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Abstract

The possibii;ty of stabilizing the tilt mode in Field Reversed Configurations without

resorting to explicit kinetic effects such as large ion orbits is investigated. Vaxious pres-

sure profiles, P(_), are chosen, including "hollow" profiles where current is strougly

peaked near the separatrix. Numerical equilibria are used as input for nx, initial value

simulation which uses an extended Magnetohydrodynamic (MHD) model that includes

viscous and HaLLterms. Tilt stability is found for specific hollow profiles when accom-

panied by high vMues of separatrix beta, _sep. The stable profiles also have moderate

to large elongation, racetrack separatrix shape, and lower values of J, average ratio of

Larmor radius to device radius. The stability is unaffected by change8 in viscosity, but

the neglect of the Hall term does cause stable results to become marginal or unstable.

Implications for interpretation of recent experiments axe discussed.

PACS: 52.65.+z;52.55.Hc;52.35.Py;52.30.Bt
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I. Introduction

The Field Reversed Configuration (FRC) is an example of a compact toroidal confinement

concept, l The external field is that of a solenoid (perhaps with mirrors) but large diamag-

netic currents reverse the magnetic field near the axis to form closed toroidal field liaes. This

configuration offers reactor advantages such as high 3, coil geometry not linked with plasma

torus, ease of plasma translation, no symmetry axis shielding, and an inherent separatrix

that could serve as a natural divertor for high efficiency direct conversion of energy from

fusion products." .-kcentral question in FRC theory is stability with respect to the tilt mode,

a global internal mode characterized by rotation of the plasma about an axis perpendicular

to the symmetry axis. Ideal Magnetohydrodynamic (MHD) theory predicts instability: In-

tuitively, the plasma is a current dipole with its moment aligned anti-parallel to its external

field. Quantitatively, for Hill's vortex solutions, the competition between stabilizing mag-

netic pressure and destabilizing current effects varies with elongation. For elongations higher

than a critical value, stability is lost. Fluid theory predicts a growth time on the order of

an axial .-klfvdn transit time, 3' 4.s. s

oa, = C b ' (t)

where i,'A_,,iSan averageAlfvdn velocity,C isa constant,on the orderofuni,ty and

b istheseparatrixhalf-length.Externalstabilizationisdifficultsinceperturbationsaxe

confinedlargelywithintheseparatrix,a.shasbeenverifiedinfluidsimulations,x'7 Nonlinear

simulationsseeno saturationmechanismbeforetotaldisruption,a'9 Subsequentsinglefluid

theoryhasbeenunabletofinds*.abilityforequilibriaofexperimentalinterest.Whiletoroidal

rotationcan stabilizethe mode,s therequiredrotationrateismuch higherthan observed

inexperiments.Effectsfrom inclusionoftheHallterm_°and gyroviscouseffects_ indicate
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that stability can be achieved for high elongations. With only a few recent exceptions, t2' _3

experiments do not observe tilt instabilities, t< ts, t Recent analytic results indicate that the

minimum stable elongation can be decreased by as much as 30% by varying the equilibrium

separatrix shape, even for flat pressure profiles, t6 This together with improved analysis has

led to the claim that most experimentally stable results can be explained. However, this

analysis does predict that machines with a larger radius compared to the ion gyroradius will

be tilt unstable.

More elaborate kinetic theoretical approaches show the possibility of stabilization by

virtue of kinetic effects, lr _tanv of the ion orbits in this regime are complex, resembling

neither drifting Larmor orbits ts nor betatron orbits, t9 Most experiments (with two recent

exceptionst2. 2o) are of such a small size to allow large enough kinetic effects to increase the

instability growth time to longer that the FRC lifetime, tr, al, 19 A third exception is acool

FRC with high collisionality, t3 In that case the plasma may be so collisional ()'¢,a > fire=)

that fluid-like behavior is seen even in small devices.

FRC's with a large radius compared with the ion gyroradius would be more fluid-like and

conventionally would be expected to be observably tilt unstable. Stabifization of the tilt mode

by the presence of energetic beams may be possible. Estimates indica'te that the required

• _a, 24Preferentialbeam energy and total current are substantial but may not be unrealistic, 2a,

trapping of fusion products may provide a large amount of the required current. ;s Recently

reported exlSerimental results have been less clear. Tuszewski zt aL have reported clear

evidence of a tilt-like perturbation and a strong correlation of this tilt _tivity with degraded

confinement. 12 This was explained a.s an effect of operating the device in & more fluid-like

region of parameter space. Good agreement was found with probe signals predicted from

fluid simulations and the actual observed signals. In some shots, however, the FRC partially

survived the tilt event instead of completely dumping the contained density along open field

lines. Preliminary results on the LSX experiment _° have not seen correlation between tilt-
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Likesignals [Be n = 1.axially even probe measurements] and confinement. _.lthough LSX is

expected to behave in an even more fluid-like manner.

lt has recently been suggested that there may be another tilt mode stabilization mecha-

nism -- profile consistency. _6';r The fluid displacement in variational theory can be expressed

in terms of first and second derivatives of the pressure profile P(@) where • is the poloidal

flux (plus other terms independent of P(q/)). The P'(_) term is always destabilizing while

the P"(4) term can be either stabilizing or destabilizing depending on the sign of P"(_). Al-

ternatively this is stated in terms of comparisons between a normalized current, j/r = P'(qr),

at the O-point _nd at the ,separatrix.

The purpose of this w,_rk is to investigate the tilt stability of equilibria with non-trivial

pressure profiles. The basic question can be stated as: Do MHD or Ha$l fluid equilibria

exist which are stable to tilt perturbations? Our numerical simulations indicate yes, for a

class of soecial, but perhaps rea.iizable equilibria. The approach is to search for & small set

of fluid equilibria using standard elliptic equilibrium solvers a_ad then to use these as the

initial conditions for initial value fluid simulations. The subsequent a_alysis neglects explicit

kinetic effects (but does include extensions to fluid theory such as viscogity and Hall terms).

Since kinetic effects are generally considered stabilizing, this analysis may be viewed as a

conservative estimate of stability in this regard. Additionally, this investigation may serve

as an indicator of the possible effects of different equilibria upon stability. This especially

includes modification of the FRC due to energetic ion components. 23'24,2s

The paper is o, ganized as follows. Section II. describes the physical models and their

numerical solution. Section III. describes the choice of pressure profile. Section IV. gives a

set of equilibrium solutions and Sec. V. describes their dynamical behavior. Finllly, Soc. VI.

interprets these results and discusses their implications.



II. Hall Fluid Model and Numerical Formulation

FRC fluid theory has included various extensions to simple ideal MHD such as resistivity,

equilibrium flow,s' Lonondiagoua[ pressure (ion gyro-viscosityIl), and Hall terms x° in their

analysis. These extensions arise from the inclusion of physical effects which are neglected in

ideal MHD. This work continues these practices for comparison with previous computational

results, lt also allows for precise identification of the effects upon stability of the model

extensions, independently and in combinations. The plasma is modeled by the following

dynamical equations"
On

0-7+ v. (_u) = 0, (2)

Mn Ou (3)+u.Vu = ×B -VP-V. II,

0-'T =u x B-r/c 2-c-H-en xB-VP. , (4)

as ,-i[ - ]_-+V'.Su= n'-_ nJ:-[I ' Vu , (5)

where n is the number density; u, the flow velocity; M, the ion mass; J, the current density;

B, the magnetic field; P, the total pressure; A, the vector potential; r/, the resistivity; S,

an entropy density" P,, the electron pressure; II, the viscous stress tensor; % the adiabatic

constant; and H is an artificial variable used to include or exclude Hall effects. H - I.

utilizes the Hall terms while H = 0 ignores them. The derived quantities axe defined by the

following relations:

B - V ×A, (6)

P=_r, (8)

P, = /,. P, (9)
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= -(V_u) - (V_u) r +(V × _u) , (10)

- I

S - nv-_ T (11)

where fte iS & parameter determining the total pressure contained in electrons and/a is the

viscosity coefficient.

The "'Hall" term, c/en [J/c x B - VP,], results from the massless electron approximation

to the generalized Ohm's law without the usual further assumption of wavelength small

compared to spatial gradients. _s Since FRC's have large/3 and the tilt mode is a global mode,

effects from the Hall term may be of dynamical importance. Another way to understand the

physical importance of the Hall term is from a two fluid formalism, l° The massless electron

approximation implies that the magnetic field is frozen to the motion of the electron fluid.

In ideal _IHD, further assumptions lead to the conclusion that V, = Vi. Thus the Hailterm

measures the physical effects from different responses of ions and electrons to equilibrium

and perturbed fields. The value of the artificial parameter H is selected at run-time for the

simulation in order to include or exclude the Hall term effect.

\Ve cast the equiiibrium problem by taking the steady state limit of the dynarnical equa-

tions with the extra ._sumptions of zero resistivity, zero viscosity, no Hall term, and no flow

velocity. The geometry is specified as cylindrical (r, O, z) coordinates with 0 an the igaorable

coordinate. We further assume zero toroidal field, Be, characteristic of FRC's. If we define

the poloidal flux function as:

Z"
then the equilibrium equation,

J
vP - - ×B, (13)

C

reduces to the Grad-Shafranov relation:

O I a_ 0 o_ 4_'r2 dP

A*_-r or r Or "_Oz Oz =-" c dO " (14)
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It also implies that the pressure is entirely a function of the poloidal flux, P = p(qt).

Experimental data to determine the functional dependence of P upon _ is not available.

.\Iost work has used either a rigid rotor profile, a linear profile, or an approximately linear

profile. Recent transport calculations "-r indicate that either pressure profiles or resistivity

profiles must be of a more complex structure in order to explain observed flux loss and

particle loss. In this work, we examine profiles with more complex dependencies upon _.

These models are investigated using numerical equilibrium and initial value codes. The

equilibrium solver 29 iteratively solves Eq. (14) for @(r,z). Its domain is the region 0 < r <

rw_a and 0 < : < .-,,,al, assuming _(r,-z) = _(r,z). Algorithmically, it is a descendant

of previous '2-dimensional equilibrium studies. 3o,al. r The code set allows solution to both

kinetic, rotating, or fluid plasmas. Only the fluid formulation is used in this investigation.

The problem size was 45 cubic splines in the radial direction and 81 finite difference points

in the positive z half-space.

The initial val_e simulation uses the FLX algorithm a_,9 for 3-Dimensional spatial plus

temporal plasma evolution. It numerically solves the dynamical model equations, Eqs. (2)-

(.5). The evolution is solved using a semi-implicit time advance. The dynamic fields are

represented in r and z on a finite difference, staggered grid. The toroidal direction (0)

is mode expanded. This is the same numerical approach used to compare predicted and

measured probe signals in recent experimental tilt observations.12 Simulations examining

beam effects on tilt stability also used an extension of this algorithm._ 24

In these runsi 40 radial and 100 axial points were used. The axial points covered the

region -z,,_u < z < +z,,_, allowing for both even and odd axial dynamics. Since our goal

is to study profile effects on tilt stability, only the modes with azimuthal index, = 0 and

n = 1 are kept in these simulations. Nonlinear errors from neglecting higher mode couplings

_vill not affect the conclusions about linear tilt stability.

The equilibria used in this investigation explore more fully different pressure (and hence
..
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current) profiles. Specifically, here we examine equilibria where the functional dependence

of P(tP) on _I/is different from piece-wise linear, or approximately piece-wise linear.

We will describe our equilibria in terms of conventional dimensionless FRC parameters.

The first is a measure of the finite Larmor radius (FLR) corrections,

f; rdrs =_ ap, (1.5)

where R is the radius of magnetic field null, a is the separatrix radius, and pi is the local ion

gyro-radius. A second mea.sure is:

e i'ol 1
s-- -, (16)

where le/0[ is the absolute value of the trapped flux. J is a quantity which can easily be

calculated from numerically computed equilibria. FinaJly, S, is defined by, t°

.3", -_ V/4re2noa2/Alc2 = xr,, a/c , (17)

where no is the plasma density maximum (density at O-point). The 5', is a rneanure of the

importance of the Hall term in the plasma dynamics.

The relations among s, _, and S, can be derived by considering the c_ of highly

elongated FRC equilibria where midplane field line curvature can be neglected. Pre_ute

balance relates the peak pressure at the O-point to the external magnetic field, Po = noto =

B_,,t/Sr. Thus in such high beta systems, the plasma and cyclotron frequencies axe not

independent, but are related by,

c ,x, c _,,, (18)

where it is understood that the density at the O-point is used in thecaleul_tion of wr and

the external field is used in wt, and pi.

We can relate s and S, as:

,5',---_-s , (19)
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where

._= p,"" p, ('2.0)

and

fR'''p,'tr dr

(.4) --- ['"P rdr ' ('2.1)
JR

with the additional note that R - r,,p/v/2. Note that 0 < A < I; A will be small for small

internal magnetic fields. We can also relate s and _ through

3

= 41' ,t',,' (22)

when it is noted that Eq. (12) implies f_"P Br dr = q/0. Thus, :!1incorporates into s the

partial cancellation of the Hall term effect arising from the VP, term.

On the one hand, S. is a measure of how the electron and ion fluids responses differ

while _ measures the importance of FLR and/or finite ._/.,a effects. For small FLR, the ion

and electron response are identical. Therefore it is reasonable for a amd 5'. to scale similarly.

The Hall term effect and other non-ideal MHD effects will be most pronounced for low s

(and hence S,). Practically, _ is a better mea,sure of these effects since it takes into nx:count

the details of whether the internal field is depressed (i.e. the factor of A). The question

of a depressed internal field is important since it is one of the principle features of hollow

equilibria.

III. Profile Choice

In addition to the choice of physical _nodel, the unique equilibrium solution depends on

the specification of additional parameters. The boundazy choice is_ perfect conducting

flux conserver at a fixed radius r = r_ and a free boundary _t z = +zw. The flux at the

wall is fixed as _,. The functional relationship P(_) must _lso be specified. Since the

Grad-Shafranov equation is in general nonlinear, additional paraaneters may be necessary

9
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to uniquely specify the solution. 3°' 3x The growth rate of the tilt perturbations, 7t_t, may

depend upon a multitude of parameters.

These may include geometrical factors (such as separatrix radius a; X, _=a/R._; sepa-

ratrix length, b: separatrix elongation, E - b/a), physical quantities (such as total trapped

flux _o; midp[ane averaged beta, (_3); temperature profile; pressure profile), experimental

parameters (such as bias field; fill pressure; formation method; etc.), or model determining

parameters (such as s; velocity; and transport coet:fici6nts),

:,tilt = ",,t,lt(q/_,,_o,r_,,z_,,a,b,E,X, ,P(_),(,q) ,Bbi_,,P_,s,r/,#,...) . (23)

Many of these quantities are not independent. The elongation is just the ratio of separatrix

length to separatrix width. The quantity (13) depends strongly on P_; (t3) is given in terms

of X, from axial force balance, l Experimental evidence relates P(@), q, and Xo. 2_Only small

portions of parameter space may be tractably examined at once. An ansatz must be invoked

to limit the parameters to survey. In this work we investigate possible profile functions.

Specifying P(@ ) will almost uniquely specify the equilibrium. Since the equilibrium problem

is nonlinear (for a general P(@) profile), there may be more than one solution. In addition

if the length of the separatrix, b, is specified, then in pr_tice the equilibrium is uniquely

specified.3o. 3x Other parameters that determine "yt_tthat have not been explicitly specified

are thus implicitly determined from the above conditions. The choice of P(@) serves to

specify most of these implicit relationships. Equilibrium characteristics such a racetrack or

elliptic separatrix shape and elongation will fall out from the profile choice as opposed to

being specified parametrically.

Most previous theory has assumed that P(@) was linear in _ while exploring other

(mostly geometric) effects of varying other parameters. 4' l There is an analytic solution with

a nonlinear P(_) which has been used in some FRC tilt studies. 6' _ However, this particular

profile has a P(_) form that does not allow independent specification of P'(ql)and P°'(@). lt

10
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is not clear whether such a restriction can allow enough flexibility to explore '_he competing

effects from the P'(qt) and P"(_) terms. To our best knowledge, ali known numerical studies

(except one 34) on FRC tilt stability assumed pressure profiles that were linear, piecewise

linear, or an approximation thereof. _' 3o Even though these equilibrium solvers have the

] ability to find numerical solutions for nonlinear pressure profiles, stability studies have not

] looked at such profiles. A separate numerical approach 3s' _s to numerical equilibria chooses

the entropy function instead of a P(_) profile. The implied P(_) profile is not linear, but

again, it does not appear to have been used in stability studies.

The one exception is an early numerical simulation. 34The current profile chosen in that

study varied sinusoidally with a polynomial of the flux. The profile concentrated normalized

current, 3e/r, of the same magnitude at both the separatrix and the O-point. Depending

on the choice of a profile index, the normalized current between the O-point and separatrix

and between the O-point and axis was higher or lower. That study did not report any large

' sc .le instability consistent with tilting for tens of Alfvdn transit times.
|

!,I Our choice of pressure profile is designed to investigate the possibility of hollow profiles

I having a stabilizing effect. 26'2v We allow the pressure profile to be a nonlinear function of

the ttux function. This may perhaps be regarded as an allowance for the pouibility of a

!, self-organizing tendency of FRC plasmas, sT'2s We choose a parameterized profile that allows

the concentration of current at either the O-point or near the separatrix:

_' { Po(Ko_ _: _ _ DX.2) X < O }

•I P(q) PolZ(X) (24)

_ - Po e -_'x X > 0,

': where Po is a normalizing constant for the pressure. Varying Po during the iterative solution

_ process will serve to fix the separatrix length. _(X) is the profile shape ftmction. X is the

• , and q0 < 0 is the trapped flux, the flux at the O-point_, normalized poloidal flux, X - I*01

:' h'0, D. and F are profile parameters. They are specified by four conditions: continuity of

i _ e(,=o) given; and D given. Solving for F and Ro,/_(0) and p'(0) at the separatrix; _Hp = 'e(¢o):!

4
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one obtains,

3,,p(l- 0/2)

K0= i - ,3,,p ' (25)

I

F = /t'"_ " (26)

Hollowness and peakedness of the profile are defined as parameters that describe the cur-

rent (or equivalently pressure) distribution within the separatrix. 2_ttollowQess or peakedness

are defined by comparing local values of P'(_) = jolt. A "peaked" profile has its current!

concentrated at or near the O-point. Conversely, a _hollow" profile has the current con-

centrated near the separatrix (away from the O-point). In terms of the pressure profile, a

peaked profile will be very peaked around the O-point and fall rapidly, even for regions still

inside the separatrix. A hollow pressure profile will remain large and flat until very near

the separatrix where it will then decrease. A flat profile has P(O) linear in • inside of the

separatrix. This corresponds to a current density which depends linearly on radius. In tns

case P"(_) = 0. It should be noted that the discussion of "hollowness," "peakedness," and

"flatness" are defined in terms of the variation of P with gr. Reconstruction of the spatial

dependence of P will require further knowledge about the spatial solution for _.

For this profile choice, the parameter D specifies the hollow or peaked equilibrium char-

acter. D = 0 gives a flat profile; D > 0, hollow; and D < 0 peaked. It should be noted that

D is not identical to h, a previously defined hollowness parameter, 27h_wever, the qualitative

notiona of "hollowness" and "peaked,ess" are the same. This choice of profile function gives

P"(_) :x -D inside th_ separatrix. Thus D is a control parameter to increase or decrease

the relative importance of the effect of the P"(gt) term. The destabilizing F(_) term is also

modified by D' P'(q_) cx -1 - Dg. Since -1 < _: < 0, D acts to decrease the tilt mode

driven by P'(O) for 0 < D < 1. On the exterior flux surfaces, P"(_) > 0. This does not

cause instability since the field lines have good curvature in this regio,.

This profile possesses adequate generality to probe possible profile stabilization effects

12
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while only requiring exploration of a small 2-dimensional parameter space. All equilibrium

parameters are specified by the choices of boundary conditions, model formulation, profile

functional form, imposed separatrix length, and by the point chosen in the (3,_p, D) param-

eter space.

IV. Equilibrium Solutions

Herewe reporta seriesofequilibriumsolutions.They arebrokenintotwo sets,13_,p= 0.I

and 3s_p= 0.6.[hesetwosetsarethenscannedinD frompeakedtoflattohollowvaluesof

D. The dimensionalcharacteristicsoftheseequilibriaapproximatelycorrespondtoprevious

, numerical simulations. 23'9 The dimensionless characteristics of some of these profiles axe
4

summarized in Table I. As can be seen, varying fl0,p and D with this profile choice also

entailed changes in other physically meaningful variables. In this sense, what was varied

i and what was fixed is not a division of parameter space into an orthogonM set of physically

meaningful quantities. Contour plots of _ for some of these equilibria axe shown in Fig. 1.

i Several features are observed for this parameter scan. Ratio of plasma ra_tius to wall radius,

" X, is smaller for ':_igher 3,_p and for more hollow profiles.
_!

: The separatrix half-length b is a fixed input parameter. Therefore the elongation varies

proportionally to X,. However, a local pseudo-elongation can be defined in terms of the

length versus the width of internal flux surfaces. This may be more physically meaningful

sincetheactualq_= 0 contour,beinga separatrix,issusceptibleto smallperturbations.

This isespeciallypronouncedforpeakedprofiles.Thislocalpseudo-elongationmay also

' be viewedas a'closerapproximationtothe localfieldlinecurvature.In the literature,

' this is often referred to as the question of a racetrack vs. elliptical shaped flux surface. 7

i Elliptical profiles tend to have a constant normalized curvature, while r_cetrack equilibria
J

,, have almost ali of their curvature concentrated into a small endcap neax z = b. Peaked
i

-i., profiles (D < 0) lead to elliptical, low pseudo-elongation profiles, while hollow (D > 0)

13



profiles cause racetrack, or high pseudo-elongation profiles.

The volume averaged 3, (3)voi, is larger for the 3,,p = 0.6 equilibria (note that volume

averaged 3, (3)voi, 'is different from midplane averaged 3 used in the relation (3)_ad =

1 --Xf/2). For fixed 3,,p, (3)voi increases for hollow profiles, as expected. Also note that for

the given profile choice, high 3,,p and hollow profiles tend toward decreased plasma volume,

peak plasma pressure and actual trapped flux (_0). Low _0 can be partially explained in

terms of the boundary condition fixing _,. A smaller X, implies a smaller external field,

which is one of the natural normalization parameters of the equilibrium. However, for _o

there is an additional effect. Two equilibria with identical X, will have differing values of

qJ0 depending on their degree of hollowness.

The trapped flux qJ0 is usually not directly measured in experiments, but rather is in-

ferred from _,hemeasured excluded flux radius and an assumption about the P(_) profile, ts, l

_ Experiments would report identical inferred values for _0, while their actual values may vary.

Direct experimental observation of hollowness of profile (and hence also 1/10)requires direct

knowledge of P as a function of radius, P(r). lt is necessary to perform interferometry at

many different radii in order to differentiate hollow, flat, and peaked profiles experimentally,

since this distinction relies on the second derivative of the pressure. Figure 2 shows normal-

ized current, ,_B,,,u' and pressure profiles P(r) at the midpl_ue for some of the 3,,,p ffi 0.6

equilibria. While the distribution of current density varies greatly as D is v'_ed from highly

peaked to highly hollow, the pressure profile is only mildly modified, lt is not clear th&t

previous experiments could have distinguished hollow and peaked profiles from previous in-

terferometry data that had only modest numbers of radial data point8 and shot to shot

variation.*.

14



V. Dynamical Simulation Results

These equilibrium solutions were then used to initialize the dynamical simulation. An initial

perturbation velocity of peak amplitude equal to 1% of VAu_,, was added. The functional

form of this perturbation resembles other compressionless, internal trial functions. 4,r. 23 The

objective was to determine 7tilt for each equilibrium and compare it to -t°dt. The simulation

parameters were nominally similar to the FRX-C/LSM experiment. 39They ran for 25 _sec,

which is about 5 growth periods. The a priori hypothesis was that "tta, would be considered

independent of pressure profile in this parameter search if the normalized growth rate, _ -

:,t,lt/_°l_, is within a factor 2 of unity. Geometric manipulation of the equilibrium sepaxatrix

shape for flat profiles can change the growth rate by as much as a factor of 2.4' 40.r Any profile

modification effect is required to lie outside of this noise range. The 3'rut was me_ured.from

fits to the kinetic energy in the n = 1 mode.

"['he measured growth rates are summarized in Table I. Figure 3 shows the time histories

of n = 1 kinetic energy. For the 3,,p = 0.1 cases the saturation amplitude decreased as the

profile changed from peaked to hollow but the growth rate (as measured by the slope On the

logarithmic plot) is essentially unchanged. Separate diagnostics show that ali magnetic field

lines are open after the peak amplitude in ali cases. This allows parallel motion from inside

the separatrix to the end walls. Separate diagnostics also show a depletion of the central

pressure peak oa an Alfv4n transit time scale. Similar trazes are shown for the _ -- 0.6

cases. Again the peak tilt amplitude was lower and the time of tilt peak was longer for the

more hollow cases, but the effect was more pronounced. The scMe for the 3,ep = 0.1 case

is about 60 times larger than the scale for the ;3,ep = 0.6 case. A more surprising feature

emerges in the logarithmic traces, where the actual growth rates (determined fromthe slope

of the traces) show a decreasing trend with increasing hollowness. Figure 4 plots "_,il,as a

function of hollowness. The hollow, high 3._p profiles show a clear trend toward lower growth
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rates. These features are reinforced when traces of field lines are examined.

Figure 5 shows a sample of integrated magnetic field lines. The field lines open up not

only for the flat profile cases (Figs. 5a and 5c) but also for the 31,p = 0.1 hollow cases

(Fig..Sh). However, the 3,ep = 0.6 D = 0.8 and 3,ep = 0.6 D = 0.85 cases (Figs. 5d-5g)

maintain closed field lines for up to 50 #sec, further indicating tilt stability. 50 # sec is about

J,0 growth time,s and is a significant fraction of r_, the flux confinement time. At this late

time, the configuration has changed considerably owing to simple transport effects.

Finally, Fig. 6 shows the perturbation mode structure well into the simulation for selected

profiles. These are snapshots of the n = 1 poloidal components of the velocity after develop-

ment of the natural mode structure from the initial perturbation and noise. The flat profile

cases (Figs. 6a and 6c) show the usual tilt mode displacement as an almost rigid rotation

perpendicular to the symmetry axis. The hollow profiles (Figs. 6b, 6d, and 6e) show a mode

structure much more localized to the end regions as previously observed r This is explained

by the concentration of instability inducing field line curvature in the end regions. However,

the 3_ep = 0.1, D = 0.8 case (Fig. 6b) shows an interesting new feature. The instantan_us

velocity streamlines are localized into 3 cells of length 2b/3 instead of the normal single cell

of size 26 as would be the case for rigid tilting. Similar effects have previously been noted

in Hall fluid simulations. 9 At later times, this mode structure evolves decreeing the central

cell and enlarging the outer cells until they ali finally merge late in the simulation into a

normal tilt type mode structure. The/3Np - 0.6, D = 0.8 and _3Np-- 0.6, D -- 0.85 tames

(Figs. 6d and 6e) had less well defined mode structures. The mode was very localized to the

endcaps with noother discernible structure.

Next we consider whether the apparent tilt stability of the hollow high flNp profiles is

robust to minor numerical or physical modifications of parameters. Is the behavior due to

coarseness of numerical grid? Is the behavior due to a short simulation time? Is the behavior

due to viscous effects? Is the behavior due to the Hall term? Five additional dynamical
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simulati _ns were conducted to address these questions. They extended the simulation to 50

#sec (approximately 10 growth times). Two of the cases were repetitions of the 3,,p = 0.6,

D = 0.8 and 3,,p = 0.6, D = 0.85 runs above. They served as the baseline cases to measure

the effect of these model and algorithmic variations. The purpose is to determine whether

questions about simulation integrity and physical model can cause a simulation to vary more

than the variation caused by changing the D parameter from a value of 0.80 to 0.85. The

other three simulations were repetitions of the _3,,p= 0.6, D = 0.85 case with modifications.

One modification was to run the simulation with a grid doubled in both the r and z directions.

Another was to halve the viscosity coefficient, and the final case was run with the Hall term

absent (H = 0 in Eq. (4)). The time history of the n = 1 mode kinetic energy is shown in

Fig. 7. The vertical scales on the linear plots are about a factor of 1000 smaller than for

the 3sep = 0.1 cases in Fig. 3, and a factor of 20 smaller than the _3,_p= 0.6 cases in Fig. 3.

The effect of doubling the grid or halving the viscosity was less than the effect of ch_agin$

D from 0.85 to 0_f).

The effect of neglecting the Hall term changed the trace significantly. Moreover, separate

: diagnostics showed that this H = 0 case could not be classified as absolutely tilt stable, if

for no other reason than that the field lines were opening up by the end of the simulation

as shown in Fig. __.However, the level of tilt _tivity for the H = 0 case was still much less

than either the hollow 35e p "-- 0.1 or the flat profile cases.

Nevertheless, Fig. 7 shows that except for the H = 0 case, the level of n -- 1 kinetic

energy differs little from its initial perturbation value and is char_terized by slow evolution
_

or oscillation rather than exponential growth. The H = 0 case c_n be seen as &long 40/_sec

oscillation or an unstable mode with a saturation 2 to 3 e-foldings from onset. The initial
_

value numerical simulation technique can never reliably determine between these possibilities.

The effect of the Hall term appears important to tilt stability. A final series of runs was

conducted to focus on this issue. Simulations were conducted in pairs for wrious values of D
,,

17
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(with 3,,p = 0.6). One member of the pair ine!uded the Hall term while the other neglected

it. The results are shown in Fig. 9. In ali instances, the kinetic energy in the n = 1 tilt

mode is less when the Hall term is included. For the flat profile case, the two traces are

almost identical. For the hollow profiles (large values of D) the traces diverge. Beyond a

value for D of about 0.5, increasing hollowness does not decrease tilt activity if the Hall

term is neglected. The D = 0.85 run without the Hall term more closely resembles a value

of D = 0.50 than D = 0.85 when cor .pared with runs that included the Hall effect.

VI. Discussion and Implications

We set out to investigate profile effects upon tilt stability. The conjecture that hollow

profiles will have a tendency toward reduced tilt activity is borne out by simulation. However,

hollowness alone is not sufficient to eliminate unstable growth. We have found that the effect

is only sufficient for high values of 3,_p. lt should be noted that an initial value simulation

cannot give reliable information on contours of marginal stability. Typically at m_rginal

stability the growth rates approaches zero and the modes become oscillatory. A half period of

oscillation is difficult to distinguish from growth and saturation when kinetic energy histories

are the only diagnostic. Future numerical variational modeling and variational theory may

give more concrete statements about marginal stability contours.

Further, if the Hall effect is neglected, there appears to be a lower bound on the effec-

tiveness of hollowness. Equilibrium profiles with hollowness parameters below this bound

experience "diminishing returns" with respect to the ability of axtditionM hollowness to sup-..

press instability. Moreover, the values of hollowness required to achieve stability axe below

this bound. Increasing the hollowness of an equilibrium reduces the strength, and to some

point the growth rate of the tilt instability. However, only when we combine hollowness with

high 3_p and the inclusion of the Hall effect do we see simulations that appe_ stable. It

should be noted that these relationships were observed for only a particul_ class of equilib-
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ria. These results may not generalize to different equilibria with differing sets of fixed and

varying equilibrium parameters.

In these simulations we chose ft, = O. This cold electron assumption is in accord with

previous kinetic calculations lr and is a fair approximation of low fill pressure experimental

conditions soon after formation. '*t'a9 The Hall term is proportional to

J J
- ×B-VP¢ =- × B-VP+(1-ft,)VP=(1-ft,)VP, (27)
C C

when one makes use of the non-rotating equilibrium condition, Eq. (13). Thus the effect

of errors in choice of ft, in non-rotating equilibria is equivalent to varying the ad hoc Hall

Parameter H. The physical value is H = 1. Using a value of ft_ less than its physical

value thus overestimates the effect of the Hall term, but by no mote than a factor of 2.

Additionally, the simulation run with H = 0 has no dependence on the choice of Jt,. Since

even this run showed marked departure from usual tilt behavior, we conclude that there is

a significant reduction in tilt activity independent of the Hall term for hollow profiles. The

inclusion of the Hall term leads us to further conclude that we have reached a point in (/_,,,p,

D) parameter space of tilt stability.

That hollow profiles with high ',3,_pcan stabilize the tilt mode is at first surprising. This

is emphasized when it is realized that this simulation neglected many aspects of physical

FRC behavior that might act as a stabilization mechanism such as l_ge orbit ions. Is lt

is known that kinetic stabilization for small s is possible, t7 By neglecting kinetic effects,

these simulations appear to apply to the s --, oo limit. However, selected kinetic effects

are explicitly re-introduced in the form of viscosity and Hall terms. The question then

becomes one of whether the observed stability is ascribable to previous extensions of MHD

theory. Variational theory has indicated that if the parameter, S, = a_/e, is small enough,

large elongations may be stabilized. Stability is found for S, < C E, where C is a model

depend factor of order unity and E is the plasma elongation. For Hall tluids, C_ _ 1.m
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For gyroviscous theory C, yro_ 1.6.11 However, S, is not a good figure of merit for assessing

hollow profile effects. Two equilibria that h,_ve identical external fields, but differing levels of

hollowness in their pressure profiles will nevertheless have the same value for S,, even though

may differ radically for the equilibria, since hollowness can drastically alter the value of

]gol. Thus _ is more appropriate for characterizing equilibria, when pressure profiles have

different hollowness values. Equivalently, it can be stated that _ is preferable to S, since

it considers the effect of midplane averaging in the factor of A. Table I lists values of _ for

these runs and Fig. 10 graphs _ versus _. The trend to stability correlates well with :_. We

draw the conclusion that the effect of hollow profiles is to provide additional stabilization

apart from previously considered effects. The fact that the exclusion of the Hall term causes

the stable cases to become marginal or even unstable supports this notion.

The addition of hollowness to this analysis may come in many forms. First, the pro-

portionality constant C may depend on the value of a hollowness parameter. Second, the

left side of the relation may be S__, an effective S, that is corrected for the low internal

magnetic field, However, the relationship may be a more complex synergistic relation with

various threshold requirements. This study is unable to distinguish between these po_ibili-

ties. Comparison of analytic results with computational results is difficult for two additional

reasons. First, analytic equilibria and simulation equilibria differ. Second, an initial value

simulation will naturally pick the most unstable mode while variational calculations often

have limited trial functions. Previous simulation 9 has indicated that for small values of S,

a new, more complex unstable mode emerges. They found that the instability growth rate

could not be reduced below about 50% of 7,_,. Such resistance :o further reduction in 3' may

indicate that a new mode is dominating the dynamics. Such may be the case for the hollow,

no Hall, simulations presented here.

Experimental comparisons require close examination of equilibrium conditions in order

to determine whether comparisons of nominally similar shots are _tually comparable. Di-
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agnosis, let alone control, of parameters such a.s _,,p and hollowness is not evident for many

experiments. It may depend on details of formation and device specificity. This may explain

discrepancies regarding effects of tilt perturbations in current generation, larger s experi-

ment$.12' 20

While this work suggests that the effect of hollowness is to improve the marginally stable

s/E ratio toward shorter elongations and higher s, it cannot be ruled out that its effect on tilt

stability may be more complex. This effect is important in FRC reactor analyses. _ A stable

path from formation through compression and heating until ignition must be maintained

quasi-statically at all times. During these stages both s and E can vary by factors a_ much

as 3 to .5. Additional stabilization due to hollowness can relax reactor design criteria, allowing

easier or more confident paths to ignition.

The implication for beam stabilization is also worth noting. Tra_iitionally, it has been

considered that FRC's with large values of s could be stabilized using energetic ions. 23'2

Profile stabilization is most effective for moderate to long elongations (as axe previous Hall

fluid and gyroviscous results). Beam stabilization depends on a resonant condition between

the axis encircling frequency and the axial betatron oscillation? 2 Tuning to this resonance

requires an increase in betatron frequency by decreasing elongation. When the equilibrium

is not tuned to resonance, the critical beam current needed for stabilization increases. Thus

profile stabilization and beam stabilization are more effective for different equilibrium char-

acteristics. Whether these conditions are compatible or exclusive must be _ddressed. That

is, do equilibria exist where both effects are strong enough to insure stability or must equi-

libria be designed for either extremely large or small elongations to take ,_dvantage of only

one effect in isolation?

Finally, these results for profile stabilization may have consequence_ in transport analy-

ses. It is often assumed that as experimental devices became larger that 3,,,o would naturally

decrease to almost negligible levels. Larger experiments have not observed this trend in 3_,p.

21
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These simulations found the possibility for stability only when hollowness was coupled to

high 3,,p. High ;3,,p may be an inherent co-requisite for stability, or high 3,,p may simply

serve to decrease the 5 of the equilibrium. High _,ep implies a need for some form of plasma

confinement on the open field lines beyond the separatrix. Moreover, the necessity of main-

taining high 3,,p may dominate the determination of global FRC confinement characteristics.

This will necessitate consideration of plasma in the region just beyond the separatrix, lt

should be noted that hollow current profiles may not be constant on resistive time scales.

Current at the field null is small as is the total trapped flux. Therefore hollow profile effects

upon r_, the flux lifetime, are not clear. Yet the large currents near the separatrix in hollow

profiles point to decreased particle confinement time, r,,, and resistive evolution towards

flatter profiles.
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0.i -I.00 1.41 0.17 1.21 0.83 0.43 2.80 9.05 12.49

0.1 -0.50 I,.28 0.17 1.13 0.81 0.48 2.88 7.55 10.69

0.I 0.00 1.26 5,17 1.00 0.77 0.56 3.01 5.58 8.26

0.I 0.50 ]_.32 0.17 0.76 0.69 0.67 3.34 3.12 5.12

0.I 0.75 1'132 0.26 0.53 0.63 0.74 3.70 1.83 3.33

0.I 0.80 1.29 0.26 0.46 0.59 0.77 3.91 1.48 2.85

0.6 -I.00 1.44 0.13 1.21 0.53 0.72 4.99 1.20 2.60

0.6 -0.50 1.18 0.II 1.13 0.51 0.73 4.86 1.05 2.33

0.6 0.00 0.83 0.07 1.00 0.50 0.77 4.74 0.91 2.07

0.6 0.50 0.18 0.17 0.75 0.46 0.83 5.00 0.63 1.54

0.6 0.75 0.07 0.26 0.53 0.4J 0.88 5.63 0.40 1.09

(J.6 O.SO 0.01 0.26 0.46 0.39 0.89 5.88 0.33 0.97

0.6 0.$5 -0.04 0.26 0.38 0.38 0.90 6.16 0.28 0.85

Table I Characteristics of equilibrium solutions, including: Separatrix Beta, 3_.p; Hol-

lowness Parameter, D; Normalized Growth Rate, "_; Normalized Growth Rate Error, a;;

Hollowness Parameter, h; Ratio of Separatrix to Wall Radius, Xs; Volume Averaged Beta,

(J)voL; Elongation. E; Trapped Flux, _o; Kinetic Effect Parameter, 3

.i
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