

Set(SomeType) S ;
...
for i in S do

... �� use of element i
endfor;

The above code would be translated into something like the following using the
TypeSetter iterator paradigm:

Set(SomeType) S ;
...
Iterator S iter ;
S.iterInit(S iter);
while S.iterate(S iter,i) do

...
endwhile;

S.iterCleanup(S iter);

The iterators are associated with the object being iterated. Their exact form is never
available at the User level and, therefore, the ADT implementation is free to create
the iterator object necessary to successfully traverse the aggregate type. In other
words, every ADT exports the Iterator type, but not the internals of the Iterator
type.

4.3.5 Optional parameters

Users should be able to write simple declarations of their program variables
and have the system select an appropriate implementation of those variables based
on that declaration and on knowledge of the behavior of the program containing
those declarations.

Set(Bar) foo;

declares that the variable foo contains a set of objects of type Bar . TypeSetter
recognizes several objects in this declaration. The �rst is, of course, the use of foo,
which is the name of the variable being declared, and the second is the name of
the ADT. The remaining parameters supply information to the ADT itself, and are
of two types: those required for even a minimal implementation of the ADT, and
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optional parameters which supply further information that may enable (or exclude)
implementations for consideration. Required parameters are positional, and optional
parameters are named. In our example, Bar is the name of a User type and is
required by all implementations of Sets. A declaration of a variable of type Map has
two required parameters, the type of the key, and the type of the data. For example,

Map(T1,T2) vmap;

declares vmap to be a mapping from key objects of type T1 to data objects of type
T2.

Use of the variables follows standard object-oriented form. For example,

iset.add(3);

adds the element `3' to the set named iset.
Optional parameters (or just optionals) are not required for an implemen-

tation to be assigned to a variable: there is always at least one implementation of an
ADT that can be assigned to any variable of that type. Optionals supply information
that allow the system to consider other, possibly more e�cient, implementations for
a variable. For instance, consider:

Set(int) iset ;

As declared, the variable iset could be implemented with one of a variety of bit-map
implementations, but with only those implementations that can handle bitmaps of
unknown and possibly varying size, and perhaps even negative values as elements.
This implies a relatively complex implementation of bitmaps. If the User were aware
that the only correct integer values for this set were positive, that information could
be provided with the optional parameter lowerb:

Set(int,lowerb=0) iset ;

The optional parameters are named parameters. The additional information they
provide could enable the consideration of other bit-mapped implementations that
need it. Obviously, the more information provided about the user's objects, the
more implementations that can be considered.

Consider the following declaration:

Set(Utype) uset ;

The User has declared a set of objects of type Utype, a user-declared type. In this
situation, bit-mapped implementations are not at all feasible since the compiler has
no way of mapping objects of type Utype onto integers. If such a mapping is possible,
the User may declare the mapping function and its inverse:

Set(Utype,objToInt=f,intToObj=g) uset ;
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The system is now free to consider bit-mapped implementations as before.

In an ideal system, the User might be given hints as to which optionals
might provide performance improvements. How such hints might be automatically
generated is a topic for further research. In the TypeSetter system, the Imple-
mentor is responsible for providing the documentation for the optionals supported
by an implementation. That documentation will include a general description of the
possible e�ects on TypeSetter's ultimate choices of implementations. That is, we
depend on documentation to help Users decide which optionals might be bene�cial
for their programs.

The actual number of optionals required for the prototype has been few.
Table 4.7 describes optionals envisioned as useful. Asterisks mark the optionals
actually implemented in the prototype. The optionals in the table fall into one of
two categories: those that provide information that would di�cult to derive from
the program even with pro�le data, and those that are a convenience for the cur-
rent implementation but could be eliminated with appropriate programming by the
Implementor. For instance, the upperb optional for set implementations cannot in
general be derived from program source and pro�le data.

The declaration optional addedDecreasing could be detected at run time and
encoded in the pro�le data. If di�erent input data were fed to an implementation
that attempted a more e�cient representation by assuming the elements were added
in order, more than likely the User's program would run slower, but would not
fail. Of course, it is possible to design an implementation whose correct operation
depended on the assumption, in which case detection by a pro�ling implementation
would not be su�cient: a contract with the user in the form of a declaration would
be required. The `order' of the objects in this example is an internal ordering; if the
implementation depends on a User-de�ned ordering, then another optional declaring
the order function would need to be de�ned by the Implementor and declared by the
User. Speci�cally, the implementation Set slistord takes advantage of the fact that
sometimes a program creates all the objects that are in a set, and adds them in the
order they are created. This often results in the heap allocator allocating the objects
such that their memory addresses correlate with their time of creation. Set slistord
attempts to cut down on lookup time of elements in a set by keeping the elements
on a list in increasing order of the addresses of the objects.

4.3.6 Alternative implementations

The User sees a system complete with a set of possible implementations of
abstract data types. These implementations were provided with the system and are,
conceptually at least, part of the system. It must be possible for Implementors to
specify under what conditions their implementations can be selected, what pro�le
data needs to be collected, and how that data is to be evaluated.

One of the �rst responsibilities of the �rst Implementor of an abstraction is
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Optional value description
Sets

* IntToObj function the function that converts integers into objects of
the correct type for this set

* ObjToInt function converts objects into integers
* lowerb integer the lower-bound value of the elements of a set of

integers
* upperb integer the upper-bound value of the elements of a set of

integers
nofElts integer the number of base elements of the set; must equal

upperb�lowerb+1, if they are speci�ed
* ObjsAreInts (none) declares that the base objects of this set are in

fact integral, and the compiler will perform the
correct coercions; this is a convenience optional
for the prototype

compareFcn function accepts pointers to two objects and returns �1, 0,
or 1 depending on whether the �rst is less than,
equal to, or greater than the second.

addedDecreasing (none) elements are added in decreasing order
addedIncreasing (none) elements are added in increasing order

Lists

maxLength integer User contracts that list will never be longer than
this

Maps

IntToObj function the function that converts integers into objects of
the correct type for this set

ObjToInt function converts objects into integers
lowerb integer the lower-bound value of the elements of a set of

integers
upperb integer the upper-bound value of the elements of a set of

integers
hashFcn function returns a 32-bit integer that can be used in a hash

table implementation of a map
compareFcn function accepts pointers to two objects and returns �1, 0,

or 1 depending on whether the �rst is less than,
equal to, or greater than the second.

Figure 4.7: TypeSetter optionals.
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function Set P ::add(Set this, any e)
f

profiler

pcnt, psizeSum,pwasIn;
Link lp;
pcnt++;
psizeSum += length;
lp = this!�rst ;
while (lp != nil && e != lp!data) f
lp = lp!next ;
g

if (lp == nil) f
== e not in the set
Link newp = new Link ;
newp!data = e;
newp!next = �rst ;
�rst = newp;
g

else f
pwasIn++;
g

g

Figure 4.8: Pro�ling implementation of add

to de�ne the functionality of the abstract data type and provide its �rst implemen-
tation. This �rst implementation must also be the pro�ling implementation for this
ADT, and it must be the most general: it is a requirement in Typesetter that no
ADT is de�ned with functions in the interface that cannot be implemented in the
pro�ling implementation; otherwise, there would be no way to collect pro�le data
about that function.

Figure 4.8 shows the code for the pro�ling implementation of the add-an-
element function in the interface for sets. This implementation, called Set P, uses
a very general structure (in this case a linked list) to ensure that any function in
the interface can somehow be implemented and pro�led. (The converse is not true:
an alternative implementation does not have to implement every function in the
interface. Any program using that function could not have that implementation
assigned to the involved variables, however.)

Pro�le variables (declared as pro�lers in Figure 4.8) are allocated per call
site in the User's program. That is, if the User's program calls add from three distinct
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function Set bm::add(Set bm this, any e)
f

int i = (*this!objToInt)(e);
int w = (i = (sizeof(integer)*sizeof(byte)));
int b = (i mod (sizeof(integer)*sizeof(byte)));
this!setbits[w] j= (1 << b);

g

Figure 4.9: An alternative implementation of add

sites, then a total of three instances each of pcnt, psizeSum, and pwasIn are allocated.
On each call of the add function, the invocation counter pcnt is incremented, and
the psizeSum pro�le variable is incremented by the current length of the set. From
this information, evaluation functions can compute the average size of the set per
call per call site. Finally, it may be useful to an implementation to know how many
times add was invoked to add an element that was already a member: the pro�ling
variable pwasIn allows us to compute that statistic. As other implementations are
added to the collection of implementations for sets, more information may need to be
collected by the pro�ling implementation. The Implementor of an implementation
that requires new pro�le data will modify the pro�ling implementation to collect it.

4.3.7 Feasibility functions

Continuing with the example of the add-an-element function, Figure 4.9
shows its implementation when sets are implemented as a bit map. Before a User's
variable can be assigned Set bm as its implementation,Typesettermust �rst check
that this is a feasible assignment. Therefore, the Implementor of Set bm must provide
a feasibility function that Typesetter can call to check feasibility. The function
returns either true or false; the feasibility function for a bit-map implementation
having 32 elements or less is shown in Figure 4.10.

4.3.8 Evaluation functions

Traditional pro�ling techniques cannot capture the wealth of detail required
for intelligent selection of implementations. For instance, from knowing the number
of times allocation and deallocation routines are executed, it is extremely di�cult to
deduce the average size of sets, say, at any particular call site in a program. With our
pro�ling schema, it is particularly easy. Furthermore, rather complex information
can be acquired such as \Is this a sparse set?", \Does this list ever have items deleted
from it?", \Are the elements of this set entered in any particular order that yields
advantage to any implementation?", etc.
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FEASIBILITY

f
if (!u!IntToObj!def && !u!ObjToInt!def &&

u!ObjsAreInts!def &&
u!upperb!def && u!lowerb!def &&
u!upperb!ivalid && u!upperb!ival > 0 &&
u!lowerb!ivalid && u!lowerb!ival � 0 &&
u!lowerb!ival < u!upperb!ival &&
(u!upperb!ival � u!lowerb!ival ) < 32
) return true;

else return false;
g

Figure 4.10: Feasibility function for implementation Set bm

Eval Set bm::add(CallSite c)
f

return c.pcnt *
(idividePwr2 op + modPwr2 op + orAssign op + array op + shift op);

g

Figure 4.11: Evaluation function for add

Typesetter determines which implementation of an ADT is best based
on the estimates returned by the evaluation functions supplied with each implemen-
tation. For each function in the interface of an ADT, the Implementor must supply
an Eval function. For example, the evaluation function for Set bm::add is in Fig-
ure 4.11. When called with a call site as a parameter, these functions return an
estimate of the runtime resources required by this implementation.

The variable pcnt , declared in the pro�ling implementation as a pro�le
variable, is used here to estimate how much time this implementation of add would
take at a particular call site. The other pro�ler variables are not used for evaluating
this implementation of add. The variables in Figure 4.11 ending in ` op' are constants
that estimate the relative execution times of each of the indicated high-level language
operations. These times will in general be approximate, if only because the execution
time of any construct is context-dependent. However, the purpose of these constants
is merely to provide an estimate of the time required by this function relative to other
functions implementing the same functionality for di�erent representations. It is my
assertion that such an evaluation technique is `close enough' to allow reasonably
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`correct' assignment of implementations. It pays for itself by allowing the library of
implementations to be ported to a new system by simply changing the values of the
indicated constants, if necessary.

Therefore, all of the examples here, and all of the implementations in the
prototype, estimate the amount of time used in a direct fashion (assuming in�nite
physical memory, etc.), and do not attempt to handle the complexities of more
precise estimates of performance.

Not all functions are as straightforward as the add example above. Con-
sider the function for computing the union of two sets. The TypeSetter code for
the Set slist implementation of the two-operand union function (i.e. the union of the
two sets is assigned to one of the sets) is shown in Figure 4.12. This implementation
of union determines for each element in the set sB if it is in the current set (the
this set, in C++ terminology). If not, it is added to the current set. The evaluation
function for this function must therefore have access to the evaluation function for
the in function, passing to it the information it needs to create an estimate of its
behavior at the call site in the union function. The pro�ling implementation may
not have invoked the in function (and in the prototype's pro�ling implementation for
sets, it doesn't) so there is in general no pro�le data speci�c to call sites contained
in the alternative (i.e., non-pro�ling) implementations of an abstraction's interface
functions. Therefore, in this case, the union evaluation function must provide esti-
mates for the pro�ling data, which it passes as parameters to the evaluation function
for in.

4.4 TypeSetter: The Implementation

I use the name TypeSetter to refer to the whole system and to the lan-
guage that results from the enhancements made to C++. The actual implementation
of TypeSetter consists of several parts, some of which are written in TypeSet-
ter, the language. The extensions to C++ have been discussed already, and are
straightforward. There is the addition of evaluation and feasibility functions to the
declaration of class member functions (see pg. 71�), the use of pro�ling variables (see
pg. 70�), and the User's ability to optionally declare extra information in a variable
declaration (see pg. 67�).

All of these language features currently take the form of macro invocations.
A macro processor �rst scans all source �les and extracts the relevant information
via the macro invocations. This information is then fed to the analysis program
which makes the actual implementation decisions. The macros are written in m5
[40], a powerful macro language designed for the manipulation of name-scoped text,
such as is found in programming language text. In addition to the alternative im-
plementations, the program that makes the actual implementation decisions is also
written in TypeSetter; I call this program Therblig after Frank Gilbreth's qual-
itative unit of work-motion [14]. Figure 4.13 shows the steps necessary to compile
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void

FUNCTION(union1)(Set_slist sB)

{

Set_slist_Link *lp = sB.first;

while (lp != NULL) {

if (!Set__in(lp->data)) prepend(lp->data);

lp = lp->next;

}

}

EVALSUB(Pcnt,PszA,PszB,Povrlp)

{

@@ executed Pcnt times;

@@ there were Povrlp elements of s2 already in s1;

@@ each time loop exec'd avgBsz times;

@@ and prepend exec'd avgNotIn times;

if (Pcnt == 0) return 0;

double avgBsz = PszB / Pcnt;

double avgIn = Povrlp / Pcnt;

double avgNotIn = avgBsz - avgIn;

return Pcnt *

(assign_op // startup

+ (avgBsz * (cmpZero_op + deref_op + assign_op + not_op))

+ EVALSUBfor(in)(avgBsz, PszA, avgNotIn)

+ (avgNotIn * EVALSUBfor(prepend)()));

}

EVALUATE

{

return EVALSUB(p_cnt,p_szA,p_szB,p_ovrlp);

}

END_FUNCTION(union1)

Figure 4.12: Set union using linked lists
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a program written in TypeSetter into C++. The �rst invocation of m5 collects
information about the declaration of variables and the call sites of abstract functions,
and emits a description of the User's program. Therblig analyzes this description,
along with pro�le data about the program (if it exists), and emits an assignment
of implementations for all variables and call sites. These assignments, along with a
library of ADT implementation sources and the original source of the User program,
are processed by another run of m5 to transform the User program into C++.

Therblig contains all of the functions necessary to evaluate the use of
ADT implementations in the User's program, including the evaluation and feasibility
functions provided by the Implementors for their contributions to the library of
implementations. As can be seen in Figure 4.14, these are compiled as part of
Therblig after processing of the implementations declared for each of the ADTs
that are part of the system.

These steps are discussed in more detail in the following sections. First, I
will discuss the algorithm used in Therblig to assign implementations to variables.
Next, I will present the mechanism used in TypeSetter for implementing code
sharing among the implementations assigned to the User's variables.

4.4.1 The Implementation Selection Algorithm

In the concluding chapters of his dissertation, Low [31] observed that his
hill-climbing heuristic seemed to display the property that implementation decisions
were made early and were rarely re-made. Straub [46] notes that even though his
representation selection algorithm was run many times with widely varying expected
values for the program's variables, \the choice of data structures made by the system
tended to be independent of the responses to the queries made to the user." He
concluded that this indicates that the selection depends much more on the operations
performed than on the expected values of the program variables. (It is curious that
he does not even consider collecting pro�le data as a better source of information
than interactive querying of the user. Nor does he consider pro�le data as a source
for �nding those important operations.)

Apparently, the representation selection process is being made much more
complicated than it really is: good selections depend on a small part of the infor-
mation that has been utilized in previous research. My hypothesis is that this is
due to the 90-10 nature of most programs. That is, if more weight is given to the
more frequently executed sections of code (as they are in Low's technique) then the
implementation costs of these sections will dominate the overall execution costs of
the program. It also means that implementation decisions that are good for these
`hot spots' will be good for the whole program, and, conversely, implementation de-
cisions for very infrequently executed code have little e�ect on the performance of
the program.

This observation, bolstered by the observations of previous researchers, plus
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Figure 4.13: Steps to process a User program
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the success of the Greedy Sewing algorithm for code reorganization (covered in Chap-
ter 3), plus Hansen's success with focused optimization [17], plus the time-honored
success of hand-tailored optimizations based on pro�le data all suggest that in gen-
eral a greedy algorithm using pro�le data will work for assigning implementations
to abstract data types. This results in a two stage process: stage one decides which
of the existing implementations are feasible, and stage two chooses from among the
feasible implementations the one that minimizes the cost of running the program.
Furthermore, the algorithm does not require analysis of the program ow graph, as
does Low's, Rowe's, and Straub's techniques: it reduces to a problem of matching
function implementations with function call sites.

Three questions must be answered to �nd an implementation for a variable.

1. Does enough information exist to take advantage of a representation? That
is, does the information exist that would allow variable v to be implemented
with implementation R? For example, if a list is implemented as a �xed size
array, we have to know the maximum size of the list. If the maximum size
of a list is unknown, or there is no maximum size, then the �xed-size array
implementation of a list is not feasible.

2. Does enough of a representation exist to implement a variable? That is, if
variable v is given implementation R, for each call site c which has v in its
actual parameter list, does there exist an implementation f of Fc consistent
with that and all previous assignments of implementations?

3. Which implementation of variable v will provide the best performance for the
program?

The �rst two questions come under the realm of feasibility : is it possible to
select an implementation for the program? The last question seeks to �nd an imple-
mentation that minimizes the cost of executing the program, using the Implementor-
provided evaluation functions as objective functions for that minimization.

The assignment algorithm which I have implemented is in Figures 4.15
through 4.19. The pseudo-code in is meant to be descriptive rather than a rigorous
program in a well-de�ned language. A description of some functions that are not
otherwise de�ned can be found in Figure 4.19. The code is not speci�c as to how
the assignment of variables and functions are recorded. We assume a global data
structure assignment contains a consistent assignment when chooseImplementation
returns, or it is empty if no assignments were possible.

The basic procedure is summarized as: sort all call sites in decreasing
order by some preliminary metric and assign implementations to variables based
on the cheapest implementation of the functions called at each site. While I have
emphasized the evaluation functions for alternative implementations, the pro�ling
implementation for each ADT also has evaluation functions that are used to estimate
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proc chooseImplementation(Set(callSite) C)
List(callSite) S;
S = sortByImportance(C);
if not assignable(S) then error fi
endproc

Figure 4.15: Main routine for choosing representations

the potential impact of a call site. Consider a program that creates a set of n objects,
sorts the set into a list, and then accesses the objects in the list. The call site
(assume there is only one) that adds elements to the set is executed n times. The
list is accessed kn times, for some integral k. But the sort routine is called exactly
once. Nevertheless, that sort routine has complexity O(n logn) to O(n2), meaning it
has the potential of swamping the signi�cance of the add-an-element function. The
evaluation functions of the pro�ling implementation return values that reect this
potential impact of each function.

The recursive selection algorithm is encoded primarily in the function assignable
(Figure 4.16) which is passed a list of call sites; the �rst call site c on the list will
be assigned an implementation, if possible. That is, at call site c where the abstract
function Fc is invoked, assignable will pick the (next) cheapest implementation of Fc,
which thereby determines the types of the variables that are passed as parameters to
Fc. The function �ndCompatible (Figure 4.18) �nds all implementations of Fc that
are compatible with this call site. This set of compatible implementations is then
sorted in increasing order of the estimated costs provided by the implementations'
evaluation functions.

For each function in the sorted sequence of implementations S, if the ac-
tual parameters to F can be assigned the implementation types required by the
implementation function f , then an assignment is attempted on the next call site
on list L. Otherwise, we back out of any implementation assignments made in this
invocation of assignable, and another implementation function f on S is tried as the
implementation function for this call site. If every implementation function has been
tried and no consistent assignment of implementations to variables and call sites has
been made, then assignable returns false. The function parmsImplementable (Fig-
ure 4.17) determines if the implementation function f can be used to implement the
abstract function F by checking that the actual parameters to F can be assigned
the implementation types required by the formal parameters of f.
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function assignable(List(callSite) L) returns boolean:
if isEmpty(L) then return true;
F  absFcn(�rst(L));
S  sortByCost( �ndCompatible( �rst(L) ));
foreach f on S do

if not parmsImplementable(f,F ) or
not assignable(rest(L)) then ��backtrack

undoImplementations;
else return true;
fi

endfor

return false;
endfcn;

Figure 4.16: Routine assignable for choosing the implementation of an abstract
function

function parmsImplementable(impFunc f, absFunc F ) returns boolean:
foreach v 2 signature(F ), each t 2 signature(f ) do ��parallel

if not alreadyImpltd(v) then
if implementable(v,t) then

implement(v,t);
else ��conict; backtrack

return false;
fi

fi

endfor

return true;
endfcn

function implementable(variable v, implType t) returns boolean:
if not atype(v) 7! t then return false;
if not t.feasible(v) then return false;
return true;
endfcn

Figure 4.17: Mapping parameters onto implemented functions' signature
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function �ndCompatible(callSite c) returns Set(implType):
I  implementations(absFcn(c));
Ic  emptySet ;
foreach f 2 I do

if isCompatible(f,c) then
Ic  Ic [ ffg;

enddo

return Ic;
endfcn

function isCompatible(absFunc f, callSite c) returns boolean:
return if signature(f ) 7! actuals(c) then true else false;
endfcn;

Figure 4.18: Finding compatible function implementations

The function implementable checks that v can be assigned the implemen-
tation type t . The function call

t.feasible(v )

calls the Implementor-supplied feasibility function for the implementation t to verify
that t is a feasible representation for v.

Classes of variables due to aliasing in user functions

User-declared functions require some twists on the algorithm as we have
presented it so far. User-declared functions can result in equivalence classes of vari-
ables caused by aliasing of variables with formal parameters in the signature of these
functions. In our example on page 50 if representation R is assigned to S1, then it
also has to be assigned to S2. These equivalence classes are reminiscent of Low's
equivalence classes; however, his classes were imposed by the design decision to not
allow mixed representation functions in the ADT interfaces and were much more
restrictive; the equivalence classes of aliased variable names are much less so.

Figure 4.20 contains the modi�cations to the algorithm to handle this com-
plication. The prime di�erence between Figure 4.17 and Figure 4.20 is that the
former looks only at the variable, while the latter looks at all variables that are
equivalent to the variable because of parameter passing to calls on user functions.
This acts as an implementation optimization to make sure implementation selections
are compatible without having to backtrack.
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absFcn(callSite c) ! ��abstract function invoked at call site c;
signature(absFunc f ) ! ��signature of abstract function;
actuals(callSite c) ! ��list of actual parameters at call site c;
sortByImportance(Set(callSite) C)

! ��list of call sites sorted in decreasing
��order of the results of the evaluation functions
��in the pro�ling implementation;

sortByCost(Set(impFunc) F)
! ��list of implementation functions sorted in
��increasing order of estimated execution cost;

�rst(List(any) T ) ! ���rst element of list;
implement(variable v, implType t)

! ��update implementation list contained
��in global variable assignment

assignImplType(variable v, implType t, signature s)
! ��assign all occurrences of variable v
��the implType t in the signature s

assignImplType(variable v, implType t, signature s)
! ��return the signature s with all
��instances of v assigned implementation type t

Figure 4.19: Miscellaneous functions

proc parmsImplementable(impFunc f, absFunc F ) returns boolean:
foreach v 2 signature(F ), each t 2 signature(f ) do

if not alreadyImpltd(v) then
if implementable(w,t) 8w 2 class(v) then

implement(w,t) 8w 2 class(v);
else ��conict; backtrack

return false;
fi

fi

endfor

return true;
endproc

Figure 4.20: Mapping parameters onto implemented functions' signature with equiv-
alence classes
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class Set f
void in(Any e);
void add(Any e);
void subset(Set s);

g;

Figure 4.21: Declarations of generic Set functions

4.4.2 Code sharing

For each user variable declared to be, say, a set of some user-type UType, a
naive implementation of the generic abstraction of sets would create a new copy of
the implementation code for sets with all instances of the generic parameter replaced
with UType. In general, this is quite unnecessary, and particularly so in the context
of TypeSetter where all ADTs are restricted to be exomorphic and UType is
restricted to be a pointer to a user type. In this case, code can be written once to
handle sets of pointers to objects. In the case of sets of various sized integers, only
one copy need be created for each size of integer. If pointers are the same size as
one of the sizes of integers, the same version of Set code can be used for both.

However, it is important not to give up strong type checking to gain this
savings in code space. Users should still be noti�ed when their programs violate the
declarations they themselves have made.

For instance, in Figure 4.21 are the generic declarations of some of the in-
terface functions for sets. The abstraction of sets is generic in one type, that of the
type of the elements of the sets. If the user declares types Token and String, for in-
stance, and then declares variables to be Set(Token) and others to be Set(String),
it would be wasteful to have two implementations of the set functions, one for To-
kens and one for Strings, since both are actually implemented as a set of pointers
to tokens, and set of pointers to strings. All that is needed as an implementation of
sets that can handle pointers.

All that is needed to maintain strong type-checking is the declaration of
coercion types for a set of Tokens and a set of Strings, each of which calls the ap-
propriate function for handling sets of pointers. Therefore, TypeSetter generates
one implementation of the set functions capable of handling pointers (and inciden-
tally four-byte integers on many systems) and then generates a coercion class for
maintaining strong type checking. The declarations for an implementation of `set
of pointers' are in Figure 4.22; Figure 4.23 contains the coercion implementations.
This model of typing and implementation of generic functions builds on the template
idea �rst proposed by Stroustroup [10] for C++ but is much more powerful in that
it allows the Implementor more control over how much new source code is generated.
Such control cannot be created easily in C++ without extending the language fur-
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class Set ptr f
void in(void* e);
void add(void* e);
boolean subset(Set ptr& s);

g;

Figure 4.22: Declarations of generic Set functions

class Set Token : public Set ptr f
void in(Token* e) f Set ptr ::in((void*) e); g
void add(Token* e)f Set ptr ::add((void*) e); g
boolean subset(Set Token& s) f return Set ptr ::subset((Set ptr&)s); g

g;
class Set String : public Set ptr f

void in(String* e) f Set ptr ::in((void*) e); g
void add(String* e)f Set ptr ::add((void*) e); g
boolean subset(Set String& s) f return Set ptr ::subset((Set ptr&)s); g

g;

Figure 4.23: Declarations of generic Set functions

ther than is suggested in the latest C++ language reference by Ellis and Stroustroup
[10].

4.4.3 Re�nements

In order to simplify the above discussion of Therblig, I have not included
the enhancements added to the code that allows Therblig to search the solution
space in a controlledmanner. In the actual implementation (see Appendix B), using a
mechanism very similar to that used in the Greedy Sewing Algorithm,Therblig can
be invoked with a parameter p that speci�es indirectly the portion of call sites that
are `optimally' assigned implementations; i.e., the search for their implementations
is exhaustive, with every possible combination of implementations examined.

The set of call sites is sorted in decreasing order of the values returned by
the pro�ling implementation's evaluation functions. Let S =

Pn
i C(i), where C(i) is

the cost estimate returned for the function at the ith location in the list. The sum
of these values, S, is multiplied by the parameter p, a number between 0 and 1, to
determine a cuto� point in the list of sorted call sites. For a call site at location i
in the list of sorted call sites, it is above the cuto� point if

P
j<iC(j) < p � S, and
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it is below the cuto� point if
P

j<iC(j) >= p � S. At each point in the assignment
algorithm, if the call site being considered is below the cuto� point, only the �rst
consistent implementation is returned, and all others are ignored. If the call site is
above the cuto� point, then each consistent implementation is examined to see if it
improves the program's implementation.

Invoking Therblig with p = :9, all possible implementations are examined
for the call sites that account for 90% of the estimated runtime resources. By setting
p = 1, all possible implementations are examined. The results and methods of
the algorithms as I have described them above are achieved by setting p = 0; i.e.,
Therblig returns the �rst consistent implementation for the program.

4.5 Examples

I have demonstrated that TypeSetter code is not di�cult to write, ei-
ther for the User or for the Implementor. No specialized knowledge of compilers
or pro�ling technology is required by either the User or the Implementor. The Im-
plementor speci�es the information required to make a reasonable implementation
decision with normal-looking programming language statements; the only di�erence
is that pro�ling variables are allocated per call site rather than per function. In an
ideal implementation of TypeSetter, the User would need only (1) to re-compile
the system as directed by the system (although this cycling could certainly be auto-
mated), and (2) to be aware of the di�erent kinds of optional information that may
be speci�ed for a data type (e.g., upper and lower bounds on elements of sets).

Given pro�le data and User declarations, TypeSetter gives the User pro-
gram a `reasonable' implementation. I cannot claim that TypeSetter constructs
`optimal' implementations: the whole process of software construction is too heuris-
tic to allow such a claim. Future work can concentrate on determining exactly how
`optimal' an implementation of a User's program is possible. For this exploratory
work, I have concentrated on demonstrating that the implementations chosen are
not `wrong', that is, that TypeSetter chooses an implementation for an abstract
data type that a human programmer would agree is a reasonable candidate.

To convince the reader, I will present some results using three examples
to demonstrate TypeSetter's exibility. The �rst example is a small program
(approximately 60 lines) that is useless except to the extent it displays some of
the capabilities of TypeSetter. The second example is an implementation of the
MINOPT algorithm presented in section 2.2.2. Finally, we will look at TypeSetter
itself, and examine how it chooses its own implementation. The TypeSetter pro-
totype has nine implementations spread among the three abstractions Set, List, and
Map. Set has �ve implementations, and the other two have two apiece. Since Sets
have more possibilities than the other two ADTs, we will concentrate on showing
how TypeSetter performs on variables declared to be sets of User-de�ned objects.

There are two distinct questions that the prototype was designed to answer.
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The �rst is to test our hypothesis that a greedy assignment algorithm works well. To
recap, the implementation assignment algorithm used in TypeSetter sorts the call
sites in decreasing order of importance (where importance is estimated by evaluation
functions provided by the Implementor), assigns the most e�cient implementation to
the �rst call site, and then, in decreasing order of importance, assigns to all other call
sites the most e�cient implementation that is consistent with previous assignments.
We want to know how quickly an initial assignment of implementations is made, and
how close that assignment is to the `optimal' solution, assuming that the performance
estimates returned by the evaluation functions is accurate.

The second question is: how accurate are the estimates returned by the
Implementor's evaluation functions? Or, in other words, how closely does the �nal
performance of the implemented program correlate with the predictions made by the
Implementor's evaluation functions?

4.5.1 Small example

Figure 4.24 contains the TypeSetter code for an example program that
constructs three sets of integers. Given that the declarations of the variables contain
some optional declarations that tell TypeSetter the sets really are sets of integers,
it is not too surprising that TypeSetter selects a bit-mapped implementation for
them over a linked-list implementation. The primary point of this example, however,
is TypeSetter's ability to share code between instantiations of abstract types.
Even though the set cSet has more elements than do sets aSet and bSet, they all
three have few enough base elements that they can �t in a 32-bit word, hence they
will all use the same implementation of one-word bitmaps. However, because aSet
and bSet were declared to be sets of short integers, they will share a coercion class
that is di�erent from cSet's.

Figure 4.25 shows the order of priority given to the call sites of our example
program based on estimates provided by the pro�ling implementation's evaluation
routines. Each line shows the name of the function being invoked, the line in the �le
where the invocation occurs, the index in the pro�ling array for this �le (there is one
for each source �le making up a program), and the values of the pro�ling variables.
Finally, the \pro�ling costs" (actually an estimate of the cost) is given. The call
sites are sorted in decreasing order based on those estimates.

We'll look closely at the information printed for the Set add function on
line 35 of our test program (the line numbers are not contiguous due to some ir-
relevant material not included). It has seven pro�ling variables corresponding to
the numbers given in parentheses: p cnt, p szA, p appended, p prepended, p wasIn,
p inserted, and p lookedAt. Respectively, they count the number of times this call site
was executed (p cnt=8), the sum of the size of the set at each invocation (p szA=28),
the number of times the element could be appended to a list in which the ele-
ments of the set were sorted by their memory address (p appended=8), or prepended
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23 #define LOOPSIZE 1

24

25 DECLARE(aSet, Set, short, ObjsAreInts, upperb=15, lowerb=0);

26 DECLARE(bSet, Set, short, ObjsAreInts, upperb=15, lowerb=0);

27 DECLARE(cSet, Set, int, ObjsAreInts, upperb=31, lowerb=0);

29

30 main()

31 {

32 int i;

33 for (i = 0; i < 16; i++) {

34 if ((i & 2) != 0) {

35 Set_add(aSet,i);

36 }

37 }

38 Set_add(aSet,1);

39 Set_add(aSet,10);

43 for (i = 0; i < 16; i++) {

44 if ((i & 4) != 0) {

45 Set_add(bSet,i);

46 }

47 }

51 //

52 for (i = 0; i < 32; i++) {

53 if ((i & 15) == 15) {

54 Set_add(cSet,i);

55 }

56 }

60 Set_intersect1(bSet, aSet);

64 //

65 // for every integer in the set c

66 //

67 for (int j=0; j < LOOPSIZE; j++) {

68 forAll(i, cSet,

69 if (j == 0) {

70 cout << "Found " << i << "\n";

71 }

72 );

73 }

74 }

Figure 4.24: Small example
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Sorted call sites:

Set__intersect1 (line 60 file impltest p[40]=(1,8,9,13,4,4)

profiling costs 72)

Set__add (line 35 file impltest p[5]=(8,28,8,0,0,0,28) profiling costs 36)

Set__add (line 45 file impltest p[26]=(8,28,8,0,0,0,28)

profiling costs 36)

Set__add (line 38 file impltest p[12]=(1,8,0,1,0,0,0) profiling costs 9)

Set__add (line 39 file impltest p[19]=(1,9,0,0,1,0,5) profiling costs 9)

Set__add (line 54 file impltest p[33]=(2,1,2,0,0,0,1) profiling costs 3)

Set__iterate (line 72 file impltest p[47]=(3,6) profiling costs 3)

Set (line 25 file impltest p[0]=(1) profiling costs 1)

Set (line 26 file impltest p[1]=(1) profiling costs 1)

Set (line 27 file impltest p[2]=(1) profiling costs 1)

Set__iterInit (line 72 file impltest p[46]=(1) profiling costs 1)

Set__iterCleanup (line 72 file impltest p[49]=(1) profiling costs 1)

Figure 4.25: The call sites sorted by pro�ling estimates of importance

(p prepended=0), the number of times the element being added was already in the set
(p wasIn=0), the number of times the element being added had to be inserted into
the interior of a list sorted by address (p inserted=0), and the sum of the number of
elements that had to be examined over all calls to this functions (p lookedAt=28).
The actual code for the pro�ling implementation for sets is given in Figure 4.26,
from which we can see that the pro�ling implementation also keeps the elements of
the set on a list sorted by their memory address.

From Figure 4.25, we can see that the pro�ling evaluation routines consider
the intersection operation on line 60 to be the dominating factor in this program,
giving it a weight (72) twice the nearest competitor (the two adds, weight 36). Since
the intersection function has aSet and bSet as parameters, assigning an implementa-
tion to the intersection function on line 60 will also assign implementations to those
two variables. The evaluation functions for the four possible implementations of sets
produced the estimates in Figure 4.27 for the intersect function. The bitmapped-
word implementation is the cheapest, while the most expensive implementation is
the one that keeps the elements on a sorted list (in this case, the list is sorted by
the values of the integers): apparently, the number of elements in the two sets is
not su�cient to pay for the extra overhead of keeping the lists sorted. Therefore,
the intersection function on line 60 was assigned Set bmwrd intersect1, the single
word bit-map implementation for sets whose base size is less than or equal to 32.
Once this implementation for the function is decided upon, then the arguments
to intersect1 (aSet and bSet) will be assigned types corresponding to the formal
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void

FUNCTION(add)( Any e)

{

Set_P_Link *lp = firstp;

Set_P_Link **bp = &firstp;

p_cnt++;

p_szA += len;

if (lp != nil && e < lp->data) {

p_prepended++;

}

else {

while (lp != nil && e > lp->data) {

bp = &lp->next;

lp = lp->next;

p_lookedAt++;

}

if (lp == nil) p_appended++;

else if (e == lp->data) p_wasIn++;

else p_inserted++;

}

if (lp == nil || e < lp->data) {

Set_P_Link *tp = new Set_P_Link;

tp->data = e;

tp->next = lp;

*bp = tp;

len++;

}

assert(p_cnt == p_prepended + p_appended + p_wasIn + p_inserted);

}

Figure 4.26: The actual pro�ling implementation for the add function for Sets

Callsite(40): Set_bmwrd::intersect1__=1.5

Callsite(40): Set_slist::intersect1__=68.1125

Callsite(40): Set_bmarr::intersect1__=5.9

Callsite(40): Set_slistord::intersect1__=91.4

Figure 4.27: Estimates of the cost of the intersection function
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Callsite(40): Set_bmwrd::add__=12

Callsite(40): Set_slist::add__=23.4

Callsite(40): Set_bmarr::add__=16.8

Callsite(40): Set_slistord::add__=27.6

Figure 4.28: Estimates of the cost of the add function on line 54

types of Set bmwrd intersect1, which in this case is also Set bmwrd . Our prototype
has only one implementation of the intersect function with two parameters de�ned.
TypeSetter is designed to allow as many implementations as Implementors may
deem usable in various situations. This is easily incorporated into TypeSetter
because we concentrate on assigning implementations to functions; in other words,
implementations of variables occurs as a side e�ect of assigning implementations to
functions.

After assigning an implementation to the intersection function, the only
variable implementation remaining to be decided is that of cSet. Since it does not
interact with either aSet or bSet in a function call, its implementation is independent
of theirs. The call on Set add on line 54 of the program is the most important
function, according to the pro�ling implementation's estimates. Figure 4.28 gives the
implementations' estimates of the cost of calling their respective versions of the the
Set add function. Therefore, cSet is also assigned the word bitmap implementation.
Figure 4.29 shows TypeSetter's output, specifying the types of the variables of
our small program based on these considerations. The speci�cations are interpreted
as follows:

INSTANTIATE(I,N,P: : : ) Create source code for implementation I (name the class
N) with parameters P. In our example in Figure 4.29, the instantiations require
two parameters: the functions for taking an object to an integer and the inverse.

COERCE(I,N,C,P: : : ) Create a coercion class C which converts calls on the func-
tional interface of implementation I into the instantiation class N, using the
parameters P.

DECLARE M(V,C) Declare variable V to be of type (coercion class) C.

In the sample program is a constant that determines the number of times
the loop containing the iteration over the elements of cSet is executed. If that con-
stant is set to ten, instead of one, then the pro�le data inducesTypeSetter to make
a di�erent implementation assignment to cSet. Figure 4.30 contains a summary of
the output from TypeSetter, emphasizing the di�erences with the previous run
of the program. The intersection function is still the most important, but the iter-
ator functions have moved up in importance. Again, because of the independence
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INSTANTIATE(Set_bmwrd, Set_bmwrd_int_int, int, int)@;

COERCE(Set_bmwrd, Set_bmwrd_int_int, Set_bmwrd_int_int_of_int, int)@;

DECLARE_M(cSet, Set_bmwrd_int_int_of_int, 32)@;

@;

INSTANTIATE(Set_bmwrd, Set_bmwrd_int_int, int, int)@;

COERCE(Set_bmwrd, Set_bmwrd_int_int, Set_bmwrd_int_int_of_short, short)@;

DECLARE_M(bSet, Set_bmwrd_int_int_of_short, 16)@;

@;

INSTANTIATE(Set_bmwrd, Set_bmwrd_int_int, int, int)@;

COERCE(Set_bmwrd, Set_bmwrd_int_int, Set_bmwrd_int_int_of_short, short)@;

DECLARE_M(aSet, Set_bmwrd_int_int_of_short, 16)@;

Figure 4.29: TypeSetter's assignment of types to the program

of cSet from the other variables in the program, there is no e�ect except on cSet 's
implementation. Now its most important call site is the call on Set iterate, and
the various implementations' estimates of cost are shown in Figure 4.30. Set slist
and Set slistord evaluate the same since they are both linked-list implementations,
di�ering only in the order in which the elements of the set are returned. Selecting be-
tween them more or less at random results in assigning the Set slist implementation
to cSet.

The above implementationswere assigned by Therblig with p = 0; that is,
the implementations chosen were the �rst consistent set of implementations. While
a reasonable argument can be made for the implementations that were selected, two
question still remain. Are they the best implementations possible, given the results
of the evaluation functions? And does the performance of the program improve?

To be able to answer the second question, we have to have a program
that requires a non-trivial amount of time. To that end, we modify our LOOPSIZE
macro to 100,000. To answer the �rst question, we run Therblig on the program
with p = 1; i.e. all possible assignments of implementations are evaluated. On
this small example, it made no di�erence: an exhaustive search across all possible
implementations of the program still assigned Set slist to cSet, and Set bmwrd to
aSet and bSet.

Table 4.1 shows the various running times of our small example program
when cSet is implemented with each of the possible implementations for Set. From it,
we can see thatTherblig correctly chose Set slist as one of the best implementations
possible for cSet. Running Therblig with p = :9 produced exactly the same result
as p = 1, corroborating my hypothesis.
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Sorted call sites:

Set__intersect1 (line 60 file impltest p[40]=(1,8,9,13,4,4)

profiling costs 72)

Set__add (line 35 file impltest p[5]=(8,28,8,0,0,0,28) profiling costs 36)

Set__add (line 45 file impltest p[26]=(8,28,8,0,0,0,28)

profiling costs 36)

Set__iterate (line 72 file impltest p[47]=(30,60) profiling costs 30)

Set__iterInit (line 72 file impltest p[46]=(10) profiling costs 10)

Set__iterCleanup (line 72 file impltest p[49]=(10) profiling costs 10)

Set__add (line 38 file impltest p[12]=(1,8,0,1,0,0,0) profiling costs 9)

Set__add (line 39 file impltest p[19]=(1,9,0,0,1,0,5) profiling costs 9)

Set__add (line 54 file impltest p[33]=(2,1,2,0,0,0,1) profiling costs 3)

Set (line 25 file impltest p[0]=(1) profiling costs 1)

Set (line 26 file impltest p[1]=(1) profiling costs 1)

Set (line 27 file impltest p[2]=(1) profiling costs 1)

Callsite(58): Set_bmwrd::iterate__=377.830

Callsite(58): Set_bmarr::iterate__=367.916

Callsite(58): Set_slist::iterate__=105

Callsite(58): Set_slistord::iterate__=105

INSTANTIATE(Set_slist, Set_slist)@;

COERCE(Set_slist, Set_slist, Set_slist_of_int, int)@;

DECLARE_M(cSet, Set_slist_of_int)@;

@;

INSTANTIATE(Set_bmwrd, Set_bmwrd_int_int, int, int)@;

COERCE(Set_bmwrd, Set_bmwrd_int_int, Set_bmwrd_int_int_of_short, short)@;

DECLARE_M(bSet, Set_bmwrd_int_int_of_short, 16)@;

@;

INSTANTIATE(Set_bmwrd, Set_bmwrd_int_int, int, int)@;

COERCE(Set_bmwrd, Set_bmwrd_int_int, Set_bmwrd_int_int_of_short, short)@;

DECLARE_M(aSet, Set_bmwrd_int_int_of_short, 16)@;

Figure 4.30: Results from the example with LOOPCOUNT= 10

Set slist 2.30s
Set slistord 2.30s
Set bmwrd 6.32s
Set bmarr 7.63s

Table 4.1: Small example running times with various implementation assignments
for cSet
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4.5.2 MINOPT

Appendix A contains TypeSetter code for an implementation of the
MINOPT algorithm discussed in section 2.2.2. This program, we'll call it minopt,
has three set variables, two list variables, and one map. The map is a dictionary
mapping tokens onto node and arc names. In order to compute execution frequen-
cies of a graph object (arc or node) that is not instrumented, each non-instrumented
object maintains a list of other graph objects from which its execution count is com-
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Graph gozintas gozoutas time
Set bmarr Set slist Set slist 2.50s
Set slist Set slist Set slist 2.92s

Set slistord Set slistord Set slistord 3.37s
Set bmarr Set bmarr Set bmarr 3.79s

Table 4.2: Running times for the K-S algorithm.

puted; this is class member variable owlist in class GraphObj obj. The other list is
a sorted list of all graph objects (sortedObjList).

The remaining three set variables are: Graph, the set of all objects (nodes
and arcs) that comprise the current graph; Node obj::gozintas, the set of all arcs that
enter a node; and Node obj::gozoutas, the set of all arcs that exit a node.

Pro�le data was generated by running two PFGs through minopt, one is
a small �ve-node graph that Knuth and Stevenson used as an example in their
paper [30], and the other is the graph in Figure 2.3. Based on that pro�le data,
Therblig,with p = 0, selected Set bmarr for the variable Graph, and Set slist for
the two arc lists, gozintas and gozoutas. This seems a reasonable assignment of
implementations, since Graph is added to and iterated over, but nothing else. Since
it is a completely full set, there are no penalties to pay in a bitmap implementation
for having to check bits in that map that aren't set. This is not the case for the
gozintas and gozoutas variables: the number of arcs coming into or leaving an arc
is never more than three in our example graphs; a linked list would do much better
for these two variables.

With p = 1, Therblig makes exactly the same choices, again in support
of the hypothesis that implementation decisions made early are close to the `op-
timal'. Table 4.2 are minopt 's running times when the variables are assigned as
shown. The input data is a 364-node graph made by replicating and concatenating
the graph in Figure 2.3. The �rst entry in the table uses the implementations cho-
sen by Therblig, and the remainder show that it was indeed a reasonable set of
implementations.

4.5.3 Implementing Therblig

Therblig is the analysis software for the TypeSetter system. From the
descriptions of the available abstractions and their implementations, and the descrip-
tion of the User's program, it selects implementations for the variables declared, and
functions invoked, in the User's program. Therblig is the most complex software
written in TypeSetter and, therefore, will be our next example.

Therblig consists of over 8500 lines of TypeSetter code and comments.
This includes almost 2500 lines of TypeSetter code for the analysis portion of the
software, with the other 6000 lines taken up by the nine implementations of the three
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abstractions of Sets, Lists, and Maps. Sets has �ve implementations, including the
pro�ling implementation, while Lists and Maps have two apiece.

In the body ofTherblig, there are 23 variables utilizing these abstractions:
four are Lists, seven are Maps, and eleven are Sets. Given that Sets have a more
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complete set of implementations than do the other abstractions we will look at how
they are implemented by TypeSetter. The complete listing of Therblig is given
in Appendix B for reference.

The eleven Set variables in Therblig are:

ADTcalls: The set of all call sites in the User's program.

Ic: A formal parameter to the function �ndCompatibleImplementations (see page 81).

adt afcns: A member of the class ADType obj representing abstract data types; it
is the set of all functions that de�ne the interface to the abstraction.

adtaf impl fcns: A member of the class ADTabsFcn obj representing the abstract
functions, each of which will have a set of functions that are its implementa-
tions; this is that set of implementation functions.

callSites: A variable, local to the function implementable, containing all call sites
that have a speci�c variable in their argument lists.

callSitesp: A formal parameter which contains all call sites with a speci�c variable
in their argument lists.

changed: A local variable (in function assignable) which keeps track of variables
which have been given tentative assignments.

changedp: A formal parameter which keeps track of variables which have been given
tentative assignments.

implSet: A local variable to function assignable that keeps track of all function
implementations that are compatible with the current state of assignments
and a particular call site.

ivars: A formal parameter to undoImplementations that is a set of variables whose
tentative assignments are to be undone.

vd inSigsOf: A member of the class VarDecl obj that contains the set of all call
sites which have this variable as an actual argument.

as set: Each variable used as a parameter to a User-de�ned function will be aliased
to other variables; this is the set of aliases for a variable. It is a member of the
class AliasSet obj.

I have not attempted to solve the problem of detecting input-dependent
behavior: that is still up to Users to realize about their own programs, and to take
appropriate actions, speci�cally to run the programs a su�cient number of times
with typical input data to cover all the important behaviors of their programs. The
problem of determining when su�cient `typical' input data has been utilized is also
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beyond the scope of this dissertation. Therblig is interesting because it exhibits
input-dependent behavior: if there is no pro�le data for the User's program, it
selects only pro�ling implementations for the program. Because this is a straight-
forward procedure that does not require much computation, multiple pro�ling runs
of Therblig are required to insure that the pro�ling data is representative of the
average behavior of the program. Once pro�le data exists for Therblig to analyze,
then the more extensive analysis described in section 4.4.1 is executed to determine
an implementation for the program under consideration. Looking at how Therblig

modi�es its idea of a good selection will give us some insight into how it works.

The �rst step is to build a version of Therblig with all variables imple-
mented by the pro�ling versions of their underlying abstraction. The second step is
to run Therblig feeding it its own source code. Since there is not yet any pro�le
data, this run simply reads the program description, and writes a speci�cation �le
giving all of its variables a pro�ling implementation: this is more-or-less a do-nothing
run of Therblig.

The third step is to run Therblig again, but this time there is pro�le data
generated from its �rst run. Figure 4.31 shows the call sites of all Set interface func-
tions sorted in the order indicated by the Set pro�ling implementation's evaluation
functions using the pro�le data generated on the �rst run. There were a total of 208
call sites in the Therblig sources, 174 of which are in the main code. Of these 174,
only 53 involve calls on Set interface functions. (Only the non-zero cost call sites
that invoke functions in the Set abstraction are shown in the �gures.)

The Set pro�ling implementation's evaluation functions estimate that the
call site on line 761, which constructs Set objects, is possibly the greatest bottleneck
in the program, with an invocation of add trailing a very close second. In general,
the pro�ling implementations' evaluation functions attempt to estimate the potential
impact of the function at a particular call site|it is a worst case evaluation. In
the case of the �rst add on the list, if the implementation chosen were a linked-
list implementation, then adding an element could mean having to examine all of
the current members looking for duplication; hence the large estimate. Given the
number of times the add function on line 1078 was called (p cnt= 208), and the
sum of the set sizes across those calls (p szA= 21528), we can estimate the average
size of the set for each call to be 103.5 (and we note that 208=2 = 104). Of these
208 calls, exactly p appended= 208 elements were appended to the address-sorted
list, and p prepended= 0 were prepended. There were no elements already in the
set (p wasIn= 0), and no elements had to be inserted in the list (p inserted= 0).
Because all of the elements were appended to the list, then p lookedAt= 21528.

Based on this data, Therblig assigned the implementations to the vari-
ables as shown in Table 4.3, �rst column. (Only the Set variables are shown.)

The next step is to run Therblig a third time. The last run added to the
existing pro�le data, and did so while executing code that it did not execute during
the �rst run. The question naturally arises as to whether this would change the as-
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Sorted call sites:

Set (line 761 file main p[88]=(685) profiling costs 21920)

Set__add (line 1078 file main p[176]=(208,21528,208,0,0,0,21528)

profiling costs 21736)

Set__add (line 1073 file main p[168]=(213,2407,211,0,2,0,2405)

profiling costs 2618)

Set (line 318 file main p[15]=(276) profiling costs 2208)

Set (line 302 file main p[9]=(239) profiling costs 1912)

Set (line 330 file main p[21]=(119) profiling costs 952)

Set__add (line 763 file main p[89]=(685,0,685,0,0,0,0)

profiling costs 685)

Set__add (line 827 file main p[103]=(56,519,56,0,0,0,519)

profiling costs 575)

Set (line 310 file main p[12]=(51) profiling costs 408)

Set (line 610 file main p[85]=(56) profiling costs 392)

Set__add (line 882 file main p[121]=(114,126,114,0,0,0,126)

profiling costs 240)

Set (line 487 file main p[63]=(4) profiling costs 28)

Set__union1 (line 769 file main p[96]=(4,5,4,5,0) profiling costs 20)

Set (line 130 file main p[3]=(1) profiling costs 8)

Set__iterate (line 389 file main p[33]=(8,8) profiling costs 8)

Set__iterInit (line 389 file main p[32]=(4) profiling costs 4)

Set__iterCleanup (line 389 file main p[35]=(4) profiling costs 4)

:

Figure 4.31: The sorted call sites of Set functions from one Therblig run
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Variable Assignment 1 Assignment 2 Assignment 3
ADTcalls Set bmarr Set bmarr Set bmarr
Ic Set bmarr * Set slist Set slist
adt afcns Set bmarr Set bmarr Set bmarr
adtaf impl fcns Set bmarr * Set slist Set slist
as set Set slist Set slist Set slist
callSites Set bmarr Set bmarr Set bmarr
callSitesp Set bmarr Set bmarr Set bmarr
changed Set bmarr * Set slist Set slist
changedp Set bmarr * Set slist Set slist
implSet Set bmarr * Set slist Set slist
ivars Set bmarr * Set slist Set slist
vd inSigsOf Set bmarr Set bmarr Set bmarr

Table 4.3: Variable assignments based on pro�leof three runs of Therblig with
p = 0

signments of implementations to variables. And indeed it does, as the second column
of Table 4.3 shows. The changed implementations are marked with an asterisk.

The third column of Table 4.3 shows the assignments when Therblig is
run for a fourth time. But by now the statistics have stabilized, and the assignments
do not change.

All of the runs of Therblig above were with p = 0. Table 4.4 shows the
results of running Therblig with p = 1. The asterisk beside the entry for the �rst
assignment means that the �rst choice with p = 1 di�ered from the �rst choice when
p = 0. The asterisks in later columns means, as before, that Therblig changed the
implementation based on more pro�le data. Again, the assignments have stabilized
by the third run.

There are only three di�erences between the selections made when p =
0 and p = 1: the variables callSites, callSitesp, and vd inSigsOf were formerly
Set bmarr , a bit mapped array. Looking at all possible combinations of assign-
ment resulted in those implementations being changed to a Set slistord, a simple
linked list that keeps its member in the order of their memory addresses.

And �nally, Table 4.5 shows the implementations selected when running
with p = :9. The important point to note here is that running with p = :9 means
that only about thirty out of 208 call sites (about 15%) are exhaustively analyzed: the
remaining 170-some-odd call sites are assigned the �rst consistent implementation
found. The asterisks in the �rst column indicate that the �rst assignment di�ers from
the �rst assignment in Table 4.4. Asterisks in later columns highlight di�erences
from the preceding column. It is interesting to note that the assignments had not
stabilized by the third assignment. I did not determine how many iterations p = :9
would have required to stabilize.
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Variable Assignment 1 Assignment 2 Assignment 3
ADTcalls Set bmarr Set bmarr Set bmarr
Ic Set bmarr * Set slist Set slist
adt afcns Set bmarr Set bmarr Set bmarr
adtaf impl fcns * Set bmarr * Set slist Set slist
as set Set slist Set slist Set slist
callSites * Set slistord Set slistord Set slistord
callSitesp * Set slistord Set slistord Set slistord
changed Set bmarr * Set slist Set slist
changedp Set bmarr * Set slist Set slist
implSet Set bmarr * Set slist Set slist
ivars Set bmarr * Set slist Set slist
vd inSigsOf * Set slistord Set slistord Set slistord

Table 4.4: Variable assignments based on the pro�le of three runs of Therblig with
p = 1

Variable Assignment 1 Assignment 2 Assignment 3
ADTcalls Set bmarr Set bmarr Set bmarr
Ic Set bmarr * Set slist Set slist
adt afcns Set bmarr Set bmarr Set bmarr
adtaf impl fcns * Set slist Set slist Set slist
as set Set slist Set slist Set slist
callSites * Set bmarr Set bmarr * Set slist
callSitesp * Set bmarr Set bmarr * Set slist
changed Set bmarr * Set slist Set slist
changedp Set bmarr * Set slist Set slist
implSet Set bmarr * Set slist Set slist
ivars Set bmarr * Set slist Set slist
vd inSigsOf * Set bmarr Set bmarr * Set slist

Table 4.5: Variable assignments based on the pro�le of three runs of Therblig with
p = :9
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1 p = 0 34.92s
2 p = :9 32.60s
3 p = 1 35.98s
4 Set slist 36.21s
5 Set slistord 36.36s
6 Set bmarr 152.17s
7 pro�ling 44.73s

Table 4.6: Therblig running times with various implementation assignments

To measure the e�ectiveness of the assignments, I examined the output from
Therblig to see if I could have done better with the existing implementations of
sets. In essence, I manually performed Low's search heuristic: perturbing an existing
assignment of implementations to see if another would be better. For Therblig,
there are only three implementations of sets that are feasible:

Set slist: A simple list, with a single link to successive elements, and a single pointer
to the �rst element of the list.

Set slistord: A singly-linked list as for Set slist, with the addition of a pointer to
the last element of the list, and the elements are kept on the list in the order
of their memory addresses.

Set bmarr: An array of bits; requires functions to map objects to integers and
integers to objects.

The Set bmwrd implementation is not feasible since all sets in Therblig have more
than 32 elements. I ran seven versions of Therblig: one that uses only the pro�ling
implementations; one with implementations assigned by Therblig running with
p = 0 (assignment 3 from Table 4.3); one with implementations assigned with p = 1
(assignment 3 from Table 4.4); one with implementations assigned with p = :9
(assignment 3 from Table 4.5); and three others with all sets assigned Set bmarr,
Set slist, and Set slistord. The timing runs had p = 1 to exercise Therblig as fully
as possible. The results are in Table 4.6.

Finally, we look at exactly how much it costs us to pro�le Therblig.
A sense of the cost can be had by comparing the running times of the pro�ling
implementation vs. the Set slist implementation in Table 4.6. The slist implemen-
tation of sets was initially derived by removing all pro�ling code from the pro�ling
implementation. From this, I estimate that pro�ling using counters in a special im-
plementation slows down the program by 10-20%; that is, it runs 10-20% slower than
it would if all the counting code were removed. However, in some cases, this will
often be insigni�cant, particularly where the default implementation is ill-suited to
the program being pro�led. In that case, the major slow down of the program will
be due to algorithmic unsuitability, and not to counting.
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Chapter 5

Conclusion

For the last twenty years, no one has agreed with Knuth's Dictum (see
page 1) enough to implement the idea, nor has anyone proven the assertion false.
There are several assumptions in the Dictum, two of which have formed the central
hypotheses of this work. They are:

� that pro�ling can be done e�ciently enough so as not to be perceived as onerous
by the programmer; and,

� that compilers and other tools can automatically extract useful information
from pro�le data.

In the process of investigating the �rst of these hypotheses, I determined
that an implicit assumption held by many programmers is false. Most programmers
(myself included) have believed that counting executions of basic blocks is su�cient
and more e�cient than getting the more complete information about arc traversals.
I demonstrated in Chapter 2 that this simply is not so. I presented an algorithm
MINOPT which �nds the `optimal' instrumentation of a program by automatically
placing the instrumentation code in the nodes or on the arcs. Previous algorithms
have found optimal solutions for nodes, or for arcs. MINOPT is the �rst provably
minimal algorithm for both nodes and arcs. I also pointed out that the `optimal'
algorithms aren't, that all have assumed the ability to compute instrumentation
costs in linear time. I do not know whether there exists such an algorithm or not,
but I have shown that if it does exist, it cannot be `local'. That is, when estimating
the instrumentation costs of a node's incoming and outgoing arcs, more information
is required than just the execution frequencies of that node and its arcs.

My measurements showed that pro�ling in the form of in-line execution
counts imposes anywhere from 10% to 20% overhead. This can be predicted solely
from the observation that most programs' basic blocks average from four to ten
instructions in size, and from the not too unrealistic assumption that incrementing
a counter in memory requires about the average number of cycles for the execution
of an instruction on a machine. Therefore, putting instrumentation in the most
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frequently executed basic block will produce a slowdown of 10-20% for the program
as a whole.

Programmers would complain if a programs were slowed down 10-20% for
no reason. That is, if no one (or thing) was making any use of the pro�le data,
then programmers would turn o� pro�le collection. (That is why all compilers today
require the programmer to specify when to collect pro�le data.) However, the second
of the hypotheses above would alleviate the problem considerably. If some part of
the programming system were able to utilize the pro�le data to produce superior
programs, then the pro�le collecting overhead is not onerous. It is comparable to
the overhead of non-optimized bounds-checking code. While there has been some
research in improving the overhead of pro�le collection (in particular, see Sarkar's
paper on using dependency graphs to optimize pro�le counting [42]), there has yet
to be a de�nitive exploration of the optimization of pro�le counting.

For there to be such research, it has to be shown that continual collection
of pro�le data is a win. Therefore, I concentrated in Chapters 3 and 4 in explor-
ing ways a compiler might make use of pro�le data. In Chapter 3 I presented an
algorithm I call Greedy Sewing for improving the behavior of programs on machines
with instruction caches. By physically moving basic blocks closer together that are
executed close together in time, miss rates in instruction caches can be reduced up to
50%. Pro�le data not only allows the compiler to know which basic blocks to move
closer together, it also allows it to ignore those situations where it will not matter
to the �nal performance of the program.

The primary contribution of this work is the development of a program-
ming system that utilizes pro�le data to select implementations of program ab-
stractions. The TypeSetter system integrates the development, evaluation, and
selection of alternative implementations of programming abstractions into a package
that is transparent to the User. Unlike previous systems, TypeSetter does not
require specialized compiler knowledge of the User or the Implementor. From the
data collected so far, the TypeSetter approach to system synthesis appears to be
a promising avenue of research.

5.1 Problems and future work

I have only scratched the surface of the body of engineering problems that
need to be solved before TypeSetter can be considered a complete system. Some
of these are related to problems inherent in using pro�le data to predict the future
performance of a program, but others are related to the speci�c approach taken by
TypeSetter.

Execution counts: During this work, I fell into an assumption that I think is
widely shared, but which can cause problems. I had assumed that summing pro�le
counts across multiple runs of a program was a reasonable approach to understanding
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the behavior of a program. But consider a program that has a function that is called
once for each element on a list. For 99% of the elements, the function requires O(1)
time to execute. But for 1 out of 100 elements, it requires much more time. For
example, let us assume that the occurrence of a certain kind of element requires that
it be put in a separate list, and that sorting this list n-element list requires O(n2)
time (it uses an ine�cient sorting algorithm) where n = 1. If the program is run
M times, and the pro�le counts used as measures of the complexity of this function
are summed, then there comes a point where the one-in-a-hundred event dominates
the analysis. If we assume a list that is 100 elements long, and one of the elements
causes a re-sort, then running the program 100 times could make the list look like it
was 10,000 elements long, with 100 re-sorts, implying that the sorting of the special
elements requires as much time as the processing of the non-special elements, when
in fact it never sorts a list longer than one element.

In general, this problem will rear its head when evaluation functions are
non-linear in the values of the pro�le variable. For pro�lers like prof and gprof, this
may not cause any particular problem, even though their output does not indicate
how many runs of the program produced the data on which they base their analysis.
Therblig was modi�ed to count the number of executions of a program in addition
to the counters speci�ed in the pro�ling implementations. During analysis, all coun-
ters were divided by the number of program runs to try to avoid problems similar to
the ones described in the previous paragraph. However, I am not satis�ed that this
avoids all problems of analysis from execution counts derived from multiple runs.
This needs to be examined further.

Evaluation functions: The most di�cult functions to write in TypeSetter are
the evaluation functions. While some of the di�culty is due to the fact that I've never
had to write functions that evaluate the potential performance of other functions in
such numbers before, they bring their own set of problems. For one thing, they are
hardly ever `wrong', at least not in the sense that inaccuracies produce obviously
aberrant behavior on the part of the program. I have serendipitously discovered
several instances where evaluation expressions I have written do not accurately reect
the performance of the actual function; even ignoring the fact that these are all
estimates anyway, the results returned were misleading. Debugging these routines
to a reasonable level of accuracy is di�cult.

Kenny and Lin [27] report a technique for capturing the behavior of func-
tions that might be usable in aTherblig-like environment. The Implementor would
specify an expression with free variables that he suspects would adequately capture
the behavior of the function in question; for example, A � x + B � y2 + C, where x
and y are parameters such as the length of a list, or size of set. By executing the
function many times on many inputs, an average behavior for the function based
on x and y can be found by determining appropriate values for A, B and C with
a curve �tting algorithm. While this may be an approach for rigorously and more
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automatically producing evaluation functions, it will not reduce the amount of work
required by the Implementor and may impede the Implementor from taking advan-
tage of logical information contained in the pro�le data. For example, a curve-�tting
approach may not be able to handle knowledge about the density of bit vectors,
order of presentation of elements to a function, etc.

In general, evaluation functions need to be easier to write and debug.

Evaluating ADT-invoked User functions: There are several optionals that re-
quire the names of User-de�ned functions. The ones I have identi�ed are ObjToInt,
IntToObj, and compareFcn. They present problems when used because TypeSet-
ter has no way of estimating the runtime resources of the indicated functions.
Presumably, future systems will have the User give some indication of the cost of
executing these functions so that the evaluation functions can give better estimates
of the cost of using implementations that require them. I would like to avoid forcing
the User to write evaluation functions: that is mixing the roles of User and Im-
plementor too much. Exactly how to achieve the same result without User-written
evaluation routines is yet to be determined.

The prototype �nesses the problem entirely. Currently, the ObjToInt func-
tion must always be a reference to an integer �eld of the object, and IntToObj must
be an array reference. This has not been terribly restrictive up to this point, but since
the maintenance of the array of objects must be done by the User, it imposes some
overhead that should be eliminated. Ideally, a map from integers to objects, and its
inverse, should not be in the �nal implementation of a program unless it is needed.
Currently, it will always be there, whether Therblig selects implementations that
use them or not.

Second-order e�ects: Another problem arises when there are dependencies in
the User program that are not part of the information available to a Therblig-like
analyzer. Consider a program that keeps objects sorted on a list, but has its own
sorted-list code rather than using a library routine. The list is created from a set of
these objects, the implementation of said set assigned by the system. It could turn
out that the implementation of the set causes the elements to be returned in an order
that interferes with the e�cient execution of the User's code: i.e. one implementation
of set returns the elements in the order of their memory address which corresponds
to the order in which they were constructed which in turn corresponds to the order
data was read from a �le. It is easy to see that there could be interference between
the User's implementation and any implementation chosen by the system for the set,
and no amount of analysis of the User's use of the set would uncover it.

This is outside the scope of a Therblig style system. One of its major
premisses is that looking at the use of the ADTs alone is su�cient to make a rea-
sonable assignment, and extra-ADT information is simply not made available to it.
I have not encountered this kind of second-order e�ect in any of the programs I have
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run through Therblig, but theoretically it is possible.

Implementation containment: When a bit vector implementation of a set of size
N is instantiated, then any declaration of a smaller set could share the code for the
larger set. This would decrease the program's memory size further, at the expense of
making the space allocated for some sets larger. Discovering and taking advantage
of these tradeo�s would require the evaluation functions to consider space as well as
time in their analysis. Since Low, for one, has already considered the more complex
space-and-time integral objective function for minimization, I felt that duplicating
this was not necessary to my objectives and I have concentrated on the simpler
time-analysis.

Even if Therblig were capable of handling the space analysis, there is
nothing in its analysis framework that would allow the kinds of implementation
containment described above. In other words, there is no way for the evaluation
functions written by the Implementor to conclude \Use implementation X unless
condition Y holds, in which case use implementation Z." Again, future work will
have to show, �rst, that this is an optimization that needs to be available and,
second, how to obtain it.

Design of implementation libraries: I have barely begun to explore the pos-
sibilities in a library of implementations. As mentioned before, it may be desirable
to have several pro�ling implementations, each capable of collecting certain kinds
of information that is otherwise di�cult to obtain. For example, once a bit vector
implementation of a set is determined to be desirable, another bit-vector oriented
pro�ling implementation could be used to determine which of the many bit vector
implementations would be best for this program.

In the interests of simplicity, I have also avoided making use of the more
complex language features available in my base language, C++. For instance, the
implementations List slist, Set slist, and Map slist all use the same implementations
of a linked list as their underlying representation. Currently, they each have their
own copies of this code, primarily because the kinds of pro�ling information collected
di�ers between the implementations. It is possible that they could all be derived from
a linked-list class, increasing even further the possibilities for code sharing. Future
work is needed to look at integrating the class hierarchy and attendant inheritance
into the library of implementations.

5.2 Summary

I have explored in some detail the proposition that compilers and language
systems can make use of pro�le data in the generation of code for programs, and
in the synthesis of large software systems. I have improved the existing `optimal'
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instrumentation algorithms, and shown how arc counts can be used to improve the
execution time of programs on machines with instruction caches. I have presented the
design of a language and attendant system that can select for a User the implemen-
tations of variables declared to be of an abstract data type. I have also demonstrated
that such a system can make reasonable choices for those implementations based on
the pro�le data collected by abstraction-speci�c pro�ling implementations.
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Appendix A

The Knuth-Stevenson Algorithm

1 //

2 // A program that implements the MINOPT algorithm. MINOPT finds the minimal

3 // set of arcs and nodes required for implementation in a program that allows

4 // execution counts of all arcs and nodes to be computed.

5 // Syntax:

6 // ks < graphDescriptionFile

7 //

8 // This program also implements Knuth and Stevenson's (K-S) algorithm for

9 // finding a minimal set of nodes to instrument in a program.

10 // Syntax:

11 // ks -o < graphDescriptionFile

12 //

13 // The differences between the two algorithms are controlled by the boolean

14 // flag MINOPTing; these areas are highlighted with a right comment:

15 // f // MINOPT

16 //

17

18 #include <stream.h>

19 #include <stdio.h>

20 #include <assert.h>

21 #include "util.H"

22 #include "Tokens.H"

23 #include "userTypes.H"

24 #include "ks_ADTs.H"

25 #include "IMPLSRCS.H"

26

27 boolean MINOPTing = true; // MINOPT

28

29 void

30 error(char *msg)

31 {
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32 cerr <<"Error: " << msg << "\n";

33 }

34

35 void

36 fatal(char *msg)

37 {

38 cerr << "Fatal error: " << msg << "\n";

39 abort();

40 }

41

42 Define(`maxNofGraphObjs',1000)@;

43 Define(`maxNofGraphObjsm1',`Eval(maxNofGraphObjs - 1)')@;

44 Define(`go_bminfo',`lowerb=0, upperb=maxNofGraphObjsm1,

45 IntToObj=GraphObjNo, ObjToInt=NofGraphObj')@;

46

47 //

48 // class definitions

49 //

50

51 CLASS(Registration_obj)

52 {

53 friend main();

54 Any* reg;

55 int size;

56 int last;

57 public:

58 Registration_obj(int maxsz) { last = -1; size = maxsz;

reg = new Any[size]; }

59 Any& operator[](int i) {

60 if (i < 0 || i >= size) fatal("illegal registration number");

61 return reg[i];

62 }

63 int next(Any obj, char* str);

64 }SSALC

65

66 CLASS(Flowitem_obj)

67 {

68 public:

69 Flowitem_obj(GraphObj o, boolean p) { obj = o; plus = p; }

70 GraphObj obj;

71 boolean plus; // false if value is to be subtracted

72 }SSALC

73

74

75 CLASS(GraphObj_obj)
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76 {

77 friend class Registration_obj;

78 friend int NofGraphObj(GraphObj go);

79 friend GraphObj GraphObjNo(int i);

80 boolean IsArc; // false if node

81 int rnum;

82 public:

83 static Registration_obj go_R;

84 // data

85 int freq;

86 double cost; // the cost of measuring this object; defaults to 1

87 Token name;

88 boolean instrument; // true if obj is to be instrumented

89 DECLARE(flowlist,List,Flowitem);

90 // structors

91 GraphObj_obj(Token t, boolean b );

92 // functions

93 boolean isArc() { return IsArc; }

94 boolean isNode() { return !IsArc; }

95 int sum(); // add up the flowitems for this object

96 //

97 // data and functions specific to the Knuth-Stevenson algorithm

98 // I have maintained the variable names from the Knuth and

99 // Stevenson paper in BIT 13 (1973), pp 323-337.

100 void arcto(GraphObj); // to make a node for each node and arc

101 // in the original graph

102 GraphObj equivTo; // A graph object that belongs to the

103 // same equivalence class as THIS object.

104 // == nil if THIS object is the

105 // representative of its equivalence class.

106 //

107 GraphObj super(); // Returns the unique graph object

108 // that is the representative object

109 // of the equivalence class to which

110 // THIS graph object belongs (a

111 // function that chases the

112 // equivTo chain).

113 //

114 GraphObj follow; // creates an super-arc in the reduction graph

115 // from THIS object to the FOLLOW object.

116 //

117 boolean d;

118 GraphObj u;

119 GraphObj compfather;

120 // These three attributes are used only for vertices in the reduced
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121 // graph. We build the spanning tree of connected components in the

122 // reduced graph as we go. There is one arc in the reduced graph

123 // for each vertex and arc in the original graph. If COMPFATHER ==

124 // nil then this vertex represents an (super) arc in the reduced

125 // graph, viz an arc from u.super() to u.follow().super(). If d,

126 // then that arc goes from THIS to COMPFATHER, else the arc goes

127 // from COMPFATHER to THIS.

128 //

129 GraphObj comp();

130 // The representative of this supervertex's component in the reduced

131 // program flow graph constructed so far; analogous to super(), above.

132 void makeComponent();

133 void createRedArc();

134 }SSALC

135

136

137 CLASS(Node_obj) : public GraphObj_obj

138 {

139 public:

140 // data

141 DECLARE(gozoutas, Set, Arc, go_bminfo);

142 DECLARE(gozintas, Set, Arc, go_bminfo);

143 // functions

144 void gozinta(Arc);

145 void gozouta(Arc);

146 int sumGozintas();

147 int sumGozoutas();

148 // structors

149 Node_obj(Token t);

150 }SSALC

151

152 CLASS(Arc_obj) : public GraphObj_obj

153 {

154 public:

155 // data

156 Node from;

157 Node to;

158 // structors

159 Arc_obj(Token t);

160 // functions

161 void goes(Node F, Node T)

162 {

163 (from=F)->gozouta(this);

164 (to=T)->gozinta(this);

165 }
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166 }SSALC

167

168 @@ ================ Registration ================

169

170 Registration_obj::next(Any obj, char* str)

171 {

172 if (last == size-1) {

173 int newsize = (9*size)/8;

174 Any* newreg = new Any[newsize];

175 int i;

176 for (i = 0; i < size; i++) newreg[i] = reg[i];

177 delete [size]reg;

178 size = newsize;

179 reg = newreg;

180 cerr << "Warning: registration for " << str << " increased to " << size

181 << "\n";

182 }

183 reg[++last] = obj;

184 return last;

185 }

186

187 // ================ Graph objects ================

188

189 Registration_obj GraphObj_obj::go_R(maxNofGraphObjs);

190 int NofGraphObj(GraphObj go)

191 {

192 return (((GraphObj)go)->rnum);

193 }

194 GraphObj GraphObjNo(int i)

195 {

196 return (GraphObj_obj::go_R[i]);

197 }

198

199 CONSTRUCTOR(GraphObj_obj, Token t, boolean b)

200 {

201 name = t;

202 IsArc = b;

203 freq = -99999999;

204 cost = 1;

205 instrument = false;

206 equivTo = nil;

207 follow = nil;

208 u = nil;

209 compfather = nil;

210 rnum = go_R.next(this,"GraphObj");
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211 }

212

213 void

214 GraphObj_obj::arcto(GraphObj tgt)

215 {

216 if (follow == nil) {

217 follow = tgt;

218 }

219 else {

220 // make tgt and follow equivalent

221 tgt = tgt->super();

222 if (tgt != follow->super()) {

223 tgt->equivTo = follow->super();

224 }

225 }

226 }

227

228 GraphObj

229 GraphObj_obj::super()

230 {

231 return (equivTo == nil? this : equivTo->super());

232 }

233

234 GraphObj

235 GraphObj_obj::comp()

236 {

237 return (compfather == nil? this : compfather->comp());

238 }

239

240 void

241 GraphObj_obj::makeComponent()

242 {

243 // transform the d, u, and compfather attributes of the

244 // supervertices so that this supervertex is the representative of

245 // its reduction graph spanning tree component.

246 if (compfather != nil) {

247 compfather->makeComponent();

248 compfather->compfather = this;

249 compfather->d = !d;

250 compfather->u = u;

251 compfather = nil;

252 }

253 }

254

255 void
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256 GraphObj_obj::createRedArc()

257 {

258 // create the arc in the reduction graph that will correspond to

259 // THIS graph object

260 GraphObj v, w;

261 v = super();

262 v->makeComponent();

263 w = follow->super();

264 // if v and w not in the same tree of the forest of intermediate

265 // spanning trees, ...

266 if (v != w->comp()) {

267 // put in spanning tree

268 v->compfather = w;

269 v->d = true;

270 v->u = this;

271 instrument = false;

272 }

273 else {

274 // update the flow items

275 instrument = true;

276 while( w != v ) {

277 Flowitem fi = new Flowitem_obj(this, w->d);

278 List_append1(w->u->flowlist, fi);

279 w = w->compfather;

280 }

281 }

282 }

283

284 // ================ Nodes ================

285

286 CONSTRUCTOR(Node_obj, Token t) CC GraphObj_obj(t,false)

287 {

288 }

289

290 void

291 Node_obj::gozinta(Arc a)

292 {

293 Set_add(gozintas, a);

294 }

295

296 void

297 Node_obj::gozouta(Arc a)

298 {

299 Set_add(gozoutas, a);

300 }
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301

302 int

303 Node_obj::sumGozintas()

304 {

305 Arc a;

306 int sum = 0;

307 forAll(a, gozintas,

308 sum += a->freq;

309 );

310 return sum;

311 }

312

313 int

314 Node_obj::sumGozoutas()

315 {

316 Arc a;

317 int sum = 0;

318 forAll(a, gozoutas,

319 sum += a->freq;

320 );

321 return sum;

322 }

323

324 // ================ Arcs ================

325

326 CONSTRUCTOR(Arc_obj, Token t) CC GraphObj_obj(t, true)

327 {

328 from = nil;

329 to = nil;

330 }

331

332 //

333 // ================ the program ================

334 //

335

336 DECLARE(Graph,Set,GraphObj, go_bminfo);

337 DECLARE(dict,Map,Token,GraphObj);

338

339 Node

340 readNode()

341 {

342 Node n;

343 Token t;

344 cin >> t;

345 if (Map_in(dict,t)) {
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346 Map_value(dict, t, n);

347 }

348 else {

349 n = new Node_obj(t);

350 Map_define(dict, t, n);

351 }

352 return n;

353 }

354

355 boolean

356 readArc()

357 {

358 // input is a set of lines of the form:

359 // arcname freq cost nodename nodename ,

360 //

361 Token t;

362 double k;

363 cin >> t;

364 if (cin.eof()) return;

365 assert(!Map_in(dict,t));

366 Arc a = new Arc_obj(t);

367 cin >> a->freq;

368 cin >> a->cost;

369 a->cost *= a->freq;

370 Map_define(dict, t, a);

371 // now read the from and to nodes

372 Node F = readNode();

373 Node T = readNode();

374 Set_add(Graph,a);

375 Set_add(Graph,F);

376 Set_add(Graph,T);

377 a->goes(F,T);

378 if (MINOPTing) {

379 // now do the equivalent of K-S arcto function, except we do it for

380 // the nodes and the arcs

381 F->arcto(a); // MINOPT

382 a->arcto(T);

383 }

384 else {

385 F->arcto(T);

386 }

387 // done

388 cin >> t;

389 if (t == commaToken) return true;

390 return false;
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391 }

392

393 void

394 readGraph()

395 {

396 while (readArc());

397 }

398

399 void

400 propagateCounts()

401 {

402 GraphObj o;

403 forAll(o, Graph,

404 if (o->isArc()) {

405 assert(o->freq >= 0);

406 }

407 else {

408 Node_obj& n = *((Node)o);

409 int t = n.sumGozintas();

410 assert(n.freq < 0 || n.freq == t);

411 n.freq = t;

412 n.cost = (double)n.freq;

413 assert(n.freq == n.sumGozoutas());

414 }

415 );

416 }

417

418 int

419 gobjCmp(GraphObj f1, GraphObj f2)

420 {

421 if (f1->cost > f2->cost) return -1;

422 if (f1->cost < f2->cost) return 1;

423 return 0;

424 }

425

426 main(int argc, char **argv)

427 {

428 GraphObj go;

429 double sum = 0;

430 DECLARE(sortedObjList, List, GraphObj);

431 if (argc > 1) {

432 if (strcmp(argv[1], "-o") == 0) MINOPTing = false;

433 else {

434 fatal("Unrecognized option");

435 }
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436 }

437 readGraph();

438 propagateCounts();

439 Set_sort2(Graph, sortedObjList, gobjCmp);

440 forAll(go, sortedObjList,

441 if (MINOPTing || go->isNode()) { // MINOPT

442 go->createRedArc();

443 }

444 );

445 forAll(go, sortedObjList,

446 if (!MINOPTing && go->isArc()) continue; // MINOPT

447 cout << go->name;

448 if (go->instrument) {

449 cout << ": instrument cost=" << go->cost << "\n";

450 sum += go->cost;

451 }

452 else {

453 // print equation that computes count for this object

454 cout << "= ";

455 Flowitem item;

456 forAll(item, go->flowlist,

457 if (item->plus) cout << "+";

458 else cout << "-";

459 cout << item->obj->name;

460 );

461 cout << "\n";

462 }

463 );

464 cout << "Instrumentation cost = " << sum << "\n";

465 }
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Appendix B

Therblig

1 @ FILE: types.t

2 @ terminology:

3 @ The class that is a specific implementation of an ADT is called

4 @ a "representation class" of that ADT, since an ADT is not just a

5 @ set of functions but also a representation of the data.

6 @

7 @ The ADT is defined as a set of functions operating on objects of that

8 @ type. A representation class will have zero, one, or more

9 @ "implementations" of those interface functions.

10 @

11 #include <stream.h>

12 #include <stdio.h>

13 #include "userTypes.H"

14 #include "Tokens.H"

15 #include "IMPLSRCS.H"

16 #include "option_types.H"

17

18 Define(`maxNofVarDecls',1000)@;

19 Define(`maxNofVarDeclsm1',`Eval(maxNofVarDecls - 1)')@;

20 Define(`vd_bminfo',`lowerb=0, upperb=maxNofVarDeclsm1,

21 IntToObj=VarDeclNo, ObjToInt=NofVarDecl')@;

22

23 Define(`maxNofADTabsFcn',200)@;

24 Define(`maxNofADTabsFcnm1',`Eval(maxNofADTabsFcn-1)')@;

25 Define(`adtaf_bminfo',`lowerb=0, upperb=maxNofADTabsFcnm1,

26 IntToObj=ADTabsFcnNo, ObjToInt=NofADTabsFcn')@;

27

28 Define(`maxNofADTimpFcn',200)@;

29 Define(`maxNofADTimpFcnm1',`Eval(maxNofADTimpFcn-1)')@;

30 Define(`afd_bminfo',`lowerb=0, upperb=maxNofADTimpFcnm1,

31 IntToObj=ADTimpFcnNo, ObjToInt=NofADTimpFcn')@;
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32

33 Define(`maxNofADTcallSite',225)@;

34 Define(`maxNofADTcallSitem1',`Eval(maxNofADTcallSite-1)')@;

35 Define(`acs_bminfo',`lowerb=0, upperb=maxNofADTcallSitem1,

36 IntToObj=ADTcallSiteNo, ObjToInt=NofADTcallSite')@;

37

38 CLASS(Registration_obj)

39 {

40 friend main();

41 Any* reg;

42 int size;

43 int last;

44 public:

45 Registration_obj(int maxsz) { last = -1; size = maxsz;

reg = new Any[size]; }

46 Any& operator[](int i) {

47 if (i < 0 || i >= size) fatal("illegal registration number");

48 return reg[i];

49 }

50 int next(Any obj, char* str);

51 }SSALC

52

53

54 CLASS(Profarray_obj)

55 {

56 Token filename; //@N the filename for this array

57 long size; //@N the size of this array

58 long *iarray; //@N the array itself

59 double *array; //@N avg'd over runs

60 boolean Valid; //@N did the read work?

61 public:

62 Profarray_obj(FILE *pf, Token fn, int sz);

63 ~Profarray_obj() { delete [size+1]array; }

64 double& operator[](int i) { return array[i]; }

65 boolean valid() { return Valid; }

66 Token file() { return filename; }

67 }SSALC

68

69 #define maxNofOptsPerADT 10

70

71 CLASS(Optional_obj)

72 { @ optionals as they are read in from the input file

73 @ this class is actually overloaded. When the ADT is being defined,

74 @ a list of these is created for each optional that is possible on a

75 @ variable declaration. The ival is then the index of that optional for
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76 @ that ADT.

77 @ When the optionals are read on an actual variable declaration,

78 @ then the fields are filled in as documented below.

79 public:

80 int idx; @ the index of the optional

81 optionType *table; @ the table it is an index into

82 Token sval; @ the value represented as a token

83 int ival; @ the value as an integer, if ivalid

84 bool ivalid; @ is the value a valid integer?

85 @ fcns

86 Optional_obj(Token val, optType intp, int idx, optionType *tbl);

87 Optional_obj(int value);

88 Optional_obj();

89 ostream& print(ostream&);

90 ostream& printForm(ostream&);

91 }SSALC

92

93 CLASS(VarDecl_obj)

94 {

95 void init_VarDecl(void);

96 public:

97 static Registration_obj vd_R;

98 Token name; @ my name;

99 ADType vd_ADT; @ my abstract type;

100 boolean implemented; @ means that this variable has been

101 @ assigned a representation (i.e.

102 @ vd_repr contains a valid impln type)

103 ADTRepr vd_repr; @ my representation type; used by assign

104 ADTRepr vd_bestRepr;

105 DECLARE(vd_adtParms, List, Token); @@ parms in my DECLARE

106 @ (including optionals?)

107 DECLARE(vd_inSigsOf, Set, ADTcallSite, acs_bminfo);

108 AliasSet vd_as;

109 int rnum;

110 @@

111 @@ OPTIONALS

112 @@

113 boolean optsParsed;

114 Optional vd_opts[maxNofOptsPerADT]; // not nil if present

115 String instance_name, instance_parm;

116 String coercion_name, coercion_parm;

117 String constructor_parms;

118 @ fcns

119 VarDecl_obj(Token, ADType, ADTRepr); @ #1

120 VarDecl_obj(Token, ADType, Token); @ #1
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121 VarDecl_obj(Token, ADType); @ #2

122 VarDecl_obj(Token, Token); @ check that the 2nd is an ADType name

123 void aliasOf(VarDecl);

124 void betterRepr(){assert(implemented); vd_bestRepr = vd_repr; }

125 @ Note that the difference between #1 and #2 is that #1 assigns a

126 @ representation, while #2 does not.

127 boolean operator==(VarDecl_obj &that);

128 boolean operator!=(VarDecl_obj &that) { return !(*this == that); }

129 ostream& print(ostream&);

130 ostream& printForm(ostream&);

131 }SSALC

132

133 CLASS(Signature_obj)

134 {

135 public:

136 DECLARE(sig_sig, List, VarDecl);

137 @ fcns

138 Signature_obj();

139 void add(VarDecl V);

140 void add(Token, Token, Token); @create the VarDecl yourself

141 void add(VarDecl, Token, Token);

142 void add(Token, ADType, Token); @ ditto

143 void add(Token, ADType, ADTRepr);

144 void add_dontCare();

145 int len(void);

146 ostream& print(ostream&);

147 ostream& printForm(ostream&);

148 }SSALC

149

150 CLASS(ADType_obj)

151 { @ An AbstractDataType; defined by a set of AbstractFunctionDefinitions.

152 public:

153 bool adt_inited;

154 int adt_number;

155 Token name;

156 ADTRepr adt_profileImpl; @ my profiling representation

157 DECLARE(adt_reprs, Map, Token, ADTRepr); @ my representations

158 DECLARE(adt_afcns, Set, ADTabsFcn, adtaf_bminfo);

@ abstract fcns defining my interface

159 @@DECLARE(adt_optionals, Map, Token, Optional); @

160 @ fcns

161 ADType_obj(Token);

162 ADType_obj(char *);

163 ostream& print(ostream&);

164 ostream& dump(ostream&);
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165 boolean operator==(ADType_obj r) { return (name == r.name); }

166 boolean operator!=(ADType_obj r) { return (name == r.name); }

167 }SSALC

168

169 CLASS(ADTRepr_obj)

170 { @ the representation of an AbstractDataType;

171 @ an ADT implementation consists of a set of sets of implementations of the

172 @ ADTs functions.

173 @ Note: name == adtr_of->name + '_' + adtr_suffix

174 public:

175 bool adtr_inited;

176 Token name; @ My name (Set_1, List_3, Map_2, etc.)

177 ADType adtr_of; @ the ADT I'm a representation of

178 Token adtr_suffix;

179 int adtr_number; @ for accessing tables

180 @ fcns

181 ADTRepr_obj(Token);

182 ADTRepr_obj(Token, ADType);

183 ostream& print(ostream&);

184 void printName(ostream&);

185 boolean operator==(ADTRepr_obj r) { return (name == r.name); }

186 }SSALC

187

188 CLASS(ADTabsFcn_obj)

189 { @ abstract function (interface function)

190 public:

191 static Registration_obj adtaf_R;

192 int adtaf_uid; @ for registration

193 Token name; @ the name by which the user invokes me

194 ADType adtaf_for; @ the ADT I'm in the interface of

195 Signature_obj adtaf_sig; @ my parameters

196 ADTimpFcn evalFcn; @ the function representing the profiling

197 @ implemention evaluation function.

198 DECLARE(adtaf_impl_fcns, Set, ADTimpFcn, afd_bminfo); @ my implementations

199 int nofProfVars; @ number of profiling variables for this fcn

200 @ functions

201 ADTabsFcn_obj(Token, ADType);

202 ostream& print(ostream&);

203 void printName(ostream&);

204 boolean operator==(ADTabsFcn_obj r) { return (name == r.name); }

205 }SSALC(adtaf_sig())

206

207 CLASS(ADTimpFcn_obj)

208 { @ An implementation of an abstract (interface) function

209 public:
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210 static Registration_obj afd_R;

211 int afd_uid; @ index into evalFcns

212 Token name; @ the name by which I am ref'd in the library

213 ADTabsFcn afd_impl_of; @ the abstract function I implement

214 ADTRepr repr; @ the representation I'm a member of

215 Signature_obj afd_sig; @ my parameters;

216 @ only types, not names, are important in my signature; should

217 @ probably be a derived class of Signature_obj

218 @ functions

219 ADTimpFcn_obj(Token, ADTabsFcn, ADTRepr);

220 ostream& print(ostream&);

221 void printName(ostream&);

222 void typedName(ostream& o) { o << repr->name << "::" << name; }

223 boolean operator==(ADTimpFcn_obj r)

224 { return (name == r.name); }

225 }SSALC(afd_sig())

226

227

228 CLASS(ADTcallSite_obj)

229 { @ A call site where the user's program has invoked one of the interface

230 @ functions for an ADT.

231 boolean implemented;

232 ADTimpFcn implementation;

233 ADTimpFcn BetterImpl;

234 public:

235 static Registration_obj acs_R;

236 int acs_ruid; @ for registration

237 int acs_upid; @ each call site has a unique id which is its

238 @ base index in the profile eval-function arrays.

239 Profarray acs_parr; @ the profile array for this call site

240 ADTabsFcn acs_afcn; @ the abstract function being invoked

241 Signature_obj acs_sig; @ my actual parameters; names given, types computed

242 int acs_line; @ the line number of the file I'm in

243 double acs_rank;

244 @ constructors

245 ADTcallSite_obj(int, Profarray, int, ADTabsFcn);

246 @ functions

247 double eval(ADTimpFcn);

248 double eval() { assert(implemented); return eval(implementation); }

249 ostream& print(ostream&);

250 ostream& printForm(ostream&);

251 void printName(ostream& fout) { fout << acs_line; }

252 void implement(ADTimpFcn f) { implemented = true; implementation = f; }

253 void unimplement() { implemented = false; implementation = nil; }

254 void betterImpl() { assert(implemented && implementation!=nil);
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255 BetterImpl=implementation; }

256 }SSALC(acs_sig())

257

258

259 CLASS(UserFcnDecl_obj)

260 {

261 @ We have to know the structure of some user functions' signatures;

262 @ user fcns can cause either conversion functions to be invoked

263 @ or force certain bindings (e.g. if this global is assigned this

264 @ representation, then this formal parm must also have it). Depends

265 @ on whether the analyzer has been implemented with conversion-on-calls

266 @ implemented.

267 public:

268 int ufd_upid; @ each user function has a unique id

269 Token name; @ the name of the user function

270 Signature_obj ufd_sig; @ my parameters; abstract given, repr computed.

271 @ fcns

272 UserFcnDecl_obj(int, Token );

273 ostream& print(ostream&);

274 }SSALC(ufd_sig())

275

276

277 CLASS(UserFcnCall_obj)

278 {

279 public:

280 int ufc_upid; @ each call site of a user function has a unique id

281 UserFcnDecl ufc_decl; @ the function being called.

282 Signature_obj ufc_sig; @ my actual parameters

283 @ fcns

284 UserFcnCall_obj(int, UserFcnDecl);

285 ostream& print(ostream&);

286 }SSALC(ufc_sig())

287

288

289 CLASS(AliasSet_obj)

290 {

291 friend class VarDecl_obj;

292 public:

293 DECLARE(as_set, Set, VarDecl, vd_bminfo);

294 @ fcns

295 AliasSet_obj(VarDecl);

296 void merge(AliasSet);

297 }SSALC()

298

299
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300

1 @@ FILE: main.t

2 #include <stream.h>

3 #include <stdio.h>

4 #include <assert.h>

5 #include "util.H"

6 #include <math.h>

7

8 #ifdef DBG_MALLOC

9 extern void malloc_verify();

10 #define MALLOCK do { if (DebugMalloc) malloc_verify(); } while (0)

11 #else

12 #define MALLOCK

13 #endif

14

15 @@

16 @@ read the input file that has all the information we need:

17 @@ (we might note here that EVERY name in this file MUST be unique)

18 @@

19 @@ (1) a list of all ADTs available for analysis, and names of

implementations:

20 @@ (1.1) a list of the interface functions and abstract parameter

types;

21 @@ (1.2) a list of the implementations of the interface functions and

22 @@ the parameters' implementation types.

23 @@ (The Therblig system puts these in file <adt>.th in the <adt> directory

24 @@ impls/<adt>. The user has a conventional way of creating the

25 @@ appropriate declaration file, named, ADTs.th, for his program.)

26 @@ Syntax:

27 @@ The ADT and its implementations on one line, followed by several

28 @@ lines of declarations of the abstract functions, followed by the

29 @@ lines describing the implementations of the abstract functions. I.e:

30 @@

31 @@ <ADT> <ADT_i> ... ;

32 @@ = <AbsFcnName> <signature> ,

33 @@ :

34 @@ <AbsFcnName> <ImpFcnName> <signature> ,

35 @@ :

36 @@ ;

37 @@ : another block like the above

38 @@ ;

39 @@ .

40 @@

41 @@ I'll use the equal sign as a flag that this is an abstract function

42 @@ declaration, and so I won't have to worry about the order of the
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43 @@ declarations if I decide to change it later. The abstract defns

44 @@ will come from the ADT_P.H file, and the implementation defn's will

45 @@ come from the ADT_i.H files. They end up in their respective ADT_i.th

46 @@ files, which are included into one file ADTs.th in the user's

47 @@ directory by the user's makefile.

48 @@ E.g.:

49 @@

50 @@ Set Set_1 Set_2 ... ,

51 @@ = union1 Set Set ,

52 @@ = union2 Set Set Set ,

53 @@ = add Set ? ,

54 @@ :

55 @@ union1 union1_1_1 Set_1 Set_1 ,

56 @@ union1 union1_1_2 Set_1 Set_2 ,

57 @@ :

58 @@ union2 union2_1 Set_1 Set_1 Set_1 ,

59 @@ union2 union2_2 Set_2 Set_2 Set_2 ,

60 @@ :

61 @@ ;

62 @@ List List_1 List_2 ... ,

63 @@ :

64 @@ ;

65 @@ .

66 @@

67 @@

68 @@ (2) all variable declarations (Therblig puts them in ADT_vars.th).

69 @@ Syntax: var-name ADT-name p1 p2 p3 ... ;

70 @@ A Set 10 int ... ;

71 @@ :

72 @@ .

73 @@

74 @@ (3) all user function declarations of interest

75 @@ (Therblig puts them in ADT_ufcns.th)

76 @@ Syntax: fid user-fcn-name p1-name p1-type p2-name p2-type ... ;

77 @@ 145 userFcn A Set B ? C List ... ;

78 @@ :

79 @@ .

80 @@

81 @@ (4) all ADT function call sites (Therblig puts them in ADT_csites)

82 @@ Syntax: upid ADT-fcn-name var1 var2 ... ;

83 @@ 1234 union1 A B ;

84 @@ :

85 @@ .

86 @@

87 @@ (5) all user function call sites (Therblig puts them in ADT_ucsites)
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88 @@ Syntax: upid user-fcn-name var1 var2 ... '

89 @@ 134 userFcn A ? C ... ;

90 @@ :

91 @@ .

92 @@

93 @@

94 @@ (1) must be written by the compiler when doing the implementations.

95 @@

96 @@ (2)-(5) must be written by the compiler when doing the user's program.

97 @@

98 @@

99

100

101 #include "userTypes.H"

102 #include "main_ADTs.H"

103 Include(types.t)

104 @@ also defines ADTinfoTable

105 #include "OptArrays.H"

106

107 #include "EvalFcns.H"

108

109 #define openFile(fn,io,mode,filename,die) \

110 name2(io,stream) fn(filename,mode); \

111 if (die && fn.fail()) fatal("Could not open file");

112

113 #define fopenFile(fn,mode,filename,die) \

114 FILE *fn = fopen(filename, mode); \

115 if (die && fn == 0) fatal("Could not fopen file");

116

117

118 @@COERCN_CLASSES

119

120

121 @@ ===== GLOBALS =====

122 @@Debug(Std)

123 @@DebugStack

124 @@DebugPools

125 DECLARE(ADTs, Map, Token, ADType); // abstract data types

126 @@Debug(Off)

127 DECLARE(ADTReprs, Map, Token, ADTRepr); // their representations

128 DECLARE(ADTafcns, Map, Token, ADTabsFcn); // abstract functions

129 @@ DECLARE(ADTifcns, Map, Token, ADTimpFcn); // their implementations

130 DECLARE(ADTcalls, Set, ADTcallSite, acs_bminfo);// their call sites

131 DECLARE(Vars, Map, Token, VarDecl); // variables in the program

132 DECLARE(UserFcns, Map, Token, UserFcnDecl); // user declared functions
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133 @@ DECLARE(UserCalls, List, UserFcnCall); // user call sites

134 DECLARE(ProfArrays,Map, Token, Profarray); // the profile data

135

136 bool profileDataValid;

137 double curAssignCost;

138 int cutOffIndex;

139 int cutOffPercent;

140

141 ADType dontCareADT;

142 ADTRepr dontCareRepr;

143

144 // The following defines are due to therblig's minimal parsing ability

145 #define VarDecl_obj_print (void *)VarDecl_obj::print

146 #define VarDecl_obj_printForm (void *)VarDecl_obj::printForm

147 #define Token_obj_print (void *)Token_obj::print

148 #define ADTRepr_obj_printName (void *)ADTRepr_obj::printName

149 #define ADTabsFcn_obj_print (void *)ADTabsFcn_obj::print

150 #define ADTabsFcn_obj_printName (void *)ADTabsFcn_obj::printName

151 #define ADTimpFcn_obj_print (void *)ADTimpFcn_obj::print

152 #define ADTimpFcn_obj_printName (void *)ADTimpFcn_obj::printName

153 #define c_print (void *)c->print

154 #define ADTcallSite_obj_print (void *)ADTcallSite_obj::print

155 #define ADTcallSite_obj_printName (void *)ADTcallSite_obj::printName

156

157

158 @@ THE CLASS ROUTINES FOR THERBLIG

159

160 @@ ===== print routines ====

161

162 #define DefPrinter(type) \

163 ostream& operator<<(ostream& fout, type v) { return v->print(fout); }

164 #define DefPrintForm(type) \

165 ostream& operator<<(ostream& fout, type v) { return v->printForm(fout); }

166 DefPrinter(Optional)

167 DefPrinter(VarDecl)

168 ostream& operator<<(ostream& fout, Signature_obj &v)

169 { return v.printForm(fout); }

170 DefPrinter(ADType)

171 DefPrinter(ADTRepr)

172 DefPrinter(ADTabsFcn)

173 DefPrinter(ADTimpFcn)

174 DefPrintForm(ADTcallSite)

175 DefPrinter(UserFcnDecl)

176 DefPrinter(UserFcnCall)

177
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178 @@ ================ Registration ================

179

180 Registration_obj::next(Any obj, char* str)

181 {

182 if (last == size-1) {

183 int newsize = (9*size)/8;

184 Any* newreg = new Any[newsize];

185 int i;

186 for (i = 0; i < size; i++) newreg[i] = reg[i];

187 delete [size]reg;

188 size = newsize;

189 reg = newreg;

190 cerr << "Warning: registration for " << str <<

191 " increased to " << size << "\n";

192 }

193 reg[++last] = obj;

194 return last;

195 }

196

197

198 @@ ===== Profarray_obj =====

199

200 CONSTRUCTOR(Profarray_obj, FILE *pfile, Token fn, int sz)

201 {

202 @@ New requirement: the last entry of each profile array is the number

203 @@ of times that profile array was written to. When we read the array in

204 @@ it is converted from long to double, with each entry divided by the

205 @@ execution count.

206 Valid = false;

207 filename = fn;

208 size = sz;

209 iarray = new long[sz+1];

210 array = new double[sz+1];

211 if (fread(iarray, sizeof(long), size+1, pfile) != size+1) {

212 cerr << "Profile data array " << fn << " corruption? Not valid.\n";

213 cerr << " size+1=" << size+1 << "?\n";

214 fclose(pfile);

215 return;

216 }

217 double nofExecutions = (double)iarray[sz];

218 assert(nofExecutions > 0);

219 for (int i = 0; i < sz; i++) {

220 array[i] = iarray[i] / nofExecutions;

221 }

222 array[sz] = iarray[sz];
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223 delete [sz+1]iarray;

224 Valid = true;

225 }

226

227 @@ ===== Optional_obj =====

228

229 CONSTRUCTOR(Optional_obj,Token val,optType type,int index,optionType *tbl)

230 {

231 sval = val;

232 idx = index;

233 table = tbl;

234 if (type == int_opt_type) {

235 assert(val != nil);

236 if (val->type == num_tkn) {

237 ivalid = true;

238 ival = val->val;

239 }

240 else {

241 cerr << "Warning: " << val << " is not an integer\n";

242 ivalid = false;

243 }

244 }

245 else if (type == tmpint_opt_type) {

246 cerr << "Warning: " << val << " is not a valid optional\n";

247 }

248 }

249

250 CONSTRUCTOR(Optional_obj) // used by feasibility/eval routines

251 {

252 ivalid = false;

253 sval = nil;

254 idx = 0x4FFFFFFF; // something to cause a problem if used

255 table = nil;

256 }

257

258 CONSTRUCTOR(Optional_obj, int value) // used by feasibility/eval routines

259 {

260 ivalid = true;

261 ival = value;

262 sval = nil;

263 idx = 0x4FFFFFFF; // something to cause a problem if used

264 table = nil;

265 }

266

267 ostream &
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268 Optional_obj::print(ostream& fout)

269 {

270 return fout << table[idx].name;

271 }

272

273 ostream &

274 Optional_obj::printForm(ostream& fout)

275 {

276 return fout << table[idx].name;

277 }

278

279 @@ ===== VarDecl_obj =====

280

281 Registration_obj VarDecl_obj::vd_R(maxNofVarDecls);

282 int NofVarDecl(VarDecl vd)

283 {

284 return (((VarDecl)vd)->rnum);

285 }

286 VarDecl VarDeclNo(int i)

287 {

288 return (VarDecl_obj::vd_R[i]);

289 }

290

291 void

292 VarDecl_obj::init_VarDecl()

293 {

294 for (int i = 0; i < maxNofOptsPerADT; i++) {

295 vd_opts[i] = nil;

296 }

297 vd_bestRepr = nil;

298 rnum = vd_R.next(this,"VarDecl");

299 vd_as = new AliasSet_obj(this);

300 }

301

302 CONSTRUCTOR(VarDecl_obj, Token t, ADType a, ADTRepr r)

303 {

304 name = t;

305 vd_ADT = a;

306 vd_repr = r; implemented = true;

307 init_VarDecl();

308 }

309

310 CONSTRUCTOR(VarDecl_obj, Token t, ADType a)

311 {

312 name = t;
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313 vd_ADT = a;

314 vd_repr = nil; implemented = false;

315 init_VarDecl();

316 }

317

318 CONSTRUCTOR(VarDecl_obj, Token t, ADType a, Token tr)

319 {

320 ADTRepr r = new ADTRepr_obj(tr,a);

321 if (tr != dontCareToken && !Map_in(a->adt_reprs, r->name)) {

322 fatal("VarDecl passed Token not in ADType's repr List");

323 }

324 name = t;

325 vd_ADT = a;

326 vd_repr = r; implemented = true;

327 init_VarDecl();

328 }

329

330 CONSTRUCTOR(VarDecl_obj, Token t, Token ta)

331 {

332 ADType a;

333 name = t;

334 Map_value(ADTs, ta, a); // ADTs->value(ta,a);

335 if (a == nil) {

336 a = new ADType_obj(ta);

337 Map_define(ADTs, ta, a);

338 }

339 vd_ADT = a;

340 vd_repr = nil; implemented = false;

341 init_VarDecl();

342 }

343

344 boolean

345 VarDecl_obj::operator==(VarDecl_obj &that)

346 {

347 if (name != that.name) return false;

348 if (vd_ADT != that.vd_ADT) return false;

349 if (!List_equal(vd_adtParms, that.vd_adtParms)) return false;

350 return true;

351 }

352

353 ostream&

354 VarDecl_obj::print(ostream& fout)

355 {

356 fout << name << "(" << vd_ADT->name;

357 if (implemented) {
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358 if (vd_repr != nil) fout << "/" << vd_repr->name;

359 else fout << "/<nil>";

360 }

361 if (vd_bestRepr != nil) fout << "/" << vd_bestRepr->name;

362 return fout << ")";

363 }

364

365 ostream&

366 VarDecl_obj::printForm(ostream& fout)

367 {

368 if (implemented) {

369 if (vd_repr != nil) fout << vd_repr->name;

370 else fout << "<nil>";

371 }

372 if (vd_bestRepr != nil) fout << "/" << vd_bestRepr->name;

373 else fout << "(" << vd_ADT->name << ")";

374 return fout << " " << name;

375 }

376

377 void

378 VarDecl_obj::aliasOf(VarDecl v)

379 {

380 AliasSet AS = v->vd_as;

381 VarDecl var;

382 if (AS == vd_as) {

383 // then this is a redundant call: they are both pointing to the same

384 // alias set.

385 return;

386 }

387 forAll(var, v->vd_as->as_set,

388 if (var != v) var->vd_as = vd_as; // because iterCheck gets upset

389 );

390 v->vd_as = vd_as;

391 vd_as->merge(AS); // also frees up set AS

392 }

393

394 @@ ===== Signature_obj =====

395

396 CONSTRUCTOR(Signature_obj)

397 {

398 // do nothing special

399 }

400

401 int

402 Signature_obj::len()
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403 {

404 return List_length(sig_sig);

405 }

406

407

408 void

409 Signature_obj::add(VarDecl v)

410 {

411 List_append1(sig_sig, v);

412 }

413

414 void

415 Signature_obj::add_dontCare()

416 {

417 VarDecl v = new VarDecl_obj(dontCareToken, dontCareADT, dontCareToken);

418 List_append1(sig_sig, v);

419 }

420

421 void

422 Signature_obj::add(Token vn, Token an, Token rn)

423 {

424 ADType a;

425 Map_value(ADTs, an, a);

426 if (a == nil) {

427 fatal("Signature passed non_adt Token");

428 }

429 VarDecl v = new VarDecl_obj(vn, a, rn);

430 List_append1(sig_sig, v);

431 }

432

433 void

434 Signature_obj::add(VarDecl v, Token an, Token rn)

435 {

436 ADType a;

437 Map_value(ADTs, an, a);

438 if (a == nil) {

439 fatal("Signature passed non_adt Token");

440 }

441 List_append1(sig_sig, v);

442 }

443

444 void

445 Signature_obj::add(Token vn, ADType a, Token rn)

446 {

447 VarDecl v = new VarDecl_obj(vn, a, rn);
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448 List_append1(sig_sig, v);

449 }

450

451 void

452 Signature_obj::add(Token vn, ADType a, ADTRepr r)

453 {

454 VarDecl v = new VarDecl_obj(vn, a, r);

455 List_append1(sig_sig, v);

456 }

457

458 ostream&

459 Signature_obj::print(ostream& fout)

460 {

461 fout << "{Sig: ";

462 List_print(sig_sig, fout, VarDecl_obj_printForm);

463 return fout << "}";

464 }

465

466 ostream&

467 Signature_obj::printForm(ostream& fout)

468 {

469 fout << "(";

470 List_print(sig_sig, fout, VarDecl_obj_printForm);

471 return fout << ")";

472 }

473

474

475 @@ ===== ADType_obj =====

476

477 int

478 ADTinfoTableLookup(Token t)

479 {

480 for (int i=0; i < nofADTs; i++) {

481 if (*t == ADTinfoTable[i].name) return i;

482 }

483 cerr << t << ": ";

484 fatal("Unknown ADT in ADTinfoTableLookup");

485 }

486

487 CONSTRUCTOR(ADType_obj, Token t)

488 {

489 name = t;

490 adt_inited = false;

491 adt_number = ADTinfoTableLookup(name);

492 }
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493

494 CONSTRUCTOR(ADType_obj, char *sp)

495 {

496 name = new Token_obj(sp, id_tkn, 0);

497 adt_inited = false;

498 adt_number = ADTinfoTableLookup(name);

499 }

500

501 ADType

502 isADType(Token t)

503 {

504 ADType adt;

505 Map_value(ADTs, t, adt);

506 if (adt == nil) {

507 adt = new ADType_obj(t);

508 Map_define(ADTs, t, adt);

509 }

510 return adt;

511 }

512

513

514 ostream&

515 ADType_obj::dump(ostream& fout)

516 {

517 fout << "{ADType: " << BOOL(adt_inited)

518 << " " << name << "\nreprs = ";

519 Map_print(adt_reprs, fout,

520 Token_obj_print,

521 ADTRepr_obj_printName);

522 fout << "\nabs. fcns. = ";

523 Set_print(adt_afcns, fout, ADTabsFcn_obj_printName);

524 return fout << "}";

525 }

526

527 ostream&

528 ADType_obj::print(ostream& fout)

529 {

530 return fout << name;

531 return fout << "}";

532 }

533

534 @@ ===== ADTRepr_obj =====

535

536 CONSTRUCTOR(ADTRepr_obj, Token t, ADType a)

537 {
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538 name = t;

539 adtr_of = a;

540 adtr_inited = false;

541 adtr_suffix = t->suffix();

542 }

543

544 CONSTRUCTOR(ADTRepr_obj, Token t)

545 {

546 name = t;

547 adtr_of = dontCareADT;

548 adtr_inited = false;

549 adtr_suffix = t->suffix();

550 }

551

552 // overload isADTRepr;

553

554 ADTRepr

555 isADTRepr(Token t)

556 {

557 ADTRepr adtr;

558 Map_value(ADTReprs, t, adtr);

559 if (adtr == nil) {

560 adtr = new ADTRepr_obj(t);

561 Map_define(ADTReprs, t, adtr);

562 }

563 return adtr;

564 }

565

566 ADTRepr

567 isADTRepr(Token t, ADType a)

568 {

569 ADTRepr adtr;

570 Map_value(ADTReprs, t, adtr);

571 if (adtr == nil) {

572 adtr = new ADTRepr_obj(t,a);

573 Map_define(ADTReprs, t, adtr);

574 }

575 else {

576 if (*adtr->adtr_of != *a) {

577 fatal("error in isADTRepr(t,a)");

578 }

579 }

580 return adtr;

581 }

582
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583

584 void

585 ADTRepr_obj::printName(ostream& fout)

586 {

587 fout << name;

588 }

589

590 ostream&

591 ADTRepr_obj::print(ostream& fout)

592 {

593 fout << "{ADTRepr_" << adtr_suffix << ": "

594 << BOOL(adtr_inited) << " " << name << "(" << adtr_of << ")" ;

595 return fout << "}";

596 }

597

598 @@ ===== ADTabsFcn_obj

599

600 Registration_obj ADTabsFcn_obj::adtaf_R(maxNofADTabsFcn);

601 int NofADTabsFcn(ADTabsFcn af)

602 {

603 return (((ADTabsFcn)af)->adtaf_uid);

604 }

605 ADTabsFcn ADTabsFcnNo(int i)

606 {

607 return (ADTabsFcn_obj::adtaf_R[i]);

608 }

609

610 CONSTRUCTOR(ADTabsFcn_obj, Token t, ADType a)

611 {

612 name = t;

613 adtaf_for = a;

614 adtaf_uid = adtaf_R.next(this,"ADTabsFcn");

615 }

616

617 ostream&

618 ADTabsFcn_obj::print(ostream& fout)

619 {

620 fout << "{ADTabsFcn(" << name << "(" << adtaf_for << ")" << adtaf_sig

621 << ")\nimpls:";

622 Set_print(adtaf_impl_fcns, fout, ADTimpFcn_obj_printName);

623 return fout << "}";

624 }

625

626 void

627 ADTabsFcn_obj::printName(ostream& fout)
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628 {

629 fout << name;

630 }

631

632 @@ ===== ADTimpFcn_obj =====

633

634 Registration_obj ADTimpFcn_obj::afd_R(maxNofADTimpFcn);

635 int NofADTimpFcn(ADTimpFcn aif)

636 {

637 return (((ADTimpFcn)aif)->afd_uid);

638 }

639 ADTimpFcn ADTimpFcnNo(int i)

640 {

641 return (ADTimpFcn_obj::afd_R[i]);

642 }

643

644 CONSTRUCTOR(ADTimpFcn_obj, Token t, ADTabsFcn af, ADTRepr r)

645 {

646 name = t;

647 afd_impl_of = af;

648 repr = r;

649 afd_uid = afd_R.next(this,"ADTimpFcn");

650 }

651

652 void

653 ADTimpFcn_obj::printName(ostream& fout)

654 {

655 fout << name;

656 }

657

658 ostream&

659 ADTimpFcn_obj::print(ostream& fout)

660 {

661 fout << "{ADTimpFcn:" << name << "(" << afd_impl_of << ")"

662 << afd_sig;

663 return fout << "}";

664 }

665

666 @@ ===== ADTcallSite_obj =====

667

668 @@ a presumably invalid value

669 #define IllegalRank -999999.0

670

671 Registration_obj ADTcallSite_obj::acs_R(maxNofADTcallSite);

672 int NofADTcallSite(ADTcallSite acs)
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673 {

674 return (((ADTcallSite)acs)->acs_ruid);

675 }

676 ADTcallSite ADTcallSiteNo(int i)

677 {

678 return (ADTcallSite_obj::acs_R[i]);

679 }

680

681 CONSTRUCTOR(ADTcallSite_obj,int lno,Profarray array,int upid,ADTabsFcn af)

682 {

683 acs_upid = upid;

684 acs_afcn = af;

685 acs_line = lno;

686 acs_parr = array;

687 implemented = false;

688 acs_ruid = acs_R.next(this,"ADTcallSite");

689 acs_rank = IllegalRank;

690 }

691

692 double

693 ADTcallSite_obj::eval(ADTimpFcn f)

694 {

695 return (*evalFcns[f->afd_uid])(this);

696 }

697

698 ostream&

699 ADTcallSite_obj::print(ostream& fout)

700 {

701 fout << "{ADTcallSite(" << acs_upid << ")" << acs_afcn

702 << acs_sig;

703 return fout << "}";

704 }

705

706 ostream&

707 ADTcallSite_obj::printForm(ostream& fout)

708 {

709 fout << acs_afcn->name << " (line " << acs_line << " file "

710 << acs_parr->file() << " p[" << acs_upid << "]=(";

711 for (int i = 0; i < acs_afcn->nofProfVars; i++) {

712 if (i > 0) fout << ",";

713 fout << (*acs_parr)[acs_upid + i];

714 }

715 fout << ") ";

716 if (implemented) {

717 fout<<implementation->repr->name<<" cost "<<eval(implementation);
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718 }

719 else if (BetterImpl != nil) {

720 fout << BetterImpl->repr->name << " cost " << eval(BetterImpl);

721 }

722 else {

723 fout << "profiling costs " << eval(acs_afcn->evalFcn);

724 }

725 fout << ")";

726 return fout;

727 }

728

729 @@ ===== UserFcnDecl_obj =====

730

731 CONSTRUCTOR(UserFcnDecl_obj, int i, Token t)

732 {

733 ufd_upid = i;

734 name = t;

735 }

736

737 ostream&

738 UserFcnDecl_obj::print(ostream& fout)

739 {

740 fout << "{UserFcnDecl(" << ufd_upid << ") " << name << ufd_sig;

741 return fout << "}";

742 }

743

744 @@ ===== UserFcnCall_obj =====

745

746 CONSTRUCTOR(UserFcnCall_obj, int i, UserFcnDecl uf)

747 {

748 ufc_upid = i;

749 ufc_decl = uf;

750 }

751

752 ostream&

753 UserFcnCall_obj::print(ostream& fout)

754 {

755 fout << "{UserFcnCall(" << ufc_upid << ") " << ufc_decl << ufc_sig;

756 return fout << "}";

757 }

758

759 @@ ===== AliasSet_obj =====

760

761 CONSTRUCTOR(AliasSet_obj, VarDecl v)

762 {
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763 Set_add(as_set, v);

764 }

765

766 void

767 AliasSet_obj::merge(AliasSet a)

768 {

769 Set_union1(as_set,a->as_set);

770 delete a;

771 }

772

773 @@ ===== here is the beginning of the input routines for therblig =====

774

775 void

776 readADTs(char *finame)

777 {

778 Token t;

779 int adtrnumber = 0;

780 istream fin(finame,"r");

781 if (fin.fail()) fatal("Could not open file in readADTs");

782 @@ read the names of the abstract data types (ADTs)

783 fin >> t;

784 while (t != dotToken) {

785 @@ - <adt> <adt_i> ... ,

786 assert(t == minusToken);

787 fin >> t;

788 ADType adt = isADType(t);

789 if (adt->adt_inited) {

790 fatal("Duplicate ADT types declared");

791 }

792 @@ read the names of the implementations of this adt

793 @@ the profiling implemenation is the ADT name appended with `_P'

794 @@ and is created automatically.

795 @@ It is not added to the dictionary for this type, since it never

796 @@ enters into the assignment computation. But it must exist for

797 @@ printAssignments procedure to work generally.

798 adt->adt_profileImpl = isADTRepr(t->append("_P"));

799 adt->adt_profileImpl->adtr_inited = true;

800 adt->adt_profileImpl->adtr_number = adtrnumber++;

801 fin >> t;

802 while (t!=commaToken) {

803 ADTRepr adti = isADTRepr(t);

804 if (adti->adtr_inited) {

805 fatal("Duplicate ADT Reprs declared");

806 }

807 adti->adtr_number = adtrnumber++;
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808 Map_define(adt->adt_reprs, t, adti);

809 adti->adtr_inited = true;

810 fin >> t;

811 }

812 assert(t==commaToken);

813 @@ read the names of the (abstract) functions in the interface

814 @@ now we have one of two kinds of lines:

815 @@ = <absfcnname> <Signature> ,

816 @@ or

817 @@ <absfcnname> <impfcnname> <Signature> ,

818 @@ down to the first semi-colon.

819 @@

820 fin >> t;

821 while (t!=semiToken) {

822 if (t==eqToken) {

823 int nofProfVars;

824 @@ = <absfcnname> <nofProfVars> <parmtype1> <parmtype2> ... ,

825 fin >> t;

826 ADTabsFcn adaf = new ADTabsFcn_obj(t, adt);

827 Set_add(adt->adt_afcns, adaf);

828 if (Map_in(ADTafcns, t))

829 fatal("duplicate abstract function names");

830 Map_define(ADTafcns, t, adaf);

831 @@ read the number of profiling variables for this function

832 fin >> adaf->nofProfVars;

833 @@ now read the parameters to the abstract function

834 fin >> t;

835 while (t!=commaToken) {

836 VarDecl v = new VarDecl_obj(dontCareToken, t);

837 adaf->adtaf_sig.add(v);

838 fin >> t;

839 }

840 @@ the profiling evaluation functions must be accessible, but

841 @@ they are declared implicitly.

842 adaf->evalFcn=new ADTimpFcn_obj(t,adaf,adt->adt_profileImpl);

843 }

844 else if (t == plusToken) {

845 @@ + optionalName optionalName ... ,

846 do {

847 fin >> t;

848 } while (t != commaToken);

849 }

850 else {

851 @@ <ADT> <reprname> <absfcnname> <impfcnname> <type> <type>

852 @@ (1) (2) (3) (4)



149

853 @@ Each function is associated with several names:

854 @@ (1) the name of the ADT it is an impl'n function for;

855 @@ (2) the name of the representation it is an an impl'n

856 @@ function for;

857 @@ (3) the name of the abstract function it implements;

858 @@ These must be unique across all ADTs.

859 @@ (4) the name of the member function by which it is invoked;

860 @@ (this is finessed right now: all member functions

861 @@ are invoked by the same name as their abstract

862 @@ function)

863

864 ADType adt2;

865 Map_value(ADTs, t, adt2);

866 if (adt2 == nil)

867 fatal("Unknown ADT in imp fcn dcln");

868 @@ read the repr name (Set_1, Map_2, etc.)

869 Token rn;

870 fin >> rn;

871 ADTRepr repr = isADTRepr(rn);

872 @@ read the abstract fcn name;

873 ADTabsFcn adaf2;

874 Token aftok;

875 fin >> aftok;

876 Map_value(ADTafcns, aftok, adaf2);

877 if (adaf2 == nil)

878 fatal("Unknown abstract function name in imp fcn dcln");

879 @@ read an implementation name of an abstract function

880 fin >> t;

881 ADTimpFcn fd = new ADTimpFcn_obj(t, adaf2, repr);

882 Set_add(adaf2->adtaf_impl_fcns, fd);

883 @@ read the parameters of the implementation function

884 fin >> t;

885 while (t != commaToken) {

886 if (t == questToken) {

887 fd->afd_sig.add_dontCare();

888 }

889 else {

890 ADTRepr adtr = isADTRepr(t);

891 assert(t==dontCareToken || adtr->name!=dontCareToken);

892 fd->afd_sig.add(dontCareToken, adtr->adtr_of, adtr);

893 }

894 fin >> t;

895 }

896 }

897 @@ this declaration line processed



150

898 fin >> t;

899 }

900 @@ an adt group processed;

901 adt->adt_inited = true;

902 fin >> t;

903 }

904 @@ all ADTs are read

905 @@ need a check that all ADTs have been inited

906 @@ and that all ADTReprs have been inited;

907 ADType adtelt; Token name;

908 forAll(`name, adtelt', ADTs,

909 if (!adtelt->adt_inited) {

910 error(name->str);

911 fatal("An uninitialized ADT");

912 }

913 );

914 ADTRepr reprelt;

915 forAll(`name, reprelt', ADTReprs,

916 if (!reprelt->adtr_inited) {

917 error(name->str);

918 fatal("An uninitialized ADT representation");

919 }

920 );

921 }

922

923 void

924 readVarDecls(Token ftok, char *finame)

925 {

926 Token var;

927 openFile(fin,i,"r",finame,true);

928 fin >> var;

929 while (var != dotToken) {

930 Token typ,parm;

931 int cnt = 0;

932 fin >> typ;

933 @@ assert(isanadt(typ));

934 @@ read all the variable names declared in this program

935 ADType adt3;

936 Map_value(ADTs, typ, adt3);

937 VarDecl vd = new VarDecl_obj(var, adt3);

938 fin >> parm;

939 while (parm != commaToken &&

940 cnt < ADTinfoTable[adt3->adt_number].nofReqd) {

941 List_append1(vd->vd_adtParms, parm);

942 fin >> parm;
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943 cnt++;

944 }

945 assert(cnt == ADTinfoTable[adt3->adt_number].nofReqd);

946 @@ just to be on the safe side, we'll check that if the var name

947 @@ is already defined, its declaration matches exactly what we

948 @@ have already defined.

949 if (Map_in(Vars, var)) {

950 VarDecl vddefd;

951 Map_value(Vars, var, vddefd);

952 if (*vd != *vddefd) {

953 cerr << vd << "\n" << vddefd << "\n";

954 fatal("Duplicate declarations of variable do not match");

955 }

956 delete vd;

957 }

958 else {

959 Map_define(Vars, var, vd);

960 }

961 // is also the place to read the optionals

962 // parse_optionals(vd, ADTinfoTable[adt3->adt_number].tbl);

963 // the optionals are of the form dd or dd=token

964 optionType *tbl = ADTinfoTable[adt3->adt_number].tbl;

965 while (parm != commaToken) {

966 // the parm better be an integer

967 int idx = parm->integer();

968 fin >> parm;

969 if (parm == eqToken) {

970 fin >> parm;

971 vd->vd_opts[idx] =

972 new Optional_obj(parm, tbl[idx].type, idx, tbl);

973 fin >> parm;

974 }

975 else {

976 vd->vd_opts[idx] =

977 new Optional_obj(nil, tbl[idx].type, idx, tbl);

978 }

979 }

980 fin >> var;

981 }

982 }

983

984 void

985 readUserFcnDecls(Token ftok, char *finame)

986 {

987 Token t;
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988 openFile(fin,i,"r",finame,true);

989 fin >> t;

990 while (t!=dotToken) {

991 int num = t->integer();

992 Token fcnnamet, varnamet;

993 fin >> fcnnamet;

994 UserFcnDecl ufd = new UserFcnDecl_obj(num, fcnnamet);

995 assert(!Map_in(UserFcns,fcnnamet));

996 Map_define(UserFcns,fcnnamet,ufd);

997 @@ read the parm types

998 fin >> varnamet;

999 while (varnamet!=commaToken) {

1000 Token vartypet;

1001 VarDecl var;

1002 fin >> vartypet;

1003 assert(vartypet != commaToken);

1004 if (varnamet == dontCareToken) {

1005 assert(vartypet == dontCareToken);

1006 ufd->ufd_sig.add_dontCare();

1007 }

1008 else {

1009 Map_value(Vars, varnamet, var);

1010 if (var == nil) {

1011 cerr << "Undeclared variable read in readUserFcnDecls: "

1012 << varnamet << "\n";

1013 exit(1);

1014 }

1015 ufd->ufd_sig.add(var, vartypet, dontCareToken);

1016 }

1017 fin >> varnamet;

1018 }

1019 fin >> t;

1020 }

1021 }

1022

1023 void

1024 readADTcallSites(Token ftok, char *finame)

1025 { @@ call sites of calls on functions in the interface of an adt

1026 Token t;

1027 Profarray profileArray;

1028 openFile(fin,i,"r",finame,true);

1029 fin >> t;

1030 Map_value(ProfArrays, ftok, profileArray);

1031 while (t!=dotToken) {

1032 Iterator apli;
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1033 Token nt;

1034 ADTabsFcn aaf1;

1035 int profnum = t->integer();

1036 fin >> t;

1037 int linenum = t->integer();

1038 fin >> nt;

1039 Map_value(ADTafcns, nt, aaf1);

1040 assert(aaf1 != nil);

1041 ADTcallSite afc =

1042 new ADTcallSite_obj(linenum, profileArray, profnum, aaf1);

1043 @@ read the actual parms

1044 fin >> t;

1045 List_iterInit(aaf1->adtaf_sig.sig_sig, apli);

1046 while (t != commaToken) {

1047 VarDecl vd3;

1048 VarDecl abvd3;

1049 assert(!List_iterDone(aaf1->adtaf_sig.sig_sig, apli));

1050 List_iterate(aaf1->adtaf_sig.sig_sig, apli, abvd3);

1051 Map_value(Vars,t,vd3);

1052 @@ if the variable is not found, it is a dontCare;

1053 @@ That is, there is not a dontCareVar;

1054 @@ this can be confirmed by seeing if the corresponding parameter

1055 @@ of the abstract function is a dont care. Otherwise, error;

1056 if (vd3 == nil) {

1057 if (abvd3 != nil) {

1058 if (abvd3->vd_ADT == dontCareADT) {

1059 afc->acs_sig.add_dontCare();

1060 }

1061 else {

1062 fatal("Unrecognized var in call site parm list");

1063 }

1064 }

1065 else {

1066 fatal("List_iterate(aaf1->adtaf_sig.sig_sig,apli,abvd3)

== nil");

1067 }

1068 }

1069 else {

1070 assert(abvd3->vd_ADT != dontCareADT);

1071 assert(vd3->name != dontCareToken);

1072 afc->acs_sig.add(vd3); @N type to be computed;

1073 Set_add(vd3->vd_inSigsOf, afc);

1074 }

1075 fin >> t;

1076 }
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1077 List_iterCleanup(aaf1->adtaf_sig.sig_sig, apli);

1078 Set_add(ADTcalls,afc);

1079 fin >> t;

1080 }

1081 }

1082

1083 void

1084 readUserFcnCalls(Token ftok, char *finame)

1085 { @@ call sites of calls on (interesting) user functions

1086 Token t;

1087 VarDecl fcnParm;

1088 openFile(fin,i,"r",finame,true);

1089 fin >> t;

1090 while (t!=dotToken) {

1091 int num = t->integer();

1092 Token nt;

1093 fin >> nt;

1094 UserFcnDecl ufd3;

1095 Map_value(UserFcns,nt,ufd3); @@ must exist;

1096 assert(ufd3 != nil);

1097 UserFcnCall ufc = new UserFcnCall_obj(num, ufd3);

1098 Iterator sigIter;

1099 Signature_obj& formalParms = ufc->ufc_decl->ufd_sig;

1100 List_iterInit(formalParms.sig_sig, sigIter);

1101 @@ read the actual parms

1102 fin >> t;

1103 while (t!=commaToken) {

1104 @@ assert((t == dontCare) || isavar(t));

1105 VarDecl vd4;

1106 Map_value(Vars, t, vd4);

1107 ufc->ufc_sig.add(vd4);

1108 // alias this variable with the formal

1109 List_iterate(formalParms.sig_sig, sigIter, fcnParm);

1110 if (vd4 == nil) {

1111 assert(fcnParm != nil && fcnParm->name == dontCareToken);

1112 }

1113 else {

1114 vd4->aliasOf(fcnParm);

1115 if (DebugDetails) {

1116 cerr << ">>>Aliases for "

1117 << hex((int)vd4) << " " << vd4->name << ":";

1118 Set_print(vd4->vd_as->as_set,cerr,VarDecl_obj_printForm);

1119 cerr << "\n";

1120 cerr << ">>>Aliases for "

1121 << hex((int)fcnParm) << " " << fcnParm->name << ":";
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1122 Set_print(fcnParm->vd_as->as_set,cerr,

VarDecl_obj_printForm);

1123 cerr << "\n";

1124 }

1125 }

1126 fin >> t;

1127 }

1128 fin >> t;

1129 List_iterCleanup(formalParms.sig_sig, sigIter);

1130 }

1131 }

1132

1133 void

1134 readProfileData(Token ftok, char *finame)

1135 {

1136 if (!profileDataValid) return;

1137 @@ Form of profile data input:

1138 @@ It is an array of 32-bit integers. Each slot in the array

1139 @@ corresponds to a profile variable declared in the ADT profiling

1140 @@ implementations, or to the static call site of an adt function or

1141 @@ user function. The number read with each function in

1142 @@ readprogramdesc is the beginning location of the profile

1143 @@ variables for all functions. E.g. if f1 collects 5 profile

1144 @@ variables, and f1s number is 15, then locations 15 through 19

1145 @@ are the locations in the profile array of f1s profile variables.

1146 @@ these variables are not accessed by anything here except that the

1147 @@ first location of each function read is its execution frequency count.

1148 @@ (this is a required convention and is not currently enforced by

1149 @@ any software checks. this is easy to fix by always declaring

1150 @@ p_cnt for ADT interface functions.)

1151 @@ Note that we are talking about the unique profile id (upid), not the

1152 @@ function id (fid).

1153 @@ If the profile data file does not exist, then our choices are simple:

1154 @@ all implementations are profiling (*_P) implementations.

1155 @@ New requirement: the last entry of each profile array is the number

1156 @@ of times that profile array was written to. When we read the array in

1157 @@ it is converted from long to double, with each entry divided by the

1158 @@ execution count.

1159 long size;

1160 FILE *pfile = fopen(finame, "r");

1161 if (pfile == 0) {

1162 profileDataValid = false;

1163 if (DebugFiles) {

1164 cerr << " Profile file " << finame << " not there.\n";

1165 }
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1166 return;

1167 }

1168 fread((char *)&size, sizeof(long), 1, pfile);

1169 Profarray pa = new Profarray_obj(pfile, ftok, size);

1170 if (!pa->valid()) {

1171 profileDataValid = false;

1172 return;

1173 }

1174 Map_define(ProfArrays, ftok, pa);

1175 fclose(pfile);

1176 return;

1177 }

1178

1179 @@ ===============================

1180 @@ end of input section of program

1181 @@ ===============================

1182

1183 @@ main section

1184

1185 @@ global variables

1186 DECLARE(sortedCallSites, List, ADTcallSite);

1187

1188 @@ little functions

1189

1190 boolean

1191 mapsto(ADTRepr r, ADType t)

1192 {

1193 @@ can t be implemented/represented by r

1194 if (DebugDetails)

1195 cerr << ">>>mapsto(ADTRepr " << r << "::ADType " << t << ")\n";

1196 /* if (r == dontCareRepr) {

1197 if (t == dontCareADT) return true;

1198 else return false;

1199 }

1200 else if (t == dontCareADT) return false;

1201 -- the above is done by have a pseudo-ADT called dontCareADT, with

1202 -- one don't care ADTRepr dontCareRepr

1203 */

1204 return Map_in(t->adt_reprs,r->name);

1205 }

1206

1207 boolean

1208 mapsto(VarDecl actual, VarDecl formal)

1209 {

1210 assert(formal->implemented);
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1211 if (DebugDetails)

1212 cerr << ">>>mapsto(VarDecl " <<actual<<"::VarDecl "<<formal<<")\n";

1213 if (actual->implemented) {

1214 return (*actual->vd_repr == *formal->vd_repr);

1215 }

1216 else return mapsto(formal->vd_repr, actual->vd_ADT);

1217 }

1218

1219 boolean

1220 mapsto(Signature_obj &actual, Signature_obj &formal)

1221 {

1222 @@ do the types of the variables map to the abstract types in the first

1223 @@ parameter List. they map if each parameter maps.

1224 if (actual.len() != formal.len()) return false;

1225 Iterator nexta, nextf;

1226 VarDecl av, fv;

1227 if (DebugDetails)

1228 cerr << ">>>mapsto(Sig " << actual << "::Sig " << formal << ")\n";

1229 List_iterInit(actual.sig_sig, nexta);

1230 List_iterInit(formal.sig_sig, nextf);

1231 while (List_iterate(actual.sig_sig, nexta, av) &&

1232 List_iterate(formal.sig_sig, nextf, fv))

1233 {

1234 boolean r_mapsto, r_feas;

1235 if (!(r_mapsto = mapsto(av, fv))

1236 || (r_feas = (fv->vd_repr != dontCareRepr

1237 && !(*feasibilityFcns[fv->vd_repr->adtr_number])(av)))) {

1238 List_iterCleanup(actual.sig_sig, nexta);

1239 List_iterCleanup(formal.sig_sig, nextf);

1240 if (DebugDetails) {

1241 cerr << " >>>Doesn't map because ";

1242 if (!r_mapsto) {

1243 cerr << "the actual does not map to the formal\n";

1244 }

1245 else {

1246 assert(r_feas);

1247 cerr << av->name << " cannot be implemented by "

1248 << fv->vd_repr->name << "\n";

1249 }

1250 }

1251 return false;

1252 }

1253

1254 }

1255 List_iterCleanup(actual.sig_sig, nexta);
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1256 List_iterCleanup(formal.sig_sig, nextf);

1257 return true;

1258 }

1259

1260 // overload isCompatible;

1261

1262 boolean

1263 isCompatible(ADTimpFcn fi, ADTcallSite c)

1264 {

1265 if (DebugAssign)

1266 cerr << ">>>isCompatible(" << fi << "," << c << ") == ";

1267 if (mapsto(c->acs_sig, fi->afd_sig)) {

1268 if (DebugAssign) cerr << "true\n";

1269 return true;

1270 }

1271 else {

1272 if (DebugAssign) cerr << "false\n";

1273 return false;

1274 }

1275 }

1276

1277 DeclareUserFcn(findCompatibleImplementations, ?, ?, Ic, Set)@;

1278

1279 void

1280 findCompatibleImplementations(ADTcallSite &c,

1281 DeclareParm(Ic, Set, ADTimpFcn, afd_bminfo))

1282 { @@ find all implementations of c->acs_afcn compatible with the

1283 @@ parameters in call site c;

1284 ADTimpFcn fi;

1285 Set_makeEmpty(Ic);

1286 forAll(fi, c->acs_afcn->adtaf_impl_fcns,

1287 if (isCompatible(fi, c)) {

1288 Set_add(Ic, fi);

1289 }

1290 );

1291 return;

1292 }

1293

1294 DeclareUserFcn(callSitesContaining, ?, ?, callSitesp, Set)@;

1295

1296 void

1297 callSitesContaining(VarDecl v, DeclareParm(callSitesp, Set, ADTcallSite,

1298 acs_bminfo))

1299 {

1300 @@ union is overkill: callSitesp is always empty. An interesting
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1301 @@ data point for therblig analysis, though.

1302 Set_union1(callSitesp, v->vd_inSigsOf);

1303 }

1304

1305 void

1306 assignImplType(VarDecl v, ADTRepr t)

1307 {

1308 assert(!v->implemented);

1309 if (DebugDetails)

1310 cerr << ">>>assignImplType: " << v << " <- " << t << "\n";

1311 v->vd_repr = t;

1312 v->implemented = true;

1313 }

1314

1315

1316 void

1317 unassignImplType(VarDecl v)

1318 {

1319 assert(v->implemented);

1320 v->implemented = false;

1321 }

1322

1323 boolean

1324 implementable(VarDecl callSiteVar, ADTRepr r)

1325 {

1326 @@ The inherent feasibility of assigning callSiteVar the

1327 @@ representation r was checked in isCompatible.

1328 assert((*feasibilityFcns[r->adtr_number])(callSiteVar));

1329 @@

1330 @@ if callSiteVar is assigned the impl. type impFcnFormalVar->vd_repr,

1331 @@ then for every call site c that has callSiteVar in its actual parameter

1332 @@ List, check that there still exists AT LEAST ONE impl'n function

1333 @@ that can be used to implement the function called at c.

1334 @@ This check is not absolutely necessary, but I suspect it may cut

1335 @@ down on the amount of backtracking.

1336 @@ Side effect: callSiteVar is assigned impln

1337 @@ impFcnFormalVar->vd_repr, if feasible.

1338 @@

1339 DECLARE(callSites, Set, ADTcallSite, acs_bminfo);

1340 ADTcallSite c;

1341 @@ by defn of findCompatibleImplementations:

1342 assert(mapsto(r, callSiteVar->vd_ADT));

1343 assignImplType(callSiteVar, r);

1344 if (DebugAssign) {

1345 cerr << ">>>trying " << r << " for " << callSiteVar->name << "\n";
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1346 }

1347 CallUserFcn(callSitesContaining, callSiteVar, callSites)@;

1348 callSitesContaining(callSiteVar, callSites);

1349 if (DebugAssign) {

1350 cerr << ">>>callSitesContaining: ";

1351 Set_print(callSites, cerr, ADTcallSite_obj_printName);

1352 cerr << "\n";

1353 }

1354 if (Set_empty(callSites)) return true;

1355 @@ for each call site

1356 Iterate(next, c, callSites,

1357 ADTimpFcn fi;

1358 Iterate(nextfi, fi, c->acs_afcn->adtaf_impl_fcns,

1359 if (mapsto(c->acs_sig, fi->afd_sig)) {

1360 Set_iterCleanup(c->acs_afcn->adtaf_impl_fcns, nextfi);

1361 goto SUCCESS;

1362 }

1363 );

1364 unassignImplType(callSiteVar);

1365 if (DebugAssign) {

1366 cout << "No implementations for " << c->acs_afcn << "\n";

1367 }

1368 Set_iterCleanup(callSites, next);

1369 return false;

1370 SUCCESS: ;

1371 );

1372 return true;

1373 }

1374

1375 DeclareUserFcn(parmsImplementable, ?, ?, ?, ?, changedp, Set)@;

1376

1377 boolean

1378 parmsImplementable(ADTcallSite c, ADTimpFcn f,

1379 DeclareParm(changedp, Set, VarDecl, vd_bminfo))

1380 {

1381 @@ Check that the impl. fcn f can be used to implement the fcn

1382 @@ called at call site c by checking that the variables in the actual

1383 @@ parameter List to c can be assigned the

1384 @@ impl. types required by the formal parms of f. Note that the

1385 @@ parallel iteration over the formal parms of f and the

1386 @@ actual parms of c works by the

1387 @@ definition of the function findCompatibleImplementations.

1388 @@ Refinement: this check has to be performed for the actual var and every

1389 @@ variable to which it is aliased in every function call in which they

1390 @@ occur.
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1391 assert(Set_empty(changedp));

1392 Iterator nextf; @@ points to the implementation formal

1393 VarDecl impforml;

1394 Iterator nextv; @@ points to the call site actual

1395 VarDecl actual;

1396 if (DebugAssign)

1397 cerr << ">>>parmsImplementable:" << c->acs_sig << f->afd_sig << "\n";

1398 List_iterInit(f->afd_sig.sig_sig, nextf);

1399 List_iterInit(c->acs_sig.sig_sig, nextv);

1400 while (List_iterate(f->afd_sig.sig_sig, nextf, impforml) &&

1401 List_iterate(c->acs_sig.sig_sig, nextv, actual))

1402 {

1403 assert(impforml->implemented); @@ it is a formal impln parm

1404 if (!actual->implemented) {

1405 // for each variable aliased to actual,

1406 // for each call site using that variable,

1407 // see if it is implementable using the type of impformal

1408 VarDecl aliasv;

1409 MALLOCK;

1410 if (DebugAssign) {

1411 cerr << ">>>Aliases for " << actual->name << ":";

1412 Set_print(actual->vd_as->as_set, cerr, VarDecl_obj_printForm);

1413 cerr << "\n";

1414 }

1415 forAll(aliasv, actual->vd_as->as_set,

1416 if (DebugAssign)

1417 cerr << ">>>Alias loop: " << aliasv << "\n";

1418 if (!aliasv->implemented) {

1419 if (implementable(aliasv, impforml->vd_repr)) {

1420 // implementable assigns implementation to actual

1421 if (DebugAssign) {

1422 cout << "Implementing " << aliasv->name <<

1423 " as " << impforml->vd_repr->name << "\n";

1424 }

1425 Set_add(changedp, aliasv);

1426 }

1427 else {

1428 List_iterCleanup(f->afd_sig.sig_sig, nextf);

1429 List_iterCleanup(c->acs_sig.sig_sig, nextv);

1430 if (DebugAssign) {

1431 cout << "Could not implement " << aliasv->name

1432 << " as " << impforml->vd_repr << "\n";

1433 }

1434 return false;

1435 }
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1436 }

1437 );

1438 }

1439 }

1440 List_iterCleanup(f->afd_sig.sig_sig, nextf);

1441 List_iterCleanup(c->acs_sig.sig_sig, nextv);

1442 return true;

1443 }

1444

1445 DeclareUserFcn(undoImplementations, ivars, Set, ?, ?)@;

1446

1447 void

1448 undoImplementations(DeclareParm(ivars, Set, VarDecl, vd_bminfo), int index)

1449 {

1450 @@ undo the implementations of the variables in ivars

1451 VarDecl v;

1452 forAll(v, ivars,

1453 if (DebugAssign){

1454 cout << " Undoing " << v->name << " " << index << "\n";

1455 }

1456 unassignImplType(v);

1457 );

1458 }

1459

1460 @@ the call site of interest in the current invocation of assignable

1461 @@ an unfortunately necessary global

1462

1463 ADTcallSite curCallSite;

1464

1465 int

1466 compareCosts(ADTimpFcn f1, ADTimpFcn f2)

1467 {

1468 @@ compare the resource costs of the two functions

1469 // these computations should be cached in the call site (e.g. a list

1470 // of costs for each possible afd_uid).

1471 double f1r, f2r;

1472 f1r = curCallSite->eval(f1);

1473 f2r = curCallSite->eval(f2);

1474 if (DebugCosts) {

1475 cerr << "Callsite(" << curCallSite->acs_upid << "): ";

1476 f1->typedName(cerr);

1477 cerr << "=" << f1r << " and ";

1478 f2->typedName(cerr);

1479 cerr << "=" << f2r << "\n";

1480 }
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1481 if (f1r < f2r) return -1;

1482 if (f1r > f2r) return 1;

1483 return 0;

1484 }

1485

1486 void

1487 printSortedCallSites(boolean better)

1488 {

1489 ADTcallSite cs;

1490 if (DebugSortCallSites) {

1491 cout << "\nSorted call sites:\n";

1492 forAll(cs, sortedCallSites,

1493 cout << cs << "\n";

1494 if (better)

1495 cs->betterImpl();

1496 );

1497 cout << "\n";

1498 }

1499 }

1500

1501 void

1502 RecordCurAssignments()

1503 {

1504 VarDecl var;

1505 Token t;

1506 printSortedCallSites(true);

1507 forAll(`t,var', Vars,

1508 if (t != dontCareToken) {

1509 cout << "Implemented " << var->name

1510 << " as " << var->vd_repr->name;

1511 if (var->vd_bestRepr!=nil && var->vd_bestRepr!=var->vd_repr) {

1512 cout << " (vs. " << var->vd_bestRepr->name << ")";

1513 }

1514 cout << "\n";

1515 var->betterRepr();

1516 }

1517 );

1518 }

1519

1520 boolean

1521 assignable( Iterator iter, int listIndex, double cost )

1522 {

1523 @@ take the next call site c, and assign it the cheapest

1524 @@ implementation you can. whether c can be assigned the cheapest

1525 @@ implementation is determined by parmsImplementable.
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1526 ADTcallSite c;

1527 ADTimpFcn fi; @@ a candidate implementation of this abs. fcn

1528 DECLARE(implSet, Set, ADTimpFcn, afd_bminfo); @@ Set of impl'n fcns

1529 @@ compatible with ADTcallSite c

1530 DECLARE(implList, List, ADTimpFcn);@@ implSet sorted;

1531 boolean worked;@@ true if parmsImplementable succeeded;

1532 assert(cost >= 0);

1533 @@ prune this search branch if we are already too costly;

1534 if (curAssignCost != -1.0 && cost >= curAssignCost) {

1535 cout << ".Pruned at " << listIndex << ".\n";

1536 return false;

1537 }

1538 cout << "." << listIndex;

1539 if (List_iterDone(sortedCallSites, iter)) {

1540 // then we are at the bottom of the file.

1541 if (curAssignCost == -1.0 || cost < curAssignCost) {

1542 RecordCurAssignments();

1543 if (curAssignCost == -1.0) cout << "First ";

1544 else cout << "Better ";

1545 cout << "implementation: " << form("%10.2f",cost);

1546 if (curAssignCost != -1.0) {

1547 double delta = (curAssignCost - cost ) / curAssignCost;

1548 cout << " delta=" << form("%10.8f",delta);

1549 }

1550 cout << "\n";

1551 curAssignCost = cost;

1552 }

1553 else {

1554 cout << "Not better implementation: " << cost << "\n";

1555 }

1556 return true;

1557 }

1558 if (!List_iterate(sortedCallSites,iter,c)) {

1559 assert(false);

1560 }

1561 if (DebugAssign) {

1562 cerr << ">>>LOOP: assignable call site: " << c << "\n";

1563 }

1564 MALLOCK;

1565 CallUserFcn(findCompatibleImplementations, c, implSet)@;

1566 findCompatibleImplementations(c, implSet);

1567 if (DebugAssign) {

1568 cerr << ">>>Compatible implementations: ";

1569 Set_print(implSet, cerr, ADTimpFcn_obj_print);

1570 cerr << "\n";
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1571 }

1572 curCallSite = c;

1573 Set_sort2(implSet, implList, &compareCosts);

1574 @@ for each implementation fi for c, assign the types implied by

1575 @@ fi`'s Signature to the variables for c.

1576 @@ if this assignment is feasible, then recurse and try the next

1577 @@ call site on the List. if the recursion returns true, then

1578 @@ return true, else the assignment is not feasible.

1579 @@ if the assignment is not feasible try the next implementation fcn.

1580 @@ if no impl fcns are feasible then return false.

1581 Iterate(next, fi, implList,

1582 @@ the Set of all variables assigned

1583 DECLARE(changed, Set, VarDecl, vd_bminfo);

1584 @@ on a call to parmsImplementable.

1585 if (DebugAssign) {

1586 cerr << ">>>assignable loop on " << fi << " index " <<

1587 listIndex << "\n";

1588 }

1589 CallUserFcn(parmsImplementable, c, fi, changed);

1590 worked = parmsImplementable(c, fi, changed);

1591 if (DebugAssign) {

1592 cerr << ">>>parmsImplementable: " << BOOL(worked) << "\n";

1593 }

1594 if (worked) {

1595 Iterator iter2;

1596 List_iterCopy(sortedCallSites, iter, iter2);

1597 c->implement(fi);

1598 double fcnCost = c->eval();

1599 if (isnan(fcnCost) || isinf(fcnCost) || fcnCost < 0.0) {

1600 cerr << "Evaluation function problem:\n";

1601 cerr << "The fcn for "<<fi->repr->name<<fi->name<<"\n";

1602 cerr << "fubarred. It returned " << fcnCost << "\n";

1603 exit(1);

1604 }

1605 if (assignable(iter2, listIndex+1, cost + c->eval())) {

1606 // we're walking back up the list toward the more

1607 // important call sites;

1608 if (listIndex < cutOffIndex) {

1609 // then we want to try alternatives;

1610 List_iterCleanup(sortedCallSites, iter2);

1611 CallUserFcn(undoImplementations,changed,listIndex);

1612 undoImplementations(changed, listIndex);

1613 c->unimplement();

1614 continue; @@ very important: continues the forAll!!!

1615 }
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1616 else {

1617 // then we won`'t try alternatives;

1618 List_iterCleanup(sortedCallSites, iter2);

1619 List_iterCleanup(implList, next);

1620 if (DebugAssign || DebugCosts) {

1621 cerr<<">>>assigned "<< c <<" "<< fi->repr->name

1622 << "; cost: " << c->eval(fi) << "\n";

1623 }

1624 return true;

1625 }

1626 }

1627 else {

1628 CallUserFcn(undoImplementations,changed,listIndex);

1629 undoImplementations(changed,listIndex);

1630 c->unimplement();

1631 }

1632 List_iterCleanup(sortedCallSites, iter2);

1633 }

1634 else {

1635 if (DebugAssign) {

1636 cout << "Did not implement call site " << c << "\n";

1637 }

1638 CallUserFcn(undoImplementations,changed,listIndex);

1639 undoImplementations(changed,listIndex);

1640 c->unimplement();

1641 }

1642 );

1643 return false;

1644 }

1645

1646 //================================================================

1647

1648 void

1649 findVariableAliases()

1650 {

1651 // for each call site

1652 // alias the formal and the actual

1653 // until done

1654 // for each variable

1655 // merge alias sets.

1656 }

1657

1658 void

1659 assignEverythingToProfile()

1660 {
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1661 Token t;

1662 VarDecl vd;

1663 forAll(`t, vd', Vars,

1664 vd->vd_repr = vd->vd_bestRepr = vd->vd_ADT->adt_profileImpl;

1665 vd->implemented = true;

1666 );

1667 }

1668

1669 int

1670 compareCallSitesImportance(ADTcallSite c1, ADTcallSite c2)

1671 {

1672 if (c1->acs_rank == IllegalRank)

1673 c1->acs_rank = (*evalFcns[c1->acs_afcn->evalFcn->afd_uid])(c1);

1674 if (c2->acs_rank == IllegalRank)

1675 c2->acs_rank = (*evalFcns[c2->acs_afcn->evalFcn->afd_uid])(c2);

1676 if (c1->acs_rank < c2->acs_rank) return 1;

1677 if (c1->acs_rank > c2->acs_rank) return -1;

1678 return 0;

1679 }

1680

1681 void

1682 sortByImportance(void)

1683 {

1684 @@ sorts the Set ADTcalls (the Set of callSites) into the List

1685 @@ sortedCallSites. the key is the frequency of the call sites.

1686 Set_toList(ADTcalls, sortedCallSites);

1687 List_sort1(sortedCallSites, &compareCallSitesImportance);

1688 @@ better:

1689 @@ Set_sort(ADTcalls, sortedCallSites, &compareCallSitesImportance);

1690 @@ now determine how many of these items we're going to iterate over;

1691 int size = List_length(sortedCallSites);

1692 if (cutOffPercent == 100) {

1693 cutOffIndex = size;

1694 }

1695 else if (cutOffPercent == 0) {

1696 cutOffIndex = 0;

1697 }

1698 else {

1699 double rankSum = 0;

1700 ADTcallSite cs;

1701 forAll(cs, sortedCallSites,

1702 assert(cs->acs_rank != IllegalRank);

1703 rankSum += cs->acs_rank;

1704 );

1705 double rankCutOff = rankSum * cutOffPercent / 100;
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1706 rankSum = 0;

1707 cutOffIndex = 0;

1708 forAll(cs, sortedCallSites,

1709 if (rankCutOff <= rankSum) break;

1710 rankSum += cs->acs_rank;

1711 cutOffIndex++;

1712 );

1713 }

1714 printSortedCallSites(false);

1715 }

1716

1717 void

1718 printAssignments(char *foname)

1719 {

1720 // print out the assignments

1721 openFile(afile,o,"w",foname,true);

1722 Token t;

1723 VarDecl vd;

1724 afile << m5Comment << "This is automatically created by therblig\n";

1725 afile << m5Comment << "\n";

1726 afile << m5PushPool_VarDecl_pool << "VARDECLS_HDR\n";

1727 afile << m5Comment2;

1728 forAll(`t, vd', Vars,

1729 if (vd->vd_bestRepr == nil) {

1730 afile << "!!!Not implemented: " << vd->name << "\n";

1731 cerr << "!!!Not implemented: " << vd->name << "\n";

1732 }

1733 else {

1734 @@ first, call the instantiation routine for the ADT

1735 @@ on this variable. It will define the strings necessary

1736 @@ to declare the variable, make sure the sources of the code

1737 @@ exist, and that the appropriate coercion class exists.;

1738 (*instantiationFcns[vd->vd_bestRepr->adtr_number])(vd);

1739 afile << m5Comment2 << m5Comment << " " << vd->name << "\n"

1740 << m5Comment2;

1741 @@;

1742 @@ first, put out the INSTANTIATE_ADT_i macro;

1743 @@;

1744 afile << "INSTANTIATE(" << vd->vd_bestRepr->name << ","

1745 << vd->instance_name;

1746 if (!vd->instance_parm->empty())

1747 afile << "," << vd->instance_parm->string();

1748 afile << ")" << m5Comment2;

1749 @@;

1750 @@ second put out the COERCE_ADT_i macro;
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1751 @@;

1752 afile << "COERCE(" << vd->vd_bestRepr->name << ","

1753 << vd->instance_name

1754 << "," << vd->coercion_name->string();

1755 if (!vd->coercion_parm->empty())

1756 afile << "," << vd->coercion_parm->string();

1757 afile << ")" << m5Comment2;

1758 @@;

1759 @@ third put out the DECLARE_M macro for the variable itself.;

1760 @@;

1761 afile << m5DECLARE_M << vd->name << ","

1762 << vd->coercion_name->string();

1763 if (!vd->constructor_parms->empty())

1764 afile << "," << vd->constructor_parms->string();

1765 afile << "`)'" << m5Comment2;

1766 afile << m5Comment2;

1767 @@ Token t;

1768 @@ forAll(t, vd->vd_adtParms, api, afile << "," << t; );

1769 }

1770 );

1771 afile << "VARDECLS_TLR\n";

1772 }

1773

1774

1775 void

1776 initialize()

1777 {

1778 dontCareADT = isADType(dontCareToken);

1779 dontCareRepr = isADTRepr(dontCareToken);

1780 Map_define(dontCareADT->adt_reprs, dontCareToken, dontCareRepr);

1781

1782 dontCareADT->adt_inited = true;

1783 dontCareADT->adt_number = 0x7FFFFFFF;

1784

1785 dontCareRepr->adtr_of = dontCareADT;

1786 dontCareRepr->adtr_inited = true;

1787 dontCareRepr->adtr_number = 0x7FFFFFFF;

1788 }

1789

1790 #define ReadThisForAllFiles(varname,fcn) \

1791 fnp = argv; do { \

1792 Token t_f; \

1793 strcpy(fbuf, *fnp); \

1794 strcat(fbuf, "_"); \

1795 strcat(fbuf, varname); \
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1796 t_f = new Token_obj(*fnp, id_tkn, 0); \

1797 if (DebugFiles) { \

1798 cerr<<"Doing function "<<#fcn<<" on file "<<fbuf<<"\n"; \

1799 } \

1800 fcn(t_f,fbuf); } while (*++fnp != 0)

1801

1802 main(int argc, char **argv)

1803 {

1804 Iterator scs_iter;

1805 char **fnp;

1806 char fbuf[64];

1807 char *vardeclsName = "vardecls.m5";

1808 curAssignCost = -1.0;

1809 argv++; argc--;

1810 cutOffPercent = 0; @@ this should yield the same results as the original

1811 @@ version;

1812 while (argv[0] != 0 && argv[0][0] == ch_minus) {

1813 char *cp = &argv[0][1];

1814 if (*cp == ch_D) {

1815 while (*++cp != 0) {

1816 if (*cp == ch_a) { DebugAssign = true; }

1817 else if (*cp == ch_c) { DebugCosts = true; }

1818 else if (*cp == ch_f) { DebugFiles = true; }

1819 else if (*cp == ch_i) { DebugInput = true; }

1820 else if (*cp == ch_s) { DebugSortCallSites = true; }

1821 else if (*cp == ch_d) { DebugDetails = true; }

1822 #ifdef DBG_MALLOC

1823 else if (*cp == ch_m) { DebugMalloc = true; malloc_debug(1); }

1824 else if (*cp == ch_M) { DebugMalloc = true; malloc_debug(2); }

1825 #endif

1826 else fatal("Unknown debugging flag");

1827 }

1828 }

1829 else if (*cp == ch_o) { vardeclsName = argv[1]; argv++; }

1830 else if (*cp == ch_P) {

1831 if (*(cp+1) != ch_null) {

1832 cutOffPercent = atoi(cp+1);

1833 }

1834 else {

1835 cutOffPercent = atoi(argv[1]); argv++;

1836 }

1837 assert( 0 <= cutOffPercent && cutOffPercent <= 100 );

1838 if (cutOffPercent < 0) cutOffPercent = 0;

1839 if (cutOffPercent > 100) cutOffPercent = 100;

1840 }
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1841 else fatal("Unknown argument");

1842 argv++;

1843 argc--;

1844 }

1845 if (argc < 1) fatal("Must specify file to work on");

1846 initialize();

1847 readADTs("ADTs.th"); @@ this should really be compiled in and not read.

1848 profileDataValid = true;

1849 ReadThisForAllFiles("profData.dat",readProfileData);

1850 ReadThisForAllFiles("`ADT_vars'.th",readVarDecls);

1851 ReadThisForAllFiles("`ADT_ufcns'.th",readUserFcnDecls);

1852 ReadThisForAllFiles("`ADT_csites'.th",readADTcallSites);

1853 ReadThisForAllFiles("`ADT_ufcalls'.th",readUserFcnCalls);

1854 findVariableAliases();

1855 if (profileDataValid) {

1856 cout << "Attempting assignment ...\n";

1857 sortByImportance();

1858 cout << "Cutoff: " << cutOffPercent << " results in "

1859 << cutOffIndex << " of " << List_length(sortedCallSites)

1860 << " being recursed over.\n";

1861 List_iterInit(sortedCallSites, scs_iter);

1862 assignable(scs_iter, 0, 0.0); @@ always returns false

1863 if (curAssignCost >= 0.0) {

1864 cout << "Writing " << vardeclsName << ".\n";

1865 printAssignments(vardeclsName);

1866 }

1867 else {

1868 cout << "\nCannot assign for some reason:

assigning default profiling implementations\n";

1869 assignEverythingToProfile();

1870 cout << "Writing " << vardeclsName << ".\n";

1871 printAssignments(vardeclsName);

1872 exit(1);

1873 }

1874 List_iterCleanup(sortedCallSites, scs_iter);

1875 }

1876 else {

1877 cout <<

"No profile data: assigning default profiling implementations\n";

1878 assignEverythingToProfile();

1879 printAssignments(vardeclsName);

1880 }

1881 /* */ MALLOCK;

1882 if (DebugAssign || DebugCosts) {

1883 cerr<<"Nof VarDecls = "<< VarDecl_obj::vd_R.last + 1 <<"\n";
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1884 cerr<<"Nof ADTabsFcns = "<< ADTabsFcn_obj::adtaf_R.last + 1 <<"\n";

1885 cerr<<"Nof ADTimpFcns = "<< ADTimpFcn_obj::afd_R.last + 1 <<"\n";

1886 cerr<<"Nof ADTcallSites = "<< ADTcallSite_obj::acs_R.last + 1 <<"\n";

1887 }

1888 exit(0);

1889 }

1 @@ FILE: Tokens.t

2 #define TOKENS_MAIN

3 #include <stream.h>

4 #include <ctype.h>

5 #include "util.H"

6 #include "Tokens.H"

7 #include "charClasses.h"

8 #include "Tokens_ADTs.H"

9 #include "userTypes.H"

10

11 String_obj::~String_obj()

12 {

13 delete [maxlen]str;

14 }

15

16 void

17 String_obj::realloc(int add)

18 {

19 // assumes that len is already set to new length

20 // if add == 0, then this copies the string.

21 char *cp = new char[len];

22 strcpy(cp, str);

23 delete [len-add]str;

24 str = cp;

25 maxlen = len;

26 }

27

28 String_obj&

29 String_obj::operator<<(String_obj& t)

30 {

31 if (maxlen <= (len += t.len)) {

32 realloc(t.len);

33 }

34 strcat(str, t.str);

35 return *this;

36 }

37

38 String_obj&

39 String_obj::operator<<(char *cp)
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40 {

41 int l = strlen(cp);

42 if (maxlen <= (len += l)) {

43 realloc(l);

44 }

45 strcat(str, cp);

46 return *this;

47 }

48

49 String_obj&

50 String_obj::operator<<(int i)

51 {

52 char buf[32]; // should be big enough for an int

53 sprintf(buf,"%d",i);

54 int l = strlen(buf);

55 if ((len += l) >= maxlen) {

56 realloc(l);

57 }

58 strcat(str,buf);

59 return *this;

60 }

61

62 String_obj&

63 String_obj::operator<<(Token_obj& T)

64 {

65 if ((len += T.len) >= maxlen) {

66 realloc(T.len);

67 }

68 strcat(str,T.str);

69 return *this;

70 }

71

72 #define HASH_SZ MAX_NOF_TOKENS

73

74 #define NOF_SECHASH 16

75 static Token hash[HASH_SZ];

76 static int hashprime[NOF_SECHASH] = {

77 13,31,41,71,131,139,149,157,163,173,227,373,389,457,461,499 };

78

79 @@ Tokens consist of a type (id_tkn, punct_tkn, num_tkn, ...) and a

80 @@ string.

81

82 Token_obj::Token_obj(char *sp, typetype t, int v)

83 {

84 int hashv;
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85 int i;

86 int l = strlen(sp);

87 int first, phash, shash;

88 char *cp = sp;

89 Token T;

90 bool done;

91 phash = 0;

92 for (i=0; i < l; i++) {

93 phash = (phash << 1) + *cp++;

94 }

95 phash += (int)t + (phash >> 8);

96 first = phash & (HASH_SZ-1);

97 shash = hashprime[(phash >> 10) & (NOF_SECHASH - 1)];

98 done = false;

99 do {

100 if ((T=hash[first]) == 0) {

101 @@ not in table;

102 if (this == 0) {

103 T = hash[first] = (Token) new char[sizeof(Token_obj)];

104 }

105 else T = hash[first] = this;

106 T->str = new char[l+1];

107 strcpy(T->str, sp);

108 T->hashv = phash;

109 T->val = v;

110 T->len = l;

111 T->type = t;

112 T->uid = Token_nextuid++;

113 done = true;

114 }

115 else {

116 if (T->hashv == phash && T->len == l && strcmp(T->str, sp) == 0)

117 @@ found it in the table

118 done = true;

119 else {

120 first = (first + shash) & (HASH_SZ-1);

121 if (first == (phash & (HASH_SZ-1))) {

122 cerr << "Token table full\n";

123 exit(1);

124 }

125 }

126 }

127 } while (!done);

128 this = T;

129 }
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130

131 Token Token_obj::suffix()

132 {

133 // return the suffix of the string of the form: xxxx_ss

134 char *cp = strrchr(str, ch__);

135 if (cp == nil) return new Token_obj("?", id_tkn, 0);

136 return new Token_obj(cp+1, id_tkn, 0);

137 }

138

139 Token Token_obj::append(char *sfx)

140 {

141 char buffer[256];

142 strcpy(buffer, str);

143 strcat(buffer, sfx);

144 return new Token_obj(buffer, type, 0);

145 }

146

147 ostream&

148 operator<<(ostream &s, String str)

149 {

150 if (str == 0) { return s << "<string not allocated!>"; }

151 if (str->str == 0) { return s<<"<char array not allocated for string!>"; }

152 else return s << str->str;

153 }

154

155 ostream&

156 operator<<(ostream &s, Token gt)

157 {

158 gt->print(s);

159 return s;

160 }

161

162 static char buf[256];

163

164 #define casech(ch,tkn) case ch:{*cp++ = c; s.get(c); toktype = tkn; break;}

165

166 istream&

167 operator>>(istream& s, Token& gt)

168 {

169 char c;

170 char *cp;

171 typetype toktype;

172 int tokval;

173 int toklen;

174 cp = buf;
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175 LOOP:

176 if (!s.good()) {

177 if (s.eof())

178 cerr << "Tokens>> should never reach EOF in any input files\n";

179 if (s.fail()) cerr << "Token >> => _fail?\n";

180 if (s.rdstate() == _bad) cerr << "Token >> => _bad?\n";

181 cerr << "Token >> not good!\n";

182 exit(1);

183 }

184 s.get(c);

185 switch (c) {

186

187 case_is_C_firstid:

188 {

189 *cp++ = c;

190 s.get(c);

191 while (s.rdstate() != _eof && (isalnum(c) || c == ch__)) {

192 *cp++ = c;

193 s.get(c);

194 }

195 toktype = id_tkn;

196 break;

197 }

198

199 case ch_twiddle:

200 c = ' ';

201 /* NOTE fall through! */

202

203 case_isspace:

204 goto LOOP;

205

206 case_isdigit:

207 {

208 tokval = c - ch_0;

209 *cp++ = c;

210 s.get(c);

211 if (c == ch_x || c == ch_X) { @@ hex numbers

212 *cp++ = ch_x;

213 s.get(c);

214 while (s.rdstate() != _eof && (isxdigit(c))) {

215 int h = c - ch_0;

216 if (h > 9) h = c - ch_A + 10;

217 if (h > 15) h = c - ch_a + 10;

218 tokval = tokval*16 + h;

219 *cp++ = c;
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220 s.get(c);

221 }

222 }

223 else if (isdigit(c)) {

224 tokval = tokval * 10 + c - ch_0;

225 *cp++ = c;

226 s.get(c);

227 while (s.rdstate() != _eof && isdigit(c)) {

228 tokval = tokval * 10 + c - ch_0;

229 *cp++ = c;

230 s.get(c);

231 }

232 }

233 toktype = num_tkn;

234 break;

235 }

236 casech(ch_dot,punct_tkn);

237 casech(ch_colon,punct_tkn);

238 casech(ch_semi,punct_tkn);

239 casech(ch_quest,punct_tkn);

240 casech(ch_comma,punct_tkn);

241 casech(ch_eq,punct_tkn);

242 casech(ch_minus,punct_tkn);

243 casech(ch_plus,punct_tkn);

244

245 default:

246 *cp++ = c;

247 s.get(c);

248 toktype = unknown_tkn;

249 error("Unknown token");

250 *cp = ch_null;

251 error(buf);

252 }

253

254 if (s.rdstate() != _eof) s.putback(c);

255 *cp = ch_null;

256 toklen = cp - buf;

257 gt = new Token_obj(buf, toktype, tokval);

258 if (DebugInput) {

259 cerr << buf << " ";

260 if (gt == commaToken || gt == semiToken) cerr << "\n";

261 }

262 return s;

263 }


