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Varying-coefficient partially linear models are frequently used in statistical modelling, but their

estimation and inference have not been systematically studied. This paper proposes a profile least-

squares technique for estimating the parametric component and studies the asymptotic normality of the

profile least-squares estimator. The main focus is the examination of whether the generalized

likelihood technique developed by Fan et al. is applicable to the testing problem for the parametric

component of semiparametric models. We introduce the profile likelihood ratio test and demonstrate

that it follows an asymptotically �2 distribution under the null hypothesis. This not only unveils a new

Wilks type of phenomenon, but also provides a simple and useful method for semiparametric

inferences. In addition, the Wald statistic for semiparametric models is introduced and demonstrated to

possess a sampling property similar to the profile likelihood ratio statistic. A new and simple

bandwidth selection technique is proposed for semiparametric inferences on partially linear models,

and numerical examples are presented to illustrate the proposed methods.
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1. Introduction

With the improvement of computing facilities over the last three decades, there has been an

upsurge of interest and effort in nonparametric models as researchers have realized that

parametric models are inadequate in capturing the relationship between the response

variable and its associated covariates in many practical situations. Such data-analytic

approaches are useful for exploring the hidden structure but can be too flexible to draw

concise conclusions. For an introduction to nonparametric techniques, see Hastie and

Tibshirani (1990), Green and Silverman (1994), Wand and Jones (1995) and Fan and

Gijbels (1996), among others. Even though many useful techniques have been proposed, the

tools available for inferences on semiparametric and nonparametric models are limited.

In an effort to derive a generally applicable testing approach, Fan et al. (2001) proposed

the generalized likelihood ratio (GLR) statistic for nonparametric models. Their motivation
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was as follows. The maximum likelihood ratio test statistic in general may not exist in

nonparametric and semiparametric settings. Even if it does, it is hard to find and may not

be optimal in the simplest nonparametric regression setting. These drawbacks can be

avoided when the maximum likelihood estimator is replaced by other reasonable

nonparametric estimators, resulting in a class of statistics called the GLR statistic. The

GLR test is intuitively appealing. Fan et al. (2001) showed that for a variety of models and

a number of nonparametric versus nonparametric and parametric versus nonparametric

testing problems, the null distribution of the GLR test statistic follows an asymptotically �2

distribution, independent of nuisance parameters. This property is called the Wilks

phenomenon and facilitates the application of the GLR statistic. The critical value can be

determined either by asymptotic distributions or by simulations. Furthermore, Fan et al.

(2001) showed that the GLR test is asymptotically optimal in the sense of Ingster (1993).

The question arises naturally whether the generalized likelihood technique is applicable to

semiparametric models. This forms the main theme of the present study.

Like nonparametric models, semiparametric models have various forms. A useful

semiparametric model that facilitates the study of the GLR test, or, more specifically, the

profile likelihood ratio (PLR) test, is the varying-coefficient partially linear model. This is

an extension of the varying-coefficient model, and has recently been studied by Zhang et al.

(2002) and Li et al. (2002).

Let Y be the response variable and (U , XT, ZT) be its associated covariates. The varying-

coefficient partially linear model assumes the following structure:

Y ¼ ÆT(U )Xþ �TZþ �, (1:1)

where � is independent of (U , XT, ZT) and has E(�) ¼ 0 and var(�) ¼ � 2, � ¼ (�1, . . . , �q)
T

is a q-dimensional vector of unknown parameters and Æ(�) ¼ (Æ1(�), . . . , Æ p(�))T is a p-

dimensional vector of unknown coefficient functions. Due to the curse of dimensionality, we

assume, for simplicity, that U is univariate. Model (1.1) allows interaction between the

covariates U and X in such a way that a different level of covariate U is associated with a

different linear model. This enables us to examine the extent to which the effects of

covariates X vary over different levels of the covariate U .

The varying-coefficient model arises in many different contexts and has been successfully

applied to multidimensional nonparametric regression, generalized linear models, time series

analysis, longitudinal and functional data analysis, and time-varying models in finance.

Early applications of the varying-coefficient model appeared in Haggan and Ozaki (1981) in

the time series context. However, nonparametric techniques were not popularized until the

work of Cleveland et al. (1991), Chen and Tsay (1993), and Hastie and Tibshirani (1993).

For nonparametric regression models, Carroll et al. (1998) proposed a method that is based

on the local estimation equations, and Fan and Zhang (1999) proposed a two-step procedure

to accommodate varying degrees of smoothness among coefficient functions. Xia and Li

(1999) derived the distribution of the maximum discrepancy between the estimated

coefficients and their true values, and Cai et al. (2000) applied the varying-coefficient

techniques to the generalized linear model. The varying-coefficient model has also been

popularly used to analyse longitudinal data. It allows one to examine the extent to which
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the association between response and covariates varies over time. See, for example, the

work of Brumback and Rice (1998), Hoover et al. (1998), and Huang et al. (2002).

When p ¼ 1 and X ¼ 1, (1.1) becomes partially linear model. It has been widely studied

in the literature. See, for example, the work of Wahba (1984), Cuzick (1992), and Severini

and Wong (1992). Speckman (1988) introduced the idea of profile least-squares for the

partially linear model. Liang et al. (1999) studied the partial linear model with errors-in-

variables. Härdle et al. (1998) investigated the problem of testing linearity in the

nonparametric component. More references and techniques can be found in the recent

monograph by Härdle et al. (2000).

The parametric component in semiparametric models is frequently of primary interest. It

has explanatory power that is similar to parametric models. It is natural to investigate

whether certain variables in the parametric component are statistically significant after

fitting the model. This leads to testing problems such as

H0 : �1 ¼ . . . ¼ � l ¼ 0, l < q:

More generally, one may consider the linear hypothesis

H0 : A� ¼ 0, (1:2)

where A is a given l3 q full rank matrix. Here one is testing a semiparametric hypothesis

versus another semiparametric hypothesis. The conventional maximum likelihood ratio test

cannot be applied, because the nonparametric maximum likelihood estimates do not exist for

functions Æ(�). A natural alternative is to relax the requirement on the estimates of functions

Æ(�) to be any reasonable nonparametric estimates and use them to construct the likelihood

ratio test. This yields a family of test statistics known as the GLR statistic. As the

nonparametric estimator will be constructed by using the profile likelihood technique, the

resulting test statistic is more specifically referred to as the profile likelihood ratio (PLR)

statistic. The question is, then, whether the Wilks type result holds and whether the

traditional power calculation continues to apply.

We first introduce profile least-squares (normal likelihood) estimation and then establish

the asymptotic normality for the profile least-squares estimate. With the asymptotic

normality result, one can easily construct an estimated covariance matrix and hence the

Wald statistic. In contrast, one can proceed directly to construct the PLR statistic without

referring to the estimated covariance matrix. This is an advantage of the PLR test. It turns

out that the PLR test for the parametric component behaves very much like the maximum

likelihood ratio test for parametric models, even though the profile likelihood estimator is

not the maximum likelihood estimator.

This paper is organized as follows. Section 2 introduces profile least-squares estimation.

In Sections 3 and 4 we construct the PLR and Wald statistics. The asymptotic distributions

of both statistics are derived under regularity conditions. In Section 5 we briefly address the

issue of inferences on the nonparametric component of semiparametric models, and in

Section 6 we propose a simple and effective bandwidth selection method for the partially

linear model. Section 7 contains several numerical results. Technical proofs are relegated to

the Appendix.
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2. Profile least-squares estimation

There are many approaches to estimating the unknown parameters f� j, j ¼ 1, . . . , qg and

the varying coefficient functions fÆi(�), i ¼ 1, . . . , pg. Profile least squares is a useful

approach and will be shown to be semiparametrically efficient for model (1.1). When

� � N (0, � 2), the approach becomes profile likelihood estimation; see, for example,

Speckman (1988), Severini and Wong (1992) and Carroll et al. (1997).

Suppose that we have a random sample of size n, f(Uk , X k1, . . . , X kp,

Zk1, . . . , Zkq, Yk), k ¼ 1, . . . , ng, from model (1.1). For any given �, (1.1) can be written

as

Y�k ¼
Xp
i¼1

Æi(Uk)X ki þ �k , k ¼ 1, . . . , n, (2:1)

where Y�k ¼ Yk �
Pq

j¼1� j Z kj. This transforms the varying-coefficient partially linear model

(1.1) into the varying-coefficient model (2.1). The local linear regression technique is applied

to estimate the coefficient functions fÆi(�), i ¼ 1, . . . , pg in (2.1). For u in a small

neighbourhood of u0, one can approximate Æi(u) locally by a linear function

Æi(u) � Æi(u0)þ Æ9i(u0)(u� u0) � ai þ bi(u� u0), i ¼ 1, . . . , p:

This leads to the following weighted local least-squares problem: find f(ai, bi),
i ¼ 1, . . . , pg so as to minimize

Xn
k¼1

Y�k �
Xp
i¼1

fai þ bi(Uk � u0)gX ki

" #2
Kh(Uk � u0), (2:2)

where K is a kernel function, h is a bandwidth and Kh(�) ¼ K(�=h)=h.
Let us work with the matrix notation. Denote Y ¼ (Y1, . . . , Yn)

T, Z ¼ (Z1, . . . , Zn)
T,

Zi ¼ (Zi1, . . . , Ziq)
T, X ¼ (X1, . . . , Xn)

T, Xi ¼ (X i1, . . . , X ip)
T, Wu ¼ diag(Kh(U1 � u),

. . . , Kh(Un � u)), and

M ¼
ÆT(U1)X1

..

.

ÆT(Un)Xn

0B@
1CA, Du ¼

XT
1

U1 � u

h
XT

1

..

. ..
.

XT
n

Un � u

h
XT

n

0BBBB@
1CCCCA:

Then (2.1) can be written as

Y� Z� ¼ Mþ �: (2:3)

The solution to the problem (2.2) is given by

[âa1(u), . . . , âa p(u), hb̂b1(u), . . . , hb̂b p(u)]
T ¼ fDT

uWuDug�1DT
uWu(Y� Z�):

The estimator for M is then
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M̂M ¼
[XT

1 0]fDT
u1
Wu1Du1g�1DT

u1
Wu1

..

.

[XT
n 0]fDT

un
Wun

Dun
g�1DT

un
Wun

0B@
1CA(Y� Z�) ¼ S(Y� Z�): (2:4)

The matrix S is a smoothing matrix and depends only on the observations

f(Ui, X
T
i ), i ¼ 1, . . . , ng. Substituting M̂M into (2.3), we obtain

(I� S)Y ¼ (I� S)Z�þ �: (2:5)

Applying least squares to the linear model (2.5), we obtain

�̂� ¼ fZT(I� S)T(I� S)Zg�1ZT(I� S)T(I� S)Y: (2:6)

Moreover,

M̂M ¼ S(Y� Z�̂�): (2:7)

In practice, some of the Ui can fall in the sparse regions where their local

neighbourhoods contain only a few data points. The functions Æ(�) cannot be estimated

well at these Ui, and hence their corresponding rows should be eliminated from S in order

not to adversely affect the estimation of �. To facilitate the notation, we keep all the rows

and use the assumption that U has a bounded support with a non-vanishing density on its

support to avoid the sparsity problem.

3. Profile likelihood ratio test

3.1. PLR statistic

To gain the insight into the construction of the PLR statistic, assume for the moment that

�i � N (0, � 2). As demonstrated in Fan et al. (2001) and by our proof in the Appendix, the

normality assumption is used merely to motivate the procedure. Under model (1.1), the

likelihood function is given by

‘(Æ, �, � ) ¼ �n log (
ffiffiffiffiffiffi
2�

p
� )� RSS1

2� 2
,

where RSS1 ¼
Pn

i¼1(Yi � Æ(Ui)
TXi � �TZi)

2. For a given �, Æ(�) is estimated by the local

linear fit and results in the estimator Æ̂Æ(�; �). Substituting this into the above likelihood

function, we obtain

‘(Æ̂Æ(�; �), �, � ) ¼ �n log (
ffiffiffiffiffiffi
2�

p
� )� RSS1

2� 2
, (3:1)

where, with a slight abuse of notation, RSS1 ¼
Pn

i¼1(Yi � Æ̂Æ(Ui, �)TXi � �TZi)
2: Maximiz-

ing (3.1) with respect to � and � 2 yields the profile likelihood estimator �̂� given by (2.6) and

�̂� 2 ¼ n�1RSS1,

where RSS1 ¼
Pn

i¼1(Yi � M̂Mi � �̂�TZi)
2. Note that �̂� and �̂� 2 are not maximum likelihood

Varying-coefficient partially linear models 1035



estimators because Æ̂Æ(�; �) is not obtained by the maximum likelihood method. Substituting

these estimates into (3.1) yields the profile likelihood

‘(H1) ¼ � n

2
log

2�

n

� �
� n

2
log (RSS1)�

n

2
:

To facilitate the notation, write eYY ¼ (I� S)Y and eZZ ¼ (I� S)Z. Now, the profile likelihood

estimator can simply be written as

�̂� ¼ feZZTeZZg�1eZZTeYY and M̂M ¼ S(Y� Z�̂�):

On the other hand, under the null hypothesis (1.2), the profile likelihood estimator is the

one that maximizes (3.1) subject to constraint (1.2). The solution is the same as for the

constrained least-squares problem for the ‘synthetic linear model’ (2.5), and is given by

�̂�0 ¼ �̂�� (eZZTeZZ)�1ATfA(eZZTeZZ)�1ATg�1A�̂� and M̂M0 ¼ S(Y� Z�̂�0):

Hence, under the null hypothesis, maximizing (3.1) with respect to � and � 2 yields the

profile likelihood

‘(H0) ¼ � n

2
log

2�

n

� �
� n

2

� �
log (RSS0)�

n

2
,

where RSS0 ¼
Pn

i¼1(Yi � M̂M0i � �̂�T0Zi)
2:

Now, with the profile likelihood derived above, the GLR statistic is constructed as

Tn ¼ ‘n(H1)� ‘n(H0) ¼
n

2
log

RSS0

RSS1
� n

2

RSS0 � RSS1

RSS1
: (3:2)

This specific form is referred to as the PLR statistic. First, as noted above, the PLR test is not

the same as the maximum likelihood ratio test. Second, the same bandwidth is used for

constructing profile likelihood estimators under both null and alternative hypotheses, which is

the key to the success of the method. Third, as the maximum likelihood ratio test in the

parametric model, the PLR test can simply be formed without referring to the standard error

formula for �̂�, which is one advantage of the method.

3.2. Wilks phenomenon

The PLR statistic is derived analogously to the maximum likelihood ratio statistic. However,

they are also very different. The nuisance functions fÆi(�), i ¼ 1, . . . , pg are fully

nonparametric and hence the parameter space is infinite-dimensional. They are not

estimated by the maximum likelihood method. The question then arises as to whether the

asymptotic null distribution of the PLR statistic is still �2. The following theorem shows

that the traditional likelihood theory continues to apply.

Theorem 3.1. Under the null hypothesis (1.2) and the conditions in the Appendix, the PLR

statistic 2Tn(h) follows the asymptotic �2 distribution with l degrees of freedom.
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Theorem 3.1 shows that the asymptotic null distribution of 2Tn(h) is independent of the

design and the nuisance parameters � 2, �, and Æ(�), and is �2 with l degrees of freedom for

testing (1.2). Because of this, the critical value can be computed either by asymptotic

distributions or by simulations with nuisance parameter values taken to be reasonable

estimates. These estimates should be obtained from the full model, namely model (1.1)

without assumption (1.2).

Theorem 3.1 not only provides a useful result for testing the parametric component in

semiparametric models, but also unveils a new type of Wilks phenomenon for the GLR test.

Fan et al. (2001) showed that the Wilks type result holds for testing the parametric versus

nonparametric or nonparametric versus nonparametric type of hypotheses. However, whether

the nonparametric estimates are accurate enough for constructing the likelihood ratio test

for the parametric component remains unknown. The result in Theorem 3.2 gives a definite

answer; it allows one to proceed to the likelihood ratio test as if the model were parametric.

It also sheds light on directions for future research on semiparametric inferences.

The key to the Wilks phenomenon is the orthogonality of score functions, which is

inherited from the profile least-squares method. This condition also makes the profile least-

squares method semiparametrically efficient. See Severini and Wong (1992) and Theorem

4.1 below for details. When other estimators are used, the orthogonality condition may fail

and the GLR tests may not possess the Wilks phenomenon. An example of this is given in

Härdle el al. (2004) where the marginal integration is used for constructing nonparametric

components in a partially linear additive model. In addition, as demonstrated in Härdle et

al. (1998), the Wilks phenomenon does not hold when the profile least-squares estimates are

used in a different way.

3.3. Power of PLR test

We now provide the formula for the calculation of the power of the PLR test under the

contiguous alternatives, where A� converges to zero at the root n rate. The power formula

enables us to not only determine the sample size for semiparametric testing problems, but

also compare the power with the Wald test, as presented in the next section.

Theorem 3.2. Under the alternative hypothesis to problem (1.2) and the conditions in the

Appendix, the PLR statistic 2Tn(h) follows the asymptotic non-central �2 distribution with l

degrees of freedom, and non-centrality parameter º ¼ limn!1n�TATfA�ATg�1A�, where

� ¼ � 2fE(ZZT)� E E(ZXTjU )E(XXTjU )�1E(XZTjU )
� �

g�1:

In the computation of power for a given value of �, we need an estimate of �. This will

be given by (4.2) or (4.3) below.

4. Wald test

The testing problem (1.2) can also be handled by using the Wald statistic,
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Wn(h) ¼ �̂�TAT(A�̂�hA
T)�1A�̂�, (4:1)

where �̂�h is an estimated covariance matrix for �, which involves estimated functions Æ̂Æ(:)
and depends on a smoothing parameter h. Following (2.6), an estimate of the covariance

matrix for � is given by

�̂�h ¼ n�̂� 2(eZZTeZZ)�1eZZT(I� S)(I� S)TeZZ(eZZTeZZ)�1, (4:2)

where �̂� 2 is the sample variance of residuals. A simpler estimate of the covariance matrix is

�̂��h ¼ n�̂� 2(eZZTeZZ)�1: (4:3)

To facilitate the presentation, we will not discuss the estimation of � 2. In Lemmas A.2 and

A.3, we will show that both �̂�h and �̂��h are consistent estimates of �. The PLR statistic

has the advantage that it can be formed without reference to the estimated covariance matrix

for �.

4.1. Asymptotic normality

Theorem 4.1. Under the conditions in the Appendix, the profile likelihood estimator of � is

asymptotically normal, that is, ffiffiffi
n

p
( �̂�� �) ! N (0, �),

where � is given in Theorem 3.2.

Consider the partially linear model, where p ¼ 1 and X � 1. Then

E(ZZT)� E E(ZjU )E(ZTjU )
� �

¼ Efvar(ZjU )g,

and Theorem 4.1 is consistent with the result of Carroll et al. (1997). In fact, they showed

that � is the semiparametric information bound (see Bickel et al. 1993). One can follow the

formulation and the results of Chamberlain (1992) to show that � is a semiparametric

efficient bound for the general varying-coefficient partially linear model. Hence, the profile

likelihood estimator is semiparametrically efficient.

4.2. The null distribution and power

The Wald statistic (4.1), based on the semiparametrically efficient estimator �̂�, is intuitively

appealing and serves as a benchmark for other procedures. The following two theorems give

the asymptotic null distribution and the power.

Theorem 4.2. Under the null hypothesis (1.2) and the conditions in the Appendix, the Wald

statistic Wn(h) follows the asymptotic �2 distribution with l degrees of freedom.

Theorem 4.3. Under the alternative hypothesis to the problem (1.2) and the conditions in
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the Appendix, the Wald statistic Wn(h) follows the asymptotic non-central �2 distribution with

l degrees of freedom, and non-centrality parameter º ¼ limn!1n�TAT(A�AT)�1A�.

Theorems 4.2 and 4.3 show that the Wald statistic possesses the same asymptotic null

and alternative distributions as the PLR statistic, which gives theoretical endorsement to the

PLR statistic. On the other hand, the PLR statistic is simpler to use for many applications.

5. Inferences on nonparametric component

After obtaining nonparametric estimates of fÆ1(�), . . . , Æ p(�)g, researchers frequently ask

whether certain parametric models fit the nonparametric components. This leads us to

consider hypothesis testing problems such as:

H0 : Æ p(U ) ¼ Æ p(U , Ł) versus H1 : Æ p(U ) 6¼ Æ p(U , Ł),

where Ł is an unknown vector. The above problem includes testing the significance of the

variable X p in which a p(�; Ł) ¼ 0 and the homogeneity of the model in which a p(�; Ł) ¼ a p.

Other testing problems, such as the cases where only some components have constant or zero

coefficients, can be similarly dealt with. The essence is that the parametric component can be

estimated at O(n�1=2)-consistency and regarded as known in nonparametric inferences.

Hence, the techniques and the results of Fan et al. (2001) can be extended to the parametric

component in the semiparametric model. As an illustration, we consider the problem of

testing the homogeneity:

H0 : Æ1(�) ¼ Æ1, . . . , Æ p(�) ¼ Æ p: (5:1)

Let eÆÆ1, . . . , eÆÆ p and e�� be the least-squares estimators under H0. Following the derivation

of Fan et al. (2001), the GLR statistic is defined as

T0 ¼
n

2
log

RSS(H0)

RSS(H1)
,

where RSS(H0) ¼
Pn

i¼1(Yi �
P p

j¼1 eÆÆ j X ij � e��TZi)
2, and RSS(H1) ¼

Pn
i¼1(Yi �P p

j¼1Æ̂Æ j(Ui)X ij � �̂�TZi)
2: The following result is an extension of Theorem 5 of Fan et al.

(2001).

Theorem 5.1. Under the null hypothesis (5.1) and the conditions in the Appendix, if h ! 0

in such a way that nh3=2 ! 1, then the GLR statistic

rKT0 �a �2�n
,

where j�j is the length of the support of U and

rK ¼
K(0)� 1

2

ð
K2(t)dtð

K(t)� 1

2
K � K(t)

� �2

dt

and �n ¼ rK
pj�j
h

K(0)� 1

2

ð
K2(t)dt

� �
:
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As discussed above, the asymptotic distribution of the nonparametric component can be

obtained from that in the varying-coefficient model because the parametric component can

be regarded as known. See, for example, Fan and Zhang (1999; 2001), Xia and Li (1999)

and Zhang et al. (2002).

6. Implementation for partially linear model

The profile likelihood estimator depends on the choice of bandwidth. Furthermore, the PLR

and Wald statistics also involve the choice of bandwidth. The issue of bandwidth selection

arises naturally in practice. The issue of selecting bandwidths for semiparametric models,

particularly for estimating the parametric component, was posed by Bickel and Kwon

(2001) as an important and unsolved problem. First, we would like to observe that the

performance of the profile least-squares estimate �̂� and the PLR and Wald statistics does

depend not very sensitively on the choice of bandwidth, as long as h is not too large to

create excessive bias; see condition (6) in the Appendix and the discussion by Fan in Bickel

and Kwon (2001). The reason is that the bias in the estimation of the nonparametric

component cannot be averaged out in the process of estimating the parametric component,

but the variance can be averaged out.

6.1. Bandwidth selection for partially linear model

When p ¼ 1 and X � 1, model (1.1) becomes the partially linear model,

Y ¼ Æ(U )þ
Xq
j¼1

� j Z j þ �: (6:1)

Let f(Ui, Zi1, . . . , Ziq, Yi), i ¼ 1, . . . , ng be a random sample of size n from the

partially linear model (6.1), ordered according to the variable U . Under some mild

conditions, the spacing between Uiþ1 and Ui is OP(1=n) so that Æ(Uiþ1) �
Æ(Ui) ¼ Op(1=n). Then, by model (6.1),

Yiþ1 � Yi ¼ Æ(Uiþ1)� Æ(Ui)þ �1(Ziþ1,1 � Zi,1) þ . . . þ �q(Ziþ1,q � Zi,q)þ �iþ1 � �i

� ª0 þ ª1(Uiþ1 � Ui)þ �1(Ziþ1,1 � Zi,1) þ � � � þ �q(Ziþ1,q � Zi,q)þ ��i , (6:2)

where ��i are correlated stochastic errors with ��i ¼ �iþ1 � �i. Thus, the nonparametric

function Æ(�) in the partially linear model (6.1) is eliminated. The coefficients

ª0, ª1, �1, . . . , �q can be estimated using ordinary least squares from the approximated

linear model (6.2). This kind of idea appears independently in the work of Yatchew (1997),

who used ª0 ¼ ª1 ¼ 0, and Fan and Huang (2001), who used the linear terms to gain a better

approximation. Set

Y�i ¼ Yi � �̂�01Zi,1 � � � � � �̂�0q Zi,q,

where �̂�01, . . . , �̂�
0
q are estimated from (6.2). We call such an estimate the difference-based
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estimate (DBE). Then, Y�i � Æ(Ui)þ ��i , which is a univariate nonparametric regression

problem. Therefore, one can apply univariate bandwidth selection procedures such as the

preasymptotic substitution method (Fan and Gijbels 1995), the plug-in bandwidth selector

(Ruppert et al. 1995), and the empirical bias method (Ruppert 1997) to select a smoothing

parameter h. In this paper, we use the empirical bias method to choose the bandwidth for

semiparametric estimation and inference.

6.2. A simple F-test for partially linear model

For the approximated linear model (6.2), problem (1.2) becomes a linear hypothesis, and the

F-statistic can be employed. Note that the noise terms f��i , i ¼ 1, . . . , n� 1g are no longer

independent of each other. Hence, the F-statistic will not have a correct null distribution.

To avoid the aforementioned dependence problem, we consider a simpler version of the

approximated linear model (6.2). Instead of using all fYiþ1 � Yig, we use fY2iþ1 � Y2ig to

construct the approximated linear model (6.2). By doing so, the independence of the data is

inherited. We lose the data fY2iþ1 þ Y2ig, which contain less information about � than

fY2iþ1 � Y2ig, as the former contains the nuisance function Æ(�) while the latter does not.

Thus, the efficiency based on the model (6.2) with the selected subsample should,

intuitively, be at least 50%. In the next section, we compare the efficiency of such an F-test

with the more sophisticated PLR and Wald tests via simulations.

7. Numerical studies

In this section, we present the results of three Monte Carlo simulations to show the finite-

sample performance of the profile least-squares estimate and three proposed testing

procedures. Throughout this section, we use the Epanechnikov kernel K(u) ¼ 0:75(1� u2)þ.

7.1. A partially linear model

Consider the partially linear model

Y ¼ sin (2U )þ �1Z1 þ �2Z2 þ �3Z3 þ �,

where U , Z1, Z2, Z3 are covariates. The covariates U , Z1, and Z2 are jointly normally

distributed with mean 0 and variance 1. Furthermore, the correlation coefficients among these

three random variables are all 0.5. The covariate Z3 is binary, independent of U , Z1 and Z2,

taking the value 1 with probability 0.4 and the value 0 with probability 0.6. The true

parameter for �1 is always fixed at �1 ¼ 2, and �2 and �3 are taken differently for different

problems. To gain an idea of the effect of the normality assumption on our results, we

consider two cases: (i) � � N (0, 1) and (ii) � � 2
3
N (0, 1

2
)þ 1

3
N (0, 2), a mixture normal with

mean 0 and variance 1. For each simulation, we draw 1000 random samples of size 100 from

the above model and employ the bandwidth selection scheme in Section 6.1. The true

parameters are taken as �1 ¼ 2, �2 ¼ 2Ł and �3 ¼ Ł with Ł ¼ 0 and Ł ¼ 0:5. For
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constructing the profile least-squares estimate for the parametric component, we only use

those estimates with jUij < 1:645, which basically rules out approximately 10% of data.

The first aim of this simulation study is to show that the performance of the profile least-

squares estimator does not depend sensitively on the choice of bandwidth. To demonstrate

this, we fix the smoothing parameter at three values h ¼ 0:625=1:5, 0:625 and 0:6253 1:5.
Note that the optimal bandwidth for estimating the nonparametric component is about

h ¼ 0:625. We also report the performance of the DBE. The mean and standard deviation

based on 1000 simulations are reported in Table 1 for case (i).

The second aim of this simulation study is to examine the accuracy of the standard error

formula given by (4.2). The 1000 estimated standard errors from 1000 simulations are

summarized by its mean estimated value (denoted by SD) and its standard deviation

(denoted by SDstd), which are also reported in Table 1. The 1000 estimated standard errors

are surprisingly close to the standard deviation of 1000 estimated coefficients (denoted by

SDm). The latter can be regarded as the true standard error of an estimation procedure,

which shows that our standard error formula is very accurate.

The third aim of this simulation is to study the performance of the proposed testing

methods. We consider the null hypothesis H0 : �2 ¼ �3 ¼ 0. We evaluate the power in a

sequence of alternatives with parameters ( �1, �2, �3) ¼ (2, 2Ł, Ł) for each given Ł.
For Ł ¼ 0, the alternative hypothesis becomes the null hypothesis. According to

Theorems 3.3 and 4.2, the distribution of the PLR and Wald statistics should be

asymptotically �22. To verify this empirically, we plot the quantiles of the 1000 PLR statistics

against the quantiles of �22. Figure 1(a) shows the Q-Q plot for case (i). The plot depicts the

PLR statistic closely following the �22 distribution, which is consistent with our asymptotic

theory. Figure 1(b) depicts the Q-Q plot for the Wald statistic.

To evaluate the power of the hypothesis test more accurately, we also use the conditional

bootstrap method to calculate the critical value for the PLR and Wald tests. In this case, let

fÆ̂Æ(�), �̂�1, �̂�2, �̂�3g be the estimate under the alternative hypothesis. For each simulation, we

generate another 1000 bootstrap samples from the model

Y�i ¼ Æ̂Æ(Ui)þ �̂�1Zi1 þ ��i , i ¼ 1, . . . , n,

where �� � N (0, �̂� 2). Based on f(Ui, Zi1, Zi2, Zi3, Yi
�), i ¼ 1, . . . , ng, compute the PLR

statistics and the Wald statistics, and use the 99th, 95th and 90th percentiles as the critical

values for testing at the significance levels of 0.01, 0.05 and 0.1, respectively. This method is

valid due to the Wilks type phenomenon.

Figure 2(a) depicts the power functions of the PLR test based on 1000 simulations of

sample size 100 at three different significance levels: 0.01, 0.05, and 0.1. By using the

conditional bootstrap method, the powers at Ł ¼ 0 for the above three significance levels are

0.009, 0.042, and 0.101, respectively. This shows that the conditional bootstrap method

gives the right level of testing. The power functions increase rapidly as Ł increases. This in

turn shows that the PLR statistic proposed in Section 3.1 works well. Figures 2(b) and 2(c)

depict the simulated power functions of the Wald test and the F-test.

In additional to the conditional bootstrap method, the �2-approximation can be employed

to determine the critical value. The power functions of this method are shown by the dash-
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Table 1. Means and standard deviations of estimators for case (i), Sample Size ¼ 100

�̂�1 �̂�2 �̂�3

Ł h Mean(SDm) SD(SDstd) Mean(SDm) SD(SDstd) Mean(SDm) SD(SDstd)

0 DBE 2.0058(0.1376) 0.1348(0.0157) 0.0003(0.1348) 0.1339(0.0145) �0.0064(0.2263) 0.2224(0.0188)

0.4167 2.0038(0.1401) 0.1291(0.0153) �0.0016(0.1348) 0.1285(0.0145) 0.0026(0.2306) 0.2134(0.0188)

0.625 2.0035(0.1382) 0.1296(0.0152) �0.0013(0.1335) 0.1290(0.0143) 0.0013(0.2274) 0.2144(0.0184)

0.9375 2.0039(0.1374) 0.1313(0.0152) �0.0008(0.1327) 0.1306(0.0142) 0.0004(0.2255) 0.2170(0.0181)

0.5 DBE 2.0014(0.1398) 0.1342(0.0147) 1.0010(0.1392) 0.1346(0.0141) 0.5057(0.2295) 0.2225(0.0192)

0.4167 2.0066(0.1387) 0.1282(0.0149 0.0000(0.1438) 0.1288(0.0148) 0.5081(0.2362) 0.2125(0.0195)

0.625 2.0064(0.1375) 0.1288(0.0147) 1.0001(0.1418) 0.1294(0.0146) 0.5096(0.2320) 0.2135(0.0191)

0.9375 2.0045(0.1368) 0.1304(0.0146) 1.0007(0.1412) 0.1310(0.0145) 0.5100(0.2299) 0.2162(0.0189)
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dotted curves in Figure 2. The sizes of the test are close to the significance level, keeping

in mind that the Monte Carlo error is of size
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:053 0:95=1000

p
� 0:7% at the 5%

significance level. However, there is a small upward bias, which is due partially to the bias

in the estimation of the parametric component. The non-normal error of case (ii) yields

similar results. However, to save space, we omit the presentation.

7.2. A varying-coefficient partially linear model

Simulation data are generated from the varying-coefficient partially linear model

Y ¼ sin (6�U )X1 þ sin (2�U )X 2 þ �1Z1 þ �2Z2 þ �3Z3 þ �,

where U , X 1, X2, Z1, Z2, Z3 are covariates. The covariate U is uniformly distributed on

[0, 1]. The covariates X 1, X 2, Z1, Z2 are jointly normally distributed with mean 0 and

variance 1. Furthermore, the correlation coefficients among these four random variables are 2
3
.

The covariate Z3 is binary and takes the value 1 with probability 0.4. The noise � is normally

distributed with mean 0 and variance 1. In addition, U , (X 1, X2, Z1, Z2), Z3, and E are
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Figure 1. Q-Q plots for case (i): (a) PLR statistics; (b) Wald statistics.
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simulated independently. The true parameter for �1 is always fixed at �1 ¼ 2, and �2 and �3
are taken differently for different problems.

For this example, we draw 1000 random samples of size 100 from the above model.

Through the cross-validation method, h ¼ 0:25 is chosen as the smoothing parameter. Table

2 shows that the performance of the profile least-squares estimator does not sensitively

depend on the choice of the bandwidth. Furthermore, the standard error formulae work very

well. Figure 3 demonstrates that the PLR and Wald statistics follow the �22 distribution

closely, though there are some biases in the right-hand tail.

We consider the null hypothesis, H0 : �2 ¼ �3 ¼ 0: We evaluate the power of the PLR

and Wald tests in a sequence of alternatives with parameters (�1, �2, �3) ¼ (2, 2Ł, Ł) for

each given Ł. Figure 4 summarizes the result for h ¼ 0:25. Again, there is some upward

bias for the �2-approximation.

7.3. Application to Boston housing data

We now illustrate the proposed method by an application to the Boston housing data set.

The data set consists of the median value of owner-occupied homes in 506 US census tracts
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Figure 2. The simulated power functions for case (i) with h ¼ 0:625. The critical values are computed

by �22-approximation (dash-dotted lines) and the conditional bootstrap method (solid lines), (a) PLR

test, (b) Wald test, (c) F-test.
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Table 2. Means and standard deviations of the estimators for the model of Section 7.2

�̂�1 �̂�2 �̂�3

Ł h Mean(SDm) SD(SDstd) Mean(SDm) SD(SDstd) Mean(SDm) SD(SDstd)

0 0.166 1.9941(0.1779) 0.1643(0.0178) 0.0002(0.1792) 0.1639(0.0165) 0.0065(0.1851) 0.1694(0.0167)

0.25 1.9947(0.1928) 0.1775(0.0197) 0.0019(0.1941) 0.1772(0.0182) 0.0026(0.2021) 0.1831(0.0183)

0.375 1.9951(0.1973) 0.1832(0.0203) 0.0023(0.1984) 0.1828(0.0190) 0.0014(0.2053) 0.1889(0.0191)

0.5 0.166 1.995(0.1760) 0.1637(0.0173) 0.9996(0.1806) 0.1629(0.0176) 0.5087(0.1797) 0.1692(0.0173)

0.25 2.0002(0.1950) 0.1770(0.0189) 1.0000(0.1959) 0.1762(0.0198) 0.5100(0.1964) 0.1830(0.0193)

0.375 1.9988(0.2019) 0.1825(0.0195) 1.0023(0.2005) 0.1818(0.0205) 0.5112(0.2013) 0.1888(0.0200)
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in the Boston area in 1970, as well as several variables which might explain the variation in

housing value (see Harrison and Rubinfeld, 1978). Seven variables, CRIM (per-capita crime

rate by town), RM (average number of rooms per dwelling), TAX (full-value property-tax

rate per $10 000), NOX (nitric oxide concentration in parts per 10 million), PTRATIO

(pupil–teacher ratio by town), AGE (proportion of owner-occupied units built prior to

1940), and LSTAT (percentage of lower income status of the population) are considered

here. For simplicity of notation, the covariates CRIM, RM, TAX, NOX, PTRATIO, and

AGE are denoted respectively by X2, . . . , X7. The objective of the study is to understand

the association between the median value of owner-occupied homes and the seven

covariates. For comparison, we fitted the multiple linear regression using the seven

independent variables. The multiple R2 is 0.7212, and the residual standard deviation is

�̂� ¼ 4:8514.
We take X1 ¼ 1 as the intercept term and U ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LSTAT

p
. This allows us to fit a different

linear model for a different percentage of a lower income status of the population and

permits us to examine how it interacts with other independent variables. Examination of the

distribution of LSTAT reveals that it is asymmetric. Thus, the square-root transformation is

employed and the resulting data have nearly symmetric distribution. This transform does not
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Figure 3. Q-Q plots, h ¼ 0:25. (a) PLR statistics. (b) Wald statistics.
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alter the model, but it facilitates our implementation. The Epanechnikov kernel is employed,

and the bandwidth is chosen to be 25% of the interval length (h ¼ 1.2117).

First, the varying-coefficient model

Y ¼ a1(U )þ
X7
i¼2

ai(U )Xi þ �

is fitted to the given data. The concept of multiple R2 can be extended to the current context.

It is defined as 1� RSS=
P

i(Yi � Y )2, where RSS is the residual sum of squares. For this

model, the multiple R2 is 0.8345 and the residual standard deviation is 3.7378. To examine

the extent to which the association varies over U, we apply the GLR test to see whether each

coefficient function is statistically significant. Table 3 presents the p-value for each testing

problem, and shows that variables AGE and PTRATIO are not significant at level 1%.

Based on the above analysis, we set the coefficients of AGE and PTRATIO to be

constants, and employ the varying-coefficient partially linear model,

Y ¼ a1(U )þ a2(U )X2 þ a3(U )X3 þ a4(U )X4 þ a5(U )X5 þ b1X6 þ b2X7 þ �,
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Figure 4. The simulated power functions with h ¼ 0:625. The critical values are computed by �22-
approximation (dash-dotted lines) and the conditional bootstrap method (solid lines). (a) PLR test, (b)

Wald test.
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to fit the given data. A natural question is whether the coefficients of AGE and PTRATIO are

statistically significant. To answer this question, the proposed PLR and Wald tests are

employed. The p-values for the tests are summarized in Table 4, which indicates that the

coefficient of AGE is zero.

Finally, the varying-coefficient partially linear model

Y ¼ a1(U )þ a2(U )X2 þ a3(U )X3 þ a4(U )X4 þ a5(U )X5 þ b1X6 þ �

is fitted to the given data. The estimated parametric coefficient is b1 ¼ �0:7199 with an

estimated standard error of 0.0998. Figure 5 depicts the coefficient functions. The multiple

R2 is 0.8304 and the residual standard deviation is 3.7836. The result shows that in the tracts

with crowded schools, the value of housing tends to be lower.

Appendix

We outline the key idea of the proof. The following technical conditions are imposed. They

are not the weakest possible conditions, but they are imposed to facilitate the technical

proofs.

(1) The random variable U has a bounded support �. Its density function f (�) is

Lipschitz continuous and bounded away from 0 on its support.

(2) The k 3 k matrix E(XXTjU ) is non-singular for each U 2 �. E(XXTjU ),

E(XXTjU )�1 and E(XZTjU ) are all Lipschitz continuous.

(3) There is an s . 2 such that EkXk2s , 1 and EkZk2s , 1 and for some

� , 2� s�1 such that n2��1h ! 1.

(4) fÆi(�), i ¼ 1, . . . , pg have continuous second derivative in U 2 �.

(5) The function K(�) is a symmetric density function with compact support.

(6) nh8 ! 0 and nh2=(logn)2 ! 1.

The following notation will be used in the proof of the lemmas and theorems.

Table 3. p-values for testing whether a coefficient functions is constant

a1(U ) a2(U ) a3(U ) a4(U ) a5(U ) a6(U ) a7(U )

GLR statistics 10.3173 30.4889 27.1646 11.3421 7.3747 4.4777 1.5513

p-values 0.0002 0.0000 0.0000 0.0001 0.0030 0.0441 0.4815

Table 4. p-values for testing whether a coefficient function is zero

b1 b2 b1 b2

PLR statistics 24.3115 0.0752 Wald statistics 51.3412 0.1515

p-values 0.0000 0.6971 p-values 0.0000 0.6981
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Let �i ¼
Ð
uiK(u)du, �i ¼

Ð
uiK2(u)du and cn ¼ log(1=h)=nhf g1=2 þ h2. Set ˆ(U ) ¼

E(XXTjU ), �(U ) ¼ E(XZTjU ).

Lemma A.1. Let (X1, Y1), . . . , (Xn, Yn) be independent and identically distributed random

vectors, where the Yi are scalar random variables. Further assume that Ejyjs , 1 and

supx
Ð
jyjs f (x, y)dy , 1, where f denotes the joint density of (X, Y). Let K be a bounded

positive function with a bounded support, satisfying a Lipschitz condition. Given that

n2��1h ! 1 for some � , 1� s�1, then

sup
x

���� 1nXn
i¼1

[Kh(Xi � x)Yi � EfKh(Xi � x)Yig]
���� ¼ Op

log (1=h)

nh

	 
1=2
 !

:

Proof. This follows immediately from the result obtained by Mack and Silverman (1982).

Lemma A.2. Under conditions (1)–(6), we have
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Figure 5. The estimated coefficient functions.
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n�1eZZTeZZ�!P E(ZZT)� E E(ZXTjU )E(XXTjU )�1E(XZTjU )
� �

:

Furthermore, �̂��h �!
P

�:

Proof. In equation (2.4), observe that the smoothing matrix S has the form

S ¼
[XT

1 0]fDT
u1
Wu1Du1g�1DT

u1
Wu1

..

.

[XT
n 0]fDT

un
Wun

Dun
g�1DT

un
Wun

0B@
1CA:

Note that

DT
uWuDu ¼

Xn
i¼1

XiX
T
i Kh(Ui � U )

Xn
i¼1

XiX
T
i

Ui � U

h

� �
Kh(Ui � U )

Xn
i¼1

XiX
T
i

Ui � U

h

� �
Kh(Ui � U )

Xn
i¼1

XiX
T
i

Ui � U

h

� �2

Kh(Ui � U )

0BBBB@
1CCCCA:

Each element of the above matrix is in the form of a kernel regression. By Lemma A.1,

DT
uWuDu ¼ nf (U )ˆ(U )� 1 0

0 �2

� �
f1þ OP(cn)g (A:1)

holds uniformly in U , where � is the Kronecker product. By the same argument,

DT
uWuZ ¼ nf (U )�(U )� 1, 0ð ÞTf1þ OP(cn)g (A:2)

holds uniformly in U . Combining the last two results yields that, uniformly in U 2 �,

[XT, 0]fDT
uWuDug�1DT

uWuZ ¼ XTˆ(U )�1�(U )f1þ Op(cn)g: (A:3)

Equivalently, we have

SZ ¼
XT

1ˆ(U1)
�1�(U1)

..

.

XT
nˆ(Un)

�1�(Un)

0B@
1CA 1þ Op(cn)
� �

:

Now, using (A.3) and some algebra, it is easy to show that

n�1eZZTeZZ ¼ n�1
Xn
i¼1

Zi ��(Ui)
Tˆ(Ui)

�1Xi

� �
ZT

i � XT
i ˆ(Ui)

�1�(Ui)
� �

f1þ Op(cn)g:

By the law of large numbers, the result holds. h

Lemma A.3. Under conditions (1)–(6), we have

n�1eZZT(I� S)(I� S)TeZZ�!P E(ZZT)� E E(ZXTjU )E(XXTjU )�1E(XZTjU )
� �

:

Furthermore, �̂�h �!
P

�:
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Proof. Observe that

n�1eZZT(I� S)(I� S)TeZZ ¼ n�1eZZTeZZ� J1 � J2 þ J3,

where J1 ¼ n�1eZZTSeZZ, J2 ¼ n�1eZZTSTeZZ, J3 ¼ n�1eZZTSSTeZZ. The result follows from Lemma

A.2, if we can show that J1, J2 and J3 are of order oP(1). Set eZZ ¼ (eZZ1, . . . , eZZn)
T. Then

J1 ¼ n�1
Xn
i¼1

eZZi[X
T
i 0]fDT

ui
WuiDuig�1DT

ui
Wui

eZZ:
By using the same argument that leads to (A.2), we obtain

DT
uWu

eZZ ¼ nf (U )�(U )� 1 0ð ÞTOp(cn):

Combining this with (A.1) yields

[XT, 0]fDT
uWuDug�1DT

uWu
eZZ ¼ XTˆ(U )�1�(U )Op(cn): (A:4)

Hence,

J1 ¼ n�1
Xn
i¼1

Zi ��(Ui)
Tˆ(Ui)

�1Xif1þ Op(cn)g
� �

XT
i ˆ(Ui)

�1�(Ui)Op(cn):

Note that by the law of large numbers, the main term cancels. Hence, by applying the central

limit theorem, we have J1 ¼ Op(c
2
n). Analogously, we can show that J2 ¼ Op(c

2
n) and

J3 ¼ Op(c
2
n). h

Lemma A.4. Under conditions (1)–(6), we have

n�1eZZ(I� S)M ¼ OP(c
2
n):

Proof. Observe that

n�1eZZ(I� S)M ¼ n�1
Xn
i¼1

eZZifXT
i Æ(Ui)� [XT

i 0]fDT
ui
WuiDuig�1DT

ui
WuiMg:

Similarly to (A.4), we can show that the following equation holds uniformly in U 2 �:

[XT 0]fDT
uWuDug�1DT

uWuM ¼ XTÆ(U )f1þ Op(cn)g:

Also, by (A.3), we have eZZT
i ¼ ZT

i � XT
i ˆ(Ui)

�1�(Ui)f1þ Op(cn)g, i ¼ 1, . . . , n. Hence,

n�1eZZT(I� S)M ¼ n�1
Xn
i¼1

eZZifXT
i Æ(Ui)� [XT

i 0]fDT
ui
WuiDuig�1DT

ui
WuiMg

¼ n�1
Xn
i¼1

Zi ��(Ui)
Tˆ(Ui)

�1Xi

� �
XT

i Æ(Ui) 1þ Op(cn)f gOp(cn)

¼ Op(c
2
n): h
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Proof of Theorem 4.1. By (2.6), we haveffiffiffi
n

p
( �̂�� �) ¼

ffiffiffi
n

p
(eZZTeZZ)�1eZZT(I� S)(Mþ �):

By Lemmas A.2 and A.4, the bias termffiffiffi
n

p
( eZZTeZZ)�1eZZT(I� S)M ¼ Op(

ffiffiffi
n

p
c2n):

Consider the stochastic term. By Lemma A.2, we have

n1=2(eZZTeZZ)�1eZZT(I� S)� ¼ n�1=2� �2�eZZT(I� S)�f1þ oP(1)g: (A:5)

Note that,

eZZT(I� S)� ¼
Xn
i¼1

eZZif�i � [XT
i , 0]fDT

ui
WuiDuig�1DT

ui
Wui�g:

By using the same argument as before, we have

[XT, 0]fDT
uWuDug�1DT

uWu� ¼ XTˆ(U )�1E(XjU )Op(cn):

Then we can show that

eZZT(I� S)� ¼
Xn
i¼1

fZi ��(Ui)
Tˆ(Ui)

�1Xig�if1þ oP(1)g:

By the Slutsky theorem and the central limit theorem, we have

n�1=2� �2eZZT(I� S)� ! N (0, ��1):

This, together with (A.5), proves the result. h

Proof of Theorems 3.1 and 3.2. Theorem 3.1 is a specific case of Theorem 3.2. First, we

show that n�1RSS1 ¼ � 2(1þ o p(1)). By (2.6) and (2.7), we have

RSS1 ¼
Xn
i¼1

(Yi � M̂Mi � �̂�TZi)
2 ¼ [Y� M̂M� Z�̂�]T[Y� M̂M� Z�̂�]

¼ [Y� Z�̂�]T(I� S)T(I� S)[Y� Z�̂�]

¼ [Z(�� �̂�)þMþ �]T(I� S)T(I� S)[Z(�� �̂�)þMþ �]

¼ I1 þ I2 þ I3 þ I4 þ I5 þ I6,

where

I1 ¼ �T(I� S)T(I� S)�, I4 ¼ �T(I� S)T(I� S)MþMT(I� S)T(I� S)�,

I2 ¼ (�� �̂�)T(eZZTeZZ)(�� �̂�), I5 ¼ (�� �̂�)TeZZT(I� S)MþMT(I� S)TeZZ(�� �̂�),

I3 ¼ MT(I� S)T(I� S)M, I6 ¼ (�� �̂�)TeZZT(I� S)�þ �T(I� S)TeZZ(�� �̂�):

Varying-coefficient partially linear models 1053



By using the same argument as before, it can be shown that

n�1 I1 ¼ � 2f1þ o p(1)g, n�1 I2 ¼ Op(n
�1), n�1 I3 ¼ Op(c

2
n),

n�1 I4 ¼ Op(cn), n�1 I5 ¼ Op(n
�1=2cn), n�1 I6 ¼ Op(n

�1=2):

Similarly, RSS0 can be decomposed as

RSS0 ¼ [Y� M̂M0 � Z�̂�0]
T[Y� M̂M0 � Z�̂�0]

¼ [Y� M̂M� Z�̂�þ (I� S)Z(�̂�� �̂�0)]
T[Y� M̂M� Z�̂�þ (I� S)Z(�̂�� �̂�0)]

¼ RSS1 þ J1 þ J2 þ J3,

where

J1 ¼ [(I� S)Z(�̂�� �̂�0)]
T[(I� S)Z(�̂�� �̂�0)],

J2 ¼ [Y� M̂M� Z�̂�]T[(I� S)Z(�̂�� �̂�0)],

J3 ¼ [(I� S)Z(�̂�� �̂�0)]
T[Y� M̂M� Z�̂�]:

As the estimators for � under the null and alternative hypotheses have the relation

�̂�0 ¼ �̂�� (eZZTeZZ)�1ATfA(eZZTeZZ)�1ATg�1A�̂�,

J1 can be written as

J1 ¼ [eZZ( �̂�� �̂�0)]
T[eZZ( �̂�� �̂�0)] ¼ �̂�TATfA(eZZTeZZ)�1ATg�1A�̂�:

By Lemma A.3, we have n�1eZZTeZZ ! �=� 2. This, together with the asymptotic normality of �̂�
and the proofs of Theorems 4.2 and 4.3, gives

J1 ¼ �̂�TATfA(eZZTeZZ)�1ATg�1A�̂�T �!P � 2�2l (º):

It is easy to show that J2 ¼ J3 ¼ 0. Thus,

RSS0 � RSS1 �!
P

� 2�2l (º):

Then, by the Slutsky theorem,

2Tn(h) ¼ n
RSS0 � RSS1

RSS1
�!P �2l (º): h

Proof of Theorems 4.2 and 4.3. Theorem 4.2 is a specific case of Theorem 4.3. By Theorem

4.1, it is easy to see that ffiffiffi
n

p
A(�̂�� �) ! N (0, A�AT):

By Lemma A.3 that �̂�h �!
P

� and the Slutsky theorem, then
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Wn(h) ¼ �̂�TAT(A�̂�hA
T)�1A�̂��!P �2l (º): h

Proof of Theorem 5.1. Let � be the true parameter, and Y� ¼ Y� �TZ. We then transform

the semiparametric model (1.1) to the nonparametric varying-coefficient model

Y� ¼ Æ1(�)X1 þ � � � þ Æ p(�)X p þ �:

Analogously, we can define the GLR statistic for problem (5.1) as

T�0 ¼ n

2
log

RSS�(H0)

RSS�(H1)
,

where RSS�(H0)¼
Pn

i¼1(Y
�
i �
P p

j¼1eÆÆ�j X ij)
2 and RSS�(H1)¼

Pn
i¼1(Y

�
i �

P p
j¼1Æ̂Æ

�
j (Ui)X ij)

2.

By Theorem 5 of Fan et al. (2001), we have rKT
�
0 �

a
�2�n

. The proof will be complete by

showing the following two claims: (i) n�1fRSS(H0)�RSS�(H0)g ¼ oP(1); (ii)

n�1fRSS(H1)�RSS�(H1)g ¼ oP(1). Claim (i) follows from the fact that

RSS�(H0) ¼ � 2(n� p)f1þ oP(1)g and RSS(H0) ¼ � 2(n� p� q)f1þ oP(1)g:
Claim (ii) follows from the fact that

RSS�(H1)� RSS(H1) ¼ ( �̂�� �)eZZTeZZ( �̂�� �) ¼ � 2qf1þ oP(1)g ¼ oP(n): h
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