Profile modification by light pressure in plasmas expanding
with uniform, time-dependent temperature
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Profile modification of laser plasmas, in the transition layer at critical density and in the flow on the

overdense side, is studied. Assuming isothermal flow and low absorption within the layer, compression
transitions are proved impossible and cavities possible only in subsonic flow. The overdense flow adjusts itself
for a rarefaction transition in a manner (formation of plateaus, bumps, or cavities) eritically dependent on
how the (spatially uniform) temperature varies with time. Spherical effects and evidence for the results are

considered.

. INTRODUCTION

Radiation pressure-induced profile steepening at the
eritical density n,, has been observed in laser-produced
plasmas and may affect the absorption processes.?
There have been theoretical analyses of the flow through
the steep critical layer and the transition of the laser
wave from evanescent {overdense side) to oscillatory
(underdense side).*® Density plateaus,* %7 cavities &®
and bumps, 7 in addition to steepening, have been ob-
served in simulations and experiments, sometimes in
the same pulge.b %0

In this paper we prove that, assuming iscthermal
flow and neglecting absorption in the transition layer,®*
compression front structures are impossible and eavi-
ties may only appear in subsonic flow. We then study
how the radiation pressure affects the overdense region
of the expansion flow, where the laser light does not
reach. Such an indirect effect must exist. The struc-
ture of a rarefaction front transition leads to a relaticn
between density and Mach number (in a frame moving
with the layer) at its overdense side.* (Compression
and rarefaction fronts are sometimes called R and D
fronts.**') Since the flow, in the absence of radiation
steepening, will not satisfy that relation at an arbitrary
density {that is, arbitrary incident field), the overdense
plasma needs to adjust. We find that the adjustment oc-
curs.and depends nontrivially on how the electron tem-
perature T, changes in time, explaining, we believe,
the differing observations mentioned previously **? and
why sometimes plateaus did not form when expected.™®

In our analysis we assume normal incidence (or s po-
larization), cold jons, and quasi-neutral flow* and neg-
lect the T, gradient® {retaining the time dependence} in
the momentum equation throughout the overdense flow;
this applies strictly to such high lager intensities that
a thermal wave heats the high-density target,'? and
fails at lower intensities near the ablation surface. A
vniform T, follows at high intensities from large ther-
mal and radiation conduction terms in the energy equa-
tion. We ignore this equation entirely, leaving T, (¢},
which could follow from an overall energy balance, un-
determined. For simplicity, we consider only time
power laws, 7,~{* and planar geometry {initially, the
target of the lagser pulse fills the halfspace x> 0).

We expect the general features of our results to apply
to conditions broader than those cousidered, because
their basis is the behavior of rarefaction waves with
spatially uniform temperature, in the absence of radi-
ation, We find that the well-known case where the tem-
perature ig also constant in time, ** extensively used in
laser-plasmas analyses,** is a very singular limit;
when a temperature time dependence is allowed for,
nontrivial changes occur in the flow which affect the ad-
justment to profile steepening. We finally note that
planar results for a given @ may be roughly used in a
spherical problem with some larger o,

Il. BASIC EQUATIONS

For a quasi-neutral plagma expanding in planar ge-
ometry, with negligible ion temperature and no radia-
tion pressure, the density and momentum conservation
equations for the lon-electron fluid are
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where ¢2=T,/m and v and m are ion velocity and mass.
Radiation pressure adds to Eq. (2) an appropriate com-
ponent of ¥ - P, where®®
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T8 T 4 ’
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E and B are electric and magnetic fields, ¢, is the real
part of the dielectric function and the average is over a
wave period 2n/w, typically less than the characteristic
flow time T by a factor of 107%, For normal incidence
{extension to s polarization is trivial), and setting

E= Re(ﬁ,‘e‘“’), E complex, Eq. (2) becomes
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In addition we have the wave eguaiion
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- Using (4), the radiation pressure’ term in (2/) trans- '

forms to (* stands for the complex conjugate)
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Agsuming e, ~0 (no absorption), taking €= g,
~1-n/n,, and using (5) in (2’), we obtain a third con-
servation equation
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which may be used instead of (4). Clearly, £ may now
be taken real. Notice that unless €q,=0, the radiation
force per unit volume is not {-n/r V(| E |*/167).

I, TRANSITION AT THE CRITICAL LAYER . -

We shall first examine the ¢ritical layer and prove
that transitions other than that of Ref. 4 are impossible,
although we find that cavities may appear in subsonic
flow. Equations (1}, (2’), and (6} involve two length
scales ¢/w and ¢,7. Usually, c,7w/c> 1; then, the
fransition occurs at a certain xc(t) in the long scale,
and in a frame moving with x_ conditions are quasi-
steady.®? Defining

E=(x ~x /e, v=n/n,
M= (%, -v)cy, 8=ﬁ'/(41rmncc,2.)”2,
Egs. {1}, (2'), and (6) yield
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v(1+M®)+1 824} (86/8£)2=const,
= vy (1+ M%) =, (1 +11%) +1 82,
g00) + 1 &° = const=g (M) =g (M) =g (1 )+ &2, ©)

where g (M)=02~InM? - 1 decreases from infinity at

M =0 to zero at M =1, and then grows to infinity at # = .
Equation {7} has been used to write (8} and (9} counve-
niently. The subscripts 1 and s refer fo nodeg and
maxima in the standing wave on one side of the layer,
and 2 refers to conditions far on the evanescent wave
at the other side: §,=6§,= 86/t |,=28/8¢[ =0.

()

(a) ¥irst, consider the transitions #7, <1, #,>1, and

M,>1, M <1. In either case, M=1 at some pomt
since g{M) has minima at the maxima of §, we have
M =1, then,
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Now, Mg(M)/2(1 -#)? is a monotonically increasing
funetion of M for 0<M <w, Thus, conditions M,<1,

M, >1, those studied in Ref. 4, are indeed possible
[right-hand side of (10) positive], while conditions #,>1,
M, <1 are not [right-hand side negative].
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2 -ﬂzf;)’)' (10}

(b) The caseM >1, B, >1 is also  impossible. Here
M,=M, and 1<H <M2, hence ¥, =v,M /M _>v, On the
other hand & and 528/ 82 must have the opposite sign
near &, and the same sign in the evanescent tail, that
is, from the wave equation, we get v,»1, v, <1, in
contradiction to the preceding inequality. The argument
does not apply to the case M <1, M <1, However, we
again have M, =M, cond1t1ons at 1 are just those at 2,
and the wave is also evanescent on side 1 (86/5¢ |1—0)

the transition is not one in the sense we considered,
and describes a cavity with a nonperiodic field isplated
from the incident wave.

We conclude that there may be no R fronts and that
the D-front structure is entirely deseribed by Eqs. (7) —
{0} together with M_=1; in particular,*

= g(M,)
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The relation between &, and the incident field can only
be obtained by an analysis of the underdense region; an
WKB approximation wag used in Ref. 4 (see comment at
the end),

IV. OVERDENSE FLOW MODIFICATION FOR
SPATIALLY UNIFORM TEMPERATURE

M,<1, (11)

Now consider the overdense region. Here, there is
no laser radiation, and we just have Egs. (1) and (2).
If T,~1*, these equations have a self-similar solution,
and the analysis is simplified. Introducing

nex/ f ‘et at', v =n/n,, uln)=vicy,

we get
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A. Expansion flow in the absence of radiation

Let us begin studying the expansion when laser radia-
tion is neglected everywhere. Then, Egs. (12) and (13)
describe a rarefaction wave, the head of whichis a
weak discontinuity that advances into the undisturbed
plasma with the sound velocity (cT, for T, uniform);
the & =0 case is the known isothermal expansion®® used
extensively in lager-plasma interaction analyses.
Hence, at 7=1 we have u=0, v=ny/n, &, deasity in
the undisturbed plasma). In addition, Eq. (12) requires
v(n—u), which vanishes with v, to increase monoton-
ically with 1; thus, % ~-=> 0{except possibly when v=0).

For a =0, the integral curves of {13) are u=const
{giving v=const) and p—u=+1[Fig. 1{a)]. Clearly, the
solution is'?

v=lu,/nexp(n -1).

Figure 1(b) shows the integral curves for a<0; then,
the point #=0, %=1 is a saddle point, and the solution
is one of the two integral curves through it (the other
one isu=0). For a>0, the pointu=0, =1 is a node;
the solution belongs to the family of integral curves
crosging the node with o cothmon slope (the exceptional
slope corresponds tou = 0), and separates the integral
curves such as I, that would lead to a multivalued solu-
tion, from those such as II, that reach the line n ~u=0
with finite v [Fig. 1(c}].

n-u=l,

Notice that the plasma flows through a constant den-
sity (constant 7} plane, at a (relative) Mach number
given by 1 ~u; for instance, the flow is sonic for =0,
Now, assuming temperature uniform implies that heat



3]

FIG. 1. Integral curves of Eq. (13) for a rarefaction wave
with temperature T,~¢%; (@) @ =0; () ¢ <0; ()@ >0. Di-
mensionless velocity 4 and position 7 defined in the text.

conduction is able to adjust the temperature instanta-
neously everywhere; then, clearly, for o <0 the inertial
lag in the velocity field, which is related to previous,
larger temperatures, explaing the supersonic (N —u>1}
character of the solution [Fig. 1(b)]. A similar expla-
nation applies to the subsonic (7 wx <1} flow for @ >0,

B. Radiation pressure effect

We can now understand how in the presence of laser
radiation, the overdense flow adjusts itself to meet
conditions (11) [that is, M,(8,), v,(8,)] differently depen-
ding on whether dT,/dt=0. I the transition occurs at
1,, We have £,=7,cp; notice that at 7, the relative
Mach number M =7 ~u is just M. For a=(), the solution
follows the integral curve % —u=1[Fig. 1(a)] up to ¥,
where it goes over to the integral curve u=u*(=7* =1}
until 1, when the transition occurs [see Fig. 2(a}]. The
values of 17* and 7, are then given by (z,/n Jexp(n* - 1)
=y, N, — (M* =1)=M,; u=const yields v=const, and,
therefore, a plateau appears from n* to 7,
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For a<0(dT,/di<0}, the solution is the one without
radiation [call it v,(n), M (n)], until #*, when a shock
brings it to point “b” such that M, =1/M_(isothermal
shock), v,=v, M2, where M_=M,(n*), v,=v {7*). The
solution, then, goes along the integral curve through
point “s” until 7=1,, when the transition occurs [Fig.
2(b)]. Both 7* and 7, follow from the requirement that
v=v, and M=, at 7,. We find that this solution does
not exigt unless §, exceeds a threshold, which corre-
sponds to the limiting cage 7% =17, and is shown in Fig.
3. A solution without a shock is impossible @Gt would
imply a transition with M,>1). For a>0 (4T, /dt >0},
the solution up to 4, is an integral curve {through the
node), different from the one for negligible radiation,
such that v =v, for M =M, |[Fig. 2(c)].

V. DISCUSSION

We have found that a plateau {a region of density con-
stant in the long scale) develops if, and only if, dTe/dt
=~ 0. Plateans were indeed observed in simulations sa-
tisfying this condition.*® A simple prediction of the
theory is the length of the plateau: the ratio between
this length and that of the density exponential decay, in
Fig. 2(a), is (1 = M,)/In{n,v,/n,); for ny/n,=4 and v,
=1.5(M,~0.32), the case of Figs. 1(a) and 1{d) of Ref. 4,
the ratio is about 1.4, while the figures yield 1.6, a
fair agreement.

A shock develops for dT,/dt <0, if the electric field
exceeds a threshold (Fig. 3); we found no smooth solu-
tion to the wave-plasma equations below the threshold.
The compressed region between the shock and an usual
D front forms a bump.® Condition 47,/d# <0 is unusual
during the pulse, and no shock observations are known
to the authors, However, we have verified, that in
spherical geometry, supersonic (relative to constant
density surfaces) flow, leading to shocks, exists for T,
congtant or inereasing moderately, as for instance, in
Figs. 2 and 3 of Ref. 5 (see also Ref, T): Notice that (i}
the bump is several wavelengths wide so that radiation
should be negligible in the back; (ii) thé plasma enters
the back supersonically and leaves it subsonically; (iii)
the produet of the Mach numbers is about 0.95 in fair
agreement with the unity value corresponding to an iso-
thermal shock,

Neither plateaus nor (overdense) shocks develop for
dT,/dt>0. For this condition, results {rom experi-

FiG. 2. Overdense flowfor
T, ~t%, modified by trans-
ition 2 —1 (s-sonic point);
{a) @ =0; {b) & <b {shock
gt Cp ot ﬁk); (C) o >0.
Dimensijonless density »
defined In the text; wavy
linegs: underdense flow.
Light is incident from the
tcl left,
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FIG. 3. Threshold electric field IE‘SI {at the underdense,
standing wave maximum) for a shock to exist, when T,
~ % n, and ny, critical and undisturbed densities.

ments® and (planar) simulations,® interpreted as pla-
teaus, show nopnegligible density gradients (naturally
weaker than the steep gradient in the eritical layer). A
shock should form in the underdense region to again
make the flow subsonic, as required in the far expan-
sion tail [Fig. 1(c)]; this shock, however, would be
mixed up with the density oscillations in the underdense
flow, which also make a WKB approximation inadequate
{we have just finished an analysis of that region'®), The
entire (subsonic) overdense flow is affected by the steep
transition (for d7,/d¢<0 the flow upstream of the shock,
being supersonic, is unaffected). As the subsonic flow
adjusts to T, variations, wave pockets may be cuf out
from the Incident field, forming cavities;™® and we déd
fiud that cavities may form in subsonic flow. Clearly,
when T, ceases to increase, a platean may set up; such
time developments have been obgerved in simula-

tions b %0

Important aspects of the physical problem which have
been left out in our analysis are the existence of two
electron temperatures and a substantial absorption
within the critical layer {as, for instance, for p pola-
rization).
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