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Although 11-ketotestosterone (11KT) and testosterone (T) are major androgens in both
teleosts and humans, their 5a-reduced derivatives produced by steroid 5a-reductase
(SRD5A/srd5a), i.e., 11-ketodihydrotestosterone (11KDHT) and 5a-dihydrotestosterone
(DHT), remains poorly characterized, especially in teleosts. In this study, we compared the
presence and production of DHT and 11KDHT in Japanese eels and humans. Plasma
11KT concentrations were similar in both male and female eels, whereas T levels were
much higher in females. In accordance with the levels of their precursors, 11KDHT levels
did not show sexual dimorphism, whereas DHT levels were much higher in females. It is
noteworthy that plasma DHT levels in female eels were higher than those in men. In
addition, plasma 11KDHT was undetectable in both sexes in humans, despite the
presence of 11KT. Three srd5a genes (srd5a1, srd5a2a and srd5a2b) were cloned
from eel gonads. All three srd5a genes were expressed in the ovary, whereas only both
srd5a2 genes were expressed in the testis. Human SRD5A1 was expressed in testis,
ovary and adrenal, whereas SRD5A2 was expressed only in testis. Human SRD5A1,
SRD5A2 and both eel srd5a2 isoforms catalyzed the conversion of T and 11KT into DHT
and 11KDHT, respectively, whereas only eel srd5a1 converted T into DHT. DHT and
11KDHT activated eel androgen receptor (ar)a-mediated transactivation as similar fashion
to T and 11KT. In contrast, human AR and eel arb were activated by DHT and11KDHT
more strongly than T and 11KT. These results indicate that in teleosts, DHT and 11KDHT
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may be important 5a-reduced androgens produced in the gonads. In contrast, DHT is the
only major 5a-reduced androgens in healthy humans.
Keywords: DHT, 11KDHT, androgen receptor, 5a-reductase, testosterone
INTRODUCTION

Androgens are sex steroid hormones that play a role in various
physiological processes via pathways involving the androgen
receptor (AR) (1). Testosterone (T) is the most important
androgen in various animal species. It is produced from
cholesterol in a series of steps by cytochrome P450
hydroxylases and hydroxysteroid dehydrogenases (HSDs)
(Figure 1) (2, 3). Although T is able to strongly activate AR-
mediated transactivation, it is converted into a more potent
androgen, 5a-dihydrotestosterone (DHT), by steroid 5a-
reductases (SRD5A) in steroidogenic tissues and peripheral
tissues. Among the five human SRD5A genes, SRD5A1 and
SRD5A2 play important roles in DHT production in gonads and
peripheral tissues. SRD5A2 is strongly expressed in male tissues,
including prostate and epididymis for producing DHT during
development (4). Therefore, mutations of the SRD5A2 gene
cause 46, XY disorders of sex development, resulting from low
DHT production (5–8). SRD5A1 mainly plays roles in the
production of neurosteroids involved in anxiety and sexual
behavior (4). It also has activity in conversion of T into DHT,
although to a lesser extent than that of SRD5A2 (9). In fact,
Srd5a1 KO mice showed the abnormalities in these behaviors
(10–12), and also partial feminization of the male skeleton (13).

In teleosts, 11-ketotestosterone (11KT), member of the 11-
oxygenated class of androgens, is a major active androgen mainly
produced in gonads (14, 15). It is involved in sex differentiation
(16), spermatogenesis (17, 18), and oocyte growth (19–21).
Although 11KT was regarded as a teleost-specific androgen, it
is also a major androgens in some mammals, such as humans,
non-human primates, pigs and guinea pigs (22–25). Although
11KT strongly activates both mammalian and teleostan AR/ar
(22, 23, 26–29), it is able to be converted into the even more
active form, 11-ketodihydrotestosterone (11KDHT), by SRD5A1
and SRD5A2 (30). 11KDHT is produced in prostate cancer cells
(30, 31), although it is unclear whether it is also produced in
n.org 2
healthy humans. Furthermore, although srd5a genes are present
in various teleost species (4, 32, 33), details of DHT and 11KDHT
production remained unclear in most species. In this study, we
compared the profiles, biosynthesis and functions of DHT and
11KDHT in humans and eels, as representatives of mammals
and teleosts that possess abundant classical androgens and 11-
oxygenated androgens in both sexes (18, 22–24, 34–36).
MATERIALS AND METHODS

Human and Eel Blood Samples
The research protocol using human materials was approved at
the ethical committee of Asahikawa Medical University and
University of Fukui. Blood samples were collected in collection
tubes containing heparin from the median cubital vein of 2
healthy women volunteers (obtaining informed consent) at
University of Fukui Hospital in 2007. Plasma was separated by
centrifugation at 1000g for 5 minutes. Other plasma samples
were purchased from AllCells (Alameda, CA, USA) and
ProMedDX (Norton, MA, USA). All plasma samples were
collected under IRB-approved collection protocols and subject
informed consent. The donors were 5 men (aged 32.2 ± 5.5 y)
and 5 women (aged 29.2 ± 6.3y).

Animal experiments were performed using protocols
approved by the Animal Care and Use Committee of
Kumamoto University (Approval Number: A2020-014). All
experiments were performed in accordance with the relevant
guidelines and regulations. The sexes of juvenile eels were
artificially directed by feeding a commercial diet supplemented
with or without E2 (37). Male and female eels (>250g body
weight) were accumulated for a month to artificial sea water.
After accumulation, sexual maturation was induced by the
administration of recombinant luteinizing hormone and the
crude extracts of commercial salmon pituitary to male and
female eels, respectively, as described (38, 39). Blood samples
FIGURE 1 | Pathways for producing 11-oxygenated androgens under physiological conditions in humans and teleosts. Human steroidogenic enzymes are indicated
by capital letters, whereas teleost counterparts are indicated by small letters.
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were collected from the animals using a heparinized syringes and
needles, and plasma was separated by centrifuging the blood at
1000g for 5 minutes.

Cell Culture, Transfection and
Luciferase Assay
HEK293 and CV-1 cells were cultured in DMEM supplemented
with 10% fetal bovine serum (FBS) in a humidified atmosphere
containing 5% CO2/95% air at 37 °C. Hepa-E1 cells were
cultured in E-RDF with 5% FBS at 28 °C. Cells were dispensed
into 24-well plates at 5 × 104 cells per well 24 h before
transfection. HEK293 and CV-1 cells were transfected using
HilyMax (Dojindo Laboratories, Kumamoto, Japan) according to
the manufacturer’s instructions. Hepa-E1 cells were transfected
using Lipofectamine LTX (Thermo Fisher Scientific, Waltham,
MA, USA) according to the manufacturer’s instructions. At 24 h
or 2 days post-transfection, the cells were treated with vehicle
(EtOH) or androgens. Luciferase activity was determined using a
dual luciferase reporter assay system (29, 40). Measurements
were made using a MiniLumat LB9506 (Berthold Systems,
Aliquippa, PA, USA) in a single tube, with the first assay
involving the firefly luciferase, followed by the Renilla
luciferase assay. Firefly luciferase activities (relative light units)
were normalized by Renilla luciferase activities. Each data point
represents the mean of at least three independent experiments.

Reverse Transcriptase-Polymerase
Chain Reaction (RT-PCR) and Quantitative
PCR (qPCR)
The cDNA from various human tissues were synthesized as
described (26, 41). Total RNA from eel tissues was extracted
using TRIsure reagent (Bioline, Luckenwalde, Germany). RT-
PCR and qPCR were performed as described (40, 42, 43). The
cDNA was synthesized from total RNA of each tissue using
SuperScript III Reverse Transcriptase (Thermo Fisher Scientific).
The reaction products of the RT-PCR assay were subjected to
electrophoresis in a 1.25% agar gel, and the resulting bands were
visualized by staining with ethidium bromide. In qPCR, each
gene was measured via real-time PCR using the LightCycler 480
(Roche Diagnostics, Mannheim, Germany). b-actin (human)
and ef1 [eel (44)] were used as the reference genes. Each
reaction was conducted in duplicate. As a negative control,
template cDNA was replaced by PCR grade water. Relative
gene expression levels were determined by using the delta-delta
Ct method. The primers used for PCR are described in
Supplementary Table 1 and Supplementary Figure 2.

Cloning of Eel Srd5a cDNAs and
Phylogenetic Analysis
Putative nucleotide sequences encoding eel srd5a1, srd5a2a and
srd5a2b were provided from the database, JPEEL2016 (http://
molas.iis.sinica.edu.tw/jpeel2016/). Cloning of ORF sequences
were performed by PCR-based methods using ovary and
testis cDNAs.

The alignment analysis of SRD5A/srd5a sequences was
performed using Clustal W. The neighbor-joining phylogenetic
Frontiers in Endocrinology | www.frontiersin.org 3
tree was constructed using MEGA version X. Analyzed proteins
and their accession numbers are as follows: human SRD5A1
(NP_001038.1), human SRD5A2 (ABQ59050.1), mouse Srd5a2
(NP_444418.1), chicken Srd5a2 (XP_001235447.1), Japanese quail
Srd5a1 (XP_015709859.1), Japanese quail Srd5a2 (XP_
015713214.1), three-toed box turtle Srd5a1 (XP_024056462.1),
three-toed box turtle Srd5a2 (XP_026505351.1), zebrafish srd5a1
(AAI64429.1), zebrafish srd5a2 (XP_005157051.1), Atlantic
salmon srda5a1 (XP_014033435.1), Atlantic salmon srd5a2
(NP_001134686.1), rainbow trout srd5a1 (XP_021428075.1).
rainbow trout srd5a2 (XP_021413035.1) and elephant shark
srd5a1 (NP_001279361.1).

Plasmids
The pQCXIP expressing human SRD5A1, human SRD5A2, eel
srd5a1, eel srd5a2a and eel srd5a2b were generated by cloning
the open reading frame of each gene into a pQCXIP vector
(Invitrogen). The pcDNA3 expressing eel ara and arb were
generated by cloning the open reading frame of each gene into
a pcDNA vector (Invitrogen, Carlsbad, CA, USA). A Slp-ARU/
Luc reporter, pQCXIP/green fluorescent protein (GFP) and
pQCXIP/human AR were prepared as described (29).

Measurements by Liquid
Chromatography-Tandem Mass
Spectrometry (LC-MS/MS)
Quantification of T, 11-KT, DHT and 11-KDHT in plasma and
culture media by LC-MS/MS are based on methods as described
[(29), ASKA Pharma Medical Co., Ltd., Kanagawa, Japan].
The lower detection limits of each androgen were 0.25 pg/ml.
As internal standards, 11KT-d3, T-13C3, DHT-13C3 and
11KDHT-d3 were added to a medium which was diluted with
distilled water. The steroids were extracted with methyl tert-butyl
ether (MTBE). After the MTBE layer was evaporated to dryness,
the extract was dissolved in 0.5 mL of methanol and diluted with
1 ml of distilled water. The sample was applied to OASIS MAX
cartridge which had been successively conditioned with 3 ml of
methanol and 3 ml of distilled water. After the cartridge was
washed with 1 ml of distilled water, 1 ml of methanol/distilled
water/acetic acid (45:55:1,v/v/v), and 1 ml of 1% pyridine
solution, the steroids were eluted with 1 ml of methanol/
pyridine (100:1,v/v). After evaporation, the residue was reacted
with 50 ml of mixed solution (80 mg of 2-methyl-6-nitrobenzoic
anhydride, 20 mg of 4-dimethylaminopyridine, 40 mg of
picolinic acid and 10 ml of triethylamine in 1 ml of
acetonitrile) for 30 min at room temperature. After the
reaction, the sample was dissolved in 0.5 ml of ethyl acetate/
hexane/acetic acid (15:35:1, v/v/v) and the mixture was applied
to HyperSep Silica cartridge (Thermo Fisher Scientific) which
had been successively conditioned with 3 mL of acetone and 3 ml
of hexane. The cartridge was washed with 1 mL of hexane, and 2
mL of ethyl acetate/hexane (3:7, v/v). T, DHT, 11-KDHT and 11-
KT were eluted with 2.5 ml of acetone/hexane (7:3, v/v). After
evaporation, the residue was dissolved in 0.1 ml of acetonitrile/
distilled water (2:3, v/v) and the solution was subjected to
a LC-MS/MS.
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Statistical Analysis
Data are presented as the mean ± SEM. Differences between
groups (P< 0.05) were assessed by the Student’s t-test, one-way
ANOVA followed by Tukey’s multiple comparison tests and
two-way ANOVA followed by Tukey’s multiple comparison tests
using SigmaPlot 14 (Systat Software Inc., CA, USA) and EZR
(Saitama Medical Center, Jichi Medical University, Saitama,
Japan) which is a graphical user interface for R (The R
Foundation for Statistical Computing, Vienna, Austria) as
described (40).
RESULTS

Comparison of DHT and 11-KDHT Levels
in Eel and Human Plasma
We measured the plasma concentrations of 11-KT, T, DHT and
11-KDHT both in eels and humans (Figure 2). In eels, 11-KT
levels were similar in the two sexes, whereas the T level was much
higher level in females (about 175-fold). Consistent with the
results of their precursors, 11KDHT levels were similar between
the two sexes, whereas DHT was at much higher concentration
in females (about 15-fold). Interestingly, the DHT level in female
eels was higher than in human males (Figure 2B). As previously
reported (45), human plasma T and DHT levels were much
higher in males than in females. In humans, plasma 11KT was
present in both sexes, whereas 11KDHT was undetectable in
both. These observations suggest that although DHT is an
androgen common to both eels and humans, 11KDHT is a
teleost-specific androgen. Furthermore, the sexual dimorphism
of plasma DHT and T levels is reversed between humans
and eels.
Frontiers in Endocrinology | www.frontiersin.org 4
Comparison of Expression and Enzymatic
Activities of Eel Srd5a and Human
SRD5A Genes
To reveal DHT and 11KDHT biosynthesis pathways from T and
11KT in teleost, respectively, eel srd5a genes were cloned from
testis and ovary cDNA templates by RT-PCR. A single isoform
srd5a1 and two isoforms of srd5a2 (srd5a2a and srd5a2b) genes
were isolated in eel (Supplementary Figure 1, Figure 3A). Eel
srd5a1 cDNA (DDBJ accession number: LC602244) comprised
an open reading frame (ORF) of 798 bp encoding 265 amino
acids (aa) (Supplementary Figure 1A, Figure 3A). It shared
approximately 50% and 40% aa identities with human SRD5A1
and SRD5A2/Srd5a2, respectively (Figure 3B). Eel srd5a2a
(DDBJ accession number: LC602245) and srd5a2b (DDBJ
accession number: LC602246) cDNAs comprised ORFs of 762
and 756 bp encoding 253 and 251 aa, respectively
(Supplementary Figures 1B, C, Figure 3A). These isoforms
shared comparatively high similarities (66.9%) with each other.
On the other hand, srd5a2a and srd5a2b shared 50% and 40% aa
identities with human SRD5A2 and SRD5A1/srd5a1,
respectively. Alignments of these proteins revealed the
conservation of an aa sequence with the C-terminus (Figure
3A). Phylogenetic analysis showed that each of the srd5a genes
was included in the corresponding cluster of vertebrate SRD5A/
Srd5a/srd5a genes (Figure 3C). The analysis also suggested that
among the two srd5a2 isoforms, srd5a2b probably represents an
ancestral form of vertebrate SRD5A2/Srd5a2/srd5a2.

Tissue expression analyses of mRNA by qPCR revealed that
eel srd5a1 was expressed in liver and ovary, but not in testis
(Figure 4A). Both srd5a2 isoforms were expressed in liver, testis
and ovary, although ovarian srd5a2b expression levels were
significantly higher than testicular levels. Human SRD5A1 was
A

B

FIGURE 2 | Plasma androgens levels in eels (A) and humans (B). Plasma T, DHT, 11-KT and 11-KDHT levels in each sex were measured by LC-MS/MS. Data
represent the mean ± SEM (n =4 for eels and n=5 for humans, for each sex). *P < 0.05 vs male eels or men.
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expressed in all examined tissues including the primary
steroidogenic tissues, testis, ovary and adrenal (Figure 4B). In
contrast SRD5A2 was expressed only in liver, prostate and testis
(Figure 4B).

To investigate the enzymatic activities of SRD5A/srd5a
isoforms for conversion of T and 11KT to DHT and 11KDHT,
respectively, expression vectors of GFP and each of SRD5A/srd5a
Frontiers in Endocrinology | www.frontiersin.org 5
genes were transfected in HEK293 cells. Then, T or 11KT was
added to the culture medium at 10-9 M for 3h. All eel srd5a and
human SRD5A isoforms catalyzed the conversion of T into DHT
(Figure 5A). In the eel, those activities were significantly higher
in both srd5a2 isoforms than in srd5a1. Conversion of 11KT into
11KDHT was catalyzed by both eel srd5a2 isoforms and human
SRD5A (Figure 5B). Eel srd5a2a and human SRD5A2 had
A

B

C

FIGURE 3 | Alignment (A) and identities of amino acid sequence (B), phylogenic analyses (C) for eel srd5a and human SRD5A. (A) Alignment of the deduced
SRD5A/srd5a amino acid sequences of eel and human. Conserved NADPH-binding domain (GXXGXXXXXGG) is shown by a box. (B) Comparisons of deduced
amino acid identities between eel srd5a1, eel srd5a2a, eel srd5a2b, human SRD5A1 and human SRD5A2. (C) The phylogenetic tree of SRD5A/Srd5a/srd5a
proteins. Bootstrap values (100 resamplings) are indicated by numbers.
A

B

FIGURE 4 | Expression of eel srd5a genes (A) and human SRD5A genes (B) in various tissues. mRNA expression of each gene in each tissue was analyzed by
qPCR and normalized to ef-1 (A) or b-actin (B) expression. Data represent the mean ± SEM of at least three independent samples. Values marked by different letters
are significantly different (P< 0.05).
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significant higher activities than eel srd5a2b and human
SRD5A1, respectively. In contrast, eel srd5a1 showed no
activity for conversion 11KT to 11KDHT.

Effects of DHT and 11-KDHT on AR/ar-
Mediated Transactivation
To investigate the effects of 5a-reduced androgens on eel ars (ara
and arb) and mammalian AR, we compared the androgen-
dependent transcriptional activities of DHT and 11KDHT with
the activities of T and 11KT using the luciferase reporter system in
fish and mammalian cell lines (Figure 6). DHT and 11KDHT at
>10-8 M activated eel ara-mediated transactivation in a similar
manner to that of T and 11KT (Figure 6A). DHT and 11KDHT at
Frontiers in Endocrinology | www.frontiersin.org 6
>10-8 M also activated eel arb, although to a greater extent than T
and 11KT (Figure 6A). Human AR-mediated transactivation was
increased by DHT and 11KDHT above 10-10 M in a concentration-
dependent manner (Figure 6B). Both were stronger activators of
human AR than T and 11KT, paralleling the response of eel arb.
These results indicate that 5a-reduced androgens strongly activate
AR/ars-mediated transactivation in both humans and teleosts.
DISCUSSION

This study demonstrated that DHT and 11KDHT are potential
important androgens in eels. In contrast, 11KDHT was
A

B

FIGURE 5 | Evaluation of the enzymatic activities of eel srd5a (A) and human SRD5A (B). Expression vectors of each gene were transfected, and 24h after
transfection, cells were incubated with T (1 nM) or 11KT (1 nM) for 3h. Concentrations of DHT and 11KDHT in culture media were analyzed by LC-MS/MS. Each
column represents the mean ± SEM (n =3 for each group) of three independent experiments. Values marked by different letters are significantly different (P< 0.05).
A B

FIGURE 6 | Eel ars (A) and human AR (B)-mediated transactivation by each androgen in Hepa-E1 cells and CV-1 cells, respectively. Hepa-E1 cells and CV-1 cells
were transfected with the ARE-Luc vector and each ar/AR-expression vector. At 24 h post-transfection, cells were incubated with or without increasing
concentrations of 11KT, 11KDHT, T and DHT for 24 h. Data represent the mean ± sem of at least three independent experiments. Results of two-way ANOVA (the
additives and their concentrations as factors) followed by multiple comparison tests are given (N.S. P≧0.05; **P < 0.01; ***P < 0.001).
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undetectable in healthy human plasma, although DHT
was present.

DHT plays very important roles in mammalian sex
differentiation as the most potent androgen (4). Mutations of
the SRD5A2 gene cause 46, XY disorders of sex development,
resulting from low DHT production (4, 8). In contrast, little
attention has been received in the existence and functions of
DHT in fish, because it is thought to be relatively biologically
inactive. Therefore, it is unexpectable that plasma DHT levels in
eels were higher than those in men. In contrast to humans and
other mammals, it was the female-dominated androgen in eels.
These differences probably reflect the opposite sexual
dimorphism of T levels, as a precursor to DHT. This result is
consistent with a previous report that plasma T concentrations of
wild females become higher than those of males during silvering,
prepubertal stage in eels (46). T is the predominant male
androgen in mammals, whereas plasma profiles of T are
species-specific among teleosts (35); T is often the
predominant androgen both males and females. Therefore, it is
possible that the profiles of plasma DHT differ among teleost
species. Until now, male-dominant androgens are never reported
at least in sexually matured eels. T and DHT are necessary for
regulating various male physiological functions in humans
during long reproductive age ensuing puberty (1). In contrast,
male eels are considered to die after their first spawning
following the sexual maturation (47). Therefore, androgens like
T and DHT in humans might be unnecessary in maturated male
eels. This hypothesis might be supported by the facts that plasma
T levels in females are abundant in the salmons [also die after
their first spawning (48)]. In contrast to DHT, 11KDHT levels
did not show any sexual differences. This might also result from
the absence of sexual dimorphism of precursor (11KT) levels. 11-
oxygenated androgens levels including 11KT are very low in
most female teleosts, except in eels, sturgeon, salmonids and
mullet (35). Therefore, 11KDHT could be the dominant male
androgen in most teleosts. Regardless of the differences in sexual
plasma profiles, DHT and 11KDHT strongly activate various
teleost ars [Figure 6 (49, 50)], which suggest that DHT and
11KDHT are important androgens in teleost species. Future
study should investigate the plasma profiles of these 5a-
reduced androgens in many teleost species. In contrast to eels,
11KDHT is not present in healthy human plasma, even though
its precursor 11KT exists. This is likely owing to the deficiency of
SRD5A2 expression (main converting enzyme from 11KT to
11KDHT) in the adrenal glands, which are the main source of
11-oxygenated androgens in humans (36). However, 11KDHT is
detectable in prostate tissues and plasma samples of prostate
cancer patients (31). Thus, the possibility that 11KDHT
functions in humans under the pathological conditions should
not be ruled out.

In addition to a single SRD5A1 homolog, there are two
SRD5A2 homologs in eels, which showed relatively similar
activities for production of 5a-reduced androgens. These
srd5a2 paralogs perhaps occurred by the teleost-specific
genome duplication. Although such srd5a2 paralogs in some
species are registered in databases, their prevalence and general
Frontiers in Endocrinology | www.frontiersin.org 7
importance among Teleostei are unclear. In the future study, it is
necessary to investigate the presence of srd5a2 paralogs in
teleosts. Consistent with our results, previous studies reported
that human SRD5A2 showed higher activities than SRD5A1 in
converting T and 11KT into DHT and 11KDHT, respectively (9,
30). Such difference between SRD5A/Srd5a/srd5a isoforms is
probably conserved during evolution, despite eel srd5a1 being
completely inactive in converting 11KT to 11KDHT. In addition
to studying the profiles of 5a-reduced androgens, it would be
interesting to evaluate the activities of SRD5A/Srd5a/srd5a
homologs in various animal species to reveal the transitions of
these androgens during evolution.

The 5a-reduced androgens, DHT and 11KDHT more
strongly activated human AR and eel arb than T and 11KT
did, whereas such remarkable differences were not detected for
eel ara. In teleosts, the two ar genes have been formed by
duplication of an ancestral AR gene during a teleost specific
genome duplication event. Based on the phylogenic analyses,
Ogino and colleagues proposed that teleost arb preserves the
ancestral AR functions, whereas ara has acquired new properties
during more rapid evolution (28). Our results are consistent with
this hypothesis; i.e. eel ara has lost its preference for the 5a-
reduced androgens. In human, DHT is essential for various
physiological phenomena as a stronger activator of AR than T,
despite plasma concentrations of DHT are much lower than
those of T (4). Therefore, it is possible that in eel, DHT and
11KDHT are especially important in arb-expressing tissues,
including testis and ovary (47, 49, 51). In contrast, previous
studies have suggested that 11KT is the predominant androgen
activating teleost ars (28, 52, 53). Although DHT activates almost
teleost ars, the activation is often reported to be weaker than with
11KT, including the case of eel arb (49). Such discrepancy
reflects the different cell lines used in those studies. Previous
studies have used mammalian cell lines. In the preset study, we
used Japanese eel hepatocyte-derived Hepa-E1 cells for
measuring the eel ar-mediated transactivation. In support of
the above hypothesis, activation of eel ars by each of the
androgens was very low (less than 10-fold relative to vehicle
groups) in CV-1 cells even at 10-7 M (data not shown), whereas it
was over several hundred-fold higher in Hepa-E1 cells, at levels
similar to that of human AR in CV-1 cells. A similar
phenomenon was noted in measurements of flounder estrogen
receptor-mediated transactivation by estrogens and estrogenic
compounds (54). Because most teleost transcription factors are
strongly activated in reporter assays using mammalian cells, sex
steroid receptors might be an exception in poorly activated in
mammalian cells. Future studies should compare the effects of T,
11KT, DHT and 11KDHT on teleost ar-mediated transactivation
using fish cell lines.

In summary, we demonstrated that DHT and 11KDHT are
potent endogenous androgens in fish. The properties of these
androgens could provide useful insights into elucidating
ambiguous ar-mediated phenomena reported in fish. In
contrast, 11KDHT is undetectable in healthy humans.
Nevertheless, it has been often reported that the profiles of 11-
oxygenated androgens are markedly changed under pathological
March 2021 | Volume 12 | Article 657360
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conditions (36, 55–59). It is important to investigate the presence
of 11KDHT in these androgen-dependent diseases to seek novel
targets for therapy.
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