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Abstract
Many popular scripting languages such as Ruby, Python,
and Perl include highly dynamic language constructs, such
as an eval method that evaluates a string as program text.
While these constructs allow terse and expressive code, they
have traditionally obstructed static analysis. In this paper
we present PRuby, an extension to Diamondback Ruby
(DRuby), a static type inference system for Ruby. PRuby
augments DRuby with a novel dynamic analysis and trans-
formation that allows us to precisely type uses of highly
dynamic constructs. PRuby’s analysis proceeds in three
steps. First, we use run-time instrumentation to gather per-
application profiles of dynamic feature usage. Next, we re-
place dynamic features with statically analyzable alterna-
tives based on the profile. We also add instrumentation to
safely handle cases when subsequent runs do not match the
profile. Finally, we run DRuby’s static type inference on the
transformed code to enforce type safety.

We used PRuby to gather profiles for a benchmark suite
of sample Ruby programs. We found that dynamic features
are pervasive throughout the benchmarks and the libraries
they include, but that most uses of these features are highly
constrained and hence can be effectively profiled. Using
the profiles to guide type inference, we found that DRuby
can generally statically type our benchmarks modulo some
refactoring, and we discovered several previously unknown
type errors. These results suggest that profiling and trans-
formation is a lightweight but highly effective approach to
bring static typing to highly dynamic languages.

1. Introduction
Many popular, object-oriented scripting languages such as
Ruby, Python, and Perl are dynamically typed. Dynamic typ-
ing gives programmers great flexibility, but the lack of static
typing can make it harder for “little” scripts to grow into ma-
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ture, robust code bases. Recently, we have been developing
Diamondback Ruby (DRuby), a tool that brings static type
inference to Ruby.1 DRuby aims to be simple enough for
programmers to use while being expressive enough to pre-
cisely type typical Ruby programs. In prior work, we showed
that DRuby could successfully infer types for small Ruby
scripts (Furr et al. 2009).

However, there is a major challenge in scaling up static
typing to large script programs: Scripting languages typi-
cally include a range of hard-to-analyze, highly dynamic
constructs. For instance, Ruby lets programmers eval strings
containing source code, use reflection to invoke methods via
send, and define a method missing method to handle calls to
undefined methods. These kinds of features lend themselves
to a range of terse, flexible, and expressive coding styles, but
they also impede standard static analysis. In fact, in Ruby
it is even hard to statically determine what source files to
analyze, because scripts can perform computation to decide
what other files to load.

In this paper, we present PRuby, an extension to DRuby
that solves this problem by combining run-time profiling of
dynamic features with static typing.2 Our key insight is that
even though script programs may use constructs that appear
to be dynamic, in fact their use is almost always heavily
constrained, so that in practice they act statically. As an
extreme example, a call eval “x + 2” is morally the same
as the expression x + 2, and can be typed just as easily with
PRuby. Using profiling enables PRuby to statically check
many other, much more complex and interesting examples.
And while PRuby is specific to typing Ruby, our profile-
guided transformation technique can be applied to many
dynamic languages and many static analyses.
PRuby analyzes Ruby code in three steps. First, it per-

forms a source-to-source translation on the program to be
analyzed so that when run, the program records a profile of
how dynamic features were used in that execution. Among
other information, we record what strings are passed to eval,
what methods are invoked via send, and what invocations are
handled by method missing. Next, the user runs the program
to gather a sufficient profile, typically using the program’s

1 http://www.cs.umd.edu/projects/PL/druby/
2PRuby uses Profiling to handle dynamic features ignored by DRuby.



test suite. Then PRuby uses the profile to guide a program
transformation that removes highly dynamic constructs, e.g.,
by replacing eval calls with the source code seen in the pro-
file. Lastly, PRuby applies type inference to the transformed
program to detect any type errors. PRuby can also safely
handle program runs that do not match the profile. In these
cases, PRuby instruments newly seen code to include full
dynamic checking and blame tracking, so that we can detect
errors in the code and place the blame appropriately.

Notice that PRuby relies on the programmer to provide
test cases to guide profiling. We think this is a reasonable
approach because not only do most Ruby programs already
come with test suites (testing is widely adopted in the Ruby
community), but it gives the programmer an easy to un-
derstand trade-off: The more dynamic features covered in
the profile, the more static checking is achieved. Moreover,
run-time profiling gives PRuby very precise information for
type inference. This is in contrast to using, e.g., purely static
string analysis (Livshits et al. 2005; Christensen et al. 2003;
Gould et al. 2004), which could easily over-approximate the
set of strings seen at run time (Sawin and Rountev 2007). It
also allows us to statically analyze effectful dynamic code.
For example, in our experiments, we found many cases
where eval’d strings define methods, and those methods are
referred to in other parts of the program. As far as we are
aware, techniques such as gradual typing (Siek and Taha
2006, 2007; Herman et al. 2007) would be unsound in the
presence of such effects in dynamic code—static guarantees
could be undermined if dynamically eval’d code overwrites
a method used in statically typed code.

We formalized profiling, transformation, and type check-
ing for TinyRuby, a small object-oriented language with
eval, send, and method missing. We have proven that our
transformation is faithful, meaning it does not change the
behavior of a program under its profile, and that transformed
programs that pass our type checker never go wrong at run
time, except possibly from code that was instrumented with
blame tracking.

We applied PRuby to a suite of benchmarks that use
dynamic features, either directly, via the standard library,
or via a third-party library. We found several interesting
results. First, our experiments show that dynamic language
features are used heavily in Ruby—across our benchmarks,
profiled executions observed 664 unique strings passed to
66 syntactic occurrences of dynamic features, suggesting
that handling such features is essential for any Ruby static
analysis.

Second, we manually categorized all the dynamic feature
usage in our sample runs, and we found that essentially
all of them can be classified as “static.” More precisely,
approximately 2/3 of the time, dynamic features are used
in a small, finite set of ways determined by the Ruby code
that calls them. In the remaining cases, the calls to dynamic
features depend on the local Ruby environment. We found

no cases of arbitrarily dynamic code, e.g., there were no
examples that eval’d a string read from the command line,
or used send to call a method whose name was read from the
network.

Finally, we found that DRuby initially reported many type
errors on the transformed program code. Upon closer inspec-
tion, we found eight real type errors in widely used libraries.
The remaining errors were false positives, but much of the
code appeared “nearly” statically typable, despite being de-
veloped without a static type system in mind. To measure
how statically typable this code is, we applied a range of
refactorings to our benchmarks until they were accepted by
DRuby. We found that the majority of refactorings point to
potential improvements to DRuby, and a few more suggest
places where Ruby coding style could be changed to be more
amenable to static typing. We only found a few cases of code
that uses untypable low-level object manipulation or requires
dynamic typing.

Together, our results suggest that profile-guided transfor-
mation is an effective approach to help bring static typing to
dynamic languages.

2. Motivation
Ruby is a class-based, imperative, object-oriented scripting
language with a rich set of features such a module mix-
ins, higher-order methods (“code blocks”), and strong reg-
ular expression support (Thomas et al. 2004; Flanagan and
Matsumoto 2008). In this section, we motivate the need for
PRuby by giving examples showing uses of its dynamic fea-
tures. All of the examples in this section were extracted from
the benchmarks in Section 5. PRuby also handles several
other dynamic features of Ruby, discussed in Section 4.

Require To load code stored in a file, a Ruby program in-
vokes the require method, passing the file name as a string
argument. Since this is an ordinary method call, a Ruby pro-
gram can actually perform run-time computation to deter-
mine which file to load. Figure 1(a) gives two examples
of this. Lines 1–2, from the sudokusolver benchmark, call
dirname to compute the directory containing the currently
executing file, and then call File.join to create the path of
the file to load. We have found similar calls to require (with
computed strings) are common, occurring 11 times across 5
of our benchmarks. As another example, lines 4–7, from the
memoize benchmark, first modify the load path on line 5 be-
fore loading the file memoize on line 7. This example shows
that even when require is seemingly passed a constant string,
its behavior may actually vary at run time.

For a much more complex use of require, consider the
code in Figure 1(b). This example comes from Rubygems, a
popular package management system for Ruby. In Rubygems,
each package is installed in its own directory. Rubygems re-
defines the require method, as shown in the figure, so that
require’ing a package loads it from the right directory. Line 1
makes an alias of the original require method. Then lines 3–



1 require File . join ( File .dirname( FILE ), ’ .. ’ ,
2 ’ lib ’ , ’ sudokusolver ’ )
3

4 Dir . chdir (” .. ”) if base == ”test”
5 $LOAD PATH.unshift(Dir.pwd + ”/lib”)
6 ...
7 require ”memoize”

(a) Using require with dynamically computed strings

1 alias gem original require require
2

3 def require (path)
4 gem original require path
5 rescue LoadError => load error
6 ( if spec = Gem.searcher.find(path) then
7 Gem.activate(spec.name, ”= #{spec.version}”)
8 gem original require path
9 else

10 raise load error
11 end)
12 end end

(b) Example of require from Rubygems package manager

1 def initialize (args)
2 args .keys .each do | attrib |
3 self .send(”#{attrib}=”, args[ attrib ])
4 end end

(c) Use of send to initialize fields

1 ATTRIBUTES = [”bold”, ”underscore”, ... ]
2 ATTRIBUTES.each do |attr|
3 code = ”def #{attr}(&blk) ... end”
4 eval code
5 end

(d) Defining methods with eval

1 def method missing(mid, ∗args)
2 mname = mid.id2name
3 if mname =˜ /=$/
4 ...
5 @table[mname.chop!.intern] = args[0]
6 elsif args . length == 0
7 @table[mid]
8 else
9 raise NoMethodError, ”undefined method...”

10 end
11 end

(e) Intercepting calls with method missing

Figure 1. Dynamic features in Ruby

11 give the new definition of require. First, line 4 attempts to
load the file normally, using the old version of require. If that
fails, the resulting LoadError exception is caught on line 5
and handled by lines 6–11. In this case, Rubygems searches
the file system for a library of the same name (line 6). If
found, the package is “activated” on line 7, which modifies
the load path (as in Figure 1(a)), and then the file is loaded
with the old require call on line 8.

This implementation is convenient for package man-
agement, but it makes pure static analysis quite difficult.
Even if we could statically determine what string was
passed to the new version of require, to find the corre-
sponding file we would need to reimplement the logic of
the Gem.searcher.find method. In PRuby, in contrast, we
use dynamic profiling to discover which files are actually
loaded, and thus no matter how complex the logic that finds
them, we can determine the loaded files precisely.

Send When a Ruby program invokes e0.send(“meth”,
e1, . . . , en), the Ruby interpreter dispatches the call reflec-
tively as e0.meth(e1, . . . , en). Figure 1(c) shows a typical
use of this feature, from the StreetAddress benchmark. This
code defines a constructor initialize that accepts a hash args
as an argument. For each key attrib in the hash, line 3 uses
send to pass args[attrib], the value corresponding to the key,
to the method named “#{attrib} =”, where #{e} evalu-
ates expression e and inserts the resulting value into the
string. For example, if initialize is called with the argument
{“x”⇒ 1}, it will invoke the method self.x=(1), providing
a lightweight way to configure a class through the construc-
tor.

Another common use of send is in test drivers. For exam-
ple, the Ruby community makes heavy use of Ruby’s stan-
dard unit testing framework (not shown). To write a test case
in this framework, the programmer creates a class with test
methods whose names begin with test . Given an instance of
a test class, the framework uses the methods method to get a
string list containing the names of the object’s methods, and
then calls the appropriate ones with send.

Eval Ruby also provides an eval method that accepts a
string containing arbitrary code that is then parsed and exe-
cuted. Our experiments show that use of eval is surprisingly
common in Ruby—in total, eval and its variants are used
to evaluate 423 different strings across all our benchmark
runs (Section 5). Figure 1(d) shows one example of metapro-
gramming with eval, taken from the text-highlight bench-
mark. This code iterates through the ATTRIBUTES array
defined on line 1, creating a method named after each array
element on lines 3–4. We found many other examples like
this, in which Ruby programmers use eval to create methods
via macro-style metaprogramming.

Method Missing Figure 1(e) gives an example use of
method missing, which receives calls to undefined meth-
ods. This code (slightly simplified) is taken from the ostruct



e ::= x | v | d | e1; e2 | e1≡e2 | let x = e1 in e2
| if e1 then e2 else e3 | e0.m(e1, . . . , en)
| eval` e | e0.send`(e1, . . . , en)
| safe eval` e | JeK` | blame `

v ::= s | true | false | new A | JvK`
d ::= def` A.m(x1, . . . , xn) = e

x ∈ local variable names A ∈ class names
m ∈ method names s ∈ strings
` ∈ program locations

Figure 2. TinyRuby source language

library, which creates record-like objects. In this definition,
line 2 converts the first argument, the name of the invoked
method, from a symbol to a string mname. If mname ends
with = (line 3), then on line 5 we update @table to map
mname (with the = removed and interned back into a sym-
bol) to the first argument. Otherwise there must be no argu-
ments (line 6), and we read the value corresponding to the in-
voked method out of @table. For example, if o is an instance
of the ostruct class, the user can call o.foo = (3) to “write”
3 to foo in o, and o.foo() to “read” it back. Notice that we
can use method invocation syntax even though method foo
was never defined. This particular use of method missing
from ostruct is one of two occurrences of method missing
that are dynamically executed by our benchmark test suites.

One interesting property of method missing is that it
cannot be directly modeled using other dynamic constructs.
In contrast, the require and send methods are in a sense
just special cases of eval. We could implement require by
reading in a file and eval’ing it, and we could transform
o.send(m, x, y) into eval(“o.#{m}(x, y)”).

3. Dynamic Features in TinyRuby

We model our approach to statically type checking dy-
namic language features with TinyRuby, shown in Figure 2.
The core language includes local variables x (such as the
distinguished local variable self) and values v. Values in-
clude strings s, booleans true and false, objects created with
new A, and wrapped values JvK`, which indicate values with
dynamic rather than static types. In TinyRuby, objects do not
contain fields or per-object methods, and so we can repre-
sent an object simply by its class name. We could add richer
objects to TinyRuby, but we keep the language simple to
focus on its dynamic features.

In TinyRuby, method definitions d can appear in arbitrary
expression positions, i.e., methods can be defined anywhere
in a program. A definition def` A.m(x1, . . . , xn) = e adds
or replaces class A’s method m, where the xi are the ar-
guments and e is the method body. Note that TinyRuby does
not include explicit class definitions. Instead, a program may
create an instance of an arbitrary class A at any point, even

if no methods of A have been defined, and as we see occur-
rences of def` A.m(. . .) = . . ., we add the defined method
to a method table used to look up methods at invocation time.
For example, consider the following code:

let x = new A in(def` A.m() = . . .);x.m()

The call to x.m() is valid because A.m() was defined be-
fore the call, even though the definition was not in effect at
new A. This mimics the behavior of Ruby, in which changes
to classes affect all instances, and allows eval to be used
for powerful metaprogramming techniques, as shown in Fig-
ure 1(d). Our method definition syntax also allows defining
the special method missing method for a class, which, as we
saw in Section 2, receives calls to non-existent methods. We
annotate method definitions with program locations ` so that
we may later refer to them.

Other language constructs in TinyRuby include sequenc-
ing e1; e2, the equality operator e1 ≡ e2, let binding, con-
ditionals with if, and method invocation e0.m(e1, . . . , en),
which invokes method m of receiver e0 with arguments e1
through en.

TinyRuby also includes two additional dynamic con-
structs we saw in Section 2. The expression eval` e eval-
uates e to produce a string s, and then parses and evalu-
ates s to produce the result of the expression. The expres-
sion e0.send`(e1, . . . , en) evaluates e1 to a string and then
invokes the corresponding method of e0 with arguments e2
through en. We annotate both constructs with a program
location `.

The last three expressions in TinyRuby, safe eval` e,
JeK`, and blame `, are used to support dynamic typing and
blame tracking, for uses of dynamic constructs we can-
not fully resolve with profiling. Our approach is some-
what non-standard, but these constructs in our formalism
closely match our implementation (Section 4), which per-
forms blame tracking without modifying the Ruby inter-
preter.

The form safe eval` e is a “safe” wrapper around eval. It
evaluates e to a string s; performs a source-to-source trans-
formation on s to add instrumentation; and then invokes eval
on the result. Instrumentation works by replacing certain
subexpressions e′ of e by a wrapped expression Je′K`. The
expression Je′K` behaves the same as e, except if it is used
type-unsafely then our semantics produces blame `, meaning
there was an error due to dynamic code from `. This is con-
trast to type-unsafe uses of unwrapped values, which cause
the semantics to go wrong. In practice, we implement Je′K`
by a method that accepts an object and modifies it to have
extra run-time checking (Section 4).

In our formalism, adding blame ` allows us to formally
state soundness: TinyRuby programs that are profiled, trans-
formed, and type checked never get stuck at run time, and
reduce either to values or to blame. In practice, by tracking
blame we can also give the user better error messages.



(VAR)

〈M,V, x〉 → 〈M, ∅,V(x)〉

(DEF)

〈M,V, d〉 → 〈(d,M), ∅, false〉

(EVAL)
〈M,V, e〉 → 〈M1,P1, s〉 〈M1,V, parse(s)〉 → 〈M2,P2, v〉

〈M,V, eval` e〉 → 〈M2, (P1 ∪ P2 ∪ [` 7→ s]), v〉

(SEND)
〈M,V, e1〉 → 〈M1,P1, s〉 m = parse(s)
〈M1,V, e0.m(e2, . . . , en)〉 → 〈M2,P2, v〉

〈M,V, e0.send`(e1, . . . , en)〉 → 〈M2, (P1 ∪ P2 ∪ [` 7→ s]), v〉

(CALL-M)
〈Mi,V, ei〉 → 〈Mi+1,Pi, vi〉 i ∈ 0..n v0 = new A

(def` A.m(. . .) = . . .) 6∈ Mn+1

(def`′ A.method missing(x1, . . . , xn+1) = e) ∈ Mn+1

s = unparse(m) m 6= method missing
V′ = [self 7→ v0, x1 7→ s, x2 7→ v1, . . . , xn+1 7→ vn]

〈Mn+1,V′, e〉 → 〈M′,P ′, v〉

〈M0,V, e0.m(e1, . . . , en)〉 → 〈M′, (
[
i

Pi) ∪ P ′ ∪ [`′ 7→ s], v〉

Figure 3. Instrumented operational semantics (partial)

3.1 An Instrumented Semantics
To track run-time uses of eval, send, and method missing,
we use the instrumented big-step operational semantics
shown in Figure 3. Since most of the rules are straightfor-
ward, we show only selected, interesting reduction rules, and
similarly for the other formal systems we discuss below.3 In
our implementation, we add the instrumentation suggested
by our semantics via a source-to-source translation (Sec-
tion 4).

Reduction rules in our semantics have the form 〈M,V, e〉 →
〈M′,P, v〉. Here M and M′ are the initial and final method
tables, containing a list of method definitions; V is a local
variable environment, mapping variables to values; e is the
expression being reduced; v is the resulting value; and P is
a profile that maps program locations (occurrences of eval,
send, and method missing definitions) to sets of strings. In
these rules, we use parse(s) to denote the expression pro-
duced by parsing string s, and we use unparse(e) to denote
the string produced by unparsing e.

The first rule, (VAR), looks up a variable in the local
environment and produces the empty set of profiling infor-
mation. To see why we opted to use environments rather
than a substitution-based semantics, consider the program
let x = 2 in eval` “x + 1”. In a substitution-based seman-
tics, we would rewrite this program as (eval` “x+ 1”)[x 7→
2], but clearly that will not work, since this is equal to
(eval` “x + 1”), i.e., substitution does not affect strings.
We could try extending substitution to operate on string ar-

3 A version of this paper with full proofs is available at http://www.cs.
umd.edu/projects/PL/druby/.

guments to eval, but since the string passed to eval can be
produced from an arbitrary expression, this will not work
in general. Other choices such as delaying substitution until
later seemed complicated, so we opted for the simpler se-
mantics using variable environments.

The next rule, (DEF), adds a method definition to the
front of M and returns false. When we look up a definition of
A.m in M, we find the leftmost occurrence, and hence (DEF)
replaces any previous definition of the same method.

The last three rules in Figure 3 handle the novel features
of TinyRuby. (EVAL) reduces its argument e to a string s,
parses s and then reduces the resulting expression to com-
pute the final result v. The resulting profile is the union
of the profiles P1 (from evaluating e), P2 (from evaluating
parse(s)), and [` 7→ s], which means s should be added to
the set of strings associated with `. In this way, we track the
relationship between eval` e and the string s passed to it a
run-time.

(SEND) behaves analogously. We evaluate the first argu-
ment, which must produce a string, translate this to a method
name m, and finally invoke m with the same receiver and
remaining arguments. In the output profile, we associate the
location of the send with the string s.

Finally, (CALL-M) handles invocations to undefined
methods. In this rule we evaluate the receiver and argu-
ments, but no method m has been defined for the receiver
class. We then look up method missing of the receiver class
and evaluate its body in environment V′, which binds the
first formal parameter to s, the name of the invoked method,
and binds self and the remaining formal parameters appro-
priately. The output profile associates `, the location where
method missing was defined, and s.

Safe Evaluation Figure 4 gives some of the reduction rules
for the form safe eval` e. In the first rule, (SEVAL), we re-
duce safe eval` e by evaluating e to a string s, parsing s,
translating the result to e′ via the ↪→` relation (our source-to-
source transformation), and then evaluating Je′K`, a wrapped
e′. The relation e ↪→` e′ rewrites the expression e, in-
serting J·K` where needed. We give three example rewrite
rules. (IF↪→) rewrites each subexpression of the if, wrapping
the guard since its value is consumed. Similarly, (CALL↪→)
wraps the receiver so that at run time we will check the
receiver’s type and blame ` if the call is invalid. Lastly,
(DEF↪→) replaces a method definition by blame—we can-
not permit methods to be redefined in dynamically checked
code, since this could undermine the type safety of statically
typed code.

When wrapped values are used, we unwrap them and ei-
ther proceed as usual or reduce to blame `. For example, (IF-
WRAP-T) evaluates the true branch of an if given a guard
that evaluates to JtrueK`, whereas (IF-WRAP-BLAME) eval-
uates to blame ` if the guard evaluates to a non-boolean. No-
tice the contrast with ordinary reduction, which would in-



(SEVAL)
〈M,V, e〉 → 〈M′,P, s〉

parse(s) ↪→` e
′ 〈M′,V, Je′K`〉 → 〈M′′,P ′, v〉

〈M,V, safe eval` e〉 → 〈M′,P ∪ P ′, v〉

(IF↪→)

e1 ↪→` e
′
1 e2 ↪→` e

′
2 e3 ↪→` e

′
3

if e1 then e2 else e3 ↪→` if Je′1K` then e′2 else e′3

(CALL↪→)

ei ↪→` e
′
i i ∈ 0..n

e0.m(e1, . . . , en) ↪→` Je′0K`.m(e′1, . . . , e
′
n)

(DEF↪→)

def`′ A.m(x1, . . . , xn) = e ↪→` blame `′

(IF-WRAP-T)
〈M,V, e1〉 → 〈M1,P1, JtrueK`〉 〈M1,V, e2〉 → 〈M2,P2, v2〉

〈M,V, if e1 then e2 else e3〉 → 〈M2, (P1 ∪ P2), v2〉

(IF-WRAP-BLAME)
〈M,V, e1〉 → 〈M1,P1, v〉 v ∈ {JsK`, Jnew AK`}
〈M,V, if e1 then e2 else e3〉 → 〈M1,P1, blame `〉

(CALL-WRAP)
〈Mi,V, ei〉 → 〈Mi+1,Pi, vi〉 i ∈ 0..n v0 = Jnew AK`′′

(def` A.m(x1, . . . , xn) = e) ∈ Mn+1

m 6= method missing
V′ = [self 7→ v0, x1 7→ Jv1K`′′ , . . . , xn 7→ JvnK`′′ ]

〈Mn+1,V′, e〉 → 〈M′,P ′, v〉

〈M0,V, e0.m(e1, . . . , en)〉 → 〈M′, (
[
i

Pi) ∪ P ′, JvK`′′〉

Figure 4. Safe evaluation rules (partial)

stead go wrong (formally, reduce to error) when if is used
with a non-boolean guard.

(CALL-WRAP) handles a method invocation in which the
receiver is a wrapped object. Here we must be careful to also
wrap the arguments (in the definition of V′) when evaluating
the method body; because we did not statically check that
this call was safe, we need to ensure that the arguments’
types are checked when they are used in the method body.
Similarly, we must wrap the value returned from the call so
that it is checked when used later.

Notice that our semantics for safe eval` e does not use
any static type information. Instead, it performs extensive
object wrapping and forbids method definitions in dynamic
code. One alternative approach would be to run DRuby’s
type inference algorithm at run time on the string e returns.
However, this might incur a substantial run-time overhead
(given the space and time requirements of PRuby’s type
inference system), and it disallows any non-statically typed
parts of the program. Another alternative would be to only

(REFL )

e ∈ {x, v, blame `}
P ` e e

(SEQ )

P ` e1  e′1
P ` e2  e′2

P ` e1; e2  e′1; e′2

(EVAL )

P ` e e′

P ` parse(sj) ej sj ∈ P(`) x fresh

e′′ =

0BB@
let x = e′ in

if x≡s1 then e1
else if x≡s2 then e2 . . .
else safe eval` x

1CCA
P ` eval` e e′′

(SEND )

P ` ei  e′i i ∈ 0..n sj ∈ P(`) x fresh

e′ =

0BB@
let x = e′1 in

if x≡s1 then e′0.parse(s1)(e′2, . . . , e
′
n)

else if x≡s2 then e′0.parse(s2)(e′2, . . . , e
′
n) . . .

else safe eval` “e′0.” + x+ “(e′2, ..., e
′
n)”

1CCA
P ` e0.send`(e1, . . . , en) e′

(METH-MISSING )

P ` e e′ sj ∈ P(`)

e′′ =

„
def` A.parse(s1)(x2, . . . , xn) = (let x1 = s1 in e′);
def` A.parse(s2)(x2, . . . , xn) = (let x1 = s2 in e′); . . .

«
P ` def` A.method missing(x1, . . . , xn) = e e′′

(PROG )

P ` e e′ (def`j A
j .mj(xj1, . . . , x

j
n) = . . .) ∈ e′

ed =

„
def`1 A

1.m1(x1
1, . . . , x

1
n1) = blame `1;

def`2 A
2.m2(x2

1, . . . , x
2
n2) = blame `2; . . .

«
P ` e⇒ (ed; e

′)

Figure 5. Transformation to static constructs (partial)

keep objects wrapped until they are passed to statically typed
code. At that point, we could check their type against the
assumed static type, and either fail or unwrap the object and
proceed. This would be similar to gradual typing (Siek and
Taha 2006, 2007; Herman et al. 2007). We may explore this
approach in the future, but it would require having static
types available at run time, which may incur a large space
overhead.

3.2 Translating Away Dynamic Features
After profiling, we can translate a TinyRuby program into a
simpler form that eliminates features that are hard to analyze
statically. Figure 5 gives a portion of our translation. Exclud-
ing the final rule, our translation uses judgments of the form
P ` e  e′, meaning given profile P , we translate expres-
sion e to expression e′. For most language forms, we either
do nothing, as in (REFL ), or translate sub-expressions re-
cursively, as in (SEQ ); we omit other similar rules.



The first interesting rule is (EVAL ), which translates
eval` e. First, we recursively translate e. Next, recall that
(EVAL) in Figure 3 includes in P(`) any strings evaluated
by this occurrence of eval. We parse and translate those
strings sj to yield expressions ej . Then we replace the call
to eval by a conditional that binds e′ to a fresh variable x
(so that e′ is only evaluated once) and then tests x against
the strings in P(`), yielding the appropriate ej if we find a
match. If not, we fall through to the last case, which eval-
uates the string with safe eval` x, our dynamically checked
form of eval. This catch-all case allows execution to continue
even if we encounter an unprofiled string, and also allows us
to blame the code from location ` if it causes a subsequent
run-time type error.

(SEND ) is similar to (EVAL ). We recursively trans-
late the receiver e0 and arguments ei. We replace the invo-
cation of send with code that binds fresh variable x to the
first argument, which is the method name, and then tests x
against each of the strings sj in P(`), which were recorded
by (SEND) in our semantics. If we find a match, we in-
voke the appropriate method directly. Otherwise, in the fall-
through case, we call safe eval with a string that encodes
the method invocation—we concatenate the translated ex-
pressions e′i with appropriate punctuation and the method
name x. (Note that in this string, by e′i we really mean
unparse(e′i), but we elide that detail to keep the formal rule
readable.)

(METH-MISSING ) follows a similar pattern. First, we
recursively translate the body as e′. For each string sj in
P(`) (which by (CALL-M) in Figure 3 contains the methods
intercepted by this definition), we define a method named sj
that takes all but the first argument of method missing. The
method body is e′, except we bind x1, the first argument, to
sj , since it may be used in e′.

Our approach to translating method missing completely
eliminates it from the program, and there is no fall-through
case. (Note that our semantics forbids direct calls to method
missing, so that eliminating a method missing definition
does not change a program’s behavior.) There are two advan-
tages to this approach. First, a static analysis that analyzes
the translated program need not include special logic for
handling method missing. Second, it may let us find places
where method missing intercepts the wrong method. For ex-
ample, if our profiling runs show that A.method missing is
intended to handle methods foo and bar, a static analysis
(such as our type system) can complain if it sees a call to
an undefined A.baz method in the translated program. We
believe this will prove more useful to a programmer than
simply assuming that a method missing method is intended
to handle arbitrary calls.

The last step in the translation is to insert “empty” method
definitions at the top of the program. We need this step so we
can formally prove type soundness. For example, consider a

program with a method definition and invocation:

. . . def` A.m(. . .) = e; . . . ; (new A).m(. . .); . . .

The challenge here is that the definition of A.m might occur
under complex circumstances, e.g., under a conditional, or
deep in a method call chain. To ensure (new A).m(. . .) is
valid, we must know A.m has been defined.

One solution would be to build a flow-sensitive type sys-
tem for TinyRuby, i.e., one that tracks “must be defined”
information to match uses and definitions. However, in our
experience, this kind of analysis would likely be quite com-
plex, since definitions can appear anywhere, and it may be
hard for a programmer to predict its behavior.

Instead, we assume that any method syntactically present
in the source code is available everywhere and rely on dy-
namic, rather than static, checking to find violations of our
assumption. Translation P ` e ⇒ (ed; e′), defined by
(PROG ) in Figure 5, enforces this discipline. Here ed is
a sequence of method definitions, and e′ is the translation of
e using the other rules. For each definition of A.m occur-
ring in e′, we add a mock definition of A.m to ed, where the
body of the mock definition blames the location of a (real)
definition if it is ever called.

We could also have built ed from the method definitions
actually seen during execution, e.g., (DEF) in Figure 3 could
record what methods are defined. We think this would also
be a reasonable design, but would essentially require that
users have tests to drive profiling runs in order to statically
analyze their code, even if they do not use features such
as eval. Thus for a bit more flexibility, we build ed based
on static occurrences of definitions, but we might make
dynamic method definition tracking an option in the future.

It should be clear from the discussion above that our
translation preserves the character of the original program,
with respect to the core behavior and the dynamic features
seen during the profiling run(s). We can prove this formally:

THEOREM 1 (Translation Faithfulness). Suppose 〈∅, ∅, e〉 →
〈M, P ′, v〉 and P ′ ⊆ P and P ` e ⇒ e′. Then there exist
MP ,P ′′ such that 〈∅, ∅, e′〉 → 〈MP ,P ′′, v〉.
In other words, if we translate an expression based on its
profile (or a superset of the information in its profile), both
the original and translated program produce the same result.

In our formal system, an expression e always evaluates to
the same result and produces the same profile, but in prac-
tice, programs may produce different profiles under different
circumstances. For example, if we want to test the behav-
ior of e, we could evaluate e; e1, where e1 is a test case for
the expression e, and e; e2, where e2 is a different test case.
Based on the above theorem, if our profiling runs are suffi-
cient, we can use them to translate programs we have not yet
profiled without changing their behavior:

COROLLARY 2. Suppose 〈∅, ∅, (e; e1)〉 → 〈M1,P1, v1〉.
Further, suppose that 〈∅, ∅, (e; e2)〉 → 〈M2,P2, v2〉. Then



if P2 ⊆ P1 and P1 ` (e; e2) ⇒ e′, then 〈∅, ∅, e′〉 →
〈M′

2,P ′2, v2〉.

In other words, if the dynamic profile P1 of (e; e1) covers all
the dynamic behavior of (e; e2), then using P1 to translate
e; e2 will not change its behavior. In our experiments, we
found that many dynamic constructs have only a limited
range of behaviors, and hence can be fully represented in
a profile. Thus, by this theorem, most of the time we can
gather a profile and then use that to transform many different
uses of the program.

Finally, the last step is to show that we can perform sound
static analysis on the translated program. Appendix A gives
a (mostly standard) type system for this language. Our type
system proves judgments of the form MT ` e, meaning
under method type table MT, a mapping from method names
to their types, program e is well-typed. In order for our type
system to be sound, we forbid well-typed programs from
containing eval, send, or method missing (since we cannot
check these statically), though programs may contain uses
of safe eval and J·K` (which are checked dynamically). We
can formally prove the following type soundness theorem,
where r stands for either a value, blame `, or error, an error
generated if the expression goes wrong:

THEOREM 3 (Type Soundness). If ∅ ` e and 〈∅, ∅, e〉 →
〈M,P, r〉, then r is either a value or blame `. Thus, r 6=
error.

This theorem says that expressions that are well-typed in this
language do not go wrong.

Recall that the translation from Section 3.2 eliminates the
three dynamic features that this type system does not permit,
and inserts appropriate mock definitions at the beginning of
the program. Thus, if we start with an arbitrary program,
gather information about its dynamic feature usage via the
instrumentation in Figure 3, and translate it using Figure 5,
we can then apply sound static type checking to the resulting
program, while still precisely modeling uses of eval, send,
and method missing in the original program.

4. Implementation
As discussed earlier, PRuby is an extension to Diamond-
back Ruby (DRuby), a static type inference system for Ruby.
DRuby accepts standard Ruby programs and translates them
into the Ruby Intermediate Language (RIL), a much sim-
pler subset of Ruby designed for analysis and transforma-
tion. DRuby performs static type inference internally on RIL
code, and reports any type errors to the user. DRuby supports
a wide range of typing constructs, including intersection and
union types, optional method arguments and varargs meth-
ods, self types, object types with fields, parametric poly-
morphism, mixins, tuple types, and first class method types,
among others (Furr et al. 2009).
PRuby is a drop-in replacement for the regular Ruby

interpreter. The user runs PRuby with the command

druby --dr-profile filename.rb

This command runs filename.rb to gather a profile, trans-
forms the program to eliminate dynamic constructs accord-
ing to the profile (as in Section 3.2), and then runs DRuby’s
type inference on the resulting program. In the future, we
expect profiling to be done separately and the results saved
for later use, but for experimental purposes our current
all-in-one setup is convenient. Altogether, PRuby, which
includes the enhanced DRuby source, comprises approxi-
mately 16,000 lines of OCaml and 800 lines of Ruby.

There are three interesting implementation issues in
PRuby: performing profiling, handling additional dynamic
constructs, and implementing safe eval and its relatives.

4.1 Profiling
PRuby creates profiles by running an instrumented version
of the source code. PRuby first must discover what source
files, in addition to the one specified on the command line,
are executed and hence need to be instrumented; as we saw
in Section 2, this is hard to determine statically. To find the
set of executed files, PRuby runs the original program but
with special code prepended to replace the definitions of
require and load4 with new methods that record the set of
loaded files and log them to disk when the program exits.
Since both methods are affected by the current load path,
which may be changed by the program, we log that as well.

Next, PRuby parses all files seen in require and load
calls, translates them into RIL, and adds instrumentation to
record uses of eval, send, method missing, and other dy-
namic features, to mimic the semantics in Section 3.1. Fi-
nally, we unparse the transformed RIL code into /tmp, and
then run the output code to compute a profile. The instru-
mentation is generally straightforward, though care must be
taken to ensure the program runs correctly when executed in
/tmp.

4.2 Additional Dynamic Constructs
In addition to the constructs discussed in Section 3, PRuby
also handles several other closely related dynamic features.
Similarly to eval, Ruby includes instance eval, class eval,
and module eval methods that evaluate their string argument
in the context of the method receiver (an instance, class, or
module, respectively). For example, calling

x.class eval(“def foo()...end”)

adds the foo method to the class stored in variable x. We
profile these methods the same way as eval, but we use a
slightly different transformation. For example, we replace
the above code by

x.class eval() do def foo()...end end

4 Ruby’s load is similar to require, but it always (re-)evaluates the given
file, even if previously loaded, while require evaluates a file only once.



Here we keep the receiver object x in the transformed pro-
gram, because the definition is evaluated in x’s context.
DRuby recognizes the transformed version of class eval spe-
cially, and this is also valid Ruby code. Our transformation
for instance eval and module eval is similar.

Ruby includes four methods for accessing fields of ob-
jects, {instance, class} variable {get, set}, which take the
name of the instance or class variable to read or write. When
PRuby profiles these methods, it records the variable name
and transforms the expression into calls to {instance, class} eval.
For example, we transform a.instance variable set(“@x”, 2)
into a.instance eval do @x = 2 end.

Finally, PRuby also includes support for attr and attr
{reader,writer, accessor}, which create getter/setter meth-
ods given a field name, and for const {get, set}, which read
or write constants (write-once variables). PRuby profiles
calls to these methods, and replaces the non-literal field or
constant name arguments with the string literals seen at run
time. DRuby then specially handles the case when these
methods are called with string literals. These constructs are
translated similarly to the other dynamic features, including
inserting calls to safe eval for unseen strings.

Ruby includes some dynamic features PRuby does not
yet support. In particular, DRuby’s type system treats cer-
tain low-level methods specially, but these methods could
be redefined, effectively changing the semantics of the lan-
guage. For instance, if a programmer changes the Module#
append features method, they can alter the semantics of
module mixins. Other special methods include Class#new,
Class#inherited, Module#method added, and Module#
included. PRuby also does not support applying dynamic
constructs to per-object classes (eigen-classes) or calling
dynamic features via the Method class. In addition to these
features, PRuby currently does not support const missing,
which handles accesses to undefined constants, similarly to
method missing; we expect to add support for this in the
future.

Currently, PRuby does not support nested dynamic con-
structs, e.g., eval’ing a string with eval inside it, or send’ing a
message to the eval method. In these cases, PRuby will not
recursively translate the nested construct. We believe these
restrictions could be lifted with some engineering effort.

4.3 Implementing safe eval

We implemented safe eval` e, JeK`, and blame ` as two
components: a small Ruby library with methods safe eval(),
wrap(), and blame(), and druby eval, an external program
for source-to-source translation.

The druby eval program is written using RIL, and it im-
plements the ↪→` translation as shown in Figure 4. For ex-
ample, it translates method definitions to calls to blame(),
and it inserts calls to wrap() where appropriate. There are
a few additional issues when implementing ↪→` for the full
Ruby language. First, we need not wrap the guard of if, be-
cause in Ruby, if accepts any object, not just booleans. Sec-

ond, in addition to forbidding method definitions, we must
also disallow calls to methods that may change the class
hierarchy, such as remove method. Lastly, we add calls to
wrap() around any expressions that may escape the scope
of safe eval, such as values assigned to global variables and
fields.

Given druby eval, our library is fairly simple to imple-
ment. The safe eval() method simply calls druby eval to
translate the string to be evaluated and then passes the re-
sult to Ruby’s regular eval method. The blame() method
aborts with an appropriate error. Lastly, the wrap() method
uses a bit of low-level object manipulation (in fact, exactly
the kind PRuby cannot analyze) to intercept method calls:
Given an object, wrap() first renames the object’s methods
to have private names beginning with druby, then calls
undef method to remove the original methods, and lastly
adds a method missing definition to intercept all calls to the
(now removed) original methods. Our method missing code
checks to see if the called method did exist. If so, it dele-
gates to the original method with wrapped arguments, also
wrapping the method’s return value. If not, it calls blame().

One nice feature of our implementation of wrap() is that
because we do not change the identity of the wrapped object,
we preserve physical equality, so that pointer comparisons
work as expected. Our approach does not quite work for in-
stances of Fixnum and Float, as they are internally repre-
sented as primitive values rather than via pointed-to objects.
However, we can also wrap these objects by explicitly box-
ing them inside of an traditional object. We then extend the
comparison methods for these classes to delegate to the val-
ues inside these objects when compared.

5. Profiling Effectiveness
We evaluated PRuby by running it on a suite of 13 programs
downloaded from RubyForge. We included any dependen-
cies directly used by the benchmarks, but not any optional
components, such as windowing toolkits for visualizing test
suite results. Each benchmark in our suite uses at least some
of the dynamic language features handled by PRuby, either
in the application itself or indirectly via external libraries.
All of our benchmarks included test cases, which we used to
drive the profiling runs for our experiments. Finally, many
projects use the rake program to run their test suites. Rake
normally invokes tests in forked subprocesses, but as this
would make it more difficult to gather profiling information,
we modified rake to invoke tests in the same process.

5.1 Dynamic Feature Usage
Figure 6 measures usage of the dynamic constructs we saw
in our profiling runs. We give separate measurements for the
benchmark code (part (a)) and the library modules used by
the benchmarks (part (b)). We should note that our measure-
ments are only for features seen during our profiling runs—
the library modules in particular include other uses of dy-



Benchmark LoC Req Eval Snd Total
ai4r-1.0 764 4/ 4 2/ 2 4/ 4 10/ 10
bacon-1.0.0 258 · · · ·
hashslice-1.0.4 78 · · · ·
hyde-0.0.4 115 2/ 2 1/11 1/ 2 4/ 15
isi-1.1.4 224 · 1/ 1 · 1/ 1
itcf-1.0.0 178 · · · ·
memoize-1.2.3 69 · · 1/ 1 1/ 1
pit-0.0.6 166 2/ 2 · · 2/ 2
sendq-0.0.1 88 · · · ·
StreetAddress-1.0.1 875 1/ 1 · 1/15 2/ 16
sudokusolver-1.4 188 2/ 2 1/ 1 · 3/ 3
text-highlight-1.0.2 262 · 2/48 · 2/ 48
use-1.2.1 193 · · · ·
Total 3,458 11/11 7/63 7/22 25/ 96
Req – dyn. require and load G/S – field and constant get/set;
Eval – eval and variants attr and its variants
Snd – send and send MM – method missing
n/m – n=occ, m=uniq strs

Lib Module LoC Req Eval Snd G/S MM Total
archive-tar-minitar 539 · · · 2/ 32 · 2/ 32
date 1,938 · 3/ 33 · · · 3/ 33
digest 82 1/ 1 · · 1/ 1 · 2/ 2
fileutils 950 · 4/101 · · · 4/101
hoe 502 1/ 2 · 1/ 2 · · 2/ 4
net 2,217 · 1/ 8 · · · 1/ 8
openssl 637 · 3/ 2 · · · 3/ 20
optparse 964 · · 2/ 4 · · 2/ 4
ostruct 80 · · 2/ 2 · 1/ 9 3/ 11
pathname 511 · · 1/ 1 · · 1/ 1
rake 1,995 2/19 3/136 · · · 5/155
rubyforge 500 · 1/ 2 · · · 1/ 2
rubygems 4,146 · 4/ 32 · 4/ 68 · 8/100
tempfile 134 · · 1/ 2 · 1/ 2 2/ 4
term-ansicolor 78 · 1/ 28 · · · 1/ 28
testunit 1,293 · · 1/63 · · 1/ 63
Other 4,871 · · · · · ·
Total 21,437 4/22 20/360 8/74 7/101 2/11 41/568

(a) Per-benchmark results (no occ. of MM or G/S) (b) Library results (as covered by benchmarks)

Figure 6. Dynamic feature profiling data from benchmarks

namic features, but they were in code that was not called by
our benchmarks.

For each benchmark or module, we list its lines of code
(computed by SLOCCount (Wheeler 2008)) and a summary
of the profiling data for its dynamic features, given in the
form n/m, where n is the number of syntactic occurrences
called at least once across all runs, and m is the number
of unique strings used with that feature. For Req and G/S,
we only count occurrences that are used with non-constant
strings. Any library modules that did not execute any dy-
namic features are grouped together in the row labeled Other
in Figure 6(b).

These results clearly show that dynamic features are
used pervasively throughout our benchmark suite. All of
the features handled by PRuby occur in some program, al-
though method missing is only encountered twice. Eight
of the 13 benchmarks and more than 75% of the library
module code use dynamic constructs. Perhaps surprisingly
(given its power) eval is the most commonly used construct,
occurring 27 times and used with 423 different strings—
metaprogramming is indeed extremely common in Ruby.
Over all benchmarks and all libraries, there were 66 syntac-
tic occurrences of dynamic features that cumulatively were
used with 664 unique strings. Given these large numbers, it
is critical that any static analysis model these constructs to
ensure soundness.

5.2 Categorizing Dynamic Features
The precision of DRuby’s type inference depends on how
much of the full range of dynamic feature usage is observed
in our profiles. To measure this, we manually categorized
each syntactic occurrence from Figure 6 based on how “dy-
namically” it is used. For example, eval “x + 2”is not dy-
namic at all since the eval will always evaluate the same

string, whereas eval ($stdin.readline) is extremely dynamic,
since it could evaluate any string.

Figure 7 summarizes our categorization. We found that
all of the dynamic features in our profiles are used in a con-
trolled manner—their use is either determined by the class
they are called in, or by the local user’s Ruby environment.
In particular, we found no examples of truly dynamic code,
e.g., eval’ing code supplied on the command line, suggest-
ing that profiling can be used effectively in practice. We now
discuss each category in detail.

Single The least dynamic use of a construct is to always
invoke it with the same argument. Three uses of eval and
seven uses of send can only be passed a single string. For
instance the sudokusolver benchmark includes the code

PROJECT = ”SudokuSolver”
PROJECT VERSION =

eval (”#{PROJECT}::VERSION”)

which is equivalent to SudokuSolver::VERSION. As another
example, the ostruct module contains the code

meta.send(:define method, name) { @table[name] }

This code uses send to call the private method define method
from outside the class. The other uses of send in this cate-
gory were similar.

Collection A slightly more expressive use of dynamic con-
structs is to apply them to a small, fixed set of arguments.
One common idiom (18 occurrences) we observed was to
apply a dynamic construct uniformly across a fixed collec-
tion of values. For example, the code in Fig. 1(d) iterates
over an Array of string literals, evaling a method defini-
tion string from each literal. Thus, while multiple strings are
passed to this occurrence of eval, the same strings will be
used for every execution of the program. Additionally, any



Category Req Eval Snd G/S MM Total
Single · 3/ 3 7/ 7 · · 10/ 10

Collection · 14/337 1/ 2 3/ 48 · 18/387
Bounded · 7/ 69 4/20 3/ 52 · 14/141

File system 11/11 3/ 14 · · · 14/ 25
Open module 4/22 · 3/67 1/ 1 2/11 10/101

Total 15/33 27/423 15/96 7/101 2/11 66/664
n/m – n=occ, m=uniq strs

Figure 7. Categorization of profiled dynamic features

profile that executes this code will always see all possible
strings for the construct.

Bounded We also found some dynamic constructs that are
called several times via different paths (in contrast to being
called within the same iteration over a collection), but the
set of values used is still bounded. For example, consider the
following code from the pathname module:

if RUBY VERSON < ”1.9”
TO PATH = :to str

else TO PATH = :to path end
path = path. send (TO PATH)

Here one of two strings is passed to send, depending on the
library version.

Sometimes dynamic constructs are called in internal
methods of classes or modules, as in the following exam-
ple from the net/https library:

def self . ssl context accessor (name)
HTTP.module eval(<<−End, FILE , LINE + 1)

def #{name} ... end # defines get method
def #{name}=(val) ... end # defines set method
end

End
end
ssl context accessor :key
ssl context accessor : cert store

This code defines method ssl context accessor, which given
a symbol generates get and set methods based on that name.
The body of the class then calls this method to add several
such get/set methods. This particular method is only used in
the class that defines it, and seems not to be intended for use
elsewhere (nor is it used anywhere else in our benchmarks).

Features in this category are also essentially static, be-
cause their behavior is determined by the class they are con-
tained in, and profiling, even in isolation, should be fully
effective. Combining this with the previous two categories
gives a total of 42 features used with 538 unique strings,
which means around 2/3 of the total dynamic feature usage
across all runs is essentially static.

File System The next category covers those dynamic fea-
tures whose use depends on the local file system. This in-
cludes most occurrences of Req, e.g., the code at the top of
Figure 1(a), which loads a file who name is derived from

FILE , the current file name. Another example is the fol-
lowing convoluted code from rubyforge:

config = File .read( FILE ). split (/ END /). last .gsub(
/#\{(.∗)\}/) { eval $1 }

This call reads the current file, removes any text that appears
before END (which signals the Ruby interpreter to stop
reading), and then substitutes each string that matches the
given pattern with the result of calling eval on that string. De-
spite its complexity, for any given installation of the library
module, this code always evaluates the same set of strings.

The other cases of this category are similar to these two,
and in all cases, the behavior of the dynamic constructs de-
pends on the files installed in the user’s Ruby environment.

Open module The last category covers cases in which dy-
namic features are called within a library module, but the
library module itself does not determine the uses. For exam-
ple, the testunit module uses send to invoke test methods that
the module users specify. Similarly, the rake module loads
client-specified Ruby files containing test cases. As another
example, the ostruct module is used to create record-like ob-
jects, as shown in Figure 1(e).

These cases represent an interesting trade-off in profiling.
If we profile the library modules in isolation, then we will
not see all client usage of these 10 constructs (hence they
are “open”). However, if we assume the user’s Ruby envi-
ronment is fixed, i.e., there are no new .rb files added at run
time, then we can fully profile this code, and therefore we
can perform full static typing checking on the code.

6. Type Inference
Finally, we used PRuby to perform type inference on each
of the benchmarks, i.e. PRuby gathered the profiling data
reported in Figure 6, transformed the code as outlined in
Sections 3 and 4, and then applied DRuby’s type inference
algorithm on the resulting program.

When we first ranPRuby on our benchmarks, it produced
hundreds of messages indicating potential type errors. As
we began analyzing these results, we noted that most of
the messages were false positives, meaning the code would
actually execute type safely at run time. In fact, we found
that much of the offending code is almost statically typable
with DRuby’s type system. To measure how “close” the
code is to being statically typable, we manually applied a
number of refactorings and added type annotations so that
the programs pass DRuby’s type system, modulo several
actual type errors we found.

The result gives us insight into what kind of Ruby code
programmers “want” to write but is not easily amenable to
standard static typing. (DRuby’s type system combines a
wide variety of features, but most of the features are well-
known.) In the remainder of this section, we discuss the true
type errors we found (Section 6.1), what refactorings were
needed for static typing (Section 6.2), and what we learned
about the way people write Ruby programs (Section 6.3).
Overall, we found that most programs could be made stat-



Benchmark Total LoC Time (s)
ai4r-1.0 21,589 343
bacon-1.0.0 19,804 335
hashslice-1.0.4 20,694 307
hyde-0.0.4 21,012 345
isi-1.1.4 22,298 373
itcf-1.0.0 23,857 311
memoize-1.2.3 4,171 9
pit-0.0.6 24,345 340
sendq-0.0.1 20,913 320
StreetAddress-1.0.1 24,554 309
sudokusolver-1.4 21,027 388
text-highlight-1.0.2 2,039 2
use-1.2.1 20,796 323

Figure 8. Type inference results

Module LoC Refactorings Annots Errors
archive-minitar 538 3 · 1
date 1,938 58 8 ·
digest 82 1 · ·
fileutils 950 1 7 ·
hoe 502 3 2 ·
net 2,217 22 3 ·
openssl 637 3 3 1
optparse 964 15 21 ·
ostruct 80 1 · ·
pathname 511 21 1 2
pit-0.0.6 166 2 · ·
rake 1,995 17 7 ·
rational 299 3 25 ·
rbconfig 177 1 · ·
rubyforge 500 7 ·
rubygems 4,146 44 47 4
sendq-0.0.1 88 1 · ·
shipit 341 4 · ·
tempfile 134 1 3 ·
testunit 1,293 3 20 ·
term-ansicolor 78 1 ·
text-highlight-1.0.2 262 1 1 ·
timeout 59 1 1 ·
uri 1,867 15 20 ·
webrick 435 4 1 ·
Other 4,635 · · ·
Total 24,895 226 177 8

Figure 9. Changes needed for static typing

ically typable, though in a few cases code seems truly dy-
namically typed.

6.1 Performance and Type Errors
Figure 8 shows the time it took PRuby to analyze our modi-
fied benchmarks. For each benchmark, we list the total lines
of code analyzed (the benchmark, its test suite, and any li-
braries it uses), along with the analysis time. Times were
the average of three runs on an AMD Athlon 4600 proces-
sor with 4GB of memory. These results show that PRuby’s
analysis takes only a few minutes, and we expect the time
could be improved further with more engineering effort.

Figure 9 lists, for each benchmark or library module
used by our benchmarks, its size, the number of refactorings
and annotations we applied (discussed in detail in the next
section), and the number of type errors we discovered. The

last row, Other, gives the cumulative size of the benchmarks
and library modules with no changes and no type errors.
PRuby identified eight type errors. The two errors in the

pathname module were due to code that was intended for the
development branch of Ruby, but was included in the current
stable version. In particular, pathname contains the code

def world readable ?() FileTest . world readable ?(@path) end

However, the FileTest.world readable? method is in the de-
velopment version of Ruby but not in the stable branch that
was used by our benchmarks. The second error in pathname
is a similar case with the world writable? method.

The type error in archive-minitar occurs in code that at-
tempts to raise an exception but refers to a constant incor-
rectly. Thus, instead of throwing the intended error, the pro-
gram instead raises a NameError exception.

The four type errors in rubygems were something of a
surprise—this code is very widely used, with more than 1.6
million downloads on rubyforge.org, and so we thought any
errors would have already been detected. Two type errors
were simple typos in which the code incorrectly used the
Policy class rather than the Policies constant. The third er-
ror occurred when code attempted to call the non-existent
File.dir? method. Interestingly, this call was exercised by
the rubygems test suite, but the test suite defines the miss-
ing method before the call. We are not quite sure why the
test suite does this, but we contacted the developers and con-
firmed this is indeed an error in rubygems. The last type er-
ror occurred in the =∼method, which compares the @name
field of two object instances. This field stores either a String
or a Regexp, and so the body of the method must perform
type tests to ensure the types are compatible. However, due
to a logic error, one of the four possible type pairings is han-
dled incorrectly, which could result in a run time type error.

Finally, the openssl module adds code to the Integer class
that calls OpenSSL :: BN :: new(self). In this call, self has
type Integer, but the constructor for the OpenSSL :: BN
class takes a string argument. Therefore, calling this code
always triggers a run-time type error.

6.2 Changes for Static Typing
To enable our benchmarks and their libraries to type check
(modulo the above errors), we applied 226 refactorings and
added 177 type annotations. We can divide these into the
following categories. For the moment, we refrain from eval-
uating whether these changes are reasonable to expect from
the programmer, or whether they suggest possible improve-
ments to PRuby; we discuss this issue in detail in Sec-
tion 6.3.

Dynamic Type Tests (177 Annotations) Ruby programs
often use a single expression to hold values with a range
of types. Accordingly, DRuby supports union types (e.g.,
A or B) and intersection types (e.g., Fixnum → Fixnum ∩
Float → Float). However, DRuby does not currently model



run-time type tests specially. For example, if e has type
A or B, then DRuby allows a program to call methods
present in both A and B, but it does not support dynami-
cally checking if e has (just) type A and then invoking a
method that is in A but not in B.

To work around this limitation, we developed an anno-
tation for conditional branches that allows programmers to
indicate the result of a type test. For example, consider the
following code:

1 case x
2 when Fixnum: ###% x : Fixnum
3 x + 3
4 when String: ###% x : String
5 x.concat ‘‘ world’ ’
6 end

Here, the case expression on line 1 tests the class of x against
two possibilities. The annotations on lines 2 and 4 tell
DRuby to treat x as having type Fixnum and String, respec-
tively, on each branch. These annotations were extremely
common—we added them to 135 branches in total.We also
added 9 method annotations for intersection types and 33
method annotations for higher order polymorphic types;
these types can be used by DRuby given annotations, but
cannot currently be inferred. DRuby adds instrumentation to
check all the above annotations dynamically at run-time, to
ensure they are correct.

Class Imprecision (81 Refactorings) In Ruby, classes are
themselves objects that are instances of the Class class. Fur-
thermore, “class methods” are actually methods bound in-
side of these instances. In many cases, we found program-
mers use Class instances returned from methods to invoke
class methods. For example, consider the following code:

1 class A
2 def A.foo() ... end
3 def bar()
4 self . class . foo() # calls A.foo()
5 end
6 end

Here the call on line 4 goes to the class method defined on
line 2. However, the class method invoked on line 4 has type
()→ Class in DRuby, and since Class has no foo() method,
DRuby rejects the call on line 4. To let examples like this
type check, we changed self.class to either a constant or a
different method call. Similarly, an instance can look up a
constant dynamically in the current class using the syntax
self . class :: X, requiring a similar transformation.

Block Argument Counts (24 Refactorings) In Ruby, higher-
order methods can accept code blocks as arguments. How-
ever, the semantics of blocks are slightly different than regu-
lar methods. Surprisingly, Ruby does not require the formal
parameter list of a block to exactly match the actual argu-
ments: formal arguments not supplied by the caller are set to
nil, and extra actual arguments are ignored.

DRuby, on the other hand, requires strict matching of the
number of block arguments, since otherwise we could never
discover mismatched argument counts for blocks. Thus we
modified our benchmarks where necessary to make argu-
ments lists match. We believe this is the right choice, because
satisfying DRuby’s requirement is a very minor change.

Non-Top Level Requires (21 Refactorings) PRuby uses
profiling to decide which files are required during a run, and
therefore which files should be included during type check-
ing. However, some of our benchmarks had conditional calls
to require that were never triggered in our test runs, but that
we need for static typing. For instance, the URI module con-
tains the following code:

1 if target . class == URI::HTTPS
2 require ‘net/https ’
3 http.verify mode = OpenSSL::SSL::VERIFY PEER

Here line 2 loads net/https if the conditional on line 1 is
true. The method called on line 3 is added by a load-time
eval inside of net/https. Thus, to successfully analyze this
code, PRuby needs to not only analyze the source code
of net/https, but it also must have its profile to know this
method exists. However, the branch on line 1 was never
taken in our benchmarks, and so this require was never
executed and the eval was not included in the profile.

We refactored cases like this by moving the require state-
ment outside of the method, so that it was always executed
when the file is loaded.

Multiple Configurations (10 Refactorings) We encoun-
tered some code that behaves differently under different op-
erating environments. For example,

if defined?(Win32)
.... # win32 code

end

first checks if the constant Win32 is defined before using
windows-specific methods and constants in the body of the
if. As another example, consider this code from rubygems:

1 if RUBY VERSION < ’1.9’ then
2 File .read file name
3 else
4 File .read file name , :encoding => ’UTF−8’

In versions prior to Ruby 1.9 (the current development ver-
sion of Ruby), the read method only took a single param-
eter (line 2), whereas later versions accept a second pa-
rameter (line 4). When DRuby sees this code, it assumes
both paths are possible and reports that read is called with
the wrong number of arguments. To handle these type-
conflicting cases, we commented out sections of code that
were disabled by the platform configuration.

Heterogeneous Containers (12 Refactorings) DRuby sup-
ports homogeneous containers with type such as Array<T>

and Hash<K,V>. Since arrays are sometimes used heteroge-
neously, DRuby also includes a special type Tuple<T1, . . ., Tn>,



where the Ti are the tuple element types from left to right.
Such a type is automatically coerced to Array<T1 or . . . or Tn>

when one or its methods is invoked.
However, sometimes this automatic coercion causes type

errors. For instance, the optparse module contains the fol-
lowing code:

1 def append(∗args)
2 update(∗args)
3 @list .push(args [0])
4 end

Here, calling the [] method on line 3 forces args to have
a homogeneous array type, losing precision and causing a
type error. We refactored this code to list the arguments
to append explicitly, allowing DRuby to type check this
method. We also encountered several other similar cases,
as well as examples where instances of Hash were used
heterogeneously.

Flow-insensitive Locals (11 Refactorings) DRuby treats
local variables flow-sensitively, since their type may be up-
dated throughout the body of a method. However, to be
sound, we conservatively treat any local variables that ap-
pear inside of a block flow-insensitively (Furr et al. 2009).
However, this causes DRuby to report an error if a flow-
insensitive local variable is assigned conflicting types at dif-
ferent program points. We eliminated these errors by intro-
ducing a fresh local variable at each conflicting assignment
and renaming subsequent uses. We believe we could also
eliminate this source of imprecision by improving DRuby’s
analysis of local variables.

Other (65 Refactorings) We also needed a few other mis-
cellaneous refactorings. In our benchmarks, there were 32
calls handled by method missing that were never seen in our
benchmark runs. Hence PRuby reported these calls as going
to undefined methods. We fixed this by manually copying
the method missing bodies for each method name they were
called with, simulating our translation rules. We could also
have fixed this with additional test cases to expand our pro-
files, so that PRuby would add these methods automatically
during its transformation.

In some cases, DRuby infers union types for an object
that actually has just one type. For example, rubygems in-
cludes a Package.open method that returns an instance of
either TarInput or TarOutput, depending on whether a string
argument is “r” or “w.” DRuby treats the result as having ei-
ther of these types, but as they have different methods, this
causes a number of type errors. We fixed this problem by di-
rectly calling TarInput.open or TarOutput.open instead. A
similar situation also occurred in the uri module.

We also refactored a few other oddball cases, such as
a class that created its own include method (which DRuby
would confuse with Module.include) and some complex ar-
ray and method manipulation that could be simplified into
typable code.

Untypable Code (12 Refactorings) Finally, some of the
code we encountered could not reasonably be statically
typed, even with refactorings and checked annotations. One
example is the optparse class, which provides an API for
command line parsing. Internally, optparse manipulates
many different argument types, and because of the way the
code is structured, DRuby heavily conflates types inside the
module. We were able to perform limited refactoring in-
side of optparse to gain some static checking, but ultimately
could only eliminate all static type errors by manually wrap-
ping the code using the wrap() method from our safe eval
library (Section 4.3).

The other cases of untypable code were caused by uses of
low-level methods that manipulate classes and modules di-
rectly in ways that DRuby does not support. For example, we
found uses of remove method, undef method, and anony-
mous class creation. We also found uses of two modules that
perform higher-level class manipulation: Singleton, which
ensures only one instance of a class exists, and Delegate,
which transparently forwards method calls to a delegate
class. DRuby does not support code that uses these low-
level features and will not detect any run-time errors from
their misuse.

6.3 Discussion and Future Work
In our prior work on DRuby, we found that small bench-
marks are mostly statically typable. We believe our current
results with PRuby suggest that even large Ruby programs
are mostly statically typable—on balance, most of our refac-
torings and type annotations indicate current limitations of
DRuby, and a few more suggest places where Ruby pro-
grammers could easily change their code to be typable (e.g.,
making argument counts for blocks consistent). Given the
extreme flexibility of Ruby, we think this result is very en-
couraging, and it suggests that static typing could very well
succeed in practice.

Our results suggest a number of future directions for
PRuby. Dynamic type tests are clearly important to Ruby
programmers but are not modeled by DRuby. Occurrence
Typing (Tobin-Hochstadt and Felleisen 2008), previously
proposed for Scheme, is one possible solution we plan to
explore. One challenge we expect is that Ruby contains a
multitude of ways to test the dynamic type of a value, and
we need to strike the right balance between supporting com-
mon uses and producing an easy-to-use system. Similarly,
improved handling of the Class type and a more precise anal-
ysis for flow-sensitive local variables would be beneficial.
Combined, these changes could eliminate up to 76% of the
annotations and 41% of the refactorings we introduced.

Other coding idioms may be difficult to support in DRuby’s
type inference algorithm, but could be handled with im-
provements to our profiling technique. For example, cur-
rently PRuby performs profiling, transformation, and type
inference in one run (Section 4). If we could combine pro-
files from multiple runs, we could avoid hoisting require to



the top-level of a file. This would have other benefits as well.
For example, with this ability, a library maintainer could ship
a profile database that could be used by library clients.

Along the same lines, commenting out code to handling
multiple configurations will not work in practice. A better
solution might be to annotate particular constants as config-
uration variables whose values are then profiled by PRuby.
DRuby could then use these profiles to automatically prune
irrelevant code sections.

Our results so far show that PRuby can be applied to ex-
isting code bases, which were not written with static typing
in mind. Ultimately, we believe that PRuby will be most
useful to programmers while they are developing their code,
so that potential errors can be caught early in the develop-
ment life cycle. In the future, we plan to not only continue
to improve PRuby technically, but also to directly study us-
ability and utility of PRuby for software developers.

7. Threats to Validity
There are several potential threats to the validity of our re-
sults. Figures 6(a) and (b) only include dynamic constructs
that were observed by our benchmark runs. As we men-
tioned earlier, there are also other dynamic constructs that
are present in the code (particularly the library modules) but
were not called via our test suites. However, additional pro-
filing to try to exhibit these features would only bolster our
claim that dynamic features are important to model. A more
important consequence is that our categorization in Figure 7
may not generalize. It is possible that if we examined more
constructs, we would find other categories or perhaps some
features used in very dynamic ways. However, this would
not affect our other results, and we believe we looked at
enough occurrences (66 total) to gather useful information.

In Ruby, it is possible for code to “monkey-patch” ar-
bitrary classes, changing their behavior. Monkey patching
could invalidate our categorization from Section 5.2, e.g.,
by exposing a dynamic feature whose uses were previously
bounded within a class. However, this would only affect our
categorization and not PRuby, which can still easily profile
and analyze the full, monkey-patched execution.

Similarly, Ruby’s low-level object API could allow a pro-
grammer to subvert our analysis, as discussed at the end of
Section 6.2. Because we cannot verify these unsafe features,
they could potentially disable our run-time instrumentation,
causing a Ruby script to fail. However, we hope that pro-
grammers who use unsafe features will treat them with ap-
propriate caution.

8. Related Work
There are several threads of related work. PRuby is an ex-
tension to DRuby (Furr et al. 2009), which implements static
type inference for Ruby. The key contribution of PRuby is
our sound handling of highly dynamic language constructs.
Our prior work on DRuby avoided these features by stick-

ing to small examples, using programmer annotations for li-
brary APIs, and eliminating dynamic constructs with man-
ual transformation. However, as we saw in Section 5, highly
dynamic features are pervasive throughout Ruby, and so
this approach is ultimately untenable. Kristensen (Kristensen
2007) has also developed a type inference system for Ruby
based on the cartesian product algorithm. This system does
not handle any of Ruby’s dynamic features, making it un-
sound in the presence of these constructs.

In addition to DRuby, researchers have proposed a num-
ber of other type systems for dynamic languages includ-
ing Scheme (Cartwright and Fagan 1991; Tobin-Hochstadt
and Felleisen 2008), Smalltalk (Graver and Johnson 1990;
Strongtalk; Wuyts 2007), Javascript (Thiemann 2005; Hansen
2007; Anderson et al. 2005), and Python (Salib 2004; Ay-
cock 2000; Cannon 2005), though these Python type systems
are aimed at performance optimization rather than at the
user level. To our knowledge, none of these systems handles
send, eval, or similar dynamic features.

One exception is RPython (Ancona et al. 2007), a sys-
tem that inspired our work on PRuby. RPython translates
Python programs to type safe back-ends such as the JVM.
In RPython, programs may include an initial bootstrapping
phase that uses arbitrary language features, including highly
dynamic ones. RPython executes the bootstrapping phase us-
ing the standard Python interpreter, and then produces a type
safe output program based on the interpreter state. The key
differences between RPython and PRuby are that PRuby
supports dynamic feature use at arbitrary execution points;
that we include a formalization and proof of correctness; that
we provide some information about profile coverage with
test runs; and, perhaps foremost, that PRuby operates on
Ruby rather than Python.

Another approach to typing languages with dynamic fea-
tures is to use the type Dynamic (Abadi et al. 1991). Exten-
sions of this idea include quasi-static typing (Thatte 1990),
gradual type systems (Siek and Taha 2006, 2007; Herman
et al. 2007), and hybrid types (Gronski et al. 2006). However,
we believe these approaches cannot handle cases where dy-
namic code might have side effects that interact with (what
we would like to be) statically typed code. For example, re-
call the code from Figure 1(d), which uses eval to define
methods. Since these definitions are available everywhere,
they can potentially influence any part of the program, and it
is unclear how to allow some static and some dynamic typing
in this context. Moreover, we feel that type systems that rely
solely on type dynamic “give up” too soon—expressions are
either dynamic (with no compile-time checking) or they are
fully statically checkable. In contrast, PRuby explicitly sup-
ports constructs that would look dynamic to a standard type
system, but act essentially statically, because they have only
a few dynamic behaviors, which can be seen with profiling;
for code that is truly dynamic,PRuby reverts to full dynamic
checking.



Several researchers have proposed using purely static
approaches to eliminating dynamic language constructs.
Livshits et al. (2005) use a static points-to analysis to resolve
reflective method calls in Java by tracking string values.
Christensen et al. (2003) propose a general string analysis
they use to resolve reflection and check the syntax of SQL
queries, among other applications. Gould et al. (2004) also
propose a static string analysis to check database queries,
and several proposed systems use partial evaluation to re-
solve reflection and other dynamic constructs (Braux and
Noyé 2000; Thiemann 1996). The main disadvantage of all
of these approaches is that they rely purely on static anal-
ysis. Indeed, Sawin and Rountev (2007) observe that pure
static analysis of strings is unable to resolve many dynamic
class loading sites in Java. They propose solving this prob-
lem using a semi-static analysis, where partial information
is gathered dynamically and then static analysis computes
the rest. In PRuby, we opted to use a pure dynamic analysis
to track highly dynamic features, to keep PRuby as simple
and predictable as possible.

Chugh et al. (Chugh et al. 2009) present a hybrid ap-
proach to information flow in Javascript that computes as
much of the flow graph as possible statically, and performs
only residual checks at run time when new code becomes
available. In Ruby, we found that the effects of dynamic fea-
tures must be available during static analysis, to ensure that
all defined methods are known to the type checker. Our run-
time instrumentation for blame tracking is similar to a pro-
posed system for tracking NULL values in C (Bond et al.
2007). One difference is that we must check for and allow
type-correct methods at runtime, whereas NULL supports
no operations.

Finally, there is an extensive body of work on performing
static analysis for optimization of Java. A major challenge
is handling both dynamic class loading and reflection. Jax
(Tip et al. 1999) uses programmer specifications to ensure
safe modeling of reflective calls. Sreedhar et al. (2000) de-
scribe a technique for ahead-of-time optimization of parts of
a Java program that are guaranteed unaffected by dynamic
class loading. Pechtchanski and Sarkar (2001) present a Java
optimization system that reanalyzes code on seeing any dy-
namic events that would invalidate prior analysis. Hirzel
et al. (2004) develop an online pointer analysis that tracks
reflective method calls and can analyze classes as they are
dynamically loaded. All of these systems are concerned with
optimizing a program, whereas in contrast, PRuby extracts
run-time profiling information to guide compile-time (user-
level) type inference.

9. Conclusion
We have presented PRuby, a profile-guided type inference
system for Ruby. PRuby is built on top of DRuby, which
performs purely static type inference on Ruby.PRuby works
by first instrumenting source programs to gather profiles that

record how dynamic constructs are used by the program.
These profiles then guide a transformation phase that re-
places dynamic constructs with static constructs specialized
to the values seen at run time. We have proven that our tech-
nique is sound for TinyRuby, a small Ruby-like calculus
with dynamic features. We evaluated PRuby on a suite of
Ruby programs, and we found that use of dynamic features
is pervasive throughout our benchmarks, but that, neverthe-
less, most uses of these features are essentially static, and
hence can be profiled. We also discovered a number of type
errors in our benchmarks and found that, modulo these er-
rors, our benchmarks can be made mostly typable by apply-
ing a number of refactorings. We believe our results show
that using profiles to enhance static analysis is a promising
technique for analyzing programs written in highly dynamic
scripting languages.
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MT; Γ ` e : τ
τ ::= string | bool | A
σ ::= τ1 × · · · × τn → τ

(VARτ )

x ∈ Γ

MT; Γ ` x : Γ(x)

(INSTτ )

MT; Γ ` new A : A

(WRAPτ )

MT; Γ ` JeK` : τ

(SEVALτ )

MT; Γ ` e : string

MT; Γ ` safe eval` e : τ

(BLAMEτ )

MT; Γ ` blame ` : τ

(CALLτ )

MT; Γ ` ei : τi i ∈ 0..n m 6= method missing
MT(τ0.m) = τ1 × · · · × τn → τ

MT; Γ ` e0.m(e1, . . . , en) : τ

(DEFτ )

MT(A.m) = τ1 × · · · × τn → τ
Γ′ = (self 7→ A, x1 7→ τ1, . . . , xn 7→ τn) MT; Γ′ ` e : τ

MT; Γ ` def` A.m(x1, . . . , xn) = e : bool

MT ` d; MT′ MT ` e

(DEF′τ )

σ = τ1 × · · · × τn → τ
A.m ∈ dom(MT)⇒ MT(A.m) = σ

MT ` def` A.m(x1, . . . , xn) = blame `; (A.m 7→ σ),MT

(PROGτ )

MT ` d,MT′ MT′ ` e
MT ` d; e

(PROG-EXPRτ )

MT; ∅ ` e : τ

MT ` e

Figure 10. Type checking rules for TinyRuby (selected
rules)

A. Type Checking Rules (Partial)
Figure 10 presents a portion of a type checking system de-
signed specifically for the output of our translation (though
it is in fact sound in general—it just may not be able to type
programs that have not been translated). This type system
is representative of the static typing discipline enforced by
DRuby, though it is far simpler.

The first group of rules in Figure 10 prove judgments of
the form MT; Γ ` e : τ , meaning with method type table
MT, a mapping from names A.m to method signatures, and
in type environment Γ, a mapping from variables to types,
expression e has type τ . Types τ are either string, bool, or
a class A, and method signatures σ consist of argument and
result types.

(VARτ ) and (INSTτ ) are trivial. (WRAPτ ), (SEVALτ ),
and (BLAMEτ ) give the corresponding expressions any type;
the subexpressions in the first two forms are evaluated with
full dynamic checking, and the last form is used to abort



execution due to an error in a dynamic region of the code.
(CALLτ ) types the receiver and the arguments, and searches
for a method signature for τ0.m in MT; for this search to
be successful, τ0 must be a class A whose m method was
defined. As expected, it matches the formal and actual argu-
ment types and extracts the result type from the signature.
Note that we omit subtyping from our type system, also to
keep things simple, but it is straightforward to add.

(DEFτ ) types the definition of a method. The defined
method A.m must have a signature in MT, and the body e is
type checked in the appropriate environment. The definition
itself returns false, so the type of the definition is bool.

Note that (DEFτ ) applies to methods defined in the “mid-
dle” of a program. Recall that the translation defined by
(PROG ) produces a program of the form (ed; e), where ed
is a sequence of method definitions. The bottom part of Fig-
ure 10 gives rules for typing programs of this form.

(DEF′τ ) proves a judgment of the form MT ` d; MT′,
where MT′ is MT but with a method signature for d added.
If there is more than one definition of the same method,
it must have the same signature in MT′. In (DEF′τ ), the
body of d must consist solely of a blame expression, which
will be the case for the method definitions from ed in our
translated program. Because the body is a blame expression,
we need not type check it. As a side note, since this is a type
checking system, we have not specified how to come up with
method signature σ. In practice, it could be supplied by type
annotations or, in the case of DRuby, also by type inference.

The last two rules define judgment MT ` e, which given
an expression (ed; e), creates a method table MT′ with sig-
natures for the definitions in ed and then type checks e using
that method table. These last two rules are non-deterministic,
but we generally will use (PROGτ ) to accumulate as large a
method table as possible from the initial set of definitions,
and then check the remainder of the expression uses that
method table.

B. Complete Formalism and Proofs
In this appendix, we give the full operational semantics
(Figure 11), program transformation (Figure 12), and type
checking system (Figure 15) for TinyRuby, which were ab-
breviated in the body of the paper due to lack of space.

B.1 Translation Faithfulness
DEFINITION 4. We writeP ` M M′ if all of the following
hold:

1. M = (d1, . . . , dn)
2. For all i ∈ 1..n, we have P ` di  ei
3. M′ is the method table consisting of e1; . . . ; en flattened

and treated as a list of definitions

LEMMA 5. Suppose 〈M,V, e〉 → 〈M′,P ′, v〉 and P ′ ⊆ P
and P ` e  eP . Further assume VP |dom(V) = V and

P ` M  MP . Then 〈MP ,VP , eP〉 → 〈M′
P ,P ′′, v〉 where

P ` M′  M′
P .

Proof: By induction on the derivation of 〈M,V, e〉 →
〈M′,P, v〉. We proceed by case analysis on the last rule
applied. In this proof, we use · to indicate profiles we do not
refer to.

Case (EVAL): We have
(EVAL)

〈M,V, e〉 → 〈M1,P1, s〉
〈M1,V, parse(s)〉 → 〈M2,P2, v〉

〈M,V, eval` e〉 → 〈M2, (P1 ∪ P2 ∪ [` 7→ s]), v〉

and VP |dom(V) = V and P ` M  MP . We also have
P ` eval` e  eP where P = P1 ∪ P2 ∪ [` 7→ s]. Thus by
(EVAL ), we have

(EVAL )

P ` e e′

P ` parse(sj) ej sj ∈ P(`) x fresh

e′′ =


let x = e′ in

if x≡s1 then e1
else if x≡s2 then e2
. . .
else safe eval` x


P ` eval` e e′′

Then since P1 ⊆ P , by induction we have 〈MP ,VP , e′〉 →
〈M′

P , ·, s〉 with P ` M1  M′
P . Notice also s ∈ P(`),

and assume without loss of generality that s = s1. Let
V′P = x : s,VP .

Combining the last hypothesis of (EVAL) with P1 ⊆ P
and P ` parse(s1)  e1 and V′P |dom(V) = V (since x is
fresh) and P ` M1  M′

P , we can apply induction to get
〈M′

P ,V
′
P , e1〉 → 〈M′′

P , ·, v〉 where P ` M2  M′′
P .

Then combining the derived reductions using (LET) and
(IF-T), we have 〈MP ,VP , e′′〉 → 〈M′′

P , ·, v〉 where P `
M2  M′′

P , which is the conclusion.

Case (SEND): We have
(SEND)

〈M,V, e1〉 → 〈M1,P1, s〉 m = parse(s)
〈M1,V, e0.m(e2, . . . , en)〉 → 〈M2,P2, v〉

〈M,V, e0.send`(e1, . . . , en)〉 → 〈M2, (P1 ∪ P2 ∪ [` 7→ s]), v〉

and VP |dom(V) = V and P ` M  MP . We also have P `
e0.send`(e1, . . . , en) eP where P = P1 ∪ P2 ∪ [` 7→ s].
Thus by (SEND ), we have

(SEND )

P ` ei  e′i i ∈ 0..n sj ∈ P(`) x fresh

e′ =


let x = e′1 in

if x≡s1 then e′0.parse(s1)(e′2, . . . , e
′
n)

else if x≡s2 then e′0.parse(s2)(e′2, . . . , e
′
n)

. . .
else safe eval` “e′0.x(e′2, . . . , e

′
n)”


P ` e0.send`(e1, . . . , en) e′



(VALUE)

〈M,V, v〉 → 〈M, ∅, v〉

(VAR)

〈M,V, x〉 → 〈M, ∅,V(x)〉

(DEF)

〈M,V, d〉 → 〈(d,M), ∅, false〉

(SEQ)
〈M,V, e1〉 → 〈M1,P1, v1〉
〈M1,V, e2〉 → 〈M2,P2, v2〉

〈M,V, e1; e2〉 → 〈M2, (P1 ∪ P2), v2〉

(EQ-T)
〈M,V, e1〉 → 〈M1,P1, v〉
〈M1,V, e2〉 → 〈M2,P2, v〉

〈M,V, e1≡e2〉 → 〈M2, (P1 ∪ P2), true〉

(EQ-F)
〈M,V, e1〉 → 〈M1,P1, v1〉

〈M1,V, e2〉 → 〈M2,P2, v2〉 v1 6= v2

〈M,V, e1≡e2〉 → 〈M2, (P1 ∪ P2), false〉

(LET)
〈M,V, e1〉 → 〈M1,P1, v1〉

〈M1, (x : v1,V), e2〉 → 〈M2,P2, v2〉
〈M,V, let x = e1 in e2〉 → 〈M2, (P1 ∪ P2), v2〉

(BLAME)

〈M,V, blame `〉 → 〈M,V, blame `〉

(IF-T)
〈M,V, e1〉 → 〈M1,P1, true〉
〈M1,V, e2〉 → 〈M2,P2, v2〉

〈M,V, if e1 then e2 else e3〉 → 〈M2, (P1 ∪ P2), v2〉

(IF-F)
〈M,V, e1〉 → 〈M1,P1, false〉
〈M1,V, e3〉 → 〈M3,P3, v3〉

〈M,V, if e1 then e2 else e3〉 → 〈M3, (P1 ∪ P3), v3〉

(CALL)
〈Mi,V, ei〉 → 〈Mi+1,Pi, vi〉 i ∈ 0..n v0 = new A

(def` A.m(x1, . . . , xn) = e) ∈ Mn+1 m 6= method missing
V′ = [self 7→ v0, x1 7→ v1, . . . , xn 7→ vn]

〈Mn+1,V′, e〉 → 〈M′,P ′, v〉

〈M0,V, e0.m(e1, . . . , en)〉 → 〈M′, (
[
i

Pi) ∪ P ′, v〉

(CALL-M)
〈Mi,V, ei〉 → 〈Mi+1,Pi, vi〉 i ∈ 0..n v0 = new A

(def` A.m(. . .) = . . .) 6∈ Mn+1

(def`′ A.method missing(x1, . . . , xn+1) = e) ∈ Mn+1 s = unparse(m)
m 6= method missing V′ = [self 7→ v0, x1 7→ s, x2 7→ v1, . . . , xn+1 7→ vn]

〈Mn+1,V′, e〉 → 〈M′,P ′, v〉

〈M0,V, e0.m(e1, . . . , en)〉 → 〈M′, (
[
i

Pi) ∪ P ′ ∪ [`′ 7→ s], v〉

(EVAL)
〈M,V, e〉 → 〈M1,P1, s〉

〈M1,V, parse(s)〉 → 〈M2,P2, v〉
〈M,V, eval` e〉 → 〈M2, (P1 ∪ P2 ∪ [` 7→ s]), v〉

(SEND)
〈M,V, e1〉 → 〈M1,P1, s〉 m = parse(s)
〈M1,V, e0.m(e2, . . . , en)〉 → 〈M2,P2, v〉

〈M,V, e0.send`(e1, . . . , en)〉 → 〈M2, (P1 ∪ P2 ∪ [` 7→ s]), v〉

Figure 11. Instrumented big-step operational semantics for TinyRuby (excluding blame and error rules)

Then since P1 ⊆ P , by induction we have 〈MP ,VP , e′1〉 →
〈M′

P , ·, s〉 with P ` M1  M′
P . Notice also s ∈ P(`),

and assume without loss of generality that s = s1. Let
V′P = x : s,VP .

Combining the last hypothesis of (SEND) with P2 ⊆
P and P ` ei  e′i and V′P |dom(V) = V (since x is
fresh) and P ` M1  M′

P , we can apply induction to
get 〈M′

P ,V
′
P , e

′
0.m(e′2, . . . , e

′
n)〉 → 〈M′′

P , ·, v〉 where P `
M2  M′′

P .
Then combining the derived reductions using (LET) and

(IF-T), and given thatm = parse(s), we have 〈MP ,VP , e′〉 →
〈M′′

P , ·, v〉 where P ` M2  M′′
P , which is the conclusion.

Case (CALL-M): We have

(CALL-M)
〈Mi,V, ei〉 → 〈Mi+1,Pi, vi〉
i ∈ 0..n v0 = new A

(def` A.m(. . .) = . . .) 6∈ Mn+1

(def`′ A.method missing(x1, . . . , xn+1) = e) ∈ Mn+1

s = unparse(m) m 6= method missing
V′ = [self 7→ v0, x1 7→ s, x2 7→ v1, . . . , xn+1 7→ vn]

〈Mn+1,V′, e〉 → 〈M′,P ′, v〉
〈M0,V, e0.m(e1, . . . , en)〉 → 〈M′, (

⋃
i

Pi) ∪ P ′ ∪ [`′ 7→ s], v〉

and VP |dom(V) = V and P ` M0  MP , where P =
(
⋃
i Pi) ∪ P ′ ∪ [`′ 7→ s]. We also have

(CALL )

P ` ei  e′i i ∈ 0..n m 6= send

P ` e0.m(e1, . . . , en) e′0.m(e′1, . . . , e
′
n)

Then by induction, we have 〈MP ,VP , e′0〉 → 〈M0
P , ·, v0〉

where P ` M1  M0
P . Continuing this argument for each

subsequent ei, we will have corresponding reductions for
the e′i, eventually leading to a 〈Mn+1

P , ·, vn+1〉 such that
P ` Mn+1  Mn+1

P .
From (CALL-M) above, we see that (def`′ A.method missing(x1,

. . . , xn+1) = e) is the leftmost definition ofA.method missing
in M+n1. Furthermore, since P ` Mn+1  Mn+1

P , there
must be a corresponding set of definitions d1, . . . , dk at the
corresponding position in Mn+1

P , where each di is the output
of (METH-MISSING ) translating the A.method missing
definition. We also have s ∈ P(`′), and assume without loss
of generality that s is the last string in P(`′). Then the d1

from Mn+1
P must be

(∗) def`′ A.m(x2, . . . , xn) = let x1 = s in e′

where P ` e e′.



(REFL )
e ∈ {x, v, blame `}
P ` e e

(SEQ )
P ` e1  e′1 P ` e2  e′2

P ` e1; e2  e′1; e′2

(EQ )
P ` e1  e′1 P ` e2  e′2
P ` e1≡e2  e′1≡e′2

(LET )
P ` e1  e′1 P ` e2  e′2

P ` let x = e1 in e2  let x = e′1 in e′2

(IF )
P ` e1  e′1 P ` e2  e′2 P ` e3  e′3
P ` if e1 then e2 else e3  if e′1 then e′2 else e′3

(CALL )
P ` ei  e′i i ∈ 0..n m 6= send

P ` e0.m(e1, . . . , en) e′0.m(e′1, . . . , e
′
n)

(EVAL )
P ` e e′ P ` parse(sj) ej sj ∈ P(`) x fresh

e′′ =

0BBB@
let x = e′ in

if x≡s1 then e1
else if x≡s2 then e2
. . .
else safe eval` x

1CCCA
P ` eval` e e′′

(SEND )
P ` ei  e′i i ∈ 0..n sj ∈ P(`) x fresh

e′ =

0BBB@
let x = e′1 in

if x≡s1 then e′0.parse(s1)(e′2, . . . , e
′
n)

else if x≡s2 then e′0.parse(s2)(e′2, . . . , e
′
n)

. . .
else safe eval` “e′0.” + x+ “(e′2, ..., e

′
n)”

1CCCA
P ` e0.send`(e1, . . . , en) e′

(DEF )
P ` e e′ m 6= method missing

P ` def` A.m(x1, . . . , xn) = e def` A.m(x1, . . . , xn) = e′

(METH-MISSING )
P ` e e′ sj ∈ P(`)

e′′ =

0@ def` A.parse(s1)(x2, . . . , xn) = (let x1 = s1 in e′);
def` A.parse(s2)(x2, . . . , xn) = (let x1 = s2 in e′);
. . .

1A
P ` def` A.method missing(x1, . . . , xn) = e e′′

(WRAP )
P ` e e′

P ` JeK`  Je′K`

(SEVAL )
P ` e e′

P ` safe eval` e safe eval` e
′

(PROG )

P ` e e′ (def`j A
j .mj(xj1, . . . , x

j
n) = . . .) ∈ e′

ed =

0@ def`1 A
1.m1(x1

1, . . . , x
1
n1) = blame `1;

def`2 A
2.mk(x2

1, . . . , x
2
n2) = blame `2;

. . .

1A
P ` e⇒ (ed; e′)

Figure 12. Transformation to static constructs (complete)

Next, we claim there cannot be any definitions of A.m to
the left of the definition (∗) above. SinceA.m is not in Mn+1

(by the hypotheses of (CALL-M)) and P ` Mn+1  Mn+1
P ,

there cannot be any directly translated definitions of A.m
in Mn+1

P . The only other possibility would be if A.m were
added to Mn+1

P as a consequence of translating a different
definition of A.method missing. For that to occur to the
left of (∗), it would have to have come from a definition of
A.method missing that occurred to the left of the definition
of A.method missing in Mn+1. But from the hypotheses of
(CALL-M) we know the definition of A.method missing
whose translation yielded (∗) is the leftmost occurrence,
so that is impossible. Thus we see that (∗) is the leftmost
definition of A.m.

Finally, also by induction, sinceP ` e e′ (from the ap-
plication of (METH-MISSING )), we have 〈Mn+1

P ,V′, e′〉 →
〈M′′

P , ·, v〉 where P ` M′  M′′
P . Let V′P = [self 7→

v0, x2 7→ x1, . . . , xn+1 7→ xn] Using straightforward rea-
soning about (LET) we can therefore show we can show
〈Mn+1

P ,V′P , let x1 = s in e′〉 → 〈M′′
P , ·, v〉. Then putting all

the derived reductions together with (CALL), and using the

fact that (∗) is the leftmost definition 〈MP ,VP , e′0.m(e1, . . . , en)〉 →
〈M′′

P , ·, v〉 where P ` M′  M′′
P , which is the conclusion

we needed to show.

Case (VALUE), (VAR), (BLAME), (UNWRAP), (WRAP-ERROR):
Trivial.

Case (DEF): We have

(DEF)

〈M,V, d〉 → 〈(d,M), ∅, false〉

and VP |dom(V) = V and P ` M MP . There are two cases.
If d is not defining A.method missing, then the transla-

tion P ` d d′ must have been via (DEF ):

(DEF )

P ` e e′ m 6= method missing

P ` def` A.m(x1, . . . , xn) = e def` A.m(x1, . . . , xn) = e′

By (DEF), we have 〈MP ,VP , d′〉 → 〈(d′,MP), ·, false〉 and
P ` (d,M) (d′,MP) by definition.



(REFL↪→)
e ∈ {x, v, blame `}

e ↪→` e

(SEQ↪→)
e1 ↪→` e

′
1 e2 ↪→` e

′
2

e1; e2 ↪→` e
′
1; e′2

(EQ↪→)
e1 ↪→` e

′
1 e2 ↪→` e

′
2

e1≡e2 ↪→` e
′
1≡e′2

(LET↪→)
e1 ↪→` e

′
1 e2 ↪→` e

′
2

let x = e1 in e2 ↪→` let x = e′1 in e′2

(IF↪→)
e1 ↪→` e

′
1 e2 ↪→` e

′
2 e3 ↪→` e

′
3

if e1 then e2 else e3 ↪→` if Je′1K` then e′2 else e′3

(CALL↪→)
ei ↪→` e

′
i i ∈ 0..n

e0.m(e1, . . . , en) ↪→` Je′0K`.m(e′1, . . . , e
′
n)

(EVAL↪→)
e ↪→` e

′

eval`′ e ↪→` safe eval`′ Je′K`′

(SEND↪→)
ei ↪→` e

′
i i ∈ 0..n

e0.send`(e1, . . . , en) ↪→` safe eval` “e′0.e
′
1(e′2, . . . , e

′
n)”

(DEF↪→)

def`′ A.m(x1, . . . , xn) = e ↪→` blame `′

(WRAP↪→)
e ↪→`′ e

′

JeK` ↪→`′ Je′K`

(SEVAL↪→)
e ↪→`′ e

′

safe eval` e ↪→`′ safe eval` Je′K`

Figure 13. Safe evaluation rules (complete)

Otherwise, d is a definition of A.method missing, and
our translation was via (METH-MISSING ):

(METH-MISSING )

P ` e e′ sj ∈ P(`)

e′′ =

 def` A.parse(s1)(x2, . . . , xn) = (let x1 = s1 in e′);
def` A.parse(s2)(x2, . . . , xn) = (let x1 = s2 in e′);
. . .


P ` def` A.method missing(x1, . . . , xn) = e e′′

Letting d′1, . . . , d
′
k be the flattened list of definitions cor-

responding to e′′, by (DEF) we have 〈MP ,VP , e′′〉 →
〈(d′k, . . . , d′1,MP), ·, false〉But thenP ` (d,M) (d′k, . . . , d

′
1,MP),

by definition.

Case (SEQ), (EQ-T), (EQ-F), (LET), (IF-T), (IF-F): In-
duction following the pattern seen above in (EVAL), (SEND),
and (CALL-M)

Case (SEVAL), (*WRAP*)(*BLAME*): Induction follow-
ing the above pattern.

Case (CALL): Similar reasoning to (CALL-M). Notice that
the methodA.m invoked in (CALL) cannot be method missing,
by one of the hypotheses of (CALL), and hence by (DEF )
it is directly translated to a corresponding definition in the
output. �

LEMMA 6. If 〈∅, ∅, e〉 → 〈M,P, r〉 and e contains no defi-
nitions of method missing and ed = d1; . . . ; dn, i.e., it is a
sequence of definitions, and no di defines method missing,
then 〈∅, ∅, (ed; e)〉 → 〈M′,P, r〉.

Proof: We have 〈∅, ∅, ed〉 → 〈M′′, ∅, false〉, using (SEQ)
and (DEF), for some M′′. We claim that 〈M′′, ∅, e〉 →
〈M′,P, r〉. This holds because the original reduction of e

starting from the empty method table produced a value.
Therefore, any methods e calls are defined before they are
used (because there are no calls handled by method missing),
thereby overriding any prior definition in M′′. But then by
(SEQ) (or one of its variants for blame or error) we have our
conclusion. �

THEOREM 7 (Translation Faithfulness). Suppose 〈∅, ∅, e〉 →
〈M,P ′, v〉 and let P ′ ⊆ P . Also assume P ` e ⇒ e′. Then
there exist MP ,P ′′ such that 〈∅, ∅, e′〉 → 〈MP ,P ′′, v〉, i.e.,
both the original and translated program evaluate to the
same result.

Proof: From (PROG ) we have

(PROG )

P ` e e′ (def`j A
j .mj(xj1, . . . , x

j
n) = . . .) ∈ e′

ed =

 def`1 A
1.m1(x1

1, . . . , x
1
n1) = blame `1;

def`2 A
2.m2(x2

1, . . . , x
2
n2) = blame `2;

. . .


P ` e⇒ (ed; e′)

Thus we have P ` e  e′. Trivially ∅|dom(∅) = ∅ and
P ` ∅  ∅. By observation of the translation rules, we can
see that e′ and ed contain no definitions of method missing.
Thus by Theorem 5, we have 〈∅, ∅, e′〉 → 〈MP ,P ′′, v〉 for
some MP ,P ′′. But then by Lemma 6 we have 〈∅, ∅, (ed; e′)〉 →
〈M′,P ′′, v〉. �

B.2 Type Soundness
We show soundness of the type system in Figure 15 using a
standard progress-preservation approach. We begin by defin-
ing a relationship between the run-time method table and
variable store and their static approximations in the type sys-
tem.



(SEVAL)
〈M,V, e〉 → 〈M′,P, s〉 parse(s) ↪→` e

′

〈M′,V, Je′K`〉 → 〈M′′,P ′, v〉
〈M,V, safe eval` e〉 → 〈M′,P ∪ P ′, v〉

(SEVAL-WRAP)
〈M,V, e〉 → 〈M′,P, JsK`′ 〉 parse(s) ↪→` e

′

〈M′,V, Je′K`〉 → 〈M′′,P ′, v〉
〈M,V, safe eval` e〉 → 〈M′,P ∪ P ′, v〉

(SEVAL-BLAME)
〈M,V, e〉 → 〈M′,P, v〉 v ∈ {JtrueK`′ , JfalseK`′ , Jnew AK`′}

〈M,V, safe eval` e〉 → 〈M′,P, blame `〉

(SEVAL-BLAME-PARSE)
〈M,V, e〉 → 〈M′,P, v〉 v = s ∨ v = JsK`′ @parse(s)

〈M,V, safe eval` e〉 → 〈M′,P, blame `〉

(WRAP)
〈M,V, e〉 → 〈M,P, r〉

〈M,V, JeK`〉 → 〈M,P, JrK`〉

(WRAP-DEFINE)
〈M,V, e〉 → 〈M′,P, r〉 M′ 6= M

〈M,V, JeK`〉 → 〈M,P, blame `〉

(UNWRAP)

〈M,V, JJrK`′K`〉 → 〈M, ∅, JrK`〉

(WRAP-ERROR)

〈M,V, JerrorK`〉 → 〈M, ∅, blame `〉

(EQ-WRAP-T)
〈M,V, e1〉 → 〈M1,P1, v1〉
〈M1,V, e2〉 → 〈M2,P2, v2〉

(v1 = v ∨ v1 = JvK`1 ) (v2 = v ∨ v2 = JvK`2 )

〈M,V, e1≡e2〉 → 〈M2, (P1 ∪ P2), true〉

(EQ-WRAP-F)
〈M,V, e1〉 → 〈M1,P1, v1〉
〈M1,V, e2〉 → 〈M2,P2, v2〉

(v1 = v′1 ∨ v1 = Jv′1K`1 ) (v2 = v′2 ∨ v2 = Jv′2K`2 )
v′1 6= v′2

〈M,V, e1≡e2〉 → 〈M2, (P1 ∪ P2), false〉

(IF-WRAP-T)
〈M,V, e1〉 → 〈M1,P1, JtrueK`〉
〈M1,V, e2〉 → 〈M2,P2, v2〉

〈M,V, if e1 then e2 else e3〉 → 〈M2, (P1 ∪ P2), v2〉

(IF-WRAP-F)
〈M,V, e1〉 → 〈M1,P1, JfalseK`〉
〈M1,V, e3〉 → 〈M3,P3, v3〉

〈M,V, if e1 then e2 else e3〉 → 〈M3, (P1 ∪ P3), v3〉

(IF-WRAP-BLAME)
〈M,V, e1〉 → 〈M1,P1, v〉
v ∈ {JsK`, Jnew AK`}

〈M,V, if e1 then e2 else e3〉 → 〈M1,P1, blame `〉

(CALL-WRAP)
〈Mi,V, ei〉 → 〈Mi+1,Pi, vi〉 i ∈ 0..n v0 = Jnew AK`′′

(def` A.m(x1, . . . , xn) = e) ∈ Mn+1 m 6= method missing
V′ = [self 7→ v0, x1 7→ Jv1K`′′ , . . . , xn 7→ JvnK`′′ ]

〈Mn+1,V′, e〉 → 〈M′,P ′, v〉

〈M0,V, e0.m(e1, . . . , en)〉 → 〈M′, (
[
i

Pi) ∪ P ′, JvK`′′ 〉

(CALL-METH-BLAME)
〈Mi,V, ei〉 → 〈Mi+1,Pi, vi〉 i ∈ 0..n v0 = Jnew AK`′′

((def` A.m(x1, . . . , xn) = e) 6∈ Mn+1 ∨m = method missing)

〈M0,V, e0.m(e1, . . . , en)〉 → 〈Mn+1,
[
i

Pi, blame `′′〉

(CALL-TYPE-BLAME)
〈Mi,V, ei〉 → 〈Mi+1,Pi, vi〉 i ∈ 0..n

v0 ∈ {JtrueK`′′ , JfalseK`′′ , JsK`′′}

〈M0,V, e0.m(e1, . . . , en)〉 → 〈Mn+1,
[
i

Pi, blame `′′〉

Figure 14. Additional operational semantics rule wrapped expressions



MT; Γ ` e : τ
τ ::= string | bool | A
σ ::= τ1 × · · · × τn → τ

(VARτ )
x ∈ Γ

MT; Γ ` x : Γ(x)

(STRINGτ )

MT; Γ ` s : string

(BOOLτ )
e ∈ {true, false}
MT; Γ ` e : bool

(INSTτ )

MT; Γ ` new A : A

(BLAMEτ )

MT; Γ ` blame ` : τ

(SEVALτ )
MT; Γ ` e : string

MT; Γ ` safe eval` e : τ

(WRAPτ )

MT; Γ ` JeK` : τ

(SEQτ )
MT; Γ ` e1 : τ1
MT; Γ ` e2 : τ2

MT; Γ ` e1; e2 : τ2

(EQτ )
MT; Γ ` e1 : τ1
MT; Γ ` e2 : τ2

MT; Γ ` e1≡e2 : bool

(LETτ )
MT; Γ ` e1 : τ1

MT;x : τ1,Γ ` e2 : τ2

MT; Γ ` let x = e1 in e2 : τ2

(IFτ )
MT; Γ ` e1 : bool

MT; Γ ` e2 : τ
MT; Γ ` e3 : τ

MT; Γ ` if e1 then e2 else e3 : τ

(CALLτ )
MT; Γ ` ei : τi i ∈ 0..n m 6= method missing

MT(τ0.m) = τ1 × · · · × τn → τ

MT; Γ ` e0.m(e1, . . . , en) : τ

(DEFτ )
MT(A.m) = τ1 × · · · × τn → τ

MT; (self 7→ A, x1 7→ τ1, . . . , xn 7→ τn) ` e : τ

MT; Γ ` def` A.m(x1, . . . , xn) = e : bool

MT ` d; MT′

(DEF′τ )
σ = τ1 × · · · × τn → τ A.m ∈ dom(MT)⇒ MT(A.m) = σ MT′ = (A.m 7→ σ),MT

MT ` def` A.m(x1, . . . , xn) = blame `; MT′

MT ` e

(PROGτ )
MT ` d; MT′ MT′ ` e

MT ` d; e

(PROG-EXPRτ )
MT; ∅ ` e : τ

MT ` e

Figure 15. Type checking rules for TinyRuby (complete)

DEFINITION 8. We write Γ ∼ V if dom(Γ) = dom(V) and
∀x ∈ dom(Γ) . ∅; Γ ` V(x) : Γ(x).

DEFINITION 9. We write MT ∼ M if dom(MT) = {A.m |
(def` A.m(. . .) = . . .) ∈ M} and ∀d = (def` A.m(x1, . . . , xn) =
e) ∈ M we have MT; ∅ ` d : bool.

In addition to the semantics rules in Figure 11, we assume
that (a) any expression such that a sub-computation reduces
to blame `, itself reduces to blame `, and (b) any undefined
behavior causes the entire computation to reduce to error. In
the subsequent theorem, r is either a value, blame `, or error.
Since the first two forms are typable, the following theorem
implies well-typed programs never reduce to error.

LEMMA 10. If MT; Γ ` e : τ and 〈M,V, e〉 → 〈M′,P, r〉
and Γ ∼ V and MT ∼ M then ∅; ∅ ` r : τ and MT ∼ M′.

Proof: By induction on the derivation of 〈M,V, e〉 →
〈M′,P, r〉. We proceed by case analysis on the expression
e. Note that semantic rules that work on wrapped values
requires that any extra levels of wrapping be removed by

(UNWRAP), and that JerrorK` 6∈ r, we also must have re-
duced it to blame ` by (WRAP-ERROR) if it occurred.

Case x: By assumption, MT; Γ ` x : τ , and therefore by
(VARτ ), we have Γ(x) = τ . Then since we have Γ ∼ V,
we have x ∈ dom(V) and ∅; Γ ` V(x) : τ . Therefore
MT; Γ ` V(x) : τ . And since x ∈ dom(V), reduction (VAR)
applies, and therefore r = V(x).

Case s, true, false, new A: Trivial.

Case d: The reduction (DEF) applies, so we have M′ =
(d,M). Also by assumption, MT ∼ M. But since we also
assume MT; Γ ` d : bool, this implies MT; ∅ ` d : bool,
since Γ is not used in (DEFτ ). Thus, we have MT ` (d,M)
(notice that the A.m defined by d already has a type in
MT; as a side effect, this implies it already has a previous
definition in M). The remainder of the conclusion is trivial
to show.

Case e1; e2: By assumption, MT; Γ ` e1; e2 : τ2. Therefore
by (SEQτ ) we have MT; Γ ` e1 : τ1 and MT; Γ ` e2 : τ2.
Suppose 〈M,V, e1〉 → 〈M′,P1, r1〉. Then by induction, we
have ∅; ∅ ` r1 : τ1 and MT ∼ M1. Thus r1 is not error.



If it is blame `, then we are done, since by (BLAMEτ ) we
have ∅; ∅ ` blame ` : τ2. Otherwise r1 must be a value,
and we can reduce via 〈M1,V, e2〉 → 〈M2,P2, r2〉. Also by
induction, we have ∅; ∅ ` r2 : τ2 and MT ∼ M2, so we have
shown the conclusion.

Case safe eval` e: By assumption, MT; Γ ` safe eval` e : τ .
Then we have 〈M,V, e〉 → 〈M′,P, r〉. By induction, we
have ∅; ∅ ` r : string. Then there are three cases. If r is an
unwrapped value, then it must be a string s. Then we must
have applied either (SEVAL) or (SEVAL-BLAME-PARSE).
The latter case is trivial (since we reduced to blame `). In
the former case, we had 〈M′,V, Je′K`〉 → 〈M′′,P ′, v〉. But
we also have MT; Γ ` Je′K` : τ by (WRAPτ ). So then by
induction ∅; ∅ ` v : τ and MT ∼ M′′.

Otherwise, r must be a wrapped value (it cannot be er-
ror), in which case we applied (SEVAL-WRAP), (SEVAL-
BLAME), or (SEVAL-BLAME-PARSE). The first case fol-
lows the reasoning for (SEVAL) above, and the last two
cases follow trivially by (BLAMEτ ).

Case JeK`: If (WRAP) was applied, then the conclusion is
trivial, since M is not changed by reduction, and the resulting
value is JrK`, which has any type by (WRAPτ ). If (WRAP-
DEFINE) was applied, the result holds by (BLAMEτ ). If
(UNWRAP) was applied, then the result is trivial by (WRAPτ ).
The only other possibility is (WRAP-ERROR), in which case
the result is also trivial by (WRAPτ ).

Case e1≡e2: Similar to sequencing case.

Case let x = e1 in e2: By assumption, MT; Γ ` let x =
e1 in e2 : τ2. Then by (LETτ ) we have MT; Γ ` e1 : τ1 and
MT;x : τ1,Γ ` e2 : τ2. Suppose 〈M,V, e1〉 → 〈M1,P1, r1〉.
By induction, we have ∅; ∅ ` r1 : τ1 and MT ∼ M1. If r1 is
blame `′ then we are done, and otherwise r1 must be a value.

Let Γ′ = x : τ1,Γ, and let V′ = x : r1,V. Since
Γ ∼ V and Γ′ ` x : τ1, we have Γ′ ∼ V′. Thus if we
have 〈M1,V′, e2〉 → 〈M2,P2, r2〉, we can apply induction
to get ∅; ∅ ` r2 : τ2 and MT ∼ M2, which is our conclusion.

Case if e1 then e2 else e3: There are several cases. If e1 re-
duces to an unwrapped value, then the proof is by induc-
tion, using the assumption that e1 has type bool, and hence
must be a boolean. Otherwise, if e1 reduces to a wrapped
value, then we either apply (IF-WRAP-T) or (IF-WRAP-
F), satisfying the conclusion by induction, or we apply (IF-
WRAP-BLAME), satisfying the conclusion by induction and
(BLAMEτ ).

Case e0.m(e1, . . . , en): By assumption, MT; Γ ` e0.m(e1, . . . , en) :
τ . Thus by (CALLτ ), we must have MT; Γ ` ei : τi
for i ∈ 0..n and MT(τ0.m) = τ1 × · · · × τn → τ and
m 6= method missing.

Let M = M0. Then MT ∼ M0. Let 〈M0,V, e0〉 →
〈M1,P, r0〉. Then by induction, we have ∅; ∅ ` r0 : τ0
and MT ∼ M1. If r0 is blame `′ then we are done, since
by (BLAMEτ ) we have ∅; ∅ ` r0 : τ . Otherwise we know

r0 is a value, and we can continue reducing 〈M1,V, e1〉 →
〈M2,P, r1〉. Iteratively applying the same argument for all
ei, we have MT ` Mn+1 and ∅; ∅ ` ri : τi (unless one
of them reduces to blame `′, in which case we can trivially
show the conclusion).

There are several cases, depending on which reduction we
applied. Suppose we applied (CALL). Since MT(τ0) = τ1×
· · · τn → τ , we have τ0 = A for some A. And since MT ∼
Mn+1, there must be some d = (def` A.m(x1, . . . , xn) =
e) ∈ Mn+1 such that MT; ∅ ` d : bool. Let V′ = [self 7→
r0, x1 7→ r1, . . . , xn 7→ rn], and let Γ′ = (self 7→ A, x1 7→
τ1, . . . , xn 7→ τn). Then we have Γ′ ∼ V′. And, since
MT; ∅ ` d : bool, we must have MT; Γ′ ` e : τ .

Then by (CALL), we have 〈Mn+1,V′, e〉 → 〈M′,P ′, r〉.
By induction (using Γ′ ∼ V′, MT ∼ Mn+1, and MT; Γ′ `
e : τ ), we have ∅; ∅ ` r : τ and MT ∼ M′, which is the
conclusion we wanted to show.

Otherwise, suppose that r0 is a wrapped value. If we
applied (CALL-METH-BLAME) or (CALL-TYPE-BLAME),
then we can show the conclusion by (BLAMEτ ). Otherwise,
we must have applied (CALL-WRAP), and we have r0 =
Jnew BK`′′ ; notice that it is not necessarily the case that
B = A, because by (WRAPτ ), Jnew BK`′′ may have any
type. However, by (CALL-WRAP) there must be some d =
(def` B.m(x1, . . . , xn) = e) ∈ M such that MT; ∅ ` d :
bool. Let V′ = [self 7→ r0, x1 7→ Jr1K`′′ , . . . , xn 7→ JrnK`′′ ].
Then since MT ∼ Mn+1, there must be a Γ′ and τ ′ such that
dom(Γ′) = dom(V′) and MT; Γ′ ` e : τ ′. But then since all
values in V′ are wrapped, by (WRAPτ ) we have Γ′ ∼ V′.

Then by (CALL-WRAP), we have 〈Mn+1,V′, e〉 →
〈M′,P ′, r〉. By induction, as above, we have ∅; ∅ ` r : τ ′ and
MT ∼ M′. Then by (WRAPτ ), we also have ∅; ∅ ` JrK`′′ : τ ,
showing the conclusion.

Notice that reduction via (CALL-M) is impossible, be-
cause our type system does to allow calls to undefined meth-
ods, even if a definition of method missing is present.

Case eval` e: Impossible, because we assume MT; Γ `
eval` e : τ , and there are no type rules that assign a type
to eval` e.

Case e0.send`(e1, . . . , en): Impossible, as above.

Case blame `: Trivial, by (BLAMEτ ). �

LEMMA 11. If MT ` e and 〈M, ∅, e〉 → 〈M′,P, r〉 and
MT ∼ M then there exists τ such that ∅; ∅ ` r : τ .

Proof: By induction on the derivation of MT ` e. There are
two cases.

Case (PROGτ ): By (PROGτ ), we have MT ` d; MT′ and
MT′ ` e. Then by (DEF′τ ), we have d = (def` A.m(x1, . . . , xn) =
blame `) and σ = τ1× · · · τn → τ and A.m ∈ dom(MT)⇒
MT(A.m) = σ and MT′ = (A.m 7→ σ),MT.

Furthermore, by (DEF) we have 〈M, ∅, d〉 → 〈(d,M), ∅, false〉,
and by assumption we have MT ∼ M. We need to show



MT′ ∼ (d,M). First, observe we have

dom(MT′) = {A.m} ∪ dom(MT) (def of MT′)
= {A.m} ∪ {B.m | (def` B.m(. . .) = . . .) ∈ M} (MT ∼ M)
= {B.m | (def` A.m(. . .) = . . .) ∈ (d,M)} (def of d)

Second, we need to show

∀d′ = (def` A.m(. . .) = . . .) ∈ (d,M) we have MT′; ∅ ` d′ : bool

Clearly this holds for all d′ 6= d since MT ∼ M and
since MT and MT′ agree on the signatures of all common
methods. And for d′ = d, by (DEFτ ) and (BLAMEτ ) we
have MT′; ∅ ` d : bool.

Now since MT′ ∼ (d,M), let 〈(d,M), ∅, e〉 → 〈M′,P, r〉.
By induction, there exists τ such that ∅; ∅ ` r : τ .

Case (PROG-EXPRτ ): By (PROG-EXPRτ ), we have MT; ∅ `
e : τ , and we have assumption MT ∼ M. Let 〈M, ∅, e〉 →
〈M′,P, r〉. Then since ∅ ∼ ∅, by Lemma 10, we have
∅; ∅ ` r : τ . �

THEOREM 12 (Type Soundness). If ∅ ` e and 〈∅, ∅, e〉 →
〈M,P, r〉, then r is either a value of blame ` (i.e., r 6= error).

Proof: Since ∅ ∼ ∅, we can apply Lemma 11 to show there
exists τ such that ∅; ∅ ` r : τ . Therefore r is either a value
or has the form blame `. �


