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•Profile modification of láser plasmas, in the transition layer at critical density and in the fiow on the 
overdense side, is studied. Assuming isothermal flow and low absorption within the layer, compression 
transitions are proved impossible and cavities possible only in subsonic flow. The overdense flow adjusts itself 
for a rarefaction transition in a manner (formation of plateaus, bumps, or cavities) criticalíy dependent on 
how the (spatially uniform) temperature varíes with time. Spherical effects and evidence for the results are 
considered. 

I. INTRODUCTION 

Radiation pressure-induced profile steepening at the 
cri t ical density na, has been observed in láser-produce d 
plasmas and may affect the absorption processes . 1 

There have been theoretical analyses of the flow through 
the steep cri t ical layer and the transit ion of the l á se r 
wave from evanescent (overdense side) to oscillatory 
(underdense side),2 '5 Density plateaus,4 '6 , 7 cavities,8-9 

and bumps,5-7 in additton to steepening, have been ob
served in simulations and experiments, sometimes in 
the same pulse.1 '6*10 

In this paper we prove that, assuming isothermal 
flow and neglecting absorption in the transition layer, ^ 4 

compression front s t ruc tures are impossible and cavi
t ies may only appear in subsonic flow. We then study 
how the radiation p ressu re affects the overdense región 
oí the expansión flow, where the láser light does not 
reach. Such an indirect effect must exist . The s t r u c -
ture of a rarefaction front transit ion leads to a relation 
between density and Mach number (in a frame moving 
with the layer) at i ts overdense side,4 (Compression 
and rarefaction fronts a re sometimes called ü and D 
fronts.3 '11) Since the flow, in the absence of radiation 
steepening, will not satisfy that relation at an arbi t rary 
density (that i s , arbi t rary incident field), the overdense 
p lasma needs to adjust. We find that the adjustment o c -
curs and depends nontrivially on how the electrón t em
perature Te changes in t ime, explaining, we believe, 
the differing observations mentioned previously1-4-10 and 
why sometimes plateaus did not form when expected.5 ,9 

In our analysis we assume normal incidence (or s po-
larization), cold ions, and quasi-neutral flow4 and neg-
lect the Te gradient2-4 (retaining the t ime dependence) in 
the momentum equation throughout the overdense flow; 
this applies strictly to such high láser intensities that 
a thermal wave heats the high-density ta rge t , 1 2 and 
fails at lower intensities near the ablation surface. A 
uniform Te follows at high intensities from large ther 
mal and radiation conduction t e r m s in the energy equa
tion. We ignore this equation entirely, leaving Te(t), 
which could follow from an overall energy balance, un-
determined. For simplicity, we consider only time 
power laws, Te~ta and planar geometry (initially, the 
target of the láser pulse filis the halfspace x> 0). 

We expect the general features of our resul t s to apply 
to conditions broader than those considered, because 
their basis is the behavior of rarefaction waves with 
spatially uniform tempera ture , in the absence of r ad i 
ation. We find that the well-known case where the t em
perature is also constant in t ime , 1 3 extensively used in 
l á se r -p lasmas analyses , 1 4 is a very singular limit; 
when a temperature time dependence is allowed for, 
nontrivial changes occur in the flow which affect the ad
justment to profile steepening. We finally note that 
planar resul t s for a given OÍ may be roughly used in a 
spherical problem with some larger a. 

II. BASIC EQUATIONS 
For a quasi-neutral p lasma expanding in planar ge

ometry, with negligible ion temperature and no radia
tion p re s su re , the density and momentum conservation 
equations for the ion-electron fluid a re 
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where c% -Te/m and v and m are ion velocity and m a s s . 
Radiation p re s su re adds to Eq. (2) an appropriate com-
ponent of v • Pr where15 

P-,<g!í£l>_<^EE+BB>. (3) 
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E and B are e lec t r ic and magnetic fields, €B e is the rea l 
par t of the dielectr ic function and the average is over a 
wave period 2ir/w, typically less than the character is t ic 
flow time T by a factor of 10"6. For normal incidence 
(extensión to s j iolar izat ion i s tr ivial) , and setting 
E = Re(£ e

i w í ) , E complex, Eq. (2) becomes 
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In addition we have the wave equation 
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Using (4), the radiation p ressu re t e rm in (2') t r a n s -
forms to (* stands for the complex conjúgate) 
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Assuming € Im —O (no absorption), taking e = e R e 

=* 1 -n/nc, and using (5) in (2 ' ) , we obtain a third con-
servation equation 
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which may be used instead oí (4). Clearly, E may now 
be taken rea l . Notice that unless € I m = 0, the radiation 
forcé per unit volume is not (-n/nc)v(\É ¡2/16TT). 

IM. TRANSITION ATTHE CRITICAL LAYER 

We shall í i r s t examine the cr i t ica! layer and prove 
that t ransit ions other than that of Ref. 4 are impossible, 
although we find that cavities may appear in subsonic 
fZow. Equations (l), (2'), and (6) involve two length 
scales C/CÜ and CTT. Usually, cTru)/c » 1; then, the 
transi t ion occurs at a certain ^ ( í ) in the long scale, 
and in a frame moving w i t h ^ conditions a re quas i -
steady.3 ' ' ' Defíning 

§ = ( x - x c ) a i / c , u=n/nc, 

M = ( i o _ v ) / c T , S = É/{4xmncc%)í/2, 

Eqs. (1), (2 ' ) , and (6) yield 

vM = const = vz M, = P1MÍ = vsMs , 

g{M) + ^ = const=g(M2)=giMl)=giMs)^Sl, 

(7) 

(8) 

(9) 

w h e r e , g - ( M ) - M 2 - l n M 2 - l decreases í rom infinity at 
M = 0 to zero a t M = 1, and thengrows to infinity a t M = °°. 
Equation (7) has been used to write (8) and (9) conve-
niently. The subscripts 1 and s refer to nodes and 
máxima in the standing wave on one side of the layer, 
and 2 re fers to conditions far on the evanescent wave 
at the other side; $2 = SL=d$/d%\2=d§/dt\s=0. 

(a) F i r s t , consider the transit ions Mz <1 , M1>1, and 
M 2 > 1 , M 1 < 1 . In either case , M = l at some point; 
since g(M) has mininia at the máxima of S, we have 
M = 1 , then, 

\H/~ M \2(X-Mf 
M2giM,\ 
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(10) 

Now, Mg(M)/2(l -M) 2 i s amonotonically increasing 
function of M for 0<M<°° . Thus, conditions M2< 1, 
• M I

> 1 , tliose studied in Ref. 4, are indeed possible 
[right-hand side of (10) positive], while conditions M 2 >1, 
M1<1 are not [right-hand side negative]. 

(b) The c a s e j & 2 > l , ML>1 is also impossible. Here 
M1=M2 and 1<MS<M2; henee vs = v$jMs>v2, On the 
other hand, S and d2S/d£2 must have the opposite sign 
near Ss, and the same sign in the evanescent tai l , that 
i s , from the wave equation, we get f 2 > l , vs<l, in 
contradiction to the preceding inequality. The argument 
does not apply to the case M2<í, ^ 1

< 1 - However, we 
again have Mx-Mz: conditions at 1 a re just those at 2, 
and the wave is also evanescent on side 1 (8<£/8¡; |j_=0)j 

the transit ion i s not one in the sense we considered, 
and descr ibes a cavity with a nonperiodic field isolated 
from the incident wave. 

We conclude that there may be no R fronts and that 
the .D-front s t ructure i s entirely described by Eqs. (7) -
(9) together with Ms = 1; in par t i cu la r , 4 

g($2) = 2 ' 
g(M2 

'2-^7^--7T2> M 2 < 1 . (11) 
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The relation between Ss and the incident field can only 
be obtained by an analysis of the underdense región; an 
WKB approximation was used in Ref. 4 (see comment at 
the end), 

IV. OVERDENSEFLOWMODIFICATION FOR 
SPATIALLY UNIFORM TEMPERATURE 

Now consider the overdense región. Here, there i s 
no láser radiation, and we just have Eqs. (1) and (2). 
If Te~ta, these equations have a self -s imilar solution, 
and the analysis i s simplified. Introducing 

V=x/ f cTU')dt'y v(r¡)=n/nc, u(v) = u/cT, 

we get 

d Inv _ 1 du_ 
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(13) 

A. Expansión flow in the absence of radiation 

Let us begin studying the expansión when láser radia
tion is neglected everywhere. Then, Eqs. (12) and (13) 
describe a rarefaction wave, the head of which is a 
weak discontinuity that advances into the undisturbed 
plasma with the sound velocity (cT, for Tg uniform); 
the a = 0 case is the known isothermal expansión13 used 
extensively in l á se r -p la sma interaction analyses. 
Henee, at r\= 1 we have u-Q, v=n{Jnc (ttQ, density in 
the undisturbed plasma). In addition, Eq. (12) requi res 
v(w-u), which vanishes with v, to increase monoton-
ically with V, thus, V -w>0(except possibly when v-0). 

For a = 0, the integral curves of (13) a re u = const 
(giving y = const) and TJ-M = ± 1 [Fig. l(a)]. Clearly, the 
solution i s 1 3 

V-u-1, v=(n0/nc)exp(i}-l). 

Figure l(b) shows the integral curves for a < 0 ; then, 
the point u = 0, ÍJ - 1 i s a saddle point, and the solution 
is one of the two integral curves through it (the other 
one is M = 0 ) . For Ü J > 0 , the point u =0, TJ = 1 i s a node; 
the solution belongs to the family of integral curves 
crossing the node with a common slope (the exceptional 
slope corresponds to u = 0), and separates the integral 
curves such as I, that would lead to a multivalued solu
tion, from those such as II, that reach the Une r)~u = 0 
with finite v [Fig. l (c ) j . 

Notice that the p lasma flows through a constant den
sity (constant ÍJ) plañe, at a (relativo) Mach number 
given by TJ - M ; for instance, the flow is sonic for a = 0. 
Now, assuming temperature uniform implies that heat 
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FIG. 1. Integral curves of Eq. (13) for a rarefaction wave 
with temperature Te ~ ta; ( a ) « = 0 j (b)oí<0; (c) re > 0. Di-
mensionless velocity u and position j¡ defined in the text. 

conduction is able to adjust the temperature instanta-
neously everywhere; then, ciearly, íor ot<0 the inertial 
lag in the velocity field, which is related to previous, 
l a rge r tempera tures , expíalas the supersoníc ( T J - W > 1 ) 
character of the solution [Fig. l(b)] . A s imi lar expla-
nation applies to the subsonic (r¡ -u < l ) flow for a > 0. 

B. Radiation pressure effect 

We can now understand how in the presence of láser 
radiation, the overdense flow adjusts itself to meet 
conditions (11) [that i s , M2(SJ, u2(Ss)] differently depen-
ding on whether dTe/dt^0. K the transition occurs at 
Vc) we have %c = nccT; notice that at r¡c, the relative 
Mach n u m b e r M = 7 j -« is j u s t M . For a=0, the solution 
follows the integral curve fj-w = l [F ig . l(a)] up to r¡*, 
where it goes over to the integral curve W=M*( = Í?* -1 ) 
until TJC when the transition occurs [see Fig, 2(a)], The 
valúes of V* and rjc are then given by (n0/n0)exp(v* - 1) 
= uSí r\c- (ÍJ* - 1 ) = M 2 ; w = const yields u = const, and, 
therefore, a plateau appears from y¡* to r\c. 

For a<0(dTe/dt<0), the solution is the one without 
radiation [cali it v0(y),Ma(r¡)]t until ÍJ*, when a shock 
brings it to point "b" such that Mb = í/Ma (isothermal 
shock13), vb=vMl, where Ma~M0{r¡*), va = vü(n*). The 
solution, then, goes along the integral curve through 
point "b" until y = yc, when the transition occurs [Fig. 
2(b)]. Both ?í* and T?¿ follow from the requirement that 
v =v2 and M =M2 at r\c. We find that this solution does 
not exist unless Ss exceeds a threshold, which c o r r e -
sponds to the limiting case T?*;=T7C, and is shown in Fig. 
3. A solution without a shock is impossible (it would 
imply a transit ion with M2>1). For a > 0 (dTe/dt>0), 
the solution up to r¡0 i s an integral curve (through the 
node), different from the one for negligible radiation, 
such that v-vzfor M = M2 [Fig. 2(c)]. 

V. DISCUSSIOIM 

We have found that a plateau (a región of density con-
stant in the long scale) develops if, and only if, dTjdt 
— 0. Plateaus were indeed observed in simulations s a -
tisfying this condition.4 '6 A simple prediction of the 
theory i s the length of the plateau: the ratio between 
this length and that of the density exponential decay, in 
Fig. 2(a), i s {l-M2)/ln(n0u2/nc); f o r n 0 / n c = 4 and va 

«1.5(Jlfa<*0.32), the case of Figs . l(a) and l(dj of Reí. 4, 
the rat io is about 1.4, while the figures yield 1.6, a 
fair agreement. 

A shock develops for dTe/dt<0, if the electr ic field 
exceeds a threshold (Fig. 3); we found no smooth solu
tion to the wave-plasma equations below the threshold. 
The compressed región between the shock and an usual 
D front forms a bump.3 Condition dTe/dt<0 is unusual 
during the pulse, and no shock observations are known 
to the authors. However, we have verified, that in 
spherical geometry, supersonic (relative to constant 
density surfaces) flow, leading to shocks, exists for TB 

constant or increasing moderately, as for instance, in 
F igs . 2 and 3 of Reí. 5 (see also Reí. 7): Notice that (i) 
the bump is severa l wavelengths wide so that radiation 
should be negligible in the back; (ii) the plasma enters 
the back supersonically and leaves it subsonically; (iii) 
the product of the Mach numbers i s about 0.95 in fair 
agreement with the unity valué corresponding to an i so 
thermal shock. 

Neither plateaus ñor (overdense) shocks develop for 
dTg/dt>0. For this condition, resul t s from exper i -

FIG. 2. Overdense ñowfor 
Te~ta, modiñed by t r a n s 
ition 2 — 1 (s-sonic point); 
(a) a = 0; (b) a <0 (shock 
" a " — "b"at i;*); (c) a >0. 
Dimensionless density v 
defined in the text; wavy 
lines: underdense flow. 
Light is incident from the 
left. 



FIG. 3. Threshold electric field \ÉS\ (at the underdense, 
standing wave máximum) for a shock to exis t , when Te 

~ í a ; M c and^Q, cr i t ica l and undisturbed densi t ies . 

ments9 and (planar) simulations,5 interpreted as pla-
teaus, show nonnegligible density gradiente (naturally 
weaker than the steep gradient in the cri t ical layer) . A 
shock should form in the underdense región to again 
make the flow subsonic, as required in the far expan
sión tail [Fig. l(c)]; this shock, however, would be 
mixed up with the density oscillations in the underdense 
flow, which also make a WKB approximation inadequate 
(we have just finished an analysis of that región16). The 
ent i re (subsonic) overdense flow is aífected by the steep 
transi t ion (for dTe/dt<0 the flow upstream of the shock, 
being supersonic, i s unaffected). As the subsonic flow 
adjusts to Te variations, wave pockets may be cut out 
from the incident field, forming cavities;8 '9 and we did 
find that cavities may form in subsonic flow. Clearly, 
when Te ceases to increase , a plateau may set up; such 
time developments have been observed in s imula
tions .1-B'10 

Important aspects of the physical problem which have 
been left out in our analysis are the existence of two 
electrón temperatures and a substantial absorption 
withinthe cri t ical layer (as, for instance, for p pola-
rization). 
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