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Abstract
This paper analyses the properties of a critical gradient transport model based
on a few assumptions: electrostatic gyroBohm scaling law, existence of an
instability threshold and finite background transport below the threshold.
A quantitative criterion of stiffness is proposed, which provides the means
for a quantitative assessment and inter-machine comparison. It is also shown
that this transport model is compatible with a two-term scaling law of global
confinement, as proposed recently by the International Tokamak Physics
Activity–Confinement Data Base and Modelling Topical Group. This model has
also been applied to analyse a variety of experiments mostly using electron heat
modulation on JET, ASDEX-Upgrade, TORE SUPRA and FTU. The thresholds
are found to be in the expected domain for micro-instabilities in tokamaks.
However, the stiffness factor is found to cover a broad range of variation.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The question of profile stiffness in tokamak plasmas has been debated for years [1–7]. Up to
now, and in spite of a wealth of results, this debate has not lead to a clear conclusion. This
suggests that some conditions have to be fulfilled to observe stiff profiles. Also a new element
was introduced in the discussion, which comes from a recent result of the Confinement Data
Base and Modelling (CDBM) Topical Group in the frame of the International Tokamak Physics
Activity (ITPA). It was found that the energy content is fairly well described by a two term
scaling law that separates the contributions of the bulk and the pedestal in H-mode plasmas [8],
following an initial proposal to separate core confinement from an edge pedestal constrained by
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MHD stability [9]. These two contributions exhibit different parametric dependences, whereas
an assumption of strong stiffness would lead to similar scaling laws.

Part of the disagreement between various studies comes from an ambiguity in the definition
of stiffness. Stiff profiles are commonly defined as marginally stable profiles, i.e. profiles
whose gradients are very close to the instability threshold everywhere. We will call this
situation strong stiffness. A less stringent characterization of strong stiffness is to define a
number χs, the stiffness factor, which quantifies the ratio between the diffusivity and the
difference between the logarithmic gradient of the temperature and its critical value κc, using
an appropriate normalization. Strong stiffness corresponds to a large value of χs. It is also
often forgotten that the diffusivity stays finite below the instability threshold. This property is
obviously true for ions since the diffusivity cannot be lower than the neoclassical value which is
not negligible. The neoclassical diffusivity of electrons is very small. However, it is plausible
that a finite turbulent diffusivity exists below the threshold, for instance due to some residual
small-scale turbulence or to turbulence propagation. A consequence of finite diffusivity below
the instability threshold is the existence of a core region where profiles are subcritical, thus
non-stiff. Another feature is the role of boundary conditions. If the edge temperature is low,
the temperature logarithmic gradient is above the critical value. Hence a cold edge cannot
be strongly stiff. These simple considerations lead to a separation of the plasma into three
regions: the core and edge regions, which are not stiff, and a region in between, where the
temperature profile is close to marginality. It is quite important to describe these three regions
properly. There already exist many transport models that involve an instability threshold
and do reproduce these features. One may quote RLW [10], Weiland [11], IFS-PPPL [12],
GLF23 [13], Multi-Mode (MMM) [14] and OHE [15] models. The concept of diffusivity
with two contributions, a large and a small one, also underlies the mixed Bohm–gyroBohm
model [16]. The existence of three regions in the plasma was mentioned in [12]. Stiffness is
usually assessed by predicting profiles using one or several models and comparing them with
measurements. This has been done extensively during the recent years [4, 7, 17, 18].

The aim of this paper is to address the question of stiffness with a critical gradient transport
model that is less simplistic than the concept of ‘strong stiffness’, but easier to handle than
first principles transport models. This critical gradient model is based on an electrostatic
gyroBohm scaling hypothesis, and is characterized by three scalar parameters per species: a
threshold κc, a stiffness factor χs and a background diffusivity χ0. This set of parameters can be
identified by analysing experiments where the heating source is modulated, as already shown
by several groups [19–21]. Both steady and modulated profiles provide some information in
this case. In particular, the threshold can be determined with accuracy by using the change of
slope that is observed on the radial profiles of amplitude and phase of modulated temperature.
The drawback is obviously that this simplified model does not cover all the physics known
from first principles turbulence simulations. However, it offers many advantages. First, an
interpretative analysis can be done in an efficient way, i.e. the parameters of this model can
be directly identified from experimental results and compared in different plasma conditions
or machines. Second, this transport model has analytical (or semi-analytical) solutions so
that some exact results can be obtained and tested. In particular, quantitative conditions for
getting stiff profiles can be derived. Finally, it provides an easy access to the scaling law of
global confinement. It is stressed here that the objective of this paper is not to propose a new
transport model, but rather to propose an effective tool to analyse and compare experiments
against theory. The main goal is to determine ranges of variation of the stiffness number χs

and threshold κc from modulation experiments, a two-term global scaling law and theory.
This paper is organized as follows. The transport model is described in section 2.

Conditions for stiffness are given in section 3, while the predicted energy content is assessed
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in section 4. Finally, a comparison with experimental results based on existing modulation
experiments and on the ITPA–CDBM two-term scaling law is done in section 5. A summary
and conclusion follows.

2. A minimal transport model

The aim of this section is to derive a simple transport model that preserves some basic properties
of turbulent transport. The main hypothesis is a turbulent transport characterized by an
electrostatic gyroBohm scaling law, switched on above a threshold −R∂rT /T = κc [22]
(T is the temperature and R the major radius). Here r is a label of the flux surface having the
dimension of length. The assumption of gyroBohm scaling relies on several recent turbulence
simulations in the limit of small values of the normalized gyroradius ρ∗ [23–26]. However,
one has to bear in mind that a substantial departure from gyroBohm scaling is found when
the diamagnetic E × B velocity shear rate is large [23] or when turbulence spreading takes
place [26]. Below the threshold, the diffusivity is finite and is produced by collisions for
ions, or by some background of turbulence for electrons. To simplify the calculation, the
scaling law of this background diffusivity is supposed to be also gyroBohm (this means that
the dependence on temperature is wrong when the background diffusivity is neoclassical).
With these assumptions, the thermal diffusivity is of the form

χT = χsq
ν T

eB

ρs

R

(−R∂rT

T
− κc

)
H

(−R∂rT

T
− κc

)
+ χ0q

ν T

eB

ρs

R
, (1)

where B is the modulus of magnetic field, q is the safety factor, ρs = √
miT /eB is the

Larmor radius and H(x) is a Heaviside function. The safety factor has been introduced
to account for the improvement of confinement with plasma current. It is also consistent
with profiles of diffusivity that increase radially. The exponent ν is adjusted once for all
when comparing various devices. The value ν = 3

2 was chosen in this work, as it seems
to be the best compromise, and allows us to recover the scaling of the two-term scaling law
with the plasma current (see section 5). Simulations of ion temperature gradient (ITG) driven
turbulence [27,28] and recent dedicated experiments [29] provide some support to this choice.
The parameter ν was actually found to range between 1 and 2. Still, this choice cannot be
considered as definitive. Once the parameter ν is chosen, this transport model is characterized
by three dimensionless scalars: the background diffusivity χ0, the stiffness factor χs and the
threshold κc, to be determined from experiments. These parameters may depend on plasma
parameters, such as the ratio of electron temperature to ion temperature Te/Ti, the effective
charge number Zeff , the density gradient length and/or the ratio of the magnetic shear to the
safety factor s/q depending on the underlying instability. The present analysis is valid if
the three parameters χ0, χs and κc are radially uniform for a given plasma. Nevertheless, this
hypothesis does not prevent the scalars χ0, χs and κc to change from one set of experiments
to another one, due to their dependence on the plasma parameters. Still, the assumption that
the set χ0, χs and κc is radially uniform is a limitation. For instance, the threshold is known to
vary radially in Tore Supra [3].

For each species, the steady-state temperature is a solution of the heat equation

�T = −nχT∂rT , (2)

where n is the density and �T is the heat flux. Using the transport model, equation (1), it can
be rewritten as (see appendix A)

τ ′
(

τ ′

τ
− 1

)
H

(
τ ′

τ
− 1

)
+ λ0τ

′ = g. (3)
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Here τ is a normalized temperature,

τ =
(

T

TgB

)5/2

(4)

and is a function of the normalized spatial coordinate (r = a is the edge boundary)

ρ = 5

2
κc

a − r

R
. (5)

A prime indicates a derivative with respect to ρ. The parameter

λ0 = χ0

κcχs
, (6)

characterizes the relative degree of stiffness and is supposed to be smaller than 1. The function
g(ρ) is a heat flux normalized to the edge value (see appendix A). The temperature TgB is
determined by the relation

�T (a) = χsκ
2
c qν

a naTgB
TgB

eB

ρs,gB

R2
, (7)

where the flux �T (a) is the heat flux at the edge, qa is the edge safety factor, na is the edge
density and ρs,gB = √

miTgB/eB is the Larmor radius calculated with the temperature TgB.
The temperature TgB plays a central role in this work. It exhibits the usual gyroBohm scaling
and may be recast in a more convenient way when the geometry is elliptical (see appendix A)

TgB,keV = 1.89

(
1 + κ2

2κ

)−2/5

χ−2/5
s κ−4/5

c M−1/5ε−2/5
a q−2ν/5

a B
4/5
T n

−2/5
a,19 P

2/5
MW. (8)

Since each species may be characterized by a different set of parameters χ0, χs and κc, the
temperature TgB can be different for electron and ions. In expression (8), PMW is the additional
power for one species (in MW), na,19 is the edge density in units of 1019 m−3, BT is the toroidal
magnetic field (it is assumed that B ≈ BT), εa = a/R is the inverse aspect ratio and M is the
mass number.

The equation (3) can be rephrased in the following way:

(a) above the threshold, τ ′ > τ , the temperature gradient is a solution of the equation

τ ′2 − τ(1 − λ0)τ
′ − gτ = 0 (9)

or equivalently

τ ′ = (1 − λ0)τ

2
+

[
(1 − λ0)

2τ 2

4
+ gτ

]1/2

, (10)

(b) below the threshold, τ ′ < τ , the temperature gradient is a solution of the equation

τ ′ = g

λ0
. (11)

In the case where the normalized heat flux is a radially uniform function or an exponential,
the solution of the heat equation (3) is analytical (see appendix B). In the general case, the first
order equations (10) and (11) are easily solved numerically. The problem will be illustrated
for the choice λ0 = 0.025 and a normalized flux g of the form

g = a

r
exp

[
−x2

s

{(a

r

)2
− 1

}]
. (12)

The parameterxs characterizes the heat source localization and is chosen as xs = 0.3 throughout
this paper. The boundary condition is an edge temperature T = Ta at r = a. For an H-mode, Ta

is the height of the pedestal. From a strict mathematical point of view, the degree of stiffness λ0
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and the normalized edge temperature Ta/TgB are the right parameters to characterize stiffness
in this model. However, the experimental determination of the background diffusivity χ0

turns out to be quite difficult in practice. Therefore, many results will be displayed versus the
stiffness number χs.

3. Conditions for stiffness

The analysis of equations (10) and (11) shows that the plasma can be divided into three regions:

(1) An edge region where the temperature is low and the gradient is well above the
threshold, i.e. τ � 1. An approximate solution of equation (11) is

τ =
(

τ 1/2
a +

1

2

∫ ρ

0
dρg(ρ)

)2

. (13)

As the temperature increases towards the magnetic axis, the logarithmic gradient gets closer to
the threshold and the profile gets stiffer. The transition between the (non-stiff) edge and stiff
regions is smooth. By convention, it is decided to set the boundary at T = TgB (i.e. τ = 1).
Thus a non-stiff edge region exists when Ta � TgB (i.e. τa � 1).

(2) A stiff region where the temperature is high T � TgB (τ � 1), and the gradient is
above the threshold. An approximate solution when λ0 � 1 is the well known exponential
shape

τ ≈ Ceρ. (14)

Using the heat flux conservation �T = −n0χT ∂rT , it is found that for a stiff profile
∂rT = −κcT , the heat diffusivity is given by χT = �T /(n0κcT ). Thus the heat diffusivity
decreases as the temperature increases along the radial profile. This behaviour may appear
paradoxical at first sight. It results from the fact that the temperature increases faster than
its gradient, as shown by equation (10) (see also figure 1). Hence the temperature gradient
length gets closer to the threshold value when approaching the magnetic axis. It is reminded
here that the transition between the edge and stiff regions is smooth. It is decided arbitrarily
that the boundary, ρ = ρgB, between the two regions corresponds to τ = 1. For a constant
heat flux, the logarithmic derivative of the temperature, −∂rT /κcT , is a unique function of the
temperature T/TgB, as indicated by equation (10). For a given class of heat profiles, all these
curves are close to each other (see figure 1).

(3) A region where the temperature is high and its logarithmic derivative is below the
threshold. In the following, we will refer to this non-stiff region as the core region. The
solution of equation (11) is

τ = 1

λ0

∫ ρ

dρ g.

The transition between the stiff and core regions is sharp and occurs at the position where
τ = τ ′ = g/λ0. This equation defines a position ρ = ρcr and a critical temperature
Tcr = g(ρcr)TgB/λ0. Explicit expressions of ρcr and ρgB are given in appendix B. The transition
temperature depends essentially on the reference temperature TgB and the stiffness factor λ0.
It also depends on the normalized heat flux g(ρ): when the deposition profile is flatter, the stiff
region is thinner. A localized deposition profile leads to a flux g that behaves as a/r , thus
moving the location of the transition towards the axis. This transition corresponds to the point
where the turbulence vanishes (note, however, that a turbulence may propagate from unstable
to stable regions). The hot core is therefore a quiescent region (or weakly turbulent, depending
on the meaning of χ0).
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Figure 1. Logarithmic derivative of the temperature versus T/TgB for Ta/TgB = 0.5, λ0 = 0.025
and three values of the heat deposition localization (xs = 0.1, 0.3 and 0.5). The horizontal line is
the threshold.

Figure 2. Profiles of the normalized temperature T/TgB and its logarithmic derivative for
Ta/TgB = 0.5 and λ0 = 0.025. The dashed lines correspond to a stiff profile T = Taeρ (and
−R∂rT /T = κc). The vertical dotted lines are the boundaries of the ‘non-stiff’ regions τ < 1
(edge) and τ > g(ρcr)/λ0 (core).

In summary, the temperature profile is stiff in a layer rcr < r < rgB, where rgB is the
radius such that τ = 1, and rcr/a = 1 − ρcr/ρmax, where ρcr is defined above. An example is
shown in figure 2. Figure 3 gives the dependence of these radii on the edge temperature for
λ0 = 0.025.

At this point, three main conclusions may be drawn:

(a) The edge region disappears on increasing the edge temperature, i.e. when Ta � TgB. This
condition expresses that the edge is stiff when the pedestal is high enough (it comes from
the T 3/2 dependence of the diffusivity). We note that TgB does not depend on the machine
size (see equation (8)). So the difference of stiffness observed in various devices has to
be explained by means of other considerations. On increasing Ta/TgB, the hot core region
broadens, thereby reducing the width of the stiff region. For instance when Ta = 2TgB

and λ0 = 0.025, the stiff region only covers half the plasma.
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Figure 3. Stiffness layer [rcr/a, rgB/a] for λ0 = 0.025 and increasing values of the edge
temperature.
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Figure 4. Profiles of the normalized temperature T/TgB and its logarithmic derivative in a stiff
case Ta/TgB = 2.0 and λ0 = 0.001. Same conventions as in figure 1.

(b) Stiffness is controlled by the stiffness factor χs. However, the extension of the core region
depends on the relative degree of stiffness λ0 = χ0/(κcχs). In particular, there is no core
region if χ0 = 0, whatever be the value of χs. The transition temperature between the stiff
and core regions behaves as 1/λ0. For instance, for λ0 = 0.001, the temperature profile
is stiff almost everywhere. An example is shown in figure 4.

(c) A scan of the source radial width indicates that the stiff region is wider when the heat
source is more centrally localized (i.e. when the parameter xs is decreased). This comes
from the fact that at a given radius close to the axis the heat flux increases thus maintaining
−∇rT /T more easily above the threshold. The extension of the non-stiff core region is
thus reduced.

In summary, the condition for the plasma to be stiff everywhere is twofold τa > 1 and
λ0 � 1, or, equivalently, Ta > TgB and χ0 � κcχs. Peaked deposition profiles enlarge the
radial extent of the stiff region.
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4. Two term scaling law and stiff transport model

Once the heat equation has been solved for each species, the energy content and confinement
time can be calculated. Some simplification is necessary to allow a comparison with a scaling
law of energy content. It is assumed here that the model of diffusivity, equation (1) is the
same for electrons and ions, with the same threshold κc, degree of stiffness λ0 and normalized
heat flux g, but possibly different stiffness factors χs,e and χs,i. (and, therefore, different
background diffusivities to maintain λ0 at a constant value). Also, the density and the ratio of
electron to ion temperatures are supposed to be radially constant. Adding the electron and ion
heat equations eliminates the equipartition term. The resulting heat equation is the same as
before (i.e. equations (1) and (2)) except that χs is now an effective stiffness factor. Solving
in the average temperature T = (Te + Ti)/2, this effective stiffness factor appears to be

χs,eff = χs,i + (Te/Ti)
5/2χs,e

[0.5 (1 + (Te/Ti))]
5/2

. (15)

The energy content is then of the form

W = CτWgB, (16a)

where

Cτ = 1

ρmax

∫ ρmax

0
dρJτ 2/5 (16b)

and WgB is a gyroBohm energy content that is given in appendix A, equation (A.11). The
function J is J = nV ′/naV

′
a . We limit the calculation to the case of an elliptical geometry

so that J = 2r/a = 2(1 − ρ/ρmax). It is stressed that PMW is now the total additional
power. The temperature profile and the form factor Cτ are parametrized by the normalized
edge temperature Ta/TgB, the stiffness λ0 and the heat source localization xs. This energy
content includes the contribution of the pedestal. Thus, it differs from the core energy content
defined by the Confinement Database ITPA group [8]. To avoid any confusion we will call
the latter the energy content of the plasma bulk. Hence, the plasma bulk covers the three
regions (core, stiff and edge) previously defined. The edge temperature Ta is the height of the
pedestal. Following the prescription of the ITPA group, the energy content of the plasma bulk is
defined as

WEbulk = CITPAWgB. (17)

The form factor is now given by the relation

CITPA = Cτ − Ta

TgB
= 1

ρmax

∫ ρmax

0
dρJ (τ 2/5 − τ 2/5

a ). (18)

The transport model equation (1) predicts an energy content in the bulk of the form

WEbulk = 0.179CITPAχ
−2/5
s,eff κ−4/5

c M−1/5κ7/5

(
1 + κ2

2

)−2/5

ε8/5
a R3B

4/5
T q−2ν/5

a n
3/5
a,19P

2/5
MW (19)

with the same conventions as the ITPA group. Since the ITPA database is dominated by plasmas
with equal ion and electron temperatures, the effective stiffness parameter is χs,eff = χs,e+χs,i.

This scaling law is compatible with the ITPA result if the form factor CITPA depends weakly
on the edge temperature. This is obviously not true in general. It is therefore interesting to
analyse the dependence of CITPA on the edge temperature. Using the solution found above,
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Figure 5. Form factor CITPA as function of the edge temperature for three cases: strongly stiff
(λ0 = 0.001), medium stiff (λ0 = 0.05) and non-stiff (λ0 = 0.9) cases.

the form factor Cτ is decomposed in the following manner

Cτ = Cτedge + Cτ stiff + Cτcore; (20)

Cτedge = 1

ρmax

∫ ρgB

0
dρJτ 2/5, Cτ stiff = 1

ρmax

∫ ρcr

ρgB

dρJτ 2/5,

Cτcore = 1
ρmax

∫ ρmax

ρcr
dρJτ 2/5.

(21)

If the temperature profile is strongly stiff, i.e. if τa � 1 and λ0 � 1, then

Cτedge = 0, Cτcore = 0 and Cτ stiff = 2

(
5

2ρmax

)2 {
e2ρmax/5 − 2ρmax

5
− 1

}
Ta

TgB
. (22)

With the present choice of parameters, this expression reduces to

CITPA ≈ 1.2Ta

TgB
. (23)

Therefore, the form factor of a strongly stiff profile is proportional to the edge temperature,
as expected. The total energy content is then essentially determined by the pedestal height.
An extreme case λ0 = 0.001 is shown in figure 5. For a stiff profile the core confinement is
not gyroBohm unless the edge temperature Ta follows a gyroBohm scaling law. This is not
usually the case. Therefore a strongly stiff profile is incompatible with the result found by the
ITPA group.

At this point, a legitimate question is whether a non-stiff transport model that belongs
to the class of models of equation (1) fulfils a two-term separation criterion. The answer is
negative. This can be understood by using the present transport model in another extreme
situation where there is neither a stiff nor an edge region (rcr = a, τcr = τa). A simple
calculation shows that the form factor varies with edge temperature as

Cτ ITPA,core ≈ ρmax

5λ0

(
Ta

TgB

)−3/2

. (24)

This result can be tested by building an artificial case λ0 = 0.9 for which the temperature is not
stiff for Ta > TgB. As expected from equation (24), it is found that CITPA decreases strongly
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Figure 6. Variations of Cτedge, Cτ stiff , Cτcore and Cτ ITPA as functions of the normalized edge
temperature for λ0 = 0.025.

with the edge temperature (see figure 5). Hence, it does not satisfy the condition for a separation
between the pedestal and the bulk. More generally, the separation between the pedestal and
bulk is rigorous for a diffusion coefficient that depends on the temperature gradient only (i.e.
χT ∝ ∇T α). For instance, a unique electrostatic gyroBohm model, χT ∝ ∇T 3/2, satisfies this
requirement. Note that models of this kind (including the gyroBohm version χT ∝ ∇T 3/2)

are not covered by equation (1). This explains why a model based on equation (1) is not
compatible with the ITPA findings in the non-stiff limit.

In the general case, the form factor is the sum of edge, stiff and core contributions. As
mentioned before, the core contribution increases with the edge temperature whereas the edge
contribution decreases. The contribution of the stiff region is non-monotonic. It follows the
width of the stiff region. From figure 3, one expects a bell shape. The detailed dependence of
these form factors is difficult to assess in general, but can be easily determined numerically.
Some asymptotic results are given in appendix C. A ‘typical’ case λ0 = 0.025 is shown in
figure 6. It turns out that the trade-off between the edge, stiff and core regions leads to a form
factor (as defined by the ITPA–CDBM Group) that is less sensitive to the edge temperature
than in the non-stiff or very stiff cases (see the comparison in figure 5). This behaviour occurs
in spite of a profile that is stiff over a significant part of the plasma.

5. Comparison with experiment

5.1. Parameters of the transport model

Several groups have used previously a critical gradient model to analyse heat modulation
experiments in ASDEX-Upgrade and JET [19–21]. Models that were used were close but not
strictly identical to equation (1) (for instance, the dependence on safety factor was not always
included). These shots have been rerun with the same model of equation (1). The aim of this
section is not to fully assess the transport model of equation (1) with respect to experiment
but rather to determine the range of variation of the parameters of χ0, χs and κc deduced from
existing experiments.

Electron stiffness is first investigated here, summarizing the results of experiments
in ASDEX-Upgrade, JET, FTU and TORE SUPRA. In ASDEX-Upgrade (R = 1.65 m,
a = 0.5 m), dedicated experiments were performed in L-mode with electron cyclotron resonant
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Table 1. Values of χs,e, χ0,e, κc,e and λ0,e in JET, ASDEX-Upgrade, FTU and TORE SUPRA.
All pulses are in L-mode except JET #58148 (H-mode) and ASDEX-Upgrade #16776–16779
(H-mode).

Shot χ0,e χs,e κc,e λ0,e

JET 55809 0.7 4 5 0.035
JET 55804 1.2 1.5 5 0.160
JET 58148 0.8 3 5 0.053
JET 53822 0.5 1.5 4.8 0.069
JET 55805 0.5 6 5 0.017
JET 55802 0.5 5 5 0.02
AUG 14793,94 0.01 0.13 3 0.026
AUG 17788,89 0.01 0.13 8 0.010
AUG 10591 0.85 0.99 6 0.143
AUG 12935 0.28 0.14 4 0.5
AUG 7806 1.79 1.4 7 0.183
AUG 16776,77,79 0.05,0.07,0.18 0.2,0.2,0.1 4.5,4.3,4.5 0.056,0.081,0.4
FTU 0.7 0.5 7.5 0.187
TS 29214 0.05 1.42 3 0.022

heating (ECRH) modulation. The ECRH power was deposited at two radial positions in such
a way that the total power was constant. This procedure allowed varying ∇Te/Te over a large
range of values while maintaining a constant edge temperature Ta. The modulated profiles
were modelled as given in equation (24) and led to values of χ0,e, χs,e and κc,e [20]. A similar
analysis was done in [19] with another set of experiments.

In JET (R = 3 m, a = 1 m), experiments using modulated ion cyclotron resonance
frequency (ICRF) heating with a steady background of neutral beam injection (NBI) heating
have been done in L-mode [21] and H-mode [30]. A mode conversion scheme was used with
18% of He3 in D plasmas (PICRF = 3.7 MW). Electrons are directly heated when using this
ion cyclotron heating scheme, with good localization properties. The position of the mode
conversion layer was changed and the NBI power was varied from 2 to 9 MW in order to cover
a large range of temperature gradients. The three parameters χ0,e, χs,e and κc,e were found by
fitting both the steady and modulated profiles [21].

TORE SUPRA data (R = 2.38 m, a = 0.72 m) comes from modulated ECH experiments
in helium plasmas, carried out with one gyrotron providing power deposition at mid-radius.
The whole gyrotron power was turned on/off at a frequency of 25 Hz. No other additional
heating was applied during the modulation. The three parameters χ0,e, χs,e and κc,e have been
found by fitting both the steady and modulated profiles.

In FTU (R = 0.96 m, a = 0.28 m), a series of 9 ECRH heated plasmas were used. The
power was not modulated in these experiments, but the heating location was changed. A least
squares minimization technique was used to obtain the parameters χ0,e, χs,e and κc,e.

All these plasmas have been analysed with the same model equation (1), with ν = 3
2 .

The principal difficulty is the determination of the background diffusivity χ0,e, given the
experimental uncertainties (one reason could be the ad-hoc choice of an electrostatic gyroBohm
scaling for the background diffusivity). A sensitivity study of the model was made, as illustrated
for shot AUG 14793 (see table 1). This discharge is heated centrally with ECRH only.
A ±10% power modulation was used to study heat pulse propagation, as described in [20].
A quantitative sensitivity study is done by comparing the time-averaged power balance and
heat pulse diffusivities with the respective values yielded by the model. Figure 7 shows the
results in which the nominal values of χs and κc for these shots have been used, as well as
values for χs which deviate by ±30%. The sensitivity to κc is weaker than that to χs in these
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Figure 7. Comparison of experimental power balance and heat pulse diffusivities with the
corresponding quantities yielded by the model at three different of χs values (nominal value and
values that deviate by ±30% from nominal).
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Figure 8. Electron stiffness χs,e versus threshold κc,e deduced from modulation experiments in
ASDEX-Upgrade, JET and TORE SUPRA, and from a scan of the position of ECRH heating
in FTU.

conditions and it is believed that the method described in [20] yields a more precise value
for κc than can be inferred by adjusting the model. It must be underlined that, of course,
the Te profiles for the cases shown here exhibit only very small deviation compared with the
experimental profile. These deviations are difficult to quantify. The quantities χPB and χHP

are clearly more sensitive. This study indicates that for such discharges χs and κc can be
determined with a precision of about ±30%. This value is much smaller than the range of
variation given in table 1. This method also indicates that the q3/2 dependence of the present
critical gradient model is adequate for these discharges. Using q or q5/2 gives, respectively,
flatter and steeper slopes for both χPB and χHP, which are clearly outside of the error bars.

The result of this multi-machine comparison is shown in table 1 and figure 8. The
thresholds range between 3 and 8, which are typical values expected for ITG/TEM modes.
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Figure 9. Comparison of TgB with Te profiles in ASDEX-Upgrade (L-mode) in Ohmic and ECRH
heated plasma. Left panel: Ip = 400 kA, PECRH = 0 (Ohmic), 0.35 and 1.35 MW, no sawtooth.
Right panel: Ip = 1 MA, PECRH = 0 (Ohmic), 0.8 and 1.6 MW, sawtoothing. Dashed horizontal
lines indicate TgB given by equation (8), while horizontal solid lines are the values of TgB calculated
with the values of stiffness parameter and threshold deduced from the ITPA two term scaling law
equation (29).

The range of variation of the stiffness parameter χs,e is found to be much wider, as illustrated
by figure 8. It lies between 0.15 and 6. The largest values are obtained in JET in plasmas with
significant ion heating (χs,e ∼ 3–6). This variability is surprising, as one would have expected
a much smaller range of variation on the basis of simple theoretical considerations. In the
JET set of experiments, for example, most plasma parameters are the same, the only variations
were performed in the amount of NBI heating and the location of the RF power deposition.
One possible explanation for the large variation in the stiffness parameter χs,e would be a
decrease of χs,e with Te/Ti. However, an analysis of the data indicates this explanation cannot
be reconciled with all the points of the database. It seems that the parameter −R∇Ti/Ti is
better correlated with the variation of χs,e. This suggests a coupling between electron and
ion turbulent transport. Further work is needed to confirm this correlation, which requires ion
temperature profile measurements (not available for all experiments here).

Ion stiffness is less documented than electron stiffness because the ion temperature is
difficult to measure in modulation experiments with the appropriate time resolution. This
question has nevertheless been investigated in DIII-D, JET and ASDEX-Upgrade by analysing
the steady ion temperature profiles in various regimes [5, 6, 31]. It was found in JET and
ASDEX-Upgrade that κc,i ranges between 5 and 8. The scatter is reduced when accounting
for the dependence on Te/Ti and the E × B velocity shear. For Te = Ti and low shear rate,
the value of the threshold is κc,i = 5.3, which is close to the value found for electrons in
JET. The stiffness factor was not obtained in this case, since its value is difficult to obtain
with steady-state profiles. In fact, the values of the threshold were obtained by assuming that
the profiles are stiff enough to be close to the marginal profiles between ρ = 0.2 and 0.6.
Modulation experiments done at JET are currently under analysis to clarify this issue.

5.2. Conditions for stiffness

The transport model equation (1) can be tested in several ways. One is a direct inspection of
the temperature profiles. A set of electron temperature profiles coming from ASDEX-Upgrade
is shown in figure 9 in Ohmic and ECH L-mode plasmas at Ip = 400 kA and Ip = 1 MA [20].
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Figure 10. Experimental ECE Te profiles for two JET discharges with on-axis and off-axis ICRH
heating. 55802 (red/grey): 3.6 MW ICRH on-axis, 3.2 MW NBI; 55809 (black): 3.7 MW ICRH
off-axis, 9.1 MW NBI. The reference temperature is indicated in the plot, the lines are the borders
between edge, stiff and core regions (compare with figure 9). As expected, the pulse with on-axis
heating has a wider stiff region.

Profiles obtained in JET plasmas when combining mode conversion ICRF and NBI heat-
ing are shown on figure 10 [21]. The scaling temperature TgB is indicated on each profile.
A change of slope occurs in general when Te ≈ TgB, except for plasmas in ASDEX-Upgrade
at Ip = 1 MA, where equation (8) predicts a value of TgB that is too large. Interestingly, using
a value of TgB calculated using the values of χs and κc deduced from the two-term scaling law
(see next section, equation (29)) is in better agreement with experiment. We note also that
the change of slope is sharper than expected (the transition at Te ≈ TgB is a smooth one). At
this point, it is stressed that other reasons may explain the different behaviour in the edge: for
instance a change of the underlying instability, the influence of the scrape-off layer or an
effect of collisionality.

Another interesting feature is the change of gradients that occurs in JET core plasmas.
No sawtooth is observed in the plasmas shown in figure 10. So this change of slope may
correspond to the transition between stiff and core regions that is expected when the gradient
length crosses the stability threshold. Note that the ASDEX-Upgrade plasmas at Ip = 1 MA
shown in figure 9 (right panel) exhibit sawteeth, which flatten the temperature profile. Thus
the change of slope at ρ = 0.45 probably corresponds to the q = 1 magnetic surface, masking
a possible transition from stiff to non-stiff regions. The transition from the stiff region to the
edge region is believed to be at ρ ≈ 0.8 for the Ohmic case and at ρ ≈ 0.9 for the case
PECRH = 1.6 MW. This is in agreement with the model prediction that the stiff region extends
further out with increasing temperature.

Another analysis consists of drawing −R∇Te/Te versus Te/TgB. For a stiff profile, this
curve is expected to be universal at a given value of λ0,e, as shown by equation (10). The
exercise has been done in ASDEX-Upgrade (figure 11) and in JET (figure 12). These figures
exhibit some similarity with figure 1. The main features predicted by the model equation (1)
are recovered. In particular, the region where the gradient length is close to the threshold is
wider when the heat deposition profile is more localized in the core. This trend is observed
when comparing ECRH with Ohmic heating (figure 11), or when comparing off-axis with
on-axis heating in JET plasmas (see figure 12).
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Figure 11. −R∇ Log Te/κc versus Te/TgB in ASDEX-Upgrade.

Figure 12. −R∇ Log Te/κc versus Te/TgB in JET.

5.3. Comparison with a two term scaling law

The ITPA group has proposed two scaling laws for the energy content of the plasma bulk
[8]. They correspond to two different hypotheses for the physics underlying the confinement
in the pedestal region. The first one assumes that the edge confinement is controlled by thermal
conduction with some degradation with β, while the second relies on an MHD β limit within
the pedestal region. In terms of accuracy, these two models are equivalent. We will analyse in
detail the model with MHD limited edge, because it corresponds to a confinement in the bulk
that is gyroBohm and electrostatic, i.e. consistent with the assumptions underlying the model
used here. More precisely the scaling law for the bulk region is

WITPA,bulk = 0.15M0.34κ−0.34ε1.96
a R2.32I 0.68

p,MAB0.13
T n0.59

a,19P
0.42
MW . (25)
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Figure 13. Contour lines of the form factor CITPA versus the normalized edge temperature and
degree of stiffness λ0.

The corresponding normalized confinement time BτE scales as ρ−3
∗ β0.05, where ρ∗ is the

normalized gyroradius and β is the ratio of plasma kinetic pressure to magnetic pressure. This
scaling is close to an electrostatic gyroBohm scaling law. Using the relation

qa = 5
1 + κ2

2

a2B

RIp,MA
, (26)

one finds

WITPA,bulk = 0.45M0.34κ−0.34

(
1 + κ2

2

)0.68

ε3.32
a R3q−0.68

a B0.81
T n0.59

a,19P
0.42
MW (27)

to be compared with the equation (19) when using the expression of τgB given by
equation (A.11)

Wbulk = 0.179CITPAχ
−2/5
s,eff κ−4/5

c M−1/5κ7/5

(
1 + κ2

2

)−2/5

ε8/5
a R3q−2ν/5

a B
4/5
T n

3/5
a,19P

2/5
MW. (28)

The exponents of power, density, magnetic field, safety factor and major radius are similar
in equations (27) and (28). Note that the agreement for the safety factor comes from the choice
ν = 3

2 . Some significant differences between equations (27) and (28) appear in the exponent
of the inverse aspect ratio εa = a/R, elongation and mass, thus suggesting a dependence of
the stiffness parameter on those quantities. Part of the difficulty comes from the dependence
on elongation that is not a power law. One way to make an estimate is to assume that κ is
close to 1, so that (1 + κ2)/2 behaves as κ . Putting all differences in the stiffness factor,
it is found that the two scaling laws agree if χs,eff behaves as κ1.7M−1.3ε−4.3

a . While
the variations with elongation and mass number may be possibly reconciled with physics
considerations, it is difficulty to justify such a strong variation with the inverse aspect ratio.
Assuming a ‘typical’ case κ = 1.6, εa = 1

3 and M = 2, it is found that equation (27) matches

equation (28) if χ
2/5
s,effκ

4/5
c = 2.20CITPA. The contour lines of CITPA are shown in figure 13 for

a large domain of variation of the parameters λ0 and Ta/TgB. It is found that CITPA remains
in the interval 1–3. Choosing κc ≈ 5, one finds that χs,eff should be in the range 0.3–4.5.
Choosing a medium value CITPA = 2.0 and κc ≈ 5 yields a stiffness factor χs,eff ≈ 1.6. It is
reminded here that χs,eff is an effective stiffness factor. For equal temperatures, χs,eff is the
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Figure 14. Pedestal temperature Ta versus the scaling temperature TgB. The lines indicate the
identities Ta = 0.5TgB (- - - -), Ta = TgB (——) and Ta = 2TgB (· · · · · ·).

sum of electron and ion stiffness parameters, χs,eff = χs,e + χs,i. Thus χs,e and χs,i should be
of order unity. The choice χs,eff ≈ 1.6 leads to the following ‘practical’ expressions of the
scaling temperature TgB and the energy content of the plasma bulk.

TgB,keV ≈ 0.43

(
1 + κ2

2κ

)−2/5

M−1/5ε−2/5
a q−3/5

a B
4/5
T n

−2/5
a,19 P

2/5
MW (29)

and

Wbulk ≈ 0.081M−1/5κ7/5

(
1 + κ2

2

)−2/5

ε8/5
a R3q−3/5

a B
4/5
T n

3/5
a,19P

2/5
MW. (30)

The ITPA database has been used to compare the pedestal height Ta to TgB, given by the
expression (29). The result is shown in figure 14. It is found that Ta ranges between 0.5TgB

and 2TgB. However this result must be considered with caution since the stiffness factor could
depart significantly from the value χs,eff ≈ 1.6 chosen here. The trend is that the ratio Ta/TgB is
greater in large devices JT-60U and JET than in the medium size devices DIII-D and ASDEX-
Upgrade. This is an interesting feature in view of figure 3. Indeed, the stiff region was found to
reach its maximum size for Ta ≈ TgB and decreases when Ta/TgB increases. This may explain
why large devices are claimed to be less stiff (or not stiff at all). In spite of a higher pedestal
that makes the edge stiffer, the width of the core region, which is sub-critical, could be larger
in those plasmas, in particular in the H-mode.

A pending question is the compatibility of the two-term scaling law with the values of
stiffness factor deduced from modulation experiments (table 1). This is a delicate point since
most of these plasmas are in L-mode, with ratios Te/Ti different from 1, whereas the ITPA
database deals with H-mode plasmas, with Te ≈ Ti. It is expected that the core physics is
the same in L- and H-modes. Similar values of λs,e were found in the L-mode (#55809) and
H-mode (#58148) plasmas on JET, thus providing some support to this assumption. The range
of stiffness factor χs,eff that is compatible with the global scaling law is 0.3–4.5. It is reminded
here that χs,eff = (Te/Ti)

5/2χs,e + χs,i. Regarding the values of stiffness factor obtained from
heat wave analysis, the highest values χs,e = 3–6 obtained at JET (and for one pulse of
ASDEX-Upgrade) appear too large by a factor 1.5–2.5, assuming χs,e = χs,i. A sensitivity
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study indicates that the heat wave analysis becomes less sensitive to the value of χs,e at high
χs,e values. Moreover it can be noted that a significant scatter of points is present in figure 8,
which is mainly due to the fact that the simple model assumed here does not always allow a
perfect reproduction of the data, and some trade off in the fit of the various quantities often
needs to be accepted. Taking also into account the various simplifications introduced into this
analysis, we consider that these results are encouraging.

Finally, it is interesting to compare the present range of stiffness factors with theoretical
expectations. The IFS–PPPL model [12] is close to the form of equation (1) when simplified,
i.e. choosing Zeff = 1, r/R � 1, R/Ln = 0,

χTi = 12

1 + s0.84

(
q

Te

Ti

)1.1
csρ

2
s

R

(−R∂rT

T
− κc

)
H

(−R∂rT

T
− κc

)
.

We note that the exponent of q is ν = 1.1. Choosing Ti = Te, and a magnetic shear s = 1 one
gets χs,i ≈ 6. An estimate of χs,e is harder to provide, since it depends on collisionality.

The GLF23 model [13] is a more sophisticated model, which uses a calculation of growth
rates. So it cannot be easily reduced to an expression of the form of equation (1). However it
was mentioned in the original paper that the stiffness factor is similar to the IFS–PPPL model.
A renormalized model was proposed recently [32] where the stiffness factor of ITG/TEM driven
transport was reduced by a factor 3.7. Using the IFS-PPPL value, this leads to an estimate
χs,i ≈1.6. The Weiland model is also based on a comprehensive calculation of growth rates.
Numerical scans indicate that χs,i ≈ 1 and χs,e ≈ 0.3. Finally several theoretical models and
turbulence simulations were compared in the CYCLONE group [22]. The results from the
LLNL gyrokinetic code were fitted by the expression

χTi = 5
csρ

2
s

R

(−R∂rT

T
− κc

)
H

(−R∂rT

T
− κc

)
,

where κc = 6. The simulations were done at fixed ratio of density to temperature gradient
length Ln/LT = 3.1, with Zeff = 1. We note that there is no q dependence in this expression,
i.e. χs,i = 5/qν . Since the simulations were done at q = 1.4, one gets an estimate χs,i ≈ 3. In
summary, it is found that χs,i ranges between 1 and 6 depending on the model. The electron
stiffness factor is less documented. It is typically three times smaller that the ion stiffness.
We stress here that these values are purely indicative, as these models exhibit rather complex
parametric dependences. Nevertheless, we can conclude that the range of variation of the
stiffness factor found in the literature is quite large, and compatible with both our experimental
results and the value deduced from the ITPA scaling law.

6. Summary

Using the critical gradient transport model

χT = χsq
ν T

eB

ρs

R

(−R∂rT

T
− κc

)
H

(−R∂rT

T
− κc

)
+ χ0q

ν T

eB

ρs

R
,

it is found that:

(1) Choosing an exponent ν = 3
2 , the proximity of a profile to a marginally stable state

(stiffness) is then characterized by two numbers for each species for a given heat deposition
profile: the degree of stiffness λ0 = χ0/κcχs, and the normalized edge temperature Ta/TgB.
Here Ta is the edge temperature and the reference temperature TgB satisfies the condition

�T (a) = χsκ
2
c qν

a naTgB
TgB

eB

ρs0

R2
,
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where �T (a) is the thermal flux at the edge. The plasma is characterized by three regions:
a core region that is subcritical, an edge region where the temperature logarithmic gradient
is above the threshold, and a stiff region where the profile is close to marginal stability. The
respective sizes of these three regions depend on the degree of stiffness λ0 and the normalized
edge temperature Ta/TgB. The width of the central (stiff ) region becomes wider when λ0

decreases. When the normalized edge temperature Ta/TgB increases, the edge region shrinks
and ultimately disappears. However the core (subcritical) region becomes wider, leading to a
smaller intermediate stiff region (figure 3).

(2) The energy content of the plasma bulk (without the pedestal contribution and for an
elliptical geometry) is

Wbulk = 0.179CITPAχ
−2/5
s,eff κ−4/5

c M−1/5κ7/5

(
1 + κ2

2

)−2/5

ε8/5
a R3B

4/5
T q−3/5

a n
3/5
a,19P

2/5
MW.

In this formula, the stiffness factor χs,eff is an effective value χs,eff = χs,e + χs,i, where χs,e

and χs,i are the electron and ion stiffness factors (the threshold κc and the degree of stiffness
λ0 are supposed to be the same for electrons and ions). The form factor CITPA depends on
the normalized edge temperature Ta/TgB and the degree of stiffness λ0. It decreases with the
normalized edge temperature for non-stiff profiles. On the contrary it increases linearly with
the edge temperature for stiff profiles. In the general case, CITPA is a sum of the contributions of
stiff and non-stiff regions, which behave in opposite ways. The two-term scaling law proposed
by the ITPA–CDBM Group corresponds to intermediate values of λ0, typically between 0.01
and 0.1, which indeed is approximately the range of values observed in the heat modulation
experiments for electrons (table 1). Choosing this range of stiffness factors and varying the
edge temperature in a wide domain, it is found that 1 < CITPA < 3.

(3) This model has been applied for electrons at JET, ASDEX-Upgrade, TORE SUPRA
and FTU (mainly modulation experiments in the electron channel). The threshold was found
to lie in the expected domain for ITG/TEM modes. On the other hand, the stiffness parameter
χs,e was found to cover a wide range of variation, i.e. it ranges between 0.15 and 6.

(4) A comparison between this transport model and the ITPA two-term scaling law
leads to the relation χ

2/5
s,effκ

4/5
c = 2.2CITPA. Choosing CITPA in the range 1–3 and κc ≈ 5,

one finds that χs,eff should be in the range 0.3–4.5. The medium value CITPA = 2.0
yields a stiffness parameter χs,eff ≈ 1.6, i.e. a value of the order of unity for each
species. The range χs,eff ≈ 0.3–4.5 is compatible with the results found in JET, ASDEX-
Upgrade, TORE SUPRA and FTU (χs,e ≈ 0.15–6), given the various sources of uncertainty.
Also it is compatible with theoretical predictions. A brief survey of the literature yields
an ion stiffness number χs,i that ranges typically between 1 and 6. Although electron
stiffness is less documented, the stiffness number χs,e ranges typically between 0.3 and 2
(χs,e ≈ 0.3–2).

7. Conclusion

A critical gradient transport model that covers the basic properties of turbulent transport has
been used extensively. This model is parameterized by three scalars for each species which
have to be deduced from experiment. It also provides a quantitative criterion to get stiff
profiles, thus providing a way to assess quantitatively this controversial issue. The plasma
covers three regions: a core region that is subcritical, an edge region where the temperature
logarithmic gradient is above the threshold and a stiff region in between, where the profile is
close to marginal stability. The respective sizes of these three regions depend on the degree
of stiffness and the edge temperature normalized in an appropriate way. When the normalized
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edge temperature increases, the edge region shrinks and ultimately disappears. However the
core (subcritical) region becomes wider, leading ultimately to a favourable situation where
the radial extent of the stiff region gets smaller. The existence of three regions in the plasma,
one only being stiff, explains why a transport model with a threshold can still be compatible
with the two term scaling law developed by the ITPA–CDBM Group. This model has been
applied to analyse a variety of experiments using mostly electron heat modulation on JET,
ASDEX-Upgrade, TORE SUPRA and FTU. The thresholds are found to be in the expected
domain for ITG/TEM modes. However, it has been found that the range of variation of the
stiffness parameter is very large. This wide range is compatible with the broad ensemble
of values predicted by various theories. On the other hand, it is larger than the domain of
variation estimated from the ITPA–CDBM two term scaling law. This difference appears to be
compatible with the simplifications underlying this transport model, and also with the various
uncertainties that are encountered in determining the model’s parameters from modulation
experiments and global scaling laws.

Thus these results can be considered as encouraging. Still further experiments are needed
to better determine the parametric dependences of the threshold and, more importantly, of
the stiffness factor. This study suggests a dependence on the logarithmic gradient of the ion
temperature. This raises the question of the coupling between electron and ion channels, or
of the stability between ITG and TEM branches. This coupling may lead to a dependence of
the heat flux of one species on the temperature gradient length of another species, in addition
to the temperature itself. The clarification of this point will require further experiments in a
variety of electron and ion heating scenarios. Also the value of the stiffness factor depends
sensitively on the choice of scaling that is done with respect to the safety factor and geometrical
factors. The latter point is illustrated by the difference between the two term global scaling
law and the present model in terms of shaping and aspect ratio parameters. Regarding this
question, changing the profile of the safety factor would be useful, for instance by generating
a non-inductive part of the current. The last issue is the nature and scaling of the background
diffusivity that plays an important role, because it determines the width of the non-stiff core
region. Reducing the uncertainty in this parameter would allow a more reliable comparison.
Also the present model should be used more extensively in H-mode plasmas, to be compared
directly with the ITPA database.

Appendix A. Normalization of the heat equation

The heat flux is linked to the gradient by the Fourier Law

�T = −nχT ∂rT . (A.1)

It is also the radial integral of the heat source Pheat

�T = 1

〈|∇r|2〉V ′

∫ r

0
dr V ′Pheat(r), (A.2)

where

V ′ = 2πψ ′
∫ 2π

0

dθ

B · ∇θ
. (A.3)

We now solve the heat equation (A.2) with the transport model, equation (1). It is convenient
to introduce a normalized spatial coordinate

ρ = 5

2
κc

a − r

R
(A.4)
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(the magnetic axis is located at ρ = ρmax = 5κca/2R and the edge at ρ = 0, also
ρ/ρmax = 1 − r/a). The parameter

λ0 = χ0

κcχs
, (A.5)

characterizes the relative degree of stiffness and is supposed to be smaller than 1. Finally we
define a normalized temperature

τ =
(

T

TgB

)5/2

(A.6)

and a normalized heat flux g(ρ) = G(r)/G(a) with

G(r) = 1

n(r)[q(r)]ν〈|∇r|2〉V ′(r)

∫ r

0
dr V ′(r)Pheat(r). (A.7)

The relation

�T (a) = χsκ
2
c qν

a naTgB
TgB

eB

ρs,gB

R2
, (A.8)

defines the temperature TgB. The flux �T (a) is equal to the heating power P divided by a
surface S = Cs2πR2πa; qa is the edge safety factor and na the edge density. The shape factor
Cs is defined as

Cs = 〈|∇r|2〉r=aV
′

a

2πR2πa
. (A.9)

For an elliptical geometry, 〈|∇r|2〉 = (1 + κ2)/2κ2, V ′ = 2πR2πκr and Cs = (1 + κ2)/2κ ,
where κ is the elongation.

The temperature TgB exhibits the usual gyroBohm scaling. It will play an important role
in this calculation. It may be recast in a more convenient way when the geometry is elliptical

TgB,keV = 1.89

(
1 + κ2

2κ

)−2/5

χ−2/5
s κ−4/5

c M−1/5ε−2/5
a q−2ν/5

a B
4/5
T n

−2/5
a,19 P

2/5
MW. (A.10)

We also define a reference gyroBohm energy content WgB

WgB(MJ) = 3naTgBV

P
= 0.179Cshχ

−2/5
s κ−4/5

c M−1/5R3ε8/5
a q−2ν/5

a B
4/5
T n

3/5
a,19P

2/5
MW. (A.11)

The shaping factor Csh is Csh = CvC
−2/5
s where the volume form factor Cv is such that

V = Cv2πRπa2. In elliptical geometry Cs = (1 + κ2)/2κ and Cv = κ , so that
Csh = κ7/5((1 + κ2)/2)−2/5. The units are: length in metre, BT in Tesla, density in 1019 m−3

and power in MW. εa = a/R is the inverse aspect ratio. As an illustration, the values κc = 5
and εa = 1

3 (i.e. ρmax = 5) will be chosen in the following. Typical values are χ0 ≈ 0.1,
χs ≈ 1 and κc = 4–6. The normalized ratio λ0 = χ0/κcχs is therefore a small number. The
value λ0 = 0.025 is chosen as an example in this paper. With the above normalization, the
heat law becomes particularly simple (τ ′ = ∂ρτ )

τ ′
(

τ ′

τ
− 1

)
H

(
τ ′

τ
− 1

)
+ λ0τ

′ = g. (A.12)

Appendix B. Analytic solution for constant or exponential flux

If the heat flux g(ρ) is a constant (=1), the solution of equation (11) is analytic, i.e. using the
change of variable cosh(u) = (1 − λ0)

2(τ/2) + 1.
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Above the threshold. 0 < ρ < ρcr, τa < τ < 1/λ0

ρ = F(τ) − F(τa),

F (τ) = 1

1 − λ0
Log

{
1 + (1 − λ0)

2 τ

2
+ (1 − λ0)

[
(1 − λ0)

2 τ 2

4
+ τ

]1/2
}

+

[
(1 − λ0)

2 τ 2

4
+ τ

]1/2

− (1 − λ0)
τ

2
, (B.1)

ρcr = − 1

1 − λ0
Log(λ0) + 1 − F(τa), (B.2)

ρgB = F(1) − F(τa). (B.3)

Approximate expressions of the function F are the following

τ � 1,
F (τ) ≈ Log(τ )

1 − λ0
; τ � 1, F (τ) ≈ 2τ 1/2.

Below the threshold. ρ > ρcr, τ > 1/λ0

τ = 1 + ρ − ρcr

λ0
. (B.4)

If the heat source is exponential g(ρ) = exp[(1−λ0)ρ], one may make the change of function

τ = θe(1−λ0)ρ; τa = θa. (B.5)

Above the threshold, the function θ is then solution of the equation

θ ′2 + θ(1 − λ0)θ
′ − gθ = 0. (B.6)

This equation is close to equation (12). Its solution is

ρ = G(θ) − G(θa), G(θ) = F(θ) + (1 − λ0)θ. (B.7)

The transition between the stiff and core region occurs when θ = 1/λ0, i.e. at the position

ρcr = − 1

(1 − λ0)
Log(λ0) +

1

λ0
− G(θa). (B.8)

Note that this value is much larger than in the constant g case. This confirms that a more
peaked heating source induces a stiffer profile. The solution in the core region is

τ = 1

1 − λ0

(
1

λ0
g(ρ) − g(ρcr)

)
. (B.9)

Appendix C. Asymptotic expressions of the edge, core and stiff region contributions to
the confinement

Edge region. The edge contribution, which corresponds to τa < τ < 1, can be approximated
by the expression (assuming a small radial extend in the edge so that g ≈ 1 and J ≈ 2)

Cτedge = 1

ρmax

∫ 1

τa

dτ τ−1/10 = 10

9ρmax

(
1 − τa

9/10
)
. (C.1)

The expression (C.1) can be recast as

CITPA,edge ≈ 10

9ρmax

{
1 −

(
Ta

TgB

)9/4

− 9

5

Ta

TgB
+

9

5

(
Ta

TgB

)1/2
}

. (C.2)

It is interesting to note that this expression depends sensitively on the edge temperature. The
reason is that the transport model is a nonlinear function of the temperature, thus leading to
some profile resilience, even if there is no threshold involved.
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Core region. An approximate expression can be found assuming g ≈ a/r ,

CITPA,core ≈
( r0

a

)2
∫ ∞

0
du e−u

{[
τ0 +

ρmax

2λ0
u

]2/5

− τ 2/5
a

}
. (C.3)

When there exists a stiff region, one has τcr ≈ a/(rcrλ0) and the pedestal contribution is
negligible. The core contribution to the form factor is then an increasing function of the edge
temperature.

Stiff region. In the general case, the profile is stiff within a layer. The contribution of a stiff
layer [ρcr, ρgB] (temperature [τcr, 1]) is

Cτ stiff = 2

(
5

2ρmax

)2 {[
2

5
(ρmax − ρcr) + 1

]
τ 2/5

cr −
[

2

5

(
ρmax − ρgB

)
+ 1

]}
. (C.4)

In presence of edge and core regions τcr = gcr/λ0 where gcr is the normalized heat flux at the
transition to the core region. Thus, this contribution varies as the width ρcr − ρgB of the stiff
region. When the edge temperature increases, the edge non-stiff region disappears and this
width increases. It then shrinks because the core region broadens.
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