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Abstract

The discovery and reliable detection of markers for neurodegenerative diseases have been complicated by the
inaccessibility of the diseased tissue- such as the inability to biopsy or test tissue from the central nervous system directly.
RNAs originating from hard to access tissues, such as neurons within the brain and spinal cord, have the potential to get to
the periphery where they can be detected non-invasively. The formation and extracellular release of microvesicles and RNA
binding proteins have been found to carry RNA from cells of the central nervous system to the periphery and protect the
RNA from degradation. Extracellular miRNAs detectable in peripheral circulation can provide information about cellular
changes associated with human health and disease. In order to associate miRNA signals present in cell-free peripheral
biofluids with neurodegenerative disease status of patients with Alzheimer’s and Parkinson’s diseases, we assessed the
miRNA content in cerebrospinal fluid and serum from postmortem subjects with full neuropathology evaluations. We
profiled the miRNA content from 69 patients with Alzheimer’s disease, 67 with Parkinson’s disease and 78 neurologically
normal controls using next generation small RNA sequencing (NGS). We report the average abundance of each detected
miRNA in cerebrospinal fluid and in serum and describe 13 novel miRNAs that were identified. We correlated changes in
miRNA expression with aspects of disease severity such as Braak stage, dementia status, plaque and tangle densities, and
the presence and severity of Lewy body pathology. Many of the differentially expressed miRNAs detected in peripheral cell-
free cerebrospinal fluid and serum were previously reported in the literature to be deregulated in brain tissue from patients
with neurodegenerative disease. These data indicate that extracellular miRNAs detectable in the cerebrospinal fluid and
serum are reflective of cell-based changes in pathology and can be used to assess disease progression and therapeutic
efficacy.
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Introduction

The ability to meaningfully profile peripheral biofluids to

monitor and gain insights about the underlying severity of central

nervous system pathology would bring significant benefits to

monitoring disease progression and treatment efficacy. Develop-

ment of diagnostic tests and preventative and treatment therapies

for neurodegenerative diseases is encumbered by the complexity of

pathomechanisms underlying neurodegenerative diseases, as well

as the difficulty of achieving an accurate diagnosis in early,

asymptomatic stages of disease. Whereas several genes have been

linked to rare monogenic forms of Alzheimer’s disease (AD) and

Parkinson’s disease (PD), molecular mechanisms underlying

sporadic forms of the disease are complex and largely unknown

[1,2].

AD is an age-related, chronic, neurodegenerative disorder

characterized by gradual dementia and deteriorated higher

cognitive functions including language and behavior [3]. Similarly

to AD, PD is a progressive neurodegenerative disorder affecting

approximately 1–2% of individuals over 60 years of age [4].

Cardinal clinical features of PD are rigidity, resting tremor,

bradykinesia and postural instability [3]. As PD advances, up to

80% of patients develop dementia.

Histopathologically, the AD brain is characterized by deposition

of both neuritic plaques composed of amyloid- b (Ab) peptide and

hyperphosphorylated forms of the microtubule-associated protein

Tau that create neurofibrillary tangles (NFTs) [2]. Neurons of PD
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subjects exhibit abnormal accumulation of cytoplasmic inclusions

consisting mainly of a -synuclein, a protein whose aggregation

forms insoluble fibrils, Lewy Bodies [3]. To complicate the

detection of AD and PD, age-matched cognitively normal

individuals have low levels of plaque and tangle formation, as do

most PD patients.

An important emerging level of pathophysiological complexity

underlying neurodegenerative disorders is derived from miRNA

gene regulation [5,6]. MiRNAs represent a class of endogenous,

stable, non-coding RNA molecules involved in post-transcriptional

regulation of target gene expression. Biogenesis of mature miRNA

occurs through a multi-step process that starts in the nucleus with

endonucleolytic cleavage of the primary miRNA transcript, and

ends with a ,20–25 nucleotides long single stranded mature

miRNA (miRNA) in the cytosol. The binding of miRNA with

imperfect complementarity to target mRNAs leads to a reduced

protein expression by either degradation of the RNA or

translational arrest [7]. Discovery of miRNA regulatory potential

has significantly broadened our knowledge of preferential gene

expression in the central nervous system. Half of the identified

tissue specific miRNAs are brain or brain-region specific,

promoting homeostatic functions on brain gene expression [8,9].

Several age-related disease studies suggest differential expression of

several miRNAs in the human brain, some of which regulate the

expression of genes known to be associated with neurodegener-

ation [10,11,12]. More importantly, abnormal expression of

miRNAs have been detected in cellular dysfunction and disease,

including AD and PD [1,6,13,14,15].

The concept that peripheral biofluids, such as cerebrospinal

fluid (CSF) and blood serum (SER), contain markers of central

nervous system disorders has become an active area of research.

Circulating cell-free RNAs, as indicators (snapshots) of disease-

relevant information, are carried to the periphery and are

attractive candidates for monitoring central nervous system

disease. The miRNA changes associated with neurodegenerative

disease that are detectable in the periphery have not been

appreciably profiled and compared in the CSF and SER of AD

and PD patients. Profiling cell-free miRNA may reduce interfering

miRNA signals from blood cells and immune cells [16]. In

addition, there has not been an extensive study to correlate

peripheral miRNAs with corresponding postmortem neuropathol-

ogy characterization.

Recent advances in library sample preparation and analytical

methods have introduced new protocols that allow miRNA

profiling by next generation sequencing (NGS) from CSF and

SER [17]. In this study, we used NGS to investigate the expression

patterns of the known miRNAs listed in miRBase (V18) in

acellular fluids from postmortem subjects with verification of

Alzheimer’s or Parkinson’s disease neuropathology, and neuro-

logically normal control subjects. We compared the detectible

miRNAs in CSF and SER. Postmortem autopsy data on brain

tissue revealed the severity and extent of neuropathology, which

we were able to correlate with miRNA status in biofluids. As a

potential biofluid of choice for CNS disease, human CSF has the

advantage to reflect a more stable signature of the brain due to its

proximity to the diseased tissue. However, unless there is a

significant precedent to submit a patient to a lumbar puncture,

most patients are reluctant. Serum is less invasive and more readily

available, but also contains miRNA signals from all tissues in the

body. One goal of this study was to ascertain the advantages of

CSF compared with SER for the detection of Alzheimer’s and

Parkinson’s disease-relevant miRNA. From postmortem patients

we were able to profile both the CSF and serum. To determine

which fluid has a higher signal-to-noise ratio, we sequenced and

analyzed miRNA abundance in paired CSF and SER samples

from a cohort consisting of control, AD, and PD subjects. The

sample set was used to correlate miRNAs associated with AD and

PD pathology that are detectable in peripheral biofluids. We

identified AD and PD miRNA signatures, as well as subsets of

misregulated miRNAs in connection with regional (Braak stage)

and time-dependent characteristics (tangle and plaque load) of AD

and PD pathology. Importantly, identical analysis of CSF and

SER datasets revealed non-overlapping results, with a potentially

more stable miRNA signature derived from the CSF.

One of the advantages to using sequencing to profile the

miRNA content is the ability to assess all detectable miRNA

expression at once. We used miRDeep2 software [18] to predict

novel miRNAs in CSF and SER. We report the differential

expression of these putative miRNAs in both CSF and SER across

diseases. In addition, we compare our findings with those

previously reported for deregulated miRNAs identified in tissue.

This is the first paper to use sequencing to compare the miRNA

profile in both CSF and SER from the same individuals. In

addition, we sequenced one of the largest miRNA datasets to date,

comparing two neurodegenerative diseases. The profiling and

sequencing data from this paper are publicly available and

represent a significant resource for future evaluations of control,

AD and PD biofluids. These data can provide us with information

regarding the types of miRNAs detectable in cell-free peripheral

biofluids.

Results

miRNA expression profiling
The principal demographic, postmortem interval, clinical and

pathological characteristics of the 69 AD patients, 67 PD patients

and 78 control subject samples included in this miRNA profiling

study are summarized in Table S1. Samples were obtained from

the Banner Sun Health Research Institute after thorough

evaluation of neuropathology and consisted of AD, PD, and

neurologically normal control subjects. Average expired age was

comparable across the three groups: controls (82.1 + 10 years),

AD (81.3 + 7.7 years) and PD (80.0 + 5.1 years) (Figure 1).

Average disease duration was 7.5 + 4.1 years for AD patients, and

12.6 + 7.9 years for PD subjects. Mean postmortem interval for

all samples was approximately 3.1 hours. In most cases, we were

able to analyze one CSF and one SER sample from each subject,

hence allowing for direct comparison of miRNA signatures for the

two biofluids and thereby reducing sample variability. Supporting

the consistency of our results, analysis of variance revealed no

significant source of variation in the expression data due to age,

gender, or postmortem interval (PMI; Figure S1).

We conducted miRNA expression profiling of SER and CSF

samples using NGS. Small RNA sample preparation for NGS

platforms typically require at least 1 mg of total RNA as a starting

input. This is problematic for SER and CSF samples which

contain low levels of total RNA. We modified a protocol for small

RNA deep sequencing for samples with low RNA content and

small starting volumes, allowing for miRNA NGS expression

profiling from CSF and SER [17]. We concentrated our down-

stream analysis on the 2228 known miRNAs in miRBase (Version

18). When examining the data from all of our CSF samples

simultaneously, we detected 1773 different miRNAs expressed at

least once in the CSF samples and 1757 in the SER samples. For

our analysis, we reduced these numbers to 428 miRNAs in CSF

and 414 miRNAs in SER that had a minimum average of .5 read

counts. From the 2228 possible mature miRNAs listed, we

removed those that had the same expression patterns across all

Profiles of miRNAs in Serum and CSF of AD and PD
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samples. For example, if hsa-let-7a-5p_hsa-let-7a-1 and hsa-let-7a-

5p_hsa-let-7a-2 were present with the same expression profile, hsa-

let-7a-5p_hsa-let-7a-2 was considered redundant and removed

from further analysis.

Because this is the first paper to sequence and compare the

miRNA profile of CSF and SER from the same patients, we

provided a list of the 2228 miRNAs used in our analysis and the

normalized average number of counts per million detected in each

biofluid, from all samples (Table S2).

miRNA signature derived from CSF is slightly more stable
In an effort to determine which biofluid, CSF or SER, has a

more stable and consistent miRNA signature associated with

disease, we compared the matched CSF and SER data sets derived

from AD, PD and control samples. Using consensus clustering

analysis and silhouette scores (Figures S1 and S2), the serum data

reflected a slightly reduced stability in cluster membership

compared to the CSF due to the predominantly unimodal nature

of its consensus matrix histogram (Figure S2). However, consensus

clustering analysis revealed that there was only a slight improve-

ment in CSF cluster stability in our data sets. Therefore, we report

our results for both CSF and SER due to the lack of significant

advantage of using either biofluid.

miRNAs are differentially expressed in CSF and SER of AD
patients

The samples from AD and age-matched non-affected subjects

were subsequently analyzed for differential miRNA content. Based

on the distribution of total number of mapped reads (sequence

reads that align to known mature miRNAs), we set the threshold

for removing samples to those with less than 100,000 mapped

reads for CSF and less than 60,000 for SER data. Subsequently,

we removed m outliers from the following groups: CSF AD (m = 5),

CSF Control (m = 5), SER AD (m = 11) and SER Control

(m = 10). The remaining samples each had an average of

2,631,443 reads that mapped to known miRNAs for CSF samples

and 1,953,105 mapped read counts for SER samples. These

samples represent some of the largest depth of coverage in any

study to date.

A total of 41 miRNAs were determined to have different

expression levels in AD CSF (n = 62) compared with Control CSF

(n = 65), corrected for multiple tests with the Benjamini-Hochberg

method and normalized mean .5 mapped reads for each group

(Table 1). There have been many studies identifying deregulated

miRNAs in brain tissue from patients with AD compared to

neurologically normal controls. Of the 41 significant miRNAs that

were expressed differently between the CSF of AD and control

subjects, 30 (,73%) have been previously identified as deregulated

in AD: 101-5p, 124-3p, 127-3p, 127-5p, 132-3p, 129-5p, 136-3p,

136-5p, 138-5p, 139-5p, 181a-5p, 181a-3p, 181b-5p, 184, 218-5p,

323a-3p, 326, 329, 377-5p, 381, 410, 433, 488-3p, 495, 708-5p,

769-5p, 874, 9-3p, 9-5p, 95 [6,19,20,21,22,23,24,25].

Sample size for serum consisted of 53 AD, n = 50 PD and 62

control subjects. Results were filtered at corrected p-value ,0.05

(Table 2). We describe only significant differentially expressed

miRNAs with an average number of mapped reads greater than 5

and 0.7, FC(log2) or FC(log2) ,20.7. Logarithmic base 2 fold

change (FC) is relative to the first listed group for each comparison.

Of the 20 differentially expressed miRNAs, we found that 11

(,55%) were previously reported in the literature: 125a-3p, 125b,

127-3p, 1285, 135a/b, 30c, 21-5p, 219-2-3p, 34c, 375, 873

[2,6,25,26,27,28,29,30,31]. The overlap of CSF and SER

expressed miRNAs for AD compared to neurologically normal

control subject analysis consists of two miRNAs, miR-184 and

miR-127-3p. The direction of miR-184 and miR-127-3p expres-

sion did not correlate between CSF and SER data. It is interesting

to note that the miRNAs expressed differently in the CSF were all

significantly down-regulated, whereas 85% of the miRNAs

identified in SER were up-regulated compared to neurologically

normal age-similar controls.

We also examined miRNAs that were different between AD and

PD patients (Table 1;Table 2). In the CSF, only 1 of the 5

differentially expressed miRNAs between AD and PD subjects was

specific to that analysis, and did not overlap with miRNAs that

were detectably different in AD compared with control subjects or

PD compared with control subjects: 32-5p. In SER, 16 miRNAs

had different expression levels when AD and PD subjects were

compared, out of which 12 were unique to that analysis and

exhibited no overlap with results from CSF with AD or PD

compared with control subjects.

miRNAs are differentially expressed in CSF and SER of PD
patients

In contrast to AD, only a handful of miRNAs have been

identified as misregulated in PD patients by prior studies. A total of

eight PD CSF samples and ten PD SER samples were removed

prior to testing for differential expression due to low sample read

count. Seventeen miRNAs were detected as significantly different

at corrected p ,0.05 between PD CSF (n = 57) and Control CSF

(n = 65) samples (Table 1). Of the 17 miRNAs, 6 (,35%) were

previously identified to be differentially expressed in PD patients:

let-7, 128, 433, 485-5p, 132, 212 [1,32,33,34,35,36,37,38,39,

40,41,42,70]. Interestingly, miR-127-3p, 443, 431-3p, 136-3p and

10a-5p were differentially expressed for both AD compared to

Figure 1. Potential sources of variation for the sample cohort.
Three-way ANOVA analysis of variation demonstrates that (A) expiration
age, (B) postmortem interval (PMI) and (C) gender do not contribute
significant variation to the miRNA expression data.
doi:10.1371/journal.pone.0094839.g001
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Control subjects and PD patients compared with Control subjects,

in the CSF.

There were 5 miRNAs differentially expressed in SER samples

from PD patients compared to control subjects. The expression

levels of miR-338-3p, 30e-3p and 30a-3p were up-regulated in the

serum of PD (n = 50) subjects, whereas miR-16-2-3p and 1294

were significantly down-regulated (Table 2). Of the 5 miRNAs,

16-2-3p, 30e, and 30a-3p (,60%) were previously identified to be

differentially expressed in Parkinson’s subjects when compared to

controls subjects [39,43].

Potential novel miRNAs detected in CSF and SER
We used miRDeep2 to predict novel miRNAs in our CSF and

SER data [18,44]. MiRDeep2 first aligns miRNA reads to the

genomic reference, then uses an RNA fold tool to predict the RNA

secondary structures in the sequence surrounding the aligned

miRNA read and evaluates the structure and signature of each

potential miRNA precursor. If the structure creates a miRNA

hairpin and the potential miRNA read falls within the hairpin, as

would be expected from Dicer processing, then the potential

miRNA is assigned a score that reflects the calculated confidence

in the predicted miRNA [45]. We used the following cutoffs: the

miRNA must be expressed in at least 30% of either CSF samples

or SER samples and expressed on average more than 5 times in

each sample. Using these criteria, we detected a total of 13 novel

miRNAs (Table 3). When we examined these new miRNAs for

differential expression, only one displayed significant expression

level changes between AD and PD SER samples at p ,0.05

(statistical tests were corrected for multiple testing using all known

plus potential miRNAs). The significant miRNA sequence is

labeled bold in Table 3.

miRNA expression in connection with Braak neurofibrillary
stages, neurofibrillary tangle scores, and plaque-density
scores

We sought to investigate the correlation between miRNA

expression data and the severity of pathology findings quantified at

autopsy, regardless of disease diagnosis. We examined miRNAs

that consistently increased or decreased their expression as

measures of pathology increased. Ordinal logistic regression

(OLR) was used to model the relationship between normalized

miRNA counts and several ordinal outcome variables comprised

of: i) Braak neurofibrillary stages; ii) neurofibrillary tangle scores

and iii) plaque-density scores. Consequently, OLR was used for

identification of miRNA markers associated with the progression

of regional and time-dependent characteristics typical for AD

pathology. Neuropathology examination at autopsy provided total

Braak stages (1–6), neurofibrillary tangle scores (0–15) and plaque-

density scores (1–15). The plaque and tangle scores were sums of

pathology (0 = none, 1 = sparse, 2 = moderate, 3 = frequent)

across five brain regions (Frontal, Temporal, Parietal, Hippocam-

pal, Entorhinal). For additional information on patient scores, see

Table S1. Prior to the analysis, neurofibrillary tangle and plaque-

density scores were binned into 3 ordered response categories,

with 1,2,3 for increasing gravity of progression. Similarly, Braak

neurofibrillary stages were treated as ordinal under the assumption

that levels of Braak staging have a natural stage ordering (1,2,

3,4,5,6), with an unknown distance between adjacent levels.

Upon filtering, each analysis consisted of the following number of

subjects in each subgroup:

1) Braak stages: 1 (CSF n = 21, SER n = 21), 2 (CSF n = 21, SER

n = 27), 3 (CSF n = 58, SER n = 44), 4 (CSF n = 37, SER

n = 31), 5 (CSF n = 22, SER n = 23) and 6 (CSF n = 25, SER

n = 18).

2) Neurofibrillary tangle stages: 1 (CSF n = 73, SER n = 71), 2

(CSF n = 58, SER n = 49) and 3 (CSF n = 53, SER n = 44).

3) Plaque-density stages: 1 (CSF n = 58, SER n = 55), 2 (CSF

n = 41, SER n = 35), 3 (CSF n = 85, SER n = 74).

Ordinal logistic regression analysis resulted in several predictor

variables (miRNAs) significant at unadjusted p- value ,0.05, that

consistently increased or decreased their expression across

pathologic severity. We report miRNAs with the lowest Akaike

Table 3. Novel miRNAs in CSF and SER predicted by miRDeep2.

Mature Precursor Sequence % of Serum Samples % of CSF Samples % of Total Samples

aguugggagagcauuagacuga_uuucuuuuuuucucuuucuga 21.94 62.07 42.36

aggggccgagggagcgaga_gagcucugcggcgccaag 36.22 35.47 35.84

ccaucugugggauuaugacuga_agucagaaucccacucaggug 12.76 44.33 28.82

uuuucgcucggccugggac_cucuggcccagggugguaugu 26.53 30.54 28.57

agguagauagaacaggucuugu_agaccuacuuaucuaccaaca 20.92 35.47 28.32

guaguggugguucagugg_agugcacaucuacag 9.18 33.99 21.8

ggggauguagcucagugguaga_ggccccggguucgauccccgg 8.67 32.02 20.55

ggaauugugguucagugg_auugaaccacaacuucuc 4.08 35.47 20.05

ucggcuguguaucucugugcc_cacagcguggcacagucgcgc 39.8 5.42 22.31

uugaggucggacaugguggcu_ccaccacgccuggccuaagagu 36.73 4.43 20.3

aggauuucugggcuguagugcgu_accuguggucccagcuccaug 32.65 1.97 17.04

cauggguacuggccugaaguc_uguugggacaagucugguggu 33.16 0.49 16.54

ccugggucugacacucuga_agggugcuggguuauuuccugggg 31.12 1.48 16.04

To be listed, the potential miRNA had to be present in at least 30% of either the SER or the CSF samples, and have more than 5 counts on average across all samples.
Column one contains the precursor sequence predicted by miRDeep2 for the potential mature miRNA detected. Column two is the percentage of serum samples in
which the miRNA was present (total number of serum samples examined: 196). Column three is the percentage of CSF samples in which the miRNA was detected (total
number of CSF samples examined: 203). Column four represents the total percentage of samples in which the miRNA was detected.
doi:10.1371/journal.pone.0094839.t003

Profiles of miRNAs in Serum and CSF of AD and PD

PLOS ONE | www.plosone.org 7 May 2014 | Volume 9 | Issue 5 | e94839



T
a

b
le

4
.

B
ra

ak
n

e
u

ro
fi

b
ri

lla
ry

st
ag

e
sp

e
ci

fi
c

o
rd

in
al

re
g

re
ss

io
n

an
al

ys
is

o
f

m
iR

N
A

e
xp

re
ss

io
n

d
at

a.

B
ra

a
k

S
ta

g
e

C
S

F
B

ra
a

k
S

ta
g

e
S

E
R

h
a

s-
m

ir
N

a
m

e
P

a
ra

m
e

te
r

E
st

im
a

te
A

IC
D

i
p

-V
a

lu
e

*
h

a
s-

m
ir

N
a

m
e

P
a

ra
m

e
te

r
E

st
im

a
te

A
IC

D
i

p
-V

a
lu

e
*

m
iR

-9
-3

p
2

9
.6

0
E-

0
3

6
2

1
.0

5
0

2
.3

1
E-

0
4

le
t-

7
i-

3
p

1
.5

0
E-

0
2

5
7

1
.2

1
0

3
.3

9
E-

0
4

m
iR

-1
8

1
a-

5
p

2
3

.8
3

E-
0

5
6

2
3

.5
1

2
.4

6
6

.1
0

E-
0

4
m

iR
-1

3
0

7
-5

p
5

.7
1

E-
0

4
5

7
6

.2
6

5
.0

5
1

.5
9

E-
0

2

m
iR

-1
8

1
a-

3
p

2
7

.2
7

E-
0

3
6

2
6

.3
6

5
.3

1
2

.3
8

E-
0

3
m

iR
-1

8
3

b
-5

p
2

2
.6

6
E-

0
3

5
7

6
.3

3
5

.1
2

4
.1

3
E-

0
3

m
iR

-7
6

0
2

2
.1

1
E-

0
2

6
2

7
.1

5
6

.0
9

3
.9

9
E-

0
3

m
iR

-1
2

8
5

-3
p

2
.4

3
E-

0
3

5
7

6
.4

4
5

.2
3

5
.9

0
E-

0
3

m
iR

-1
3

6
-3

p
2

4
.2

4
E-

0
3

6
2

7
.1

9
6

.1
4

3
.9

3
E-

0
3

m
iR

-3
1

7
6

9
.9

8
E-

0
3

5
7

7
.7

2
6

.5
1

1
.6

5
E-

0
2

m
iR

-4
2

1
2

6
.1

8
E-

0
3

6
2

7
.6

7
6

.6
1

5
.5

0
E-

0
3

m
iR

-3
0

c-
3

p
2

.4
7

E-
0

2
5

7
8

.8
6

7
.6

5
3

.2
7

E-
0

2

m
iR

-1
0

5
-5

p
1

.3
5

E-
0

2
6

2
7

.6
7

6
.6

2
6

.4
0

E-
0

3
m

iR
-1

6
-5

p
2

6
.0

8
E-

0
5

5
7

9
.0

3
7

.8
2

2
.0

0
E-

0
2

m
iR

-7
6

9
-5

p
2

2
.7

3
E-

0
4

6
2

8
.0

6
7

.0
1

7
.8

1
E-

0
3

m
iR

-3
6

1
5

6
.5

3
E-

0
4

5
7

9
.2

2
8

.0
1

2
.0

5
E-

0
2

m
iR

-1
8

1
b

-5
p

2
2

.2
3

E-
0

4
6

2
8

.4
9

7
.4

3
1

.1
4

E-
0

2
m

iR
-6

7
1

-3
p

3
.2

6
E-

0
3

5
7

9
.2

4
8

.0
3

2
.4

8
E-

0
2

m
iR

-1
8

1
d

2
2

.6
8

E-
0

4
6

2
9

.2
5

8
.2

1
.7

2
E-

0
2

m
iR

-9
3

-5
p

2
8

.3
6

E-
0

4
5

7
9

.7
6

8
.5

5
2

.5
1

E-
0

2

m
iR

-6
6

4
-3

p
3

.6
6

E-
0

3
6

2
9

.6
4

8
.5

8
1

.2
4

E-
0

2
m

iR
-2

0
0

a-
3

p
2

1
.8

9
E-

0
3

5
7

9
.8

3
8

.6
2

2
.5

9
E-

0
2

m
iR

-3
3

0
-3

p
2

2
.2

2
E-

0
2

6
2

9
.9

2
8

.8
7

1
.7

5
E-

0
2

m
iR

-1
5

5
-5

p
2

9
.8

5
E-

0
3

5
7

9
.8

4
8

.6
3

2
.6

2
E-

0
2

m
iR

-3
2

9
2

3
.1

9
E-

0
2

6
3

0
.0

3
8

.9
7

1
.8

6
E-

0
2

m
iR

-1
8

1
c-

3
p

3
.6

7
E-

0
3

5
8

0
.0

3
8

.8
2

4
.4

6
E-

0
2

m
iR

-5
3

9
-3

p
2

6
.6

2
E-

0
2

6
3

0
.1

4
9

.0
8

1
.9

2
E-

0
2

m
iR

-1
4

6
b

-5
p

2
2

.1
3

E-
0

4
5

8
0

.2
2

9
.0

1
3

.3
2

E-
0

2

m
iR

-4
3

1
-3

p
2

4
.1

2
E-

0
2

6
3

0
.1

4
9

.0
9

2
.0

9
E-

0
2

m
iR

-1
2

5
b

-5
p

7
.7

1
E-

0
4

5
8

0
.3

8
9

.1
7

3
.7

6
E-

0
2

m
iR

-1
3

2
-3

p
2

7
.3

0
E-

0
3

6
3

0
.2

9
9

.2
4

2
.7

0
E-

0
2

m
iR

-5
7

4
-3

p
1

.2
7

E-
0

3
6

3
0

.8
9

.7
5

4
.7

6
E-

0
2

m
iR

-7
0

8
-3

p
2

1
.3

1
E-

0
2

6
3

0
.9

6
9

.9
1

3
.5

3
E-

0
2

O
rd

in
al

lo
g

is
ti

c
re

g
re

ss
io

n
an

al
ys

is
(O

LR
)

w
as

im
p

le
m

e
n

te
d

in
o

rd
e

r
to

d
e

te
ct

m
iR

N
A

s
w

it
h

m
o

n
o

to
n

ic
e

xp
re

ss
io

n
p

at
te

rn
s

ac
ro

ss
B

ra
ak

n
e

u
ro

fi
b

ri
lla

ry
st

ag
e

s.
B

ra
ak

st
ag

e
s

w
e

re
re

co
rd

e
d

d
u

ri
n

g
au

to
p

sy
fo

r
e

ac
h

su
b

je
ct

,
an

d
sp

e
ci

fi
c

C
SF

su
b

g
ro

u
p

s
co

n
si

st
e

d
o

f
st

ag
e

1
(n

=
2

1
),

st
ag

e
2

(n
=

2
1

),
st

ag
e

3
(n

=
5

8
),

st
ag

e
4

(n
=

3
7

),
st

ag
e

5
(n

=
2

2
),

an
d

st
ag

e
6

(n
=

2
5

)
sa

m
p

le
s.

Fo
r

SE
R

,B
ra

ak
su

b
ca

te
g

o
ri

e
s

co
m

p
ri

se
d

st
ag

e
1

(n
=

2
1

),
st

ag
e

2
(n

=
2

7
),

st
ag

e
3

(n
=

4
4

),
st

ag
e

4
(n

=
3

1
),

st
ag

e
5

(n
=

2
3

),
an

d
st

ag
e

6
(n

=
1

8
)

sa
m

p
le

s.
D

e
lt

a
A

IC
(D

i)
q

u
an

ti
fi

e
s

th
e

in
fo

rm
at

io
n

lo
ss

as
so

ci
at

e
d

w
it

h
u

si
n

g
e

ac
h

m
o

d
e

l
re

la
ti

ve
to

th
e

b
e

st
ap

p
ro

xi
m

at
in

g
m

o
d

e
l.

W
e

re
p

o
rt

p
re

d
ic

to
r

va
ri

ab
le

s
w

it
h

th
e

lo
w

e
st

A
ka

ik
e

In
fo

rm
at

io
n

C
ri

te
ri

o
n

(A
IC

)
an

d
D

iv
1
0

th
at

sa
ti

sf
y

as
su

m
p

ti
o

n
s

o
f

th
e

O
LR

.
p

-V
al

u
e

*
is

u
n

ad
ju

st
e

d
.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

0
9

4
8

3
9

.t
0

0
4

Profiles of miRNAs in Serum and CSF of AD and PD

PLOS ONE | www.plosone.org 8 May 2014 | Volume 9 | Issue 5 | e94839



T
a

b
le

5
.

m
iR

N
A

s
as

so
ci

at
e

d
w

it
h

n
e

u
ro

fi
b

ri
lla

ry
ta

n
g

le
sc

o
re

.

T
a

n
g

le
s

C
S

F
T

a
n

g
le

s
S

E
R

h
a

s-
m

ir
N

a
m

e
P

a
ra

m
e

te
r

E
st

im
a

te
A

IC
D

i
p

-V
a

lu
e

*
h

a
s-

m
ir

N
a

m
e

P
a

ra
m

e
te

r
E

st
im

a
te

A
IC

D
i

p
-V

a
lu

e
*

m
iR

-9
-3

p
2

9
.0

0
E-

0
3

3
8

7
.8

4
0

2
.6

6
E-

0
3

m
iR

-4
2

9
2

2
.1

4
E-

0
1

3
3

5
.9

5
0

7
.2

1
E-

0
3

m
iR

-4
2

1
2

8
.1

2
E-

0
3

3
8

9
.0

1
1

.1
6

4
.0

3
E-

0
3

le
t-

7
i-

3
p

1
.7

8
E-

0
2

3
3

7
1

.0
5

8
.8

6
E-

0
4

m
iR

-7
6

0
2

2
.2

4
E-

0
2

3
9

0
.3

2
2

.4
7

8
.4

5
E-

0
3

m
iR

-2
1

-5
p

2
1

.2
3

E-
0

4
3

3
9

.8
1

3
.8

6
3

.2
3

E-
0

3

m
iR

-1
8

1
d

2
3

.3
2

E-
0

4
3

9
0

.3
7

2
.5

3
1

.1
9

E-
0

2
m

iR
-1

4
1

-3
p

2
3

.7
1

E-
0

3
3

4
3

.2
4

7
.3

3
.4

5
E-

0
2

m
iR

-1
8

1
b

-5
p

2
2

.5
2

E-
0

4
3

9
0

.6
1

2
.7

7
1

.1
7

E-
0

2
m

iR
-2

0
0

a-
3

p
2

4
.0

8
E-

0
3

3
4

3
.2

9
7

.3
5

3
.6

5
E-

0
2

m
iR

-1
8

4
2

1
.5

6
E-

0
2

3
9

1
.5

2
3

.6
7

3
.2

7
E-

0
2

m
iR

-3
1

7
6

1
.3

5
E-

0
2

3
4

3
.5

3
7

.5
8

2
.6

7
E-

0
2

m
iR

-1
2

7
2

1
.3

9
E-

0
2

3
9

1
.5

3
3

.6
8

2
.4

6
E-

0
2

m
iR

-3
7

4
b

-5
p

2
2

.6
9

E-
0

2
3

4
4

.0
4

8
.0

9
1

.9
9

E-
0

2

m
iR

-1
2

9
-5

p
2

1
.1

5
E-

0
3

3
9

1
.8

3
3

.9
9

2
.5

0
E-

0
2

m
iR

-1
8

3
-5

p
2

3
.4

9
E-

0
3

3
4

4
.5

6
8

.6
1

1
.4

5
E-

0
2

m
iR

-1
4

8
b

-5
p

4
.9

1
E-

0
2

3
9

1
.8

9
4

.0
4

1
.2

1
E-

0
2

m
iR

-3
0

1
a-

3
p

2
2

.0
0

E-
0

2
3

4
5

.2
3

9
.2

9
2

.0
0

E-
0

2

m
iR

-1
8

1
a-

5
p

2
5

.7
5

E-
0

3
3

9
2

.5
4

4
.7

2
.3

0
E-

0
2

m
iR

-1
0

a-
5

p
2

2
.0

9
E-

0
5

3
4

5
.2

4
9

.2
9

2
.0

4
E-

0
2

m
iR

-4
9

9
a-

5
p

2
1

.1
4

E-
0

1
3

9
2

.7
5

4
.9

2
.4

0
E-

0
2

m
iR

-1
7

-3
p

7
.6

1
E-

0
3

3
4

5
.4

8
9

.5
4

2
.5

9
E-

0
2

m
iR

-3
3

0
-3

p
2

2
.2

2
E-

0
2

3
9

3
.3

8
5

.5
3

2
.8

8
E-

0
2

m
iR

-4
3

2
-5

p
2

9
.2

5
E-

0
3

3
4

5
.8

6
9

.9
2

2
.9

0
E-

0
2

m
iR

-2
1

9
-3

p
2

6
.0

5
E-

0
4

3
9

3
.4

2
5

.5
8

4
.0

5
E-

0
2

m
iR

-5
9

2
2

.7
4

E-
0

3
3

9
3

.7
7

5
.9

3
3

.1
8

E-
0

2

m
iR

-1
0

1
-5

p
2

4
.0

9
E-

0
2

3
9

4
.0

2
6

.1
7

4
.1

1
E-

0
2

m
iR

-7
0

8
-3

p
2

1
.3

7
E-

0
2

3
9

4
.1

6
6

.3
1

4
.9

0
E-

0
2

m
iR

-3
0

b
-5

p
6

.5
7

E-
0

4
3

9
4

.3
6

.4
5

4
.3

9
E-

0
2

m
iR

-3
0

c-
5

p
3

.0
0

E-
0

4
3

9
4

.4
2

6
.5

8
4

.6
1

E-
0

2

N
e

u
ro

p
at

h
o

lo
g

ic
al

e
xa

m
in

at
io

n
d

is
cl

o
se

d
to

ta
l

n
e

u
ro

fi
b

ri
lla

ry
ta

n
g

e
le

sc
o

re
s.

W
e

b
in

n
e

d
th

e
d

at
a

0
–

1
5

,
in

in
cr

e
as

in
g

in
cr

e
m

e
n

ts
,

fo
r

e
ac

h
su

b
je

ct
.

Sc
o

re
s

w
e

re
d

iv
id

e
d

in
to

th
re

e
g

ro
u

p
s

co
rr

e
sp

o
n

d
in

g
to

lo
w

n
e

u
ro

fi
b

ri
lla

ry
ta

n
g

e
le

s
sc

o
re

(0
–

4
),

m
o

d
e

ra
te

n
e

u
ro

fi
b

ri
lla

ry
ta

n
g

e
le

s
sc

o
re

(5
–

9
)

an
d

h
ig

h
n

e
u

ro
fi

b
ri

lla
ry

ta
n

g
e

le
s

sc
o

re
(1

0
–

1
5

).
U

lt
im

at
e

ly
,

n
e

u
ro

fi
b

ri
lla

ry
ta

n
g

le
su

b
g

ro
u

p
s

co
n

si
st

e
d

o
f

st
ag

e
1

(n
=

7
3

),
st

ag
e

2
(n

=
5

8
)

an
d

st
ag

e
3

(n
=

5
3

)
su

b
je

ct
s

fo
r

C
SF

an
d

st
ag

e
1

(n
=

7
1

),
st

ag
e

2
(n

=
4

9
)

an
d

st
ag

e
3

(n
=

4
4

)
fo

r
SE

R
.

O
rd

in
al

lo
g

is
ti

c
re

g
re

ss
io

n
an

al
ys

is
(O

LR
)

w
as

im
p

le
m

e
n

te
d

in
o

rd
e

r
to

fi
t

m
iR

N
A

e
xp

re
ss

io
n

d
at

a
ac

ro
ss

th
e

th
re

e
o

rd
e

re
d

g
ro

u
p

s.
D

e
lt

a
A

IC
(D

i)

q
u

an
ti

fi
e

s
th

e
in

fo
rm

at
io

n
lo

ss
as

so
ci

at
e

d
w

it
h

u
si

n
g

e
ac

h
m

o
d

e
l

re
la

ti
ve

to
th

e
b

e
st

ap
p

ro
xi

m
at

in
g

m
o

d
e

l.
W

e
re

p
o

rt
p

re
d

ic
to

r
va

ri
ab

le
s

w
it

h
th

e
lo

w
e

st
A

ka
ik

e
In

fo
rm

at
io

n
C

ri
te

ri
o

n
(A

IC
)

an
d
D

iv
1
0

th
at

sa
ti

sf
y

as
su

m
p

ti
o

n
s

o
f

th
e

O
LR

.
p

-V
al

u
e

*
is

u
n

ad
ju

st
e

d
.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

0
9

4
8

3
9

.t
0

0
5

Profiles of miRNAs in Serum and CSF of AD and PD

PLOS ONE | www.plosone.org 9 May 2014 | Volume 9 | Issue 5 | e94839



T
a

b
le

6
.

m
iR

N
A

s
as

so
ci

at
e

d
w

it
h

p
la

q
u

e
d

e
n

si
ty

sc
o

re
.

P
la

q
u

e
s

C
S

F
P

la
q

u
e

s
S

E
R

h
a

s-
m

ir
N

a
m

e
P

a
ra

m
e

te
r

E
st

im
a

te
A

IC
D

i
p

-V
a

lu
e

*
h

a
s-

m
ir

N
a

m
e

P
a

ra
m

e
te

r
E

st
im

a
te

A
IC

D
i

p
-V

a
lu

e
*

m
iR

-1
8

4
2

2
.7

2
E-

0
2

3
7

5
.6

8
0

8
.2

5
E-

0
4

m
iR

-3
0

b
-5

p
2

5
.1

3
E-

0
3

3
4

2
.4

6
1

.1
4

2
.3

5
E-

0
2

m
iR

-3
3

5
-5

p
2

2
.0

2
E-

0
3

3
8

0
.8

5
.1

3
4

.2
3

E-
0

3
m

iR
-1

8
3

-5
p

2
3

.3
9

E-
0

3
3

4
2

.5
8

1
.2

6
9

.8
1

E-
0

3

m
iR

-1
9

9
b

-5
p

2
5

.8
5

E-
0

2
3

8
0

.8
2

5
.1

5
9

.9
7

E-
0

3
m

iR
-1

0
6

a-
5

p
2

1
.1

3
E-

0
2

3
4

3
.3

3
2

.0
1

1
.9

5
E-

0
2

m
iR

-7
6

0
2

2
.4

2
E-

0
2

3
8

1
.9

1
6

.2
3

4
.3

2
E-

0
3

m
iR

-3
3

9
-3

p
2

4
.9

8
E-

0
3

3
4

4
.1

9
2

.8
7

2
.7

8
E-

0
2

m
iR

-1
2

9
9

2
3

.2
9

E-
0

2
3

8
2

.4
6

6
.7

8
1

.1
5

E-
0

2
m

iR
-6

2
5

-3
p

2
7

.9
6

E-
0

2
3

4
4

.2
3

2
.9

1
2

.8
8

E-
0

2

m
iR

-4
5

5
-5

p
2

6
.2

0
E-

0
2

3
8

2
.7

3
7

.0
5

1
.2

9
E-

0
2

m
iR

-1
7

-5
p

2
7

.9
3

E-
0

3
3

4
5

3
.6

9
3

.7
4

E-
0

2

m
iR

-7
0

8
-3

p
2

1
.9

6
E-

0
2

3
8

3
.1

4
7

.4
6

8
.9

4
E-

0
3

m
iR

-9
3

-5
p

2
8

.5
0

E-
0

4
3

4
5

.5
3

4
.2

2
4

.0
3

E-
0

2

m
iR

-1
2

5
b

-3
p

2
1

.1
4

E-
0

3
3

8
3

.6
3

7
.9

5
9

.9
4

E-
0

3

m
iR

-3
7

6
a-

3
p

2
7

.2
4

E-
0

2
3

8
4

.3
2

8
.6

5
1

.1
9

E-
0

2

m
iR

-1
9

5
-5

p
2

9
.4

6
E-

0
4

3
8

4
.4

7
8

.7
9

1
.8

6
E-

0
2

m
iR

-5
4

8
b

-5
p

2
8

.0
7

E-
0

2
3

8
4

.5
8

.8
3

1
.1

8
E-

0
2

m
iR

-1
0

1
-5

p
2

5
.2

3
E-

0
2

3
8

4
.7

6
9

.0
9

1
.4

0
E-

0
2

m
iR

-5
4

9
2

2
.3

3
E-

0
2

3
8

4
.8

5
9

.1
7

3
.0

1
E-

0
2

m
iR

-6
5

1
2

8
.1

3
E-

0
2

3
8

4
.9

9
.2

2
1

.6
5

E-
0

2

m
iR

-1
9

b
-3

p
2

6
.3

3
E-

0
4

3
8

5
.0

6
9

.3
8

3
.3

3
E-

0
2

m
iR

-1
9

a-
3

p
2

8
.2

5
E-

0
4

3
8

5
.0

9
9

.4
1

3
.1

9
E-

0
2

m
iR

-1
0

1
-3

p
2

1
.2

8
E-

0
4

3
8

5
.2

1
9

.5
4

3
.3

1
E-

0
2

N
e

u
ro

p
at

h
o

lo
g

ic
al

e
xa

m
in

at
io

n
d

is
cl

o
se

d
to

ta
lp

la
q

u
e

-d
e

n
si

ty
sc

o
re

ra
n

g
in

g
fr

o
m

1
–

1
5

fo
r

e
ac

h
su

b
je

ct
.S

co
re

s
w

e
re

d
iv

id
e

d
in

to
th

re
e

g
ro

u
p

s
co

rr
e

sp
o

n
d

in
g

to
lo

w
p

la
q

u
e

-d
e

n
si

ty
sc

o
re

(1
–

5
),

m
o

d
e

ra
te

p
la

q
u

e
-d

e
n

si
ty

sc
o

re
(6

–
1

0
)

an
d

h
ig

h
p

la
q

u
e

-d
e

n
si

ty
sc

o
re

(1
1

–
1

5
).

U
lt

im
at

e
ly

,p
la

q
u

e
d

e
n

si
ty

su
b

g
ro

u
p

s
co

n
si

st
e

d
o

f
st

ag
e

1
(n

=
5

8
),

st
ag

e
2

(n
=

4
1

)
an

d
st

ag
e

3
(n

=
8

5
)

su
b

je
ct

s
fo

r
C

SF
an

d
st

ag
e

1
(n

=
5

5
),

st
ag

e
2

(n
=

3
5

)
an

d
st

ag
e

3
(n

=
7

4
)

fo
r

SE
R

.
T

h
e

o
rd

in
al

re
g

re
ss

io
n

m
e

th
o

d
w

as
u

se
d

to
m

o
d

e
lt

h
e

re
la

ti
o

n
sh

ip
b

e
tw

e
e

n
th

e
o

rd
in

al
o

u
tc

o
m

e
va

ri
ab

le
,p

la
q

u
e

d
e

n
si

ty
sc

o
re

,a
n

d
n

o
rm

al
iz

e
d

m
iR

N
A

co
u

n
ts

as
e

xp
la

n
at

o
ry

va
ri

ab
le

.D
e

lt
a

A
IC

(D
i)

q
u

an
ti

fi
e

s
th

e
in

fo
rm

at
io

n
lo

ss
as

so
ci

at
e

d
w

it
h

u
si

n
g

e
ac

h
m

o
d

e
l

re
la

ti
ve

to
th

e
b

e
st

ap
p

ro
xi

m
at

in
g

m
o

d
e

l.
W

e
re

p
o

rt
m

iR
N

A
s

w
it

h
th

e
lo

w
e

st
A

IC
va

lu
e

an
d
D

iv
1

0
.

p
-V

al
u

e
*

is
u

n
ad

ju
st

e
d

.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
o

n
e

.0
0

9
4

8
3

9
.t

0
0

6

Profiles of miRNAs in Serum and CSF of AD and PD

PLOS ONE | www.plosone.org 10 May 2014 | Volume 9 | Issue 5 | e94839



Figure 2. Ordinal regression analysis reveals miRNAs with progressive expression trends across increasing Braak stages. (A) We
plotted two miRNAs selected from Tableô 4 (miR-9-3p and miR-708-3p) that are detected in CSF and change with increasing Braak stage. The y axis is
the mean of normalized counts for each miRNA, while the x axis represents Braak stages. (B) miR-16-5p and miR-183b-5p are detected in SER and
change with Braak stage.
doi:10.1371/journal.pone.0094839.g002

Figure 3. Ordinal regression analysis reveals miRNAs with progressive expression trends across increasing neurofibrillary tangle
density. (A) We plotted four miRNAs (miR-181b-5p, miR-181d, miR-181a-5p and miR-9-3p) detected in CSF from Tableô 5. (B) miR-7i-3p and miR-
10a-5p were selected from Tableô 5, significant for neurofibrillary tangle stage regression analysis in SER.
doi:10.1371/journal.pone.0094839.g003
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Information Criterion (AIC) value, at the delta AIC ,10 cut off

(Table 4, 5, 6). For the reported models, parameter estimate 95%

confidence interval did not include zero and data satisfied

assumptions of the OLR.

i) (a) CSF Braak stages: 18 miRNAs, including miR-9-3p and

miR-708-3p (Table 4, Figure 2A). We plotted two

miRNAs selected from Table 4 (miR-9-3p and miR-708-

3p) that are detected in CSF and change with increasing

Braak stage. The y axis is the mean of normalized counts for

each miRNA, while the x axis represents Braak stages.

(b)SER Braak stages: 15 miRNAs including miR-16-5p and

miR-183b-5p (Table 4, Figure 2B). miR-16-5p and miR-

183b-5p are detected in SER and change with Braak stage.

ii) (a) CSF neurofibrillary tangle stages: Neuropathology ex-

amination disclosed total neurofibrillary tangle scores.

Scores were created by counting tangle pathology (0 =

none, 1 = sparse, 2 = moderate, 3 = frequent) across

several brain regions (Frontal, Temporal, Parietal, Hippo-

campal, Entorhinal) (Table S1). We binned the data 0–15,

in increasing increments, for each subject. Summed total

scores were divided into three groups corresponding to low

neurofibrillary tangles score (0–4), moderate neurofibrillary

tangles score (5–9) and high neurofibrillary tangles score

(10–15). Ordinal regression analysis was implemented in

order to fit miRNA expression data across the three ordered

groups. We report miRNAs with the lowest Akaike

Information Criterion (AIC), significant at uncorrected p-

value ,0.05 cut off if the parameter estimate 95%

confidence interval did not include zero. The ordinal

logistic regression analysis resulted in 18 reported miRNAs

including miR-9-3p and the miR-181 family (Table 5,
Figure 3A). We plotted four miRNAs (miR-181b-5p, miR-

181d, miR-181a-5p and miR-9-3p) detected in CSF from

Table 5 with delta AIC ,10.

(b)SER neurofibrillary tangle stage: 12 reported miRNAs

including let-7i-3p and miR-10a-5p (Table 5, Figure 3B).

let-7i-3p and miR-10a-5p were selected from Table 5,

significant for neurofibrillary tangle stage regression analysis

in SER.

iii) (a) CSF plaque-density stages: Neuropathology character-

ization of total plaque-density scores, ranging from 1–15 for

each subject. Scores were summed from five brain regions

described above. Total scores were divided into three

groups corresponding to low plaque-density score (1–5),

moderate plaque-density score (6–10) and high plaque-

density score (11–15). The ordinal regression method was

used to model the relationship between the ordinal outcome

variable, plaque density score, and normalized miRNA

counts as explanatory variable. We report miRNAs with the

lowest AIC significant at uncorrected p-value ,0.05 if the

parameter estimate 95% confidence interval does not

include zero. We plotted two miRNAs out of the 17

reported (miR-195-5p, miR-101-3p) in Table 6 that showed

consistent expression changes with increased density of

plaques (Table 6, Figure 4A).

(b)SER plaque-density stages: 7 miRNAs including miR-

106a-5p and miR-30b-5p (Table 6, Figure 4B). miR-106-

5p and miR-30b-5p, detected in SER and selected from

Table 6, showed significant fit across increasing plaque

density stages.

Figure 4. Ordinal regression analysis reveals miRNAs with progressive expression trends across increasing amyloid plaque density.
(A) We plotted two miRNAs (miR-195-5p, miR-101-3p) detected in CSF from Tableô 6 that showed consistent expression changes with increased
density of plaques. (B) miR-106-5p and miR-30b-5p, detected in SER and selected from Tableô 6, showed significant fit across increasing plaque
density stages.
doi:10.1371/journal.pone.0094839.g004
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miRNA expression correlated with substantia nigra
depigmentation and Lewy body pathology

The progressive loss of of melanin-containing dopaminergic

neurons in the substantia nigra leads to a loss of pigmentation,

resulting in measurable depletion of staining in the tissue. The

depigmentation score correlates well with the loss of striatal

tyrosine hydroxylase reactivity. For the subjects in this study,

depigmentation pathology was assessed according to Beach et al.,

2009 [46]. No differentially expressed miRNAs were detected

from comparing moderate and severe depigmentation in samples

with Limbic type Lewy body progression. The spread of Lewy

bodies and Lewy neurites from the brainstem to the cerebral

cortex is one of the best correlations of PD progression to PD with

dementia (PDD) [46,47,48]. Olfactory bulb and tract, brainstem

IX–X, brainstem (locus coeruleus), brainstem (substantia nigra),

amygdala, transentorhinal, anterior cingulate gyrus and neocortex

(temporal, frontal and parietal) were assessed via histopathology to

calculate the Lewy-related density scores for aggregate formation

with all immunoreactive features in the regions noted (the

antibody used was against phosphorylated a -synuclein) [46].

Neuronal perikaryal cytoplasmic staining, neurites and puncta are

all considered together, using the templates provided by the

Dementia with Lewy Bodies Consortium [49]. Scores are binned

from 0–2, 0 being no Lewy body detection to 2 being the highest

(neocortical type). Upon filtering, OLR analysis consisted of the

following number of subjects in each subgroup: no Lewy bodies

(CSF: n = 126; SER: n = 113), Limbic type (CSF: n = 30; SER:

n = 23) and Neocortical type (CSF: n = 21; SER: n = 20). Total of

12 miRNAs in CSF and 10 in SER were reported as best singular

predictor models of Lewy body stage progression (Table 7).

Normalized read counts for miR34a-5p and miR-374a-5p are

displayed in Figure 5. Interestingly, our OLR results indicate that

miR-132 expression monotonically decreases in CSF as Lewy

body pathology advances- findings concurrent with decreased

expression levels of miR-132 in PD samples compared to controls

(Table1; Table 7).

miRNA expression, potential markers of cognition
Thirty-four miRNAs had significant differential expression in

serum samples when comparing PD patients with PD with a

clinical diagnosis of dementia (PDD) (Table S3). We were

interested to know whether or not these same PDD miRNAs were

significantly different in our serum data from AD patients

compared to normal controls. We found that 3 out of the 34

miRNAs had significantly altered expression in AD subjects as well

(Table 8). Sample size for serum consisted of PD (n = 32), PDD

(n = 18), AD (n = 53) and Control (n = 62) subjects. Results were

filtered at corrected p-value ,0.05, and the logarithmic base 2 fold

change (FC) is relative to the first listed group for each comparison.

One of the differentially expressed miRNAs, miR-34c, was

previously identified to be highly expressed in the hippocampus of

patients with AD and in animal models of AD [50]. The same

group linked miR-34c as a negative regulator of memory

consolidation [50]. Interestingly, our data examining miRNAs

differentially expressed in the progression of Lewy bodies from

limbic to neocortical, also identified miR-34c and 34b as

significantly altered. While we identified miRNAs detectible in

blood (serum) that have the potential to indicate cognitive

impairment, CSF had revealed only 11 significant differentially

expressed miRNAs and no overlap with the AD and Control CSF

analysis.

Discussion

These data represent one of the largest data sets to date,

examining the miRNAs detectable in cell-free biofluids from

Figure 5. Ordinal regression analysis reveals miRNAs with trends in Lewy body progression. (A) We plotted two miRNAs (miR-34a-5p
and miR-374-5p) detected in CSF from Tableô 7 that showed consistent expression change with progression of Lewy bodies. (B) We plotted two
miRNAs (miR-130b-3p and miR-181b-5p) detected in SER from Tableô 7 that showed consistent expression changes with progression of Lewy bodies.
doi:10.1371/journal.pone.0094839.g005
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patients with neurodegenerative disease, and the first to use NGS

to compare the profiles from CSF and SER. We were able to

detect differentially expressed miRNAs in CSF and SER, many of

them previously identified to be misregulated in patient tissue

samples. Interestingly, there was minimal overlap between the

miRNAs identified in CSF with the miRNAs identified in SER.

Further temporal investigation in a living cohort will be necessary

to determine which biofluid will be most reliable for early

detection of disease and predictive of disease progression. These

data are an important first step, comparing the biofluid profiles

with one another and with known miRNAs deregulated in brain

tissue. The examination of miRNA changes associated with the

severity of disease pathology can also provide important insight

about how to interpret miRNA changes as diagnostic and

prognostic indicators of disease.

miRNAs of particular interest
Many of the miRNAs we were able to detect as differentially

expressed in cell-free CSF and SER have been reported previously

in studies examining brain tissue from patients with AD and PD

[22,24,26,29,51,52,53,54], or as miRNAs that target genes of

particular interest- such as APP, BACE1 and a-synuclein

[54,55,56]. For example, 73% of the miRNAs we identified to

be differentially expressed in AD patient CSF compared with

control subject CSF were previously found to be deregulated in

AD brain tissue or target known AD-related mRNAs. We selected

a few of the differentially expressed miRNAs for further discussion.

We found miRNA-9 to be downregulated in CSF from AD

patients when compared to levels in CSF from control subjects.

miRNA-9 expression levels change across Braak stages and

neurofibrillary tangle advancement in CSF, decreasing with

Alzheimer’s disease progression. To date, several studies demon-

strate the altered expression of miR-9 in AD brains [22,23,55,57].

The gene coding for neurofilament H is among the miR-9 targets

potentially involved in AD [58]. This protein has previously been

shown to be upregulated in disease conditions and can be isolated

from NFTs along with Tau and other cytoskeleton proteins

[58,59,60,61]. These observations correlate with the decrease in

miR-9 levels we observed with tangle severity. In addition, miR-9

has been shown to be downregulated in response to Ab treatment

in primary neurons, suggesting that miR-9 downregulation could

be a consequence of the disease pathogenesis that results in

neurofilament-H upregulation [2]. However, miR-9 also targets

Sirtuin (SIRT1), a de-acetylase with reduced expression in AD

brains [62,63]. In contrast to neurofilament H, decreased SIRT1

levels would indicate a potential increase in miR-9, or the increase

of another miRNA targeting SIRT1. Interestingly, SIRT1 can also

be regulated by miR-34c (below).

miR-34c was found in our study to be upregulated in PDD

patients compared with PD patients and in AD patients compared

to control subjects. Zovoilis et al. [50] found high levels of miR-

34c in hippocampus of AD patients and in animal models of AD.

They observed that, when miR-34c is elevated, memory consol-

idation is impaired. When miR-34c is targeted for removal,

learning and memory is restored. One of the mRNA targets for

miR-34c is SIRT1, involved in synaptic plasticity and memory

formation [64]. The authors confirmed that elevated miR-34c

correlated with decrease in SIRT1 in tissue samples. The authors

did not look for the expression of any miRNAs in AD patient

blood samples, nor did they examine PD or PDD patients. The

hypothesis that elevated levels of miR-34c is related to cognitive

decline holds true in our data from patient serum samples. There

is approximately a 2.1-log2 fold increase in miR-34c in PDD

patient serum compared with PD patients and a 1.6-log2 fold

increase in miR-34c in AD patient serum compared with normal

control subjects.

miR-34b/c is also associated with PD. Levels of miR-34b/c

are decreased by 40–65% in amygdala, substantia nigra,

cerebellum and frontal cortex of PD patients [33]. Additionally,

knock-down of miR-34b/c in differentiated SH-SY5Y neuroblas-

toma cells resulted in a decrease in parkin and DJ-1 (encoded by

PARK7) concentrations that led to a disturbance of mitochondria

function and decrease in viability of the cell [65]. DJ-1 can be

involved in regulation of apoptosis; it can also act as a redox

chaperone inhibiting the aggregation of a -synuclein [66]. Cell

death associated with altered mitochondrial activity and oxidative

stress are recognized biochemical abnormalities associated with

PD. It remains to be proven whether the decreased expression of

these miRNAs is due to their specific down-regulation in surviving

neurons or secondary to neuron degeneration.

miR-101 was decreased in CSF, and correlated with increases

in neurofibrillary tangles and plaque density. Several independent

studies showed that miR-101 was downregulated in human AD

cortex [23,57,67]. Cyclooxydenase-2 (COX-2) and APP are

known miR-101 targets implicated in AD [15]. COX-2 is involved

in the inflammatory response, associated with neuronal loss,

colocalizes with NFTs, and is deregulated in the AD brain [15,67].

It is possible that miR-101 down-regulation might contribute

significantly to AD pathology by: 1) increasing APP expression; 2)

promoting NFT formation through the increase in Tau phos-

phorylation; 3) contributing to inflammation through the upregu-

lation of COX-2 expression.

Expression of miR-132 has been previously described as

required for neuron morphogenesis and function, whereas

significant down-regulation in miR-132 expression has been

associated with a -synuclein accumulation and neuronal malfunc-

tion in a -synuclein (A30P)-transgenic mice [68,69]. Yang et al.

demonstrated through bioinformatics prediction, luciferase-report-

er assay, and Western blot analysis that miR-132 could directly

regulate expression of Nurr1, a critical transcription factor for

Table 8. miRNAs significantly different in SER samples from PD vs. PDD and Control vs. AD.

Parkinson’s vs Parkinson’s with Dementia Control subjects vs Alzheimer’s subjects

hsa-mirName FC (log2) Adjusted p-Value hsa-mirName FC (log2) Adjusted p-Value

miR-34c-5p 2.12 0.002 miR-34c-5p 1.57 0.002

miR-34b-5p 2.01 0.009 miR-34b-5p 1.71 0.003

miR-375 21.61 0.008 miR-375 20.94 0.033

Sample size for serum consisted of PD (n = 322), PDD (n = 188), AD (n = 53) and Control (n = 62) subjects. Results were filtered at corrected p-value ,0.05. The
logarithmic base 2 fold change (FC) is relative to the first listed group for each comparison. P-Values are adjusted for multiple corrections.
doi:10.1371/journal.pone.0094839.t008
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midbrain dopamine neuron development and differentiation [70].

Additionally, Yang et al. showed that inhibition of endogenous

miR-132 significantly increases differentiation of dopamine

neurons, whereas prolific expression of miR-132 in embryonic

stem cells dramatically represses dopamine neuron differentiation

with no effect on the total number of neurons [70]. As a potential

regulator of methyl-CpG-binding protein, an important compo-

nent of neurodevelopment and neurodegeneration, miR-132 is a

prospective molecule of interest in PD diagnosis and treatment

[70].

Conclusion

One of the first decisions most researchers studying markers of

neurodegeneration must consider before they begin a project is

what tissue or biofluid to profile. We provide a comprehensive

examination of miRNAs detected in CSF and blood from the same

patients and a comparison to reported miRNAs deregulated in

brain tissue from AD and PD. In living patients, accessible tissue

samples are limited. Among readily available biofluids, we can

examine urine, saliva, and serum; CSF is more difficult to obtain.

Although recently saliva and salivary gland biopsies have been

shown to contain potential markers of PD, the utility of urine and

saliva samples for profiling neurodegenerative disease or central

nervous system damage still needs further examination [71]. For

this study, we concentrated our analysis on CSF and serum from

blood. CSF is in close proximity to the diseased tissue, but is often

difficult to obtain from subjects. Blood is easier to acquire, but may

not reliably reflect changes associated with neurodegeneration.

When we compared the miRNA profiles from the two biofluids,

we found that miRNAs detected in CSF cluster patients slightly

more effectively than miRNAs detected in SER (Figures S1, S2).

However, depending on individual analyses, there appeared to be

benefits to both biofluids. For example, 73% of the deregulated

miRNAs identified in our CSF data from AD patients were

previously reported. However, comparison of miRNAs that

overlap between PD with PDD and AD with cognitively normal

controls revealed changes only in SER samples.

There are many more studies and data available for miRNA

deregulation in association with AD than with PD. We found

deregulated miRNAs associated with both diseases and present in

both CSF and SER biofluids; interestingly, there were consistently

fewer miRNAs associated with PD in each of the analyses we

performed. There are several reasons why this may be the case: 1)

patients with AD have significant ongoing spread of the disease

from one brain region to another with severe plaque deposition

and tangle pathologies. Perhaps these pathologies are more

significant drivers of miRNA deregulation and detection, 2)

patients with PD display mild to moderate plaque and tangle

pathology in addition to Lewy bodies, leading to potentially fewer

detected miRNAs specifically indicative of the disease, and 3) by

the time of death, the destruction of several of the specific brain

regions and cell types associated with PD (substantia nigra and

striatum), have already occurred. PD patients begin to experience

symptoms upon the loss of 50–60% of dopaminergic neurons

within the substantia nigra, and severe depletion of dopamine in

the striatum [1,72]. This may contribute significantly to a

reduction in detectable disease-related miRNAs late in the disease.

We will continue to evaluate many of the miRNAs identified in

this paper using additional methods and samples. We will use

qRT-PCR as an additional assay for validation of differentially

expressed miRNAs as well as sequencing to validate the presence

of miRNAs in SER from patients living with the disease, early in

their diagnosis. We will also examine the possible enrichment of

specific miRNAs within microvesicles or associated with extracel-

lular RNA-binding proteins. Ultimately validation of these

miRNAs in larger patient cohorts will enable the research

community to identify the critical miRNA biomarkers that are

most clearly associated with specific neurodegenerative disorders,

stage and severity of disease.

Materials and Methods

Samples and patient data
Ethics Statement - All subjects were enrolled in the Banner Sun

Health Research Institute (BSHRI) Brain and Body Donation

Program as a whole-body donor and had previously signed

informed consent approved by the BSHRI Institutional Review

Board (IRB). The TGen Office of Research Compliance approved

the use of the banked postmortem samples for this study. We

obtained the following three groups of samples that were used for

this study: AD (n = 67 CSF and n = 64 SER), PD (n = 65 CSF and

n = 60 SER), and control (n = 70 CSF and n = 72 SER) from the

Sun Health Research Institute, Sun City AZ. Verification of the

diagnosis using neuropathology evaluations was completed and

reported for all samples. A comprehensive overview of the cohort

and data collected is included in Table S1. Figure S1 displays no

significant source of variation in samples due to age, gender, or

postmortem interval (PMI).

RNA isolation and sequencing
Total RNA was isolated from 1ml of CSF and 1ml of SER from

each subject as described in Burgos et al., 2013 [17]. Briefly, the

miRVana PARIS kit (Invitrogen) was used with a modified

protocol to extract total RNA and maximize miRNA yield. The

Illumina TruSeq Small RNA sequencing kit was used for library

preparation as previously described [17]. The samples were given

individual barcodes up to 48, pooled and loaded on seven lanes of

the Illumina HiSeq2000 with one lane of the flowcell used as a

control for calculating phasing throughout the run. Each sample

was often sequenced on two different flowcells to maximize reads

mapped to mature miRNA sequences in miRBase.

Post-sequencing analysis pipeline
Sequencing data generated by Illumina HiSeq2000 was pre-

processed as previously described in Metpally et al., 2013 [44] and

aligned to the reference with miRDeep2 software [45]. The

sequencing data was processed and de-multiplexed using Illumi-

na’s CASAVA (v1.8) pipeline. Quality control checks on raw fastq

reads generated by CASAVA were preformed by FastQC

software. The FASTX toolkit was used for fastq pre-alignment

processing, including adapter clipping and read collapsing, for

better mapping results. Illumina three prime adapter sequences

were removed by the fastx_clipper tool. Clipped reads were used

as an input argument for miRDeep2 alignment software.

The processing of sequencing data using miRDeep2 consists of

three modules. The Mapper module preforms read preprocessing

and alignment to the reference genome. Once aligned, the

miRDeep2 module excises genomic regions covered by the

sequencing data in order to identify probable secondary RNA

structure. Plausible miRNA precursors are evaluated and scored

based on their likelihood of being true events. The Quantifier

module produces a scored list of known and novel miRNAs with

quantification and expression profiling. We used default param-

eters suggested by the creators of the tool and allowed one single

nucleotide variation (SNV). The csv files from miRDeep2 were

used for further analysis. All sequencing associated with the

samples can be found with accession phs000727.v1.p1 in dbGaP.
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Normalization and quality control
The miRNA read counts identified by miRDeep2 were

normalized using DESeq2 normalization method to account for

compositional bias in sequenced libraries and library size.

Assuming typical DESeq2 data frame, the method consists of

computing a size factor for each sample as the median ratio of the

read count over the corresponding row geometric average [73].

Raw counts were then divided by the size factor associated with

their sample [73]. Under DESeq2 normalization hypothesis, most

genes are not differentially expressed (DE), leading to a ratio of 1.

Therefore, the size factor for the sample is an estimate of the

correction factor that needs to be applied to all read counts of the

corresponding column in order to make samples comparable.

Quality control of miRNA expression data consisted of filtering

both samples and miRNAs. Samples with total sum of mapped

read counts lower than 100,000 for CSF and 60,000 for SER were

removed. Thresholds were determined based on the distribution of

the total counts for all samples. Additionally, miRNAs with

average less than 5 counts were not considered for further analysis.

Differential expression
Differential expression of miRNA read counts was performed

using DESeq2 (v2.1.0.19) package [74]. Three groups were

considered for paired analysis from CSF data: i) Control and

Alzheimer’s subjects, ii) Control and Parkinson’s subjects, and iii)

Alzheimer’s and Parkinson’s subjects. Similarly, three groups were

considered for paired analysis from SER data: i) Control and

Alzheimer’s subjects, ii) Control and Parkinson’s subjects, and iii)

Alzheimer’s and Parkinson’s subjects. DESeq2 method is based on

negative binomial distribution (NB), with custom fit for variance-

mean dependence [74]. Upon normalization, dispersion is

estimated by local regression for gamma-family generalized linear

models, providing basis for inference. Sum of all replicates for gene

i corresponding to conditions A and B, CiA and CiB, are evaluated

as NB-distributed with moments as estimated and fitted. The p

value of a pair of observed count sums (ciA,ciB) is then the sum of

all probabilities less or equal to p(ciA,ciB), conditioned on ciAzciB

[74]. We report differentially expressed miRNA with fold change

0.7, FC(log2) or FC(log2) ,20.7 significant at adjusted p-value

,0.05.

Regression analysis
To take advantage of the ordinal nature of regional and time-

depended characteristics present in AD and PD pathology, we

implemented ordinal logistic regression (OLR) in order to detect

miRNAs with monotonic expression patterns. The ordinal logistic

model assumes the presence of a covert continuous predictor

variable and ordinal outcome that arises from discretization of the

underlying continuum into j-ordered groups such that j = [1…J]

[75]. Analysis of ordered categorical data was executed via

cumulative link models (CLMs). Ordinal response variable Yi then

follows multinomial distribution with probability pij that the ith

observation falls in response cathegory j. Ordinal logit considers

the probability of a single event and all events that are ordered

before it, hence incorporating ordered nature of the dependent

variable in the fit [75]. With cumulative probabilities set

yij~P(Yiƒj)~pi1z:::zpij , cumulative logits which incorporate

the logit link are defined as:

logit(yij)~ log
P(Yiƒj)

1{P(Yiƒj)
j~½1:::J{1�

ð1Þ

Let Xi be a vector of explanatory variables, b the corresponding

set of regression parameters, and aj provides each cumulative logit

its unique intercept value. Then, cumulative logit model is a

regression model for cumulative logits defined as:

logit(yij)~aj{bXi ð2Þ

Four well described signatures of AD and PD pathology were

binned into ordinal categories and considered as OLR outcome

variables: i) Braak neurofibrillary stages, ii) neurofibrillary tangle

scores, iii) plaque-density scores and iv) synuclein/Lewy body

stages. Neuropathology examination disclosed total Braak stages

(1–6), neurofibrillary tangle neurofibrillary tangle (0–15), plaque-

density scores (1–15) and Lewy body stages (no Lewy bodies;

Limbic type; Neocortical type). For convenience, we binned the

neurofibrillary tangle and plaque-density scores for each subject

into three ordinal categories, in increasing increaments. The

events of interest correspond to low neurofibrillary tangles score

(0–4), moderate neurofibrillary tangles score (5–9) and high

neurofibrillary tangles score (10–15). Similarly, for plaque-density

data three groups correspond to low plaque-density score (1–5),

moderate plaque-density score (6–10), and high plaque-density

score (11–15). Lastly, synuclein/Lewy body stage was divided into

ordinal outcome variables as defined by the Unified Staging

System for Lewy Body Disorders corresponding to lowest

progression (no Lewy bodies), moderate progression (Limbic type)

and advanced progression (Neocortical type) [46].

The OLR method was used to model relationship between the

ordinal outcome variables and explanatory predictor variable,

namely normalized miRNA counts, using the R package ordinal.

The Logit build-in link function was used to determine factors

assoicated with Braak, neurofibrillary tangle and plaque density

stages. The cummulative link model assumes that thresholds are

constant for all values of the explanatory variables. For reported

miRNAs, the graphical method for assessing the parallel slopes

assumption was used to check ordinal logit requirments. A

modified Newton algorithm was used to optimize the likelihood

function. The condition number of the Hessian did not indicate a

problem with any of the models corresponding to reported

miRNAs. Parameter confidence intervals were based on the profile

likelihood function, and the estimates in the output are given in

units of ordered log odds.

In addition to the usual hypothesis-testing approach, we decided

to estimate the effect of a certain variable on the response outcome

and its precision. The objective of the model selection analysis is to

evaluate whether the effect of the possible predictor is sufficiently

important, and as such, determine if it possible to make predictions

based on a regression model that includes it as a parameter.

Akaike Information Criterion is a particularly useful information

theory approach for model selection when a number of variables

are believed to have an effect on a process or a pattern.

For the same dataset with the same response variable, the

‘‘best’’ model is the one that minimizes the Kullback-Leibler value,

or the information loss when approximating a real process [76]. In

order to minimize the expected Kullback-Leibler information, it is

necessary to maximize EyEx½log (g(xj ĥ(y)))� for a collection of

admissible models, where g is the approximated model in terms of

a probability distribution, y is the random sample from the density

function f(y) for the unknown real process f, and ĥ is the maximum

likelihood estimate based on the model g and data y [76].

Approximately unbiased maximum likelihood estimate of

EyEx½log (g(xj ĥ(y)))� for a large sample corresponds to

AIC~{2 log f( ĥ(y))z2k, where k is the number of estimated
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parameters included in the model and log f( ĥ(y)) is the log-

likelihood of the model given the data, which reflects the overall fit

of the model [77]. Essentially, AIC provides an indication of which

model would best approximate reality, in terms of minimizing the

loss of information, as well as gives a measure of strength of

evidence for each model.

For the acquired data, we tested a series of plausible models. The

global model, defined as the most complex model considered, was

constructed as a set of variables suspected of having an effect on the

outcome variable (OLR, uncorrected p-value ,0.05, parameter

estimate 95% confidence interval did not include zero). Fit of the

global model was assessed first. In case of a fit, simpler models,

originating from the global model, were compared based on the

weight of evidence that model i is the best approximation of the true

mathematical model given the data and the set of considered

candidates [78]. The value of the AIC has no important meaning

unless compared to AIC of a series of alternate models. Note that a

small Kullback-Leibler information discrepancy in a model

corresponds to a small AIC value for the same model. The AIC

differences, Di , quantify the information loss when one of the fitted

models is used instead of the best approximating model. In general,

0ƒDiƒ2 suggests substantial evidence for the model, 3ƒDiƒ7
indicates the model has considerably less support, whereas Diw10
signifies that the model is very unlikely due to essentially no support

[78]. We considered predictor variables significant at unadjusted p-

value ,0.05 and Diƒ10.

Supporting Information

Figure S1 Consensus clustering of CSF and SER data.
Consensus clustering conjoint with resampling techniques con-

structs the consensus across multiple runs of a clustering algorithm,

determines the number of clusters in the data, and assesses the

stability of the generated clusters. Consensus matrices for

agglomerative hierarchical clustering upon 1-Pearson correlation

distances with 80% item and miRNA resampling was established

from log-transformed normalized counts (AD, PD and control

combined). Empirical cumulative distribution (CDF) corresponding

to the consensus matrices k = {2 (pink), 3 (yellow), 4 (blue), 5

(purple)} was plotted in order to establish stability of the subsequent

consensus matrices. Perfect agreement between consensus matrix

entries translates into an ideal step function with little shape

distortion as k approaches positive infinity. Due to the unimodal

nature of the SER consensus matrix histogram, CSF data seems to

demonstrate more stable clustering for the first five relevant clusters.

(TIF)

Figure S2 Distribution of Silhouette scores for the first
15 clusters in CSF and SER data. Silhouettes quantify how

well a data point assigned to a cluster was classified according to

both tightness of the clusters and the separation between them.

Quality of the cluster assignment, as indicated by the average

silhouette score, ranges for 1.0 for unequivocal cluster assignment

down to 21.0 for arbitrary assignment. Unsupervised agglomer-

ative hierarchical clustering of CSF and SER data (AD, PD and

controls combined) was preformed and average silhouette score

was estimated for each cluster. Despite the relatively low silhouette

scores, CSF data seems to be more appropriately clustered than

SER data, with tighter, more separated clusters.

(TIF)

Table S1 Demographic information from study sub-
jects. The samples are color-coded; blue = subjects with

Alzheimer’s disease, red = subjects with Parkinson’s disease,

yellow = control subjects. Subject IDs correspond to the data

entered into dbGaP, gender (M = 1), APOE status of each subject,

disease duration, PMI = postmortem interval, clinical diagnosis,

control, AD = Alzheimer’s disease, PD = Parkinson’s disease,

DLB = Dementia with Lewy Bodies, VAD = vascular dementia,

PSP = Progressive Supranuclear Palsy, PlaqueF = frontal lobe,

PlaqueT = temporal lobe, PlaqueP = parietal lobe, PlaqueH =

hippocampus, PlaqueE = entorhinal cortex, PlaqueTotal = sum

of scores from all regions, TangleF = frontal lobe, TangleT =

temporal lobe, TangleP = parietal lobe, TangleH = hippocampus,

TangleE = entorhinal cortex, TangleTotal = sum of scores from

all regions, Braak stage, NIA-R = National Institute of Aging

Reagan criteria, LB Stage = Lewy Body stage, sn_depigmentation

(substantia nigra).

(XLS)

Table S2 Normalized average number of counts per
million detected in CSF and Serum from all samples.
(XLSX)

Table S3 miRNAs with significant differential expres-
sion in serum samples when comparing PD patients and
PD with a clinical diagnosis of dementia (PDD).
(XLS)

Analysis S1 (DOCX)

Acknowledgments

First, we would like to thank the Michael J. Fox Foundation for Parkinson’s

Research for supporting this project. We would also like to thank the

researchers at the Banner Sun Health Research Institute for their

dedication to producing and distributing world-class biological materials

for the study of Alzheimer’s and Parkinson’s diseases. We are also deeply

grateful to all of the families and subjects that donated their bodies to

research. We thank the sequencing core at TGen, directed by Winnie

Liang, for maintaining the sequencers and sharing sequencing knowledge

and resources. We also thank Freeport for their support of bioinformatics

under TGen’s Genomic Engine Program.

Author Contributions

Conceived and designed the experiments: KB IM KV. Performed the

experiments: KM AC SV BR KV. Analyzed the data: IM RM WT DC

KV. Contributed reagents/materials/analysis tools: TB HS CA MS.

Wrote the paper: KB IM KV. Pathology data: TB HS CA MS.

Troubleshooting and assay development: KB BR AC SV KV.

References

1. Martins M, Rosa A, Guedes LC, Fonseca BV, Gotovac K, et al. (2011)

Convergence of miRNA expression profiling, a-synuclein interacton and GWAS

in Parkinson’s disease. PLoS One. 6:e25443.

2. Schonrock N, Ke YD, Humphreys D, Staufenbiel M, Ittner LM, et al. (2010)

Neuronal microRNA deregulation in response to Alzheimer’s disease amyloid-

beta. PLoS One. 5:e11070.

3. Lau P, de Strooper B (2010) Dysregulated microRNAs in neurodegenerative

disorders. Semin Cell Dev Biol 21: 768–773.

4. Venda LL, Cragg SJ, Buchman VL, Wade-Martins R (2010) a-Synuclein and

dopamine at the crossroads of Parkinson’s disease. Trends Neurosci 33: 559–

568.

5. Jin XF, Wu N, Wang L, Li J (2013) Circulating microRNAs: a novel class of

potential biomarkers for diagnosing and prognosing central nervous system

diseases. Cell Mol Neurobiol 33: 601–613.

6. Lau P, Bossers K, Janky R, Salta E, Frigerio CS, et al. (2013) Alteration of the

microRNA network during the progression of Alzheimer’s disease. EMBO Mol

Med 5: 1613–1634.

Profiles of miRNAs in Serum and CSF of AD and PD

PLOS ONE | www.plosone.org 18 May 2014 | Volume 9 | Issue 5 | e94839



7. De Smaele E, Ferretti E, Gulino A (2010) MicroRNAs as biomarkers for CNS

cancer and other disorders. Brain Res 1338: 100–111.

8. Cao X, Yeo G, Muotri AR, Kuwabara T, Gage FH (2006) Noncoding RNAs in

the mammalian central nervous system. Annu Rev Neurosci 29: 77–103.

9. Gustincich S, Sandelin A, Plessy C, Katayama S, Simone R, et al. (2006) The

complexity of the mammalian transcriptome. J Physiol 575: 321–332.

10. Eacker SM, Dawson TM, Dawson VL (2009) Understanding microRNAs in

neurodegeneration. Nat Rev Neurosci 10: 837–841.

11. Provost P (2010) Interpretation and applicability of microRNA data to the
context of Alzheimer’s and age-related diseases. Aging 2: 166–169.

12. Sonntag KC (2010) MicroRNAs and deregulated gene expression networks in

neurodegeneration. Brain Res 1338: 48–57.

13. Alexandrov PN, Dua P, Hill JM, Bhattacharjee S, Zhao Y, et al. (2012)
microRNA (miRNA) speciation in Alzheimer’s disease (AD) cerebrospinal fluid

(CSF) and extracellular fluid (ECF). Int J Biochem Mol Biol 3: 365–373.

14. Geekiyanage H, Jicha GA, Nelson PT, Chan C (2010) Blood serum miRNA:

non-invasive biomarkers for Alzheimer’s disease. Exp Neurol 235: 491–496.
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60. Bartos A, Fialová L, Svarcová J, Ripova D (2012) Patients with Alzheimer

disease have elevated intrathecal synthesis of antibodies against tau protein and

heavy neurofilament. J Neuroimmunol 252: 100–105.

61. Liu Q, Xie F, Alvarado-Diaz A, Smith MA, Moreira PI, et al. (2011)

Neurofilamentopathy in neurodegenerative diseases. Open Neurol J 5: 58–62.

62. Julien C, Tremblay C, Emond V, Lebbadi M, Salem N Jr, et al. (2009) Sirtuin 1

reduction parallels the accumulation of tau in Alzheimer disease. J Neuropathol

Exp Neurol 68: 48–58.

63. Saunders LR, Sharma AD, Tawney J, Nakagawa M, Okita K, et al. (2010)

miRNAs regulate SIRT1 expression during mouse embryonic stem cell

differentiation and in adult mouse tissues. Aging 2: 415–431.
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