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Abstract

We prove convergence in distribution for the profile (the number of nodes at each level), normalized
by its mean, of random recursive trees when the limit ratio˛ of the level and the logarithm of tree size
lies in Œ0; e/. Convergence of all moments is shown to hold only for˛ 2 Œ0; 1� (with only convergence
of finite moments when̨ 2 .1; e/). When the limit ratio is0 or 1 for which the limit laws are both
constant, we prove asymptotic normality for˛ D 0 and a “quicksort type” limit law for̨ D 1, the
latter case having additionally a small range where there isno fixed limit law. Our tools are based on
contraction method and method of moments. Similar phenomena also hold for other classes of trees; we
apply our tools to binary search trees and give a complete characterization of the profile. The profiles
of these random trees represent concrete examples for whichthe range of convergence in distribution
differs from that of convergence of all moments.

1 Introduction

The profile or height profile of a tree is the sequence of numbers whosek-th element enumerates the
number of nodes at distancek from the root of the tree (or the number of descendants ink-th generation in
branching process terms). Profiles of trees are fine shape characteristics encountered in diverse problems
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such as breadth-first search, data compression algorithms (Jacquet, Szpankowski, Tang, 2001), random
generation of trees (Devroye and Robson, 1995), and the level-wise analysis of quicksort (Chern and
Hwang, 2001b, Evans and Dunbar, 1982). In addition to their interest in applications and connections to
many other shape parameters, we will show, through recursive trees and binary search trees, that profiles
of random trees having roughly logarithmic height are a richsource of many intriguing phenomena. The
high concentration of nodes at certain (log) levels resultsin the asymptotic bimodality for the variance, as
already demonstrated in Drmota and Hwang (2005a); our purpose of this paper is to unveil and clarify the
diverse phenomena exhibited by the limit distributions of the profiles of random recursive trees and binary
search trees. The tools we use, as well as the results we derive, are of some generality.

Recursive trees. Recursive trees have been introduced as simple probabilitymodels for system gener-
ation (Na and Rapoport, 1970), spread of contamination of organisms (Meir and Moon, 1974), pyramid
scheme (Bhattacharya and Gastwirth, 1984, Smythe and Mahmoud, 1995), stemma construction of philol-
ogy (Najock and Heyde, 1982), Internet interface map (Janicet al., 2002), stochastic growth of networks
(Chan et al., 2003). They are related to some Internet models(van Mieghem et al., 2001, van der Hofstad
et al., 2001, Devroye, McDiarmid and Reed, 2002) and some physical models (Tetzlaff, 2002); they also
appeared in Hopf algebra under the name of “heap-ordered trees”; see Grossman and Larson (1989). The
bijection between recursive trees and binary search trees not only makes the former a flexible representa-
tion of the latter but also provides a rich direction for further extensions; see for example Mahmoud and
Smythe (1995).

A simple way of constructing a random recursive tree ofn nodes is as follows. One starts from a root
node with the label1; at stagei (i D 2; : : : ; n/ a new node with labeli is attached uniformly at random
to one of the previous nodes (1; : : : ; i � 1). The process stops after noden is inserted. By construction,
the labels of the nodes along any path from the root to a node form an increasing sequence; see Figure2
for a recursive tree of10 nodes. For a survey of probabilistic properties of recursive trees, see Smythe and
Mahmoud (1995).

Known results for the profile of recursive trees. Let Xn;k denote the number of nodes at levelk in a
random recursive tree ofn nodes, whereXn;0 D 1 (the root) forn � 1. ThenXn;k satisfies (see van der
Hofstad et al., 2002)

Xn;k
DD XIn;k�1 C X �

n�In;k ; (1)

for n; k � 1 with Xn;0 D 1 � ın;0 (ın;0 being Kronecker’s symbol), where.Xn;k/, .X �
n;k

/ and.In/ are

independent,Xn;k
DD X �

n;k
, andIn is uniformly distributed overf1; : : : ; n � 1g.

Meir and Moon (1978) showed (implicitly) that

�n;k WD E.Xn;k/ D s.n; k C 1/

.n � 1/!
.0 � k < n/; (2)

wheres.n; k/ denotes the unsigned Stirling numbers of the first kind; see also Moon (1974) and Donda-
jewski and Szymański (1982). By the approximations given in Hwang (1995), we then have

�n;k D �k
n

�.1 C ˛n;k/k!

�

1 C O
�

��1
n

��

; (3)

uniformly for 1 � k � K�n, for anyK > 1, where,here and throughout this paper,

�n WD maxflogn; 1g; ˛n;k WD k=�n;
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and� denotes the Gamma function. This approximation implies, inparticular, a local limit theorem for the
depth (distance of a random node to the root); see Devroye (1998), Szymański (1990), Mahmoud (1991).

The second moment is also implicit in Meir and Moon (1978)

E.X 2
n;k/ D

X

0�j�k

�

2j

j

�

s.n; k C j C 1/

.n � 1/!
I

see also van der Hofstad et al. (2002). Precise asymptotic approximations for the varianceV.Xn;k/ were
derived in Drmota and Hwang (2005a) for all ranges ofk. In particular, the variance is asymptotically
of the same order as�2

n;k
when˛ 2 .0; 2/ exceptk � �n (where the profile variance exhibits a bimodal

behavior).

Limit distribution when 0 � ˛ < e. From the asymptotic estimate (3), we have

log�n;k

�n

! ˛ � ˛ log˛;

wherehere and throughout this paperk D k.n/ and˛ WD limn!1 k.n/=�n. Thus�n;k ! 1 when
˛ < e. Note that the expected height (length of the longest path from the root) of random recursive trees
is asymptotic toe�n; see Devroye (1987) or Pittel (1994).

Define a class of random variablesX.˛/ by the fixed-point equation

X.˛/
DD ˛U ˛X.˛/ C .1 � U /˛X.˛/�; (4)

with E.X.˛// D 1, whereX.˛/; X.˛/�; U are independent,X.˛/� DD X.˛/, andU is uniformly dis-
tributed in the unit interval; see Proposition1 for existence and properties ofX.˛/. DefineX.0/ D 1.

Theorem 1. .i/ If 0 � ˛ < e, then

Xn;k

�n;k

D�! X.˛/; (5)

where
D�! denotes convergence in distribution.

.ii / If 0 � ˛ < m1=.m�1/, wherem � 2, thenXn;k=�n;k converges toX.˛/ with convergence of the
first m moments but not the.m C 1/-st moment.

In particular, convergence of the second moment holds for0 � ˛ < 2.

Corollary 1. If 0 � ˛ < 2, then

V.Xn;k/ �
�

�.˛ C 1/2

.1 � ˛=2/�.2˛ C 1/
� 1

�

�2
n;k :

Note that the coefficient on the right-hand side becomes zerowhen˛ D 0 and˛ D 1, and the variance
indeed exhibits abimodal behaviorwhen˛ D 1; see Figure1 for a plot and Drmota and Hwang (2005a)
or below for more precise approximations to the variance.

Sincem1=.m�1/ # 1, the unit interval is the only range where convergence of allmoments holds.
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Figure 1: A plot of E.Xn;k/ (the unimodal curve),V.Xn;k/ (the bimodal curve with higher valley), and
jE.Xn;k � �n;k/3j (right) of the numberXn;k of nodes at levelk in random recursive trees ofn D 1100

nodes, all normalized by their maximum values. Note that thevalley of jE.X1100;k � �1100;k/3j (when
normalized byn3) is deeper than that ofV.X1100;k/ (normalized byn2); see Corollary5 for the general
description.

Corollary 2. If 0 � ˛ � 1, then

Xn;k

�n;k

M�! X.˛/; (6)

where
M�! denotes convergence of all moments. Convergence of all moments fails for1 < ˛ < e.

Thus the profile of random recursive trees represents a concrete example for whichthe range of con-
vergence in distribution is different from that of convergence of all moments.We will show that such a
property also holds for random binary search trees; it is expected to hold for other trees like ordered (or
plane) recursive trees andm-ary search trees, but the technicalities are expected to bemuch more compli-
cated. We focus at this stage on new phenomena and their proofs, not on generality.

The proof of (5) relies on the contraction method developed in Neininger and Rüschendorf (2004) (see
also the survey paper Rösler and Rüschendorf, 2001), and the moment convergenceXn;k=�n;k uses the
method of moments. Both methods are technically more involved because we are dealing with recurrences
with two parameters. We will indeed prove a stronger approximation to (5) by deriving a rate under the
Zolotarev metric (see Zolotarev, 1976).

But why m1=.m�1/? This is readily seen by the recurrence of the moments�m.˛/ WD E.X.˛/m/ of
X.˛/

�m.˛/ D 1

m � ˛m�1

X

1�h<m

�

m

h

�

�h.˛/�m�h.˛/˛h�1 �.h˛ C 1/�..m � h/˛ C 1/

�.m˛ C 1/
.m � 2/; (7)

where�0.˛/ D �1.˛/ D 1. This recurrence is well-defined for�m.˛/ when˛ < m1=.m�1/. This explains
the special sequencem1=.m�1/.

Note that sinceE.X.˛/m/ D 1 for ˛ � m1=.m�1/, we haveE.Xn;k=�n;k/m ! 1 in that range.

A “quicksort-type” limit distribution when ˛ D 1. SinceX.1/ D 1, we can refine the limit result (5)
for ˛ D 1 as follows.
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Theorem 2. .i/ If k D �n C tn;k , wherejtn;k j ! 1 andtn;k D o.�n/, then

Xn;k � �n;k

tn;k�k�1
n =k!

M�! X 0.1/; (8)

whereX 0.1/ WD .d=d˛/X.˛/j˛D1 satisfies

X 0.1/
DD UX 0.1/ C .1 � U /X 0.1/

� C U C U logU C .1 � U / log.1 � U /;

with X 0.1/; X 0.1/
�
; U independent andX 0.1/

DD X 0.1/
�.

.ii / If k D �n C O.1/, then the sequence of random variables.Xn;k � �n;k/=
p

V.Xn;k/ does not
converge to a fixed law.

Although (8) can also be proved by the contraction method, we prove both results of the theorem by
the method of moments because the proof for the non-convergence part is readily modified from that for
(8); see also Chern et al. (2002) for more examples having no convergence to fixed limit law. On the other
hand, since the distribution ofX 0.1/ is uniquely characterized by its moment sequence (see (41)), we have
the convergence in distribution as follows.

Corollary 3. If k D �n C tn;k , wherejtn;k j ! 1 andtn;k D o.�n/, then

Xn;k � �n;k

tn;k�k�1
n =k!

D�! X 0.1/:

The same limit lawX 0.1/ also appeared in the total path length (which is
P

k kXn;k) of recursive trees
(see Dobrow and Fill, 1999), or essentially the total left path length of random binary search trees, and the
cost of an in-situ permutation algorithm; see Hwang and Neininger (2002).

The appearance of the same limit law as the total path length is not a coincidence.Intuitively, almost
all nodes lie at the levelsk D �n C O.

p
�n/ (sinceE.Xn;k/ � n=

p
�n by (3)) and it is these nodes

that contribute predominantly to the total path length; seealso (9) below for an estimate of the variance.
Analytically, a deeper connection between the profile and the total path length is seen through the level
polynomials

P

k Xn;kzk (properly normalized) for which we can derive, following Chauvin et al. (2001),
an almost sure convergence to some (complex-valued) limit random variable. From such a uniform con-
vergence, the profile is quickly linked to the total path length by taking derivative of the normalized level
polynomial with respect toz and substitutingz D 1. Indeed, limit theorems for weighted path-lengths of
the form

P

k kmXn;k , as well as the width (maxk Xn;k), can be obtained as by-products. These and finer
results on correlations and expected width are discussed inDrmota and Hwang (2005b).

Asymptotics of the variance. As a consequence of our convergence of all moments, we have the fol-
lowing estimate for the variance.

Corollary 4. If k D �n C tn;k , wheretn;k D o.�n/, then the variance ofXn;k satisfies

V.Xn;k/ � p2.tn;k/

�

�k�1
n

k!

�2

; (9)

wherep2.tn;k/ WD c2t2
n;k

C 2c1tn;k C c0 with

c2 WD 2 � �2

6
; c1 WD c2.1 �  / � �.3/ C 1

c0 WD c2

�

 2 � 2 C 3
�

� 2.�.3/ � 1/.1 �  / � �4

360
: (10)

Here denotes Euler’s constant and�.3/ WD
P

j�1 j �3.
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The expression (9) explains the valley for the variance in Figure1. Note thatV.Xn;k/=�2
n;k

D
O.t2

n;k
=�2

n/ whentn;k D o.�n/.
Our proof indeed yields the following extremal orders ofjE.Xn;k � �n;k/mj for m � 2.

Corollary 5. The absolute value of them-th central moment satisfies

max
0�k<n

jE.Xn;k � �n;k/mj � ��m
n nm;

min
jk��njDO.

p
�n/

jE.Xn;k � �n;k/mj � ��3m=2
n nm;

where the maximum is achieved atk D �n ˙
p

�n.1 C o.1// and the minimum atk D �n C O.1/.

More refined results can be derived as in Drmota and Hwang (2005a). For example, by (40) below, we
have

max
0�k<n

jE.Xn;k � �n;k/mj � jE.X 0.1/m/je�m=2

�

np
2��n

�m

;

for m � 2, whereE.X 0.1/m/ can be computed recursively; see (41).

Asymptotic normality when ˛ D 0. The profileXn;k in the remaining range1 � k D o.�n/ will be
shown to be asymptotically normally distributed. It is known (see Bergeron et al., 1992) that the out-degree
of the rootXn;1 satisfies

P.Xn;1 D j / D s.n � 1; j /

.n � 1/!
.1 � j < n/I

thusXn;1 is asymptotically normal with mean and variance both asymptotic to �n. Equivalently,Xn;1 is
the number of nodes on the rightmost branch (the path starting from the root and always going right until
reaching an external node) in a random binary search trees ofn � 1 nodes; see the transformation below
for more information.

Let ˆ.x/ WD .2�/�1=2
R x

�1 e�t2=2 dt denote the distribution function of the standard normal distribu-
tion.

Theorem 3. The distribution of the profileXn;k satisfies

sup
x

ˇ

ˇ

ˇ

ˇ

ˇ

P

 

Xn;k � �k
n=k!

�
k�1=2
n =

p

.k � 1/!2.2k � 1/
< x

!

� ˆ.x/

ˇ

ˇ

ˇ

ˇ

ˇ

D O

0

@

s

k

�n

1

A ; (11)

uniformly for1 � k D o.�n/, with mean and variance asymptotic to
8

ˆ

ˆ

<

ˆ

ˆ

:

E.Xn;k/ � �k
n

k!
;

V.Xn;k/ � �2k�1
n

.k � 1/!2.2k � 1/
:

In particular,Xn;2 is asymptotically normally distributed with mean asymptotic to 1
2
�2

n and variance to
1
3
�3

n. A similar central limit theorem appeared in the logarithmic order of a random element in symmetric
groups; see Erdős and Turán (1967).

Unlike previous cases, the proof of this result is based on a polynomial decomposition of the associated
generating functions using characteristic functions and singularity analysis (see Flajolet and Odlyzko,
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Figure 2:A recursive tree of10 nodes and its corresponding transformed binary increasingtree of9 nodes.

1990), the reasons being.i/ this method leads to the optimal Berry-Esseen bound (11), which is not
obvious by the method of moments;.ii / it is of independent methodological interests, and.iii / it can also
be applied to give an alternative proof of (6).

The asymptotic normality ofXn;k when˛ D 0 indicates that nodes are generated in a very regular way
in recursive trees, at least for the firsto.�n/ levels. The rough picture here is that each node at these levels
“attracts” about�n=k new-coming nodes, as is obvious from (3); see also Drmota and Hwang (2005b)
for an asymptotic independence property for the number of nodes at two different levels, both beingo.�n/

away from the root.

Profiles of random binary search trees. Binary search trees are one of the most studied fundamental
data structures in Computer Algorithms. They have also beenintroduced in other fields under different
forms; see Drmota and Hwang (2005a) for more references.

This tree model is characterized by a recursive splitting process in whichn � 2 distinct labels are
split into a root and two subtrees formed recursively by the same procedure (one may be empty) of sizes
Jn andn � 1 � Jn, whereJn is uniformly distributed inf0; 1; : : : ; n � 1g. Such a model is isomorphic
to binary increasing treesin which a sequence ofn � 2 continuous random variables (independent and
identically distributed) is split into a root with the smallest label and two subtrees formed recursively by the
same splitting process corresponding to the subsequences to the left and right respectively of the smallest
label. Note that when given a random permutation ofn elements the size of the left subtree of the binary
increasing tree constructed from the permutation equalsj , 0 � j � n � 1 with equal probability1=n, the
same as in random binary search trees.

A recursive tree can be transformed into a binary increasingtree by the well-known procedure (referred
to as thenatural correspondencein Kunth, 1997 and therotation correspondenceby others): drop first the
root and arrange all subtrees from left to right in increasing order of their root labels; sibling relations are
transformed into right branches (of the leftmost node in that generation) and the leftmost branches remain
unchanged; a final relabeling (using labels from1 to n � 1) of nodes then yields a binary increasing tree
of n � 1 nodes. Such a transformation is invertible; see Figure2.

Under this transformation, the profileXn;k in recursive trees becomes essentially the number of nodes
in random binary search trees ofn � 1 nodes with left-distancek � 1 (k � 1), theleft-distanceof a node

7



being the number of left-branches needed to traverse from the root to that node. This also explains the
recurrence (1).

Known and new results for profiles of random binary search trees. We distinguish two types of nodes
for binary search trees: external nodesYn;k (virtual nodes completed so that all nodes are of out-degree
either zero or two) and internal nodesZn;k (nodes holding labels). Chauvin et al. (2001) establishedalmost
sure convergencefor Yn;k=E.Yn;k/ andZn;k=E.Zn;k/ when1:2 � ˛ � 2:8, and recently Chauvin et al.
(2005) extended the range forYn;k=E.Yn;k/ to the optimal rangę � < ˛ < ˛C, the two numbers̨ � �
0:37; ˛C � 4:31 being the fill-up and height constants (of binary search trees), namely,0 < ˛� < 1 < ˛C
solving the equatione.z�1/=z D z=2; see also Chauvin and Rouault (2004). For other known results on the
profilesYn;k , see Drmota and Hwang (2005a) and the references therein.

Our tools for recursive trees also apply to binary search trees. Briefly, we derive convergence in
distribution forYn;k=E.Yn;k/ andZn;k=E.Zn;k/ in the rangę 2 .˛�; ˛C/ and convergence of all moments
for ˛ 2 Œ1; 2�, the degenerate cases˛ D 1; 2 being further refined by more explicit limit laws; see Section 7
for details.

While it is expected that the profiles for both types of nodes have similar behaviors toXn;k, we will
derive finer results showing more delicate structural difference between internal nodes and external nodes.

Organization of the paper. Since most of our asymptotic approximations are based on thesolution
(exact or asymptotic) of the underlying double-indexed recurrence (inn andk), we start from solving
the recurrence in the next section. The proof of the convergence in distribution (5) of Xn;k=�n;k when
0 < ˛ < e by contraction method is given in Section3. Then we prove the moment convergence part of
Theorem1 in Section4 and Theorem2 in Section5. The asymptotic normality when̨ D 0 is proved in
Section6, where an alternative proof of (6) is also indicated. Our methods of proof can be easily amended
for binary search trees, and the results are given in Section7. We conclude this paper with a few questions.

Notations. Throughout this paper,�n WD maxflogn; 1g, ˛n;k WD k=�n and˛ WD limn!1 ˛n;k when the
limit exists. The symbolŒzn�f .z/ stands for the coefficient ofzn in the Taylor expansion off .z/. The
generic symbols" andK always represent sufficiently small and large, respectively, positive constants
whose values may vary from one occurrence to another. Finally, U represents a uniformŒ0; 1� random
variable.

2 The double-indexed recurrence and asymptotic transfer

Since all moments (centered or not) satisfy the same recurrence, we derive in this section the exact solution
and study a simple type of asymptotic transfer (relating theasymptotics of the recurrence to that of the non-
homogeneous part) for such a recurrence.

By (1), we have the recurrence for the probability generating functionsPn;k.y/ WD E.yXn;k /

Pn;k.y/ D 1

n � 1

X

1�j<n

Pj ;k�1.y/Pn�j ;k.y/ .n � 2I k � 1/; (12)

with Pn;0.y/ D y for n � 1 andP0;k.y/ D 1.

8



Recurrence of factorial moments. Let

A
.m/

n;k
WD E.Xn;k.Xn;k � 1/ � � � .Xn;k � m C 1// D P

.m/

n;k
.1/:

ThenA
.0/

n;k
D 1 for n; k � 0. By (12), we have the recurrence

A
.m/

n;k
D 1

n � 1

X

1�j<n

�

A
.m/

j ;k�1
C A

.m/

j ;k

�

C B
.m/

n;k
.n � 2I k; m � 1/;

where

B
.m/

n;k
D

X

1�h<m

�

m

h

�

1

n � 1

X

1�j<n

A
.h/

j ;k�1
A

.m�h/

n�j ;k
; (13)

with the boundary conditionsA.1/

n;0 D 1 for n � 1 andA
.m/

n;0 .0/ D 0 for m � 2 andn � 1.

Exact solution of the recurrence. Consider a recurrence of the form

an;k D 1

n � 1

X

1�j<n

�

aj ;k C aj ;k�1

�

C bn;k ; .n � 2I k � 1/; (14)

with a1;k andbn;k given. We assume, without loss of generality, thata0;k D 0 (otherwise, we need only to
modify the values ofa1;k andbn;k).

Lemma 1. For n � 1 andk � 0,

an;k D bn;k C
X

1�j<n

X

0�r�k

bj ;k�r

j
Œur �.u C 1/

Y

j<`<n

�

1 C u

`

�

; (15)

whereb1;k WD a1;k .

Proof.Let an.u/ WD
P

k anC1;kuk andbn.u/ WD
P

k bnC1;kuk . Thenan.u/ satisfies the recurrence

an.u/ D 1 C u

n

X

0�j<n

aj.u/ C bn.u/ .n � 1/;

with the initial conditiona0.u/ D
P

k a1;kuk . By taking the differencenan.u/ � .n � 1/an�1.u/, we
obtain

an.u/ D
�

1 C u

n

�

an�1.u/ C bn.u/ � n � 1

n
bn�1.u/ .n � 2/:

Solving this linear recurrence yields

an.u/ D bn.u/ C .1 C u/
X

0�j<n

bj.u/

j C 1

Y

jC2�`�n

�

1 C u

`

�

.n � 1/;

(sinceb0.u/ WD a0.u/). Taking coefficient ofuk on both sides leads to (15).
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Mean value. Applying (15) with bn;k D ın;1ı0;k , we obtain forn � 1 andk � 0

�n;k D Œuk �
Y

1�`<n

�

1 C u

`

�

(16)

D s.n; k C 1/

.n � 1/!
:

This rederives (2).

A uniform estimate for the expected profile. For later use, we derive a uniform bound for�n;k .

Lemma 2. The mean satisfies

�n;k D O
�

.v�n/�1=2v�knv
�

; (17)

uniformly for1 � k < n, where0 < v D O.1/.

Proof.Note that by (16), we have the obvious inequality

�n;kvk �
Y

1�`<n

�

1 C v

`

�

.v > 0/;

which leads to�n;k D O
�

v�knv
�

for 1 � k < n. But this is too crude for our purpose.
By Cauchy’s integral formula,

�n;k � v�k

2�

Z �

��

Y

1�`�n

ˇ

ˇ

ˇ

ˇ

1 C veit

`

ˇ

ˇ

ˇ

ˇ

dt

� v�k

2�

Z �

��

exp

 

v.cost/
X

1�`�n

1

`
C O.1/

!

dt

D O
�

.v�n/�1=2v�knv
�

:

proving (17).
Note that whenk D O.�n/, then the right-hand side of (17) is optimal if we takev D k=�n and

(17) becomes�n;k D O.�k
n=k!/. Thus (17) is tight whenk D O.�n/. This also explains why we write

.v�n/�1=2 instead of��1=2
n (to keep uniformity whenk D o.�n/ and we choosev D k=�n).

On the other hand, leavingv unspecified in (17) and in many other estimates in this paper considerably
simplifies the analysis.

A simple asymptotic transfer. We will need the following result when applying the contraction method.
It roughly says that when the non-homogeneous partbn;k of (14) is of order�w

n;k
, wherew > 1, thenan;k

is also of the same order for certain range of˛.

Lemma 3. If bn;k D O
�

..v�n/�1=2v�knv/w
�

for all 1 � k � n, wherew > 1 and0 < v < v0, then

an;k D O

�

1

w � vw�1

�

.v�n/�1=2v�knv
�w
�

;

uniformly for1 � k � n, provided that0 < v < minfw1=.w�1/; v0g. Similarly, replacingO by o in the
estimate forbn;k yields ano-estimate foran;k .
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Proof.By the exact expression foran;k , we have, for0 < v < v0,

an;k � bn;k D O

0

@

X

1�j<n

X

0�r�k

1

j

�

.v�j/�1=2v�kCrj v
�w

Œur �.1 C u/
Y

j<`<n

�

1 C u

`

�

1

A : (18)

The inner sum overr can be simplified as follows.

X

0�r�k

v�.k�r/wŒur �.1 C u/
Y

j<`<n

�

1 C u

`

�

� v�kw
X

r�0

vrwŒur �.1 C u/
Y

j<`<n

�

1 C vwt

`

�

D v�kw.1 C vw/
Y

j<`<n

�

1 C vw

`

�

D O

 

v�kw

�

n

j

�vw
!

; (19)

uniformly in j . Substituting this estimate into (18), we obtain

an;k D O

0

@

�

.v�n/�1=2v�knv
�w

C v�kwnvw
X

1�j<n

.v�j/�w=2j wv�vw�1

1

A

D O

�

1

w � vw�1

�

.v�n/�1=2v�knv
�w
�

;

uniformly for 1 � k � n, where0 < v < w1=.w�1/. Theo-estimate is similarly proved. This completes
the proof of Lemma3.

3 Convergence in distribution when0 < ˛ < e

We prove the first part of Theorem1 (excepting̨ D 0) in this section by contraction method based on the
framework developed in Neininger and Rüschendorf (2004).The new difficulty arising here is the asymp-
totics of the double-indexed recurrence (14) (instead of single-indexed ones previously encountered).

The underlying idea. The idea used here is roughly as follows.
Define NXn;k WD Xn;k=�n;k . Then, by (1), NXn;k satisfies the recurrence

NXn;k
DD

�
In;k�1

�n;k

NXIn;k�1 C �n�In;k

�n;k

NX �
n�In;k ; (20)

with independence conditions as in (1). By the estimates (3) and the relationIn D d.n � 1/U e, we expect
that

�
In;k�1

�n;k

� k

�n

�

�n C logU

�n

�k�1

! ˛U ˛;

with suitable meaning for the convergence; similarly,

�n�In;k

�n;k

! .1 � U /˛:

Thus if we expect thatNXn;k ! X.˛/, thenX.˛/ satisfies the fixed-point equation (4).
To justify these steps, we apply the contraction method.
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Contraction method. The fixed-point equation (4) has a few special properties not enjoyed by single-
indexed recursions encountered in the literature for whichthe typical fixed-point equation has the form

X
DD

X

1�j�h

CjX .j/ C b; (21)

with X .1/; : : : ; X .h/; .C1; : : : ; Ch; b/ independent,X .j/ DD X , and0 � Cj � 1 almost surely for all
1 � j � h. Here,h may be deterministic or integer-valued random variables. The special rangeŒ0; 1� for
the coefficientsC1 : : : ; Cj is roughly due to the relation

�.I
.n/
j /

�.n/
! Cj ;

where, in various applications (see Neininger and Rüschendorf, 2004),� is the leading term in the expan-
sion of the standard deviation of the underlying random variable and0 � I

.n/
j � n are the sizes of the

subproblems. Typically,� is a monotonically increasing function, hence we obtain0 � Cj � 1.
In general, the Lipschitz constant of the map of probabilitymeasures associated with (21) under

the Zolotarev metric�w is assessed by
P

j E.C w
j /. This term is monotonically decreasing asw in-

creases. Thus, in typical applications for which one expects a contraction, the sum
P

j E.C w
j / has to

satisfy
P

j E.C w
j / < 1, and for that purpose, one has to choosew sufficiently large; see Neininger and

Rüschendorf (2004) for implications of this condition on the moments required.
For the bi-indexed recursion ofXn;k, we are led to the fixed-point equation (4), where the coefficient

˛U ˛ may have values larger than one for˛ > 1. This implies that the corresponding estimateE.˛U /w C
E.1 � U /w for the Lipschitz constant is not decreasing inw. When˛ < e increases, the range where we
have contraction becomes smaller and vanishes in the boundary casę D e.

Notations. We denote byM the space of univariate probability measures, byMw � M the space of
probability measures with finite absolutew-th moment, and byMw.1/ � Mw the subspace of probability
measures with unit mean, where1 < w � 2. Zolotarev [50] introduced a family of metrics�w, which, for
1 < w � 2 are given by

�w.�1; �2/ D sup
f 2Fw

jE.f .X / � f .Y //j; .�1; �2 2 Mw.1//;

whereX andY have the distributionsL.X / D �1, L.Y / D �2.
We have

Fw WD ff 2 C 1.R; R/ W jf 0.x/ � f 0.y/j � jx � yjw�1g;

with C 1.R; R/ the space of continuously differentiable functions onR. We will use the property that con-
vergence in�w implies weak convergence and that�w is ideal of orderw, i.e., we have forW independent
of .X; Y / andc ¤ 0

�w.X C W; Y C W / � �w.X; Y /; �w.cX; cY / D jcjw�w.X; Y /:

For general reference and properties of�w, see Zolotarev [51] and Rachev [43].
We also use the minimalLp metrics`p, defined for1 < p � 2 by

`p.�1; �2/ D inffkX � Y kp W L.X / D �1;L.Y / D �2g; .�1; �2 2 Mp/;
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wherekX kp denotes theLp-norm of a random variableX . For simplicity, we use the abbreviation
�w.X; Y / WD �w.L.X /;L.Y // for �w as well as for the other metrics appearing subsequently.

In addition, we assume that

R.n/ WD jk � ˛�nj D j˛n;k � ˛j�n D o.�n/;

where0 < ˛ < e, and fix a constants as follows. If2 � ˛ < e, then1 < s < � with � 2 .1; 2� the unique
solution of� D ˛��1, ands WD 2 if 0 < ˛ < 2. The bound� also identifies the best possible order for the
existence of absolute moment ofX.˛/. Note thats satisfiess � ˛s�1 > 0, which is the continuous version
of m � ˛m�1 > 0 appearing in (7).

Properties ofX.˛/. Define the map

T W M ! M; � 7! L.˛U ˛Z C .1 � U /˛Z�/;

whereZ; Z�; U are independent,L.Z/ D L.Z�/ D �.

Proposition 1. For 0 < ˛ < e, the restriction ofT toMs.1/ has a unique fixed pointL.X.˛//. Further-
more,EjX.˛/j� D 1 for 2 � ˛ < e.

Proof. By Lemma 3.1 in Neininger and Rüschendorf (2004),T is a Lipschitz map in�s with Lipschitz
constant bounded above by

lip.T / � ˛s C 1

˛s C 1
:

Thus lip.T / < 1 by our choice ofs. Also T has a unique fixed point in the subspaceMs.1/ by Lemma
3.3 in Neininger and Rüschendorf (2004).

When2 � ˛ < e, we assumeEjX.˛/j� < 1 and prove a contradiction. First we haveEjX.˛/j� D
Ej˛U ˛X.˛/ C .1 � U /˛X.˛/�j�, whereX.˛/; X.˛/�; U are independent withL.X.˛// D L.X.˛/�/.
Note thatX.˛/ � 0 almost surely. Furthermore,E.X.˛// D 1 implies that there is a set with positive
probability in which we haveX.˛/ > 0 andX.˛/� > 0. It follows that

EjX.˛/j� D E.X.˛/�/ D E.˛U ˛X.˛/ C .1 � U /˛X.˛/�/�

> E
�

˛�U ˛�X.˛/� C .1 � U /˛�.X.˛/�/�
�

D ˛� C 1

˛� C 1
E.X.˛/�/

D E.X.˛/�/;

by the definition of� and the inequality.aCb/� > a� Cb� for a; b > 0 and� > 1. This is a contradiction,
hence we haveEjX.˛/j� D 1.

Zolotarev distance betweenXn;k=�n;k and X.˛/.

Theorem 4. If 0 < ˛ < 2, then

�2

�

Xn;k

�n;k

; X.˛/

�

D O

�

R.n/ C 1

�n

�

:

If 2 � ˛ < e, then

�s

�

Xn;k

�n;k

; X.˛/

�

! 0;

wheres is specified as above.

In particular, this theorem implies the convergence in distribution of Xn;k=�n;k for 0 < ˛ < e and
proves the first part of Theorem1.
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Convergence rate of the factors in (20).

Lemma 4. With s andR.n/ specified as above, we have







�
In;k�1

�n;k

� ˛U ˛






s
C






�n�In;k

�n;k

� .1 � U /˛






s
D O

�

R.n/ C 1

�n

�

:

Proof.We consider only theLs-norm of�
In;k�1

=�n;k �˛U ˛, the other part being similar. By (3), we have

�n;k D s.n; k C 1/

.n � 1/!
D �k

n

k!
H.n; k/;

where

H.n; k/ D 1

�.1 C ˛n;k/
C O

�

1

�n

�

; (22)

theO-term holding uniformly for1 � k � K�n. Then we decompose the ratio�
In;k�1

=�n;k into three
parts

�
In;k�1

�n;k

D k

�n

�

logIn

�n

�k�1
H.In; k � 1/

H.n; k/
DW F Œ1�

n F Œ2�
n F Œ3�

n : (23)

We first show that

jF Œ1�
n � ˛j C kF Œ2�

n � U ˛k4s C kF Œ3�
n � 1k4s D O

�

R.n/ C 1

�n

�

:

These estimates imply thatkF
Œ2�
n k4s; kF

Œ3�
n k4s D O.1/. Then, Hölder’s inequality gives









�
In;k�1

�n;k

� ˛U ˛









s

D O

�

R.n/ C 1

�n

�

:

First, we introduce the setA WD fIn � n˛=6g. Note that�n;k D O.1/ for k � 3�n. On the setA, we
havek � 1 D ˛�n C R.n/ � 1 � .˛=2/�n � .˛=2/ logI

6=˛
n D 3 logIn, for sufficiently largen; thus

�
In;k�1

D O.1/. On the other hand, sincę< e, the mean satisfies�n;k D �.1/; thus

Z

A

ˇ

ˇ

ˇ

�
In;k�1

�n;k

� ˛U ˛
ˇ

ˇ

ˇ

4s

dP D O.P.A// D O.P.In �
p

n// D O.1=
p

n/ D O.��4s
n /:

Thus we need only to consider the complement setAc.
Obviously,F Œ1�

n D k=�n D ˛ C O.R.n/=�n/.
For F

Œ2�
n , we observe that forx � 0 the expansion.1 C x=m/m D ex C O.e#x=m/ holds uniformly

with # < 1. Thus, we obtain

F Œ2�
n D

�

logIn

�n

�k�1

D
�

In

n
C O

�

.In=n/#

�n

��˛C.R.n/�1/=�n

D U ˛ C O

�

R.n/.U ˛ C U ˛C#�1/ logU C U ˛C#�1

�n

�

:
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Here, we may choose# with 1 � ˛ < # < 1. Then.U ˛ C U ˛C#�1/ logU andU ˛C#�1 are bothL4s-
integrable and theO-term in the last display is bounded above byO..R.n/ C 1/=�n/ in L4s.

For the third factor in (23), we have

H.n; k/ D 1

�.1 C ˛ C R.n/=�n/
C O

�

1

�n

�

D 1

�.1 C ˛/
C O

�

R.n/ C 1

�n

�

:

For H.In; k � 1/, we restrict to the setAc. OnAc, for n sufficiently large, we havek � 1 � 12 logIn, so
the error in the expansion ofH.In; k � 1/ implied by (22) is uniformly O.1= logIn/ D O.1=�n/. Thus
we have

H.In; k � 1/ D 1

�
�

1 C ˛ C ˛ log.n=In/CR.n/�1

logIn

� C O

�

1

logIn

�

D 1

�.1 C ˛/
C O

�

log.n=In/ C R.n/

�n

�

:

Sincek log.n=In/k4s ! k logU k4s < 1, the last error term is of orderO..R.n/ C 1/=�n/ in L4s.
Collecting all estimates, we obtainkF

Œ3�
n � 1k4s D O..R.n/ C 1/=�n/.

Asymptotic transfer of the double-indexed recurrence (14). Consider the recurrence (14) with suit-
able initial conditions.

Lemma 5. If

bn;k D O

�

..v�n/�1=2nvv�k/w � R.n/ C 1

�n

�

.1 < w � 2/;

uniformly for1 � k < n, where0 < v < v0, then

an;k D O

�

1

w � vw�1
..v�n/�1=2nvv�k/w � R.n/ C 1

�n

�

; (24)

uniformly for1 � k < n, where0 < v < minfw1=.w�1/; v0g.
Proof.The proof is similar to that for Lemma3 but slightly more complicated. By the exact expression for
an;k and the estimate forbn;k , we have, for0 < v < v0,

an;k � bn;k D O

0

@v�wk�w=2
X

1�j<n

X

0�r�k

jk � r � ˛�j j��1�w=2
j j wv�1vwr Œur �.1 C u/

Y

j<`<n

�

1 C u

`

�

1

A :

First, if jk � ˛�nj � "�n, thenjk � r � ˛�j j D O.k C �n/, so that (24) holds by the proof of Lemma3.
We assume now thatjk � ˛�nj � "�n. Split the sum inj into three parts

an;k � bn;k D O

0

@v�wk�w=2

0

@

X

1�j<ın

C
X

ın�j�.1�ı/n

C
X

.1�ı/n<j<n

1

A

�
X

0�r�k

jk � r � ˛�j j��1�w=2
j j wv�1vwr Œur �.1 C u/

Y

j<`<n

�

1 C u

`

�

1

A ;

whereı 2 .0; 1/ will be specified later. An analysis similar to the proof of Lemma3 gives

an;k � bn;k D O

�

.v�n/�w=2

w � vw�1
v�wknwv

�

ıwv�vw C jk � ˛�nj C 1

�n

C ı

��

;

where0 < v < minfw1=.w�1/; v0g. Takingı WD ..R.n/ C 1/=�n/1=.wv�vw/ yields (24).
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An inequality between�s- and `s-distances.

Lemma 6. For 1 < w � 2 andM > 0, there is a constantK > 0 such that

�w.X; Y / � K.`w.X; Y / _ `w�1
w .X; Y //; (25)

for all pairsL.X /;L.Y / 2 Mw.1/ with kX kw; kY kw � M .

Proof.We start from the inequality (see Theorem 3, Zolotarev, 1976)

�w.X; Y / � 1

w

�

2ˇw.X; Y / C 2w�1ˇw�1
w .X; Y /.kX kw

w ^ kY kw
w/2�w

�

;

for 1 < w � 2, whereˇw denotes the difference pseudo-moment

ˇw.�1; �2/ WD inf
˚

E
ˇ

ˇjX jw�1X � jY jw�1Y
ˇ

ˇ W L.X / D �1;L.Y / D �2

	

.w > 1/;

with �1; �2 2 Mw. From
ˇ

ˇjxjw�1x � jyjw�1y
ˇ

ˇ � w.jxjw�1 _ jyjw�1/jx � yj and Hölder’s inequality, it
follows that

ˇw.X; Y / � w .EjX jw C EjY jw/
.w�1/=w

`w.X; Y /;

which implies the desired inequality.

Proof of Theorem 4. We introduce a hybrid quantity

„n WD
�

In;k�1

�n;k

X.˛/ C �n�In;k

�n;k

X �.˛/;

whereX.˛/; X �.˛/; In are independent andX.˛/; X �.˛/ identically distributed. SinceL.X.˛//,L. NXn;k/,
L.„n/ 2 Ms.1/, the �s-distances between these quantities are finite. For simplicity, write hn;k WD
�s. NXn;k ; X.˛//. By triangle inequality

hn;k � �s. NXn;k ; „n/ C �s.„n; X.˛//:

Note that�s is ideal of orders. Thus

�s. NXn;k ; „n/ D �s

�

�
In;k�1

�n;k

NXIn;k�1 C �n�In;k

�n;k

NX �
n�In;k ;

�
In;k�1

�n;k

X.˛/ C �n�In;k

�n;k

X �.˛/

�

� 1

n � 1

X

1�j<n

�s

�

�j ;k�1

�n;k

NXj ;k�1 C �n�j ;k

�n;k

NX �
n�j ;k ;

�j ;k�1

�n;k

X.˛/ C �n�j ;k

�n;k

X �.˛/

�

� 1

n � 1

X

1�j<n

��

�j ;k�1

�n;k

�s

hj ;k�1 C
�

�n�j ;k

�n;k

�s

hn�j ;k

�

:

We now show that

�s.„n; X.˛// D O
�

D.n/s�1
�

; (26)

whereD.n/ WD .R.n/ C 1/=�n.
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First, by Lemma4,

k„nks �
�







�
In;k�1

�n;k







s
C






�n�In;k

�n;k







s

�

kX.˛/ks

! .˛kU ˛ks C k.1 � U /˛ks/kX.˛/ks;

which implies thatk„nks is uniformly bounded for alln. SinceL.X.˛// 2 Ms.1/, there is anM > 0

such thatkX.˛/ks; k„nks � M for all n. We apply Lemma6 to bound the�s-distance, which gives

�s.„n; X.˛// � K.`s.„n; X.˛// _ `s�1
s .„n; X.˛///:

By Lemma4

`s.„n; X.˛// �
�







�
In;k�1

�n;k

� ˛U ˛






s
C






�n�In;k

�n;k

� .1 � U /˛






s

�

kX.˛/ks D O .D.n// :

This proves (26).
Collecting the estimates, we obtain

hn;k � 1

n � 1

X

1�j<n

��

�j ;k�1

�n;k

�s

hj ;k�1 C
�

�n�j ;k

�n;k

�s

hn�j ;k

�

C O
�

D.n/s�1
�

:

Thus,hn;k D O.an;k��s
n;k

/, wherean;k satisfies (14) with

bn;k D O
�

�s
n;kD.n/s�1

�

;

and suitable initial conditions. Theorem4 then follows from applying the different types of asymptotic
transfer given in Lemmas3 and5.

Remark. Note that the proof of Theorem4 also yields a rate of convergence of orderO...R.n/ C
1/=�n/s�1/ for �s for the range2 � ˛ < e.

Recently, S. Janson (private communication) showed that Lemma6 also holds with (25) there replaced
by

�w.X; Y / � K`w.X; Y /:

This inequality leads to an improvement of the error term in Theorem4 for the range2 � ˛ < e to
O..R.n/ C 1/=�n/.

4 Asymptotics of moments

We prove in this section the moment estimate (6) whose proof is more involved than the asymptotic transfer
in Lemma3. The idea is to first derive a crude bound for higher moments ofXn;k, which holds uniformly
for 1 � k < n. Then a more refined analysis leads to (6).

Note that them-th factorial moments ofXn;k and them-th moments are asymptotically equivalent
when�n;k ! 1, or roughly when̨ < e.
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A uniform estimate for higher moments. For convenience, define'1.v/ D 1 and

'm.v/ WD 1

m � vm�1
.m � 2/:

We now prove by induction that

A
.m/

n;k
D O

�

'm.v/
�

.v�n/�1=2v�knv
�m�

.m � 1/; (27)

uniformly for 1 � k < n, where0 < v < m1=.m�1/.
Obviously, (27) holds form D 1 by (17). By (13) and induction, we have for0 < v < .m � 1/1=.m�2/

B
.m/

n;k
D O

 

X

1�h<m

�

m

h

�

'h.v/'m�h.v/

�n�1
X

1�j<n

�

.v�j/�1=2v�kC1j v
�h �

.v�n�j/�1=2v�k.n � j /v
�m�h

1

A

D O

0

B

B

@

'm�1.v/v�kmn�1
X

1�h<m
1�j<n

j hv.n � j /.m�h/v.v�j/�h=2.v�n�j/�.m�h/=2

1

C

C

A

D O
�

'm�1.v/.v�n/�m=2v�kmnmv
�

; (28)

uniformly for 1 � k < n.
By (15),

A
.m/

n;k
D B

.m/

n;k
C

X

1�j<n

X

0�r�k

B
.m/

j ;k�r

j
Œur �.u C 1/

Y

j<`<n

�

1 C u

`

�

: (29)

Substituting the estimate (28) into (29) gives for0 < v < m1=.m�1/

A
.m/

n;k
D O

0

@B
.m/

n;k
C v�km

X

1�j<n

.v�j/�m=2j mv�1
X

0�r�k

vrmŒur �.1 C u/
Y

j<`<n

�

1 C u

`

�

1

A

D O
�

B
.m/

n;k
C 'm.v/.v�n/�m=2nmvv�km

�

;

similar to the proof of Lemma3. This proves (27).
Note that when̨ � m1=.m�1/ � ", the optimal choice ofv in (27) minimizing nvv�k is v D ˛n;k ,

which yields the estimateA.m/

n;k
D O.�k

n=k!/, uniformly in k. When˛ � m1=.m�1/ � ", the optimal choice

is thenv D m1=.m�1/ � ". This says that the asymptotic behavior ofA
.m/

n;k
when˛ < m1=.m�1/ is very

different from that when̨ � m1=.m�1/. More precise estimates can be derived, but they are not needed
here; see Drmota and Hwang (2005a) for asymptotic approximations to the variance (covering all ranges).
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Asymptotics ofA.m/

n;k
. Since the casę D 0 will be treated separately, we assume throughout this section

that˛ > 0. We refine the above inductive argument and show that

A
.m/

n;k
� �m.˛/�m

n;k � �m.˛/

�

�k
n

�.1 C ˛/k!

�m

; (30)

for eachm � 1 andk=�n ! ˛ < m1=.m�1/, where�m.˛/ denotes the moment sequence ofX.˛/ given in
(7). This will prove the moment convergence part of Theorem1.

Note that by (3), (30) holds form D 1 with �1.˛/ D 1. Assume that (30) holds for allA.i/

n;k
with

i < m. We split the right-hand side of (29) into three parts

A
.m/

n;k
D B

.m/

n;k
C

X

0�r�k

0

@

X

1�j<"n

C
X

"n�j�.1�"/n

C
X

.1�"/n<j<n

1

A

B
.m/

j ;k�r

j
Œur �.u C 1/

Y

j<`<n

�

1 C u

`

�

DW B
.m/

n;k
C A

.m/

n;k
Œ1� C A

.m/

n;k
Œ2� C A

.m/

n;k
Œ3�:

By the same proof used for Lemma3, we have

A
.m/

n;k
Œ1� D O

�

"mv�vm

'm.v/��.mC1/=2
n nmvv�km

�

;

A
.m/

n;k
Œ3� D O

�

"'m.v/��.mC1/=2
n nmvv�km

�

:

Letting" ! 0, we see that, by (27),

A
.m/

n;k
Œ1� C A

.m/

n;k
Œ3� D o.A

.m/

n;k
/:

Asymptotics ofA.m/

n;k
: the dominant terms. We start by showing that for0 < ˛ < .m � 1/1=.m�2/

B
.m/

n;k
� ��

m.˛/

�

�k
n

�.1 C ˛/k!

�m

.m � 2/; (31)

where

��
m.˛/ WD

X

1�h<m

�

m

h

�

�h.˛/�m�h.˛/˛h

Z 1

0

uh˛.1 � u/.m�h/˛ du:

By (13), induction and (30), we have, for0 < ˛ < .m � 1/1=.m�2/,

B
.m/

n;k
�

X

1�h<m

�

m

h

�

�h.˛/�m�h.˛/
1

n

X

"n�j�.1�"/n

 

�k�1
j

�.1 C ˛/.k � 1/!

!h 

�k
n�j

�.1 C ˛/k!

!m�h

�
�

�k
n

�.1 C ˛/k!

�m
X

1�h<m

�

m

h

�

�h.˛/�m�h.˛/
1

n

X

"n�j�.1�"/n

˛h

�

j

n

�kh=�n
�

1 � j

n

�k.m�h/=�n

;

which proves (31). The errors introduced for terms withj < "n and forj � .1 � "/n can be easily
bounded by using (27).
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To evaluateA.m/

n;k
Œ2�, we first observe that

Y

j<`<n

�

1 C u

`

�

D exp

0

@u
X

j<`<n

`�1 C O

� juj2
j

�

1

A

D .n=j /u
�

1 C O
�

juj2j �1
��

;

uniformly for finite complexu andj ! 1. It follows that

Œur �
Y

j<`<n

�

1 C u

`

�

D .log.n=j //r

r !

�

1 C O

�

r2

j

��

;

uniformly for "n � j � .1 � "/n and0 � r � k D o.
p

j /. Consequently, by (28) and (31),

A
.m/

n;k
Œ2� � ��

m.˛/

�

�k
n

�.1 C ˛/k!

�m
X

"n�j�.1�"/n

j �1.j=n/m˛

�
X

r�0

˛mr

�

.log.n=j //r�1

.r � 1/!
C .log.n=j //r

r !

�

� ��
m.˛/.˛m C 1/

�

�k
n

�.1 C ˛/k!

�m Z 1�"

"

xm˛�˛m�1 dx:

Letting" ! 0, we then obtain, by (29), that

A
.m/

n;k
� ��

m.˛/

 

1 C .˛m C 1/

Z 1

0

xm˛�˛m�1 dx

!

�

�k
n

�.1 C ˛/k!

�m

D ��
m.˛/

m˛ C 1

m˛ � ˛m

�

�k
n

�.1 C ˛/k!

�m

;

where

��
m.˛/

m˛ C 1

m˛ � ˛m
D 1

m � ˛m�1

X

1�h<m

�

m

h

�

�h.˛/�m�h.˛/˛h�1 �.h˛ C 1/�..m � h/˛ C 1/

�.m˛ C 1/

D �m.˛/;

for m � 2, by (7). This completes the proof of (29) and thus Theorem1 .ii /.

Moment convergence (6). Convergence of all moments implies convergence in distribution if the mo-
ment sequence (7) uniquely characterizes the distribution. By consideringN�m.˛/ WD �m.˛/�.m˛C1/=m!,
we easily obtain by induction thatN�m.˛/ D O.Km/ for ˛ 2 Œ0; 1� (see Hwang and Neininger, 2002), and
thus convergence in distribution ofXn;k=�n;k follows from (6) when˛ 2 Œ0; 1�.

5 The central range˛ D 1

We prove Theorem2 in this section. The proof proceeds essentially along the same line as we did above
but with one major difference: we consider central moments instead of factorial moments. This minor
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step is crucial in dealing with the cancellations involved in the asymptotics of higher central moments. For
simplicity, the case whenjtn;k j ! 1 andtn;k D o.�n/ is first analyzed; then the same method of proof is
extended to the case whentn;k D O.1/. Justifications of the error terms are similar to those forA

.m/

n;k
given

above but become more complicated.

Recurrence of central moments. Consider NPn;k.y/ WD E.e.Xn;k ��n;k/y/ D Pn;k.ey/e��n;ky; see (12).
Then we have the recurrence

NPn;k.y/ D 1

n � 1

X

1�j<n

NPj ;k�1.y/ NPn�j ;k.y/e�n;k .j/y .n � 2I k � 1/;

where
�n;k.j / WD �j ;k�1 C �n�j ;k � �n;k

and NPn;0.y/ D NP1;k.y/ D 1 for n; k � 1.
Let nowP

.m/

n;k
WD NP .m/

n;k
.0/ denote them-th central moment ofXn;k. ThenP

.1/

n;k
� 0 and form � 2

P
.m/

n;k
D 1

n � 1

X

1�j<n

�

P
.m/

j ;k�1
C P

.m/

j ;k

�

C Q
.m/

n;k
.n � 2I k � 1/; (32)

where

Q
.m/

n;k
WD

X

aCbCcDm
0�a;b<m
0�c�m

�

m

a; b; c

�

1

n � 1

X

1�j<n

P
.a/

j ;k�1
P

.b/

n�j ;k
�c

n;k.j /

andP
.m/

n;0 D 0 for n; m � 1.

Outline of the proof of Theorem 2. Similar to the proof of (30), we divide the proof of Theorem2 into
three main steps.

– We first derive a uniform estimate for�n;k.j / for 1 � j ; k < n, which then implies a uniform bound
for P

.m/

n;k
for 1 � k < n. This bound is sufficient for our uses except whenjk � �nj D o.

p
�n/.

– We then derive a second estimate for�n;k.j / uniformly valid fork � �n. This in turn implies a tight
bound forP .m/

n;k
whenk � �n, and an asymptotic approximation toP

.m/

n;k
when1 � jtn;k j D o.�n/.

– A finer estimate for�n;k.j / is needed to deal with the case whentn;k D O.1/.

An integral representation for �n;k.j /. By (2),

�n;k D Œuk �
nu

�.u C 1/

�

1 C O
�

n�1
��

:

Then

�n;k.j / D 1

2� i

I

jujDv

u�k�1nu�.u; j=n/
�

1 C O.j �1 C .n � j /�1/
�

du; (33)

uniformly for 1 � j < n (whenj or n�j is bounded, theO-term becomingO.1/ instead ofo.1/), where

�.u; x/ WD .1 � x/u C uxu � 1

�.u C 1/
:

Here and throughout this section, we takev D 1 C o.1/ sincek � �n.
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A uniform estimate for �n;k.j /. Since�.1; x/ D 0, we have

j�.u; x/j D O.ju � 1j/ .x 2 Œ0; 1�/:

Substituting this estimate into (33) gives

�n;k.j / D O

�

v�knv

Z �

��

ˇ

ˇ

ˇ
vei� � 1

ˇ

ˇ

ˇ
n�v.1�cos�/d�

�

D O
�

.jv � 1j C ��1=2
n /��1=2

n v�knv
�

; (34)

uniformly for 1 � j ; k < n.

A uniform estimate for P
.m/

n;k
. From the recurrence (32) and the estimate (34), we deduce, by an induc-

tion similar to that used for (27), that

Q
.m/

n;k
; P

.m/

n;k
D O

�

.jv � 1jm C ��m=2
n /

�

��1=2
n v�knv

�m�

.m � 2/; (35)

uniformly for 1 � k < n. This bound is however not tight whenjk � �nj D o.
p

�n/, the reason being
simply thatv is not properly chosen to minimize the error term (the first�

�1=2
n ) in (34).

A finer estimate than (34). For a more precise estimate than (34), we use the two-term Taylor expansion

�.u; x/ D �0
u.1; x/.u � 1/ C O.ju � 1j2/;

where�0
u.1; x/ D x C x logx C .1 � x/ log.1 � x/, which leads to

�n;k.j / D �0
u

�

1;
j

n

�

.k � �n/
�k�1

n

k!

�

1 C O.j �1 C .n � j /�1/
�

C O
�

.jv � 1j2 C ��1
n /��1=2

n v�knv
�

: (36)

Takingv D k=�n gives

�n;k.j / D O

�

.jk � �nj C 1/
�k�1

n

k!

�

: (37)

This bound holds uniformly fork � �n and1 � j < n since�0
u.1; x/ D O.xj logxj/ asx ! 0C.

A uniform bound for P
.m/

n;k
when k � �n. From (37), we deduce, again by induction, that

Q
.m/

n;k
; P

.m/

n;k
D O

 

.jk � �njm C 1/

�

�k�1
n

k!

�m
!

.m � 2/; (38)

uniformly for k � �n. The proof differs slightly from that for (30) in that we split all sums of the form
P

1�j<n into three parts
X

1�j<n

D
X

1�j<n=�m
n

C
X

n=�m
n �j�n�n=�m

n

C
X

n�n=�m
n <j<n

;

and then apply (38) and (37) to the middle sum, and (35) to the remaining two sums.
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Asymptotics ofP .m/

n;k
when jtn;k j ! 1 and tn;k D o.�n/. In this case, the estimate (36) has the form

�n;k.j / � �0
u

�

1;
j

n

�

tn;k

�k�1
n

k!
; (39)

uniformly in k when"n � j � .1 � "/n. Then we show that

P
.m/

n;k
� gm

�

tn;k

�k�1
n

k!

�m

.m � 1/; (40)

whereg0 D 1, g1 D 0 and form � 2

gm D m C 1

m � 1

X

aCbCcDm
0�a;b<m
0�c�m

�

m

a; b; c

�

gagb

Z 1

0

xa.1 � x/b�0
u.1; x/c dx: (41)

Equivalently, this can be written as

gm D
X

aCbCcDm
0�a;b;c�m

�

m

a; b; c

�

gagb

Z 1

0

xa.1 � x/b�0
u.1; x/c dx:

In particular,

g2 D 3

Z 1

0

�0
u.1; x/2 dx D 2 � �2

6
:

The inductive proof is almost the same as that forA
.m/

n;k
, with the factor.k � �n/m handled by direct

expansion and then estimated term by term. Also we need to split sums of the form
P

1�j<n into five parts

X

1�j<n

D
X

1�j<n=�m
n

C
X

n=�m
n �j<"n

C
X

"n�j�.1�"/n

C
X

.1�"/n<j�n�n=�m
n

C
X

n�n=�m
n <j<n

;

and then apply (40) to the middle sum, and the two estimates (35) and (38) to the other four sums.
The moment sequence (41) is easily checked to have the property of uniquely characterizing the distri-

bution; see Hwang (2005) for similar details.
This proves the first part of Theorem2.

The periodic case whentn;k D O.1/. In this case, we need a more precise expansion than (39) as
follows.

�n;k.j / � �k�1
n

k!

�

�0
u

�

1;
j

n

�

tn;k � 1

2
�00

uu

�

1;
j

n

��

; (42)

uniformly for j=n 2 Œ"; 1 � "� andk � �n, where

�00
uu.1; x/ D .x logx C .1 � x/ log.1 � x//2 � 2.1 �  /�0

u.1; x/:

This is proved by expanding more terms of�.u; x/ at u D 1 and then estimating the error terms (see
Hwang, 1995 for similar details).
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With the approximation (42), we first prove that form � 0

E.Xn;k � �n;k/m D P
.m/

n;k
� pm.tn;k/

�

�k�1
n

k!

�m

; (43)

wherepm.tn;k/ is a polynomial intn;k of degreem with p0.tn;k/ D 1 andp1.tn;k/ D 0. This will imply
that fork D b�nc C `, where` 2 Z,

E

�

Xn;k � �n;k

�k�1
n =k!

�m

� pm.` � f�ng/;

for m � 0, wheref�ng denotes the fractional part of�n. Then we apply an argument based on the Frechet-
Shohat moment convergence theorem similar to that used in Chern and Hwang (2001a) to prove that
.Xn;k � �n;k/=.�k�1

n =k!/ does not converge to a fixed limit law. The proof for.Xn;k � �n;k/=
p

V.Xn;k/

is similar.
To prove (43), we use again induction. Assumem � 2. Then a similar analysis as above leads to

Q
.m/

n;k
� qm.tn;k/

�

�k�1
n

k!

�m

;

whereqm.t/ is a polynomial of degreem defined by

qm.tn;k/ WD
X

aCbCcDm
0�a;b<m
0�c�m

�

m

a; b; c

�Z 1

0

ya.1 � y/b

� pa.tn;k � 1 � logy/pb.tn;k � log.1 � y//

�

�0
u.1; y/tn;k � 1

2
�00

uu.1; y/

�c

dy:

Then by (32), we deduce that form � 2

P
.m/

n;k

�

�k�1
n

k!

��m

� qm.tn;k/ C
Z 1

0

xm�1
X

r�0

log.1=x/r

r !

� .qm.tn;k � r � 1 � logx/ C qm.tn;k � r � logx// dx;

the infinite series on the right-hand side being convergent since qm is a polynomial of degreem. This
proves (43) and the second part of Theorem2.

Note that by induction

pm.t/ D qm.t/ C
Z 1

0

xm .pm.t � 1 � logx/ C pm.t � logx// dx .m � 2/:

Straightforward calculation of the integrals gives the expression (10) for p2.tn;k/.

Extrema of jE.Xn;k ��n;k/mj. To prove the maximum order ofE.Xn;k ��n;k/m, we consider two cases.
First, whenjk � �nj � �2=3, we apply (38), so that

max
jk��nj��

2=3
n

jP .m/

n;k
j D O

 

��3m=2nm � max
jtn;k j��

2=3
n

�

tm
n;k C 1

�

e�mt2

n;k
=.2�n/

!

D O .��mnm/ ;
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the maximum being reached whentn;k � ˙
p

�n.
On the other hand, whenjk � �nj � �2=3, we apply the estimate (35) and bound the maximum by the

sum

max
jk��nj��

2=3
n

jP .m/

n;k
j D O

0

@jv � 1jm��m=2
n nmv

0

@

X

k��n��2=3

C
X

k��C�2=3

1

A v�mk

1

A :

Takingv D 1 � �
�1=3
n in the first sum andv D 1 C �

�1=3
n in the second, we obtain

max
jk��nj��

2=3
n

jP .m/

n;k
j D O

�

�1=3�5m=6
n nme�m�

1=3
n =2

�

:

Thus
max

1�k<n
jE.Xn;k � �n;k/mj D O

�

��m
n nm

�

:

The proof for the minimum order is similar. This proves Corollary 5.

6 Asymptotic normality when ˛ D 0

The approach we use in this section relies on manipulating the recurrences of two sequences of polynomials
defined from the bivariate generating functionsPk.z; y/ WD

P

n E.yXn;k /zn. It can not only be applied to
prove Theorem3 but also gives an alternative proof of the moment convergence part of Theorem1.

Main steps. Let

�n;k WD

s

�2k�1
n

.k � 1/!2.2k � 1/
;

X �
n;k

WD .Xn;k � �k
n=k!/=�n;k , andƒ WD �n=k. The proof of Theorem3 uses the following estimates.

Proposition 2. The characteristic functions ofX �
n;k

satisfy the two estimates:.i/

ˇ

ˇ

ˇ
E.eX �

n;k
i�/ � e��2=2

ˇ

ˇ

ˇ
D O

�

e��2=2 j� j C j� j3p
ƒ

C n�"

�

; (44)

uniformly forj� j � "ƒ1=6; and .ii /

E.eX �

n;k
i�/ D O.e��2=4 C n�"/; (45)

uniformly for"ƒ1=6 � j� j � "
p

ƒ.

Theorem3 then follows from applying the Berry-Esseen smoothing inequality (see Petrov, 1975).
These estimates are derived by singularity analysis (see Flajolet and Odlyzko, 1990), starting from

Cauchy’s integral representation

E.eXn;k i�=�n;k / D 1

2� i

I

jzjD"

z�n�1Pk.z; ei�=�n;k / dz:

We then need estimates for the generating functionsPk , and for that purpose, we introduce two sequences
of polynomials and derive approximations toPk via those for the two polynomials.
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Two sequences of polynomials. By (12), the generating functionPk satisfies
8

ˆ

<

ˆ

:

P0.z; y/ D 1 C yz

1 � z
;

Pk.z; y/ D 1 C z exp

�Z z

0

Pk�1.t; y/ � 1

t
dt

�

.k � 1/:

It is more convenient to work with

Qk.z; s/ WD Pk.z; es/ � 1

z
:

Then
8

ˆ

<

ˆ

:

Q0.z; s/ D es

1 � z
;

Qk.z; s/ D exp

�Z z

0

Qk�1.t; s/ dt

�

; .k � 1/:
(46)

Now, writeL.z/ WD � log.1 � z/. We define two sequences of polynomialsV andW as follows.

Qk.z; s/ WD exp

 

X

m�0

Vk;m.L.z//

m!
sm

!

WD 1

1 � z

X

m�0

Wk;m.L.z//

m!
sm:

Lemma 7. The two sequences of polynomials satisfy the recurrences
8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

Vk;m.x/ D
Z x

0

Wk�1;m.t/ dt .k � 2/;

Wk;m.x/ D 1

m

X

1�j�m

�

m

j

�

j Vk;j .x/Wk;m�j .x/ .m � 1/;
(47)

whereV1;m D x for m � 0 andWk;0.x/ D 1 for k � 1.

Proof.The first relation follows from (46) and the second from taking derivative with respect tos and then
collecting the coefficient ofsm on both sides.

Mean value and variance. We first rederive the mean and variance by such aV W -polynomial approach.
By (47) with m D 1, we obtain

Vk;1.x/ D Wk;1.x/ D xk

k!
.k � 1/: (48)

Consequently, withx D L.z/,

�n;k D Œzn�
z

1 � z
� Lk.z/

k!
D s.n; k C 1/

.n � 1/!
;
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which rederives (2). The asymptotic behavior of�n;k whenk D o.�n/ is derived as follows.

�n;k D Œuk �
nu

�.1 C u/

�

1 C O.n�1/
�

D �k
n

k!

X

0�j�k

k!

.k � j /!�
j
n

� Œuj �
1

�.1 C u/
C O

�

�k
n

nk!

�

� �k
n

k!
:

Form D 2, we have, again by (47),

Vk;2.x/ D
Z x

0

Wk�1;2.t/ dt D x2k�1

.k � 1/!2.2k � 1/
C
Z x

0

Vk�1;2.t/ dt

D
X

0�j<k

�

2j

j

�

xkCj

.k C j /!
I (49)

and then

Wk;2.x/ D Vk;2.x/ C V 2
k;1.x/ D

X

0�j�k

�

2j

j

�

xkCj

.k C j /!
:

Hence,

E.X 2
n;k/ D Œzn�

z

1 � z
�
X

0�j�k

�

2j

j

�

LkCj.z/

.k C j /!
D

X

0�j�k

�

2j

j

�

s.n; k C j C 1/

.n � 1/!

D
X

0�j�k

�

2j

j

�

ŒukCj �
nu

�.1 C u/

�

1 C O.n�1/
�

I

cf. Meir and Moon (1978) and van der Hofstad et al. (2001). Now, observe that fork D o.�n/
�

2k

k

�

Œu2k �
nu

�.1 C u/
�
�

Œuk �
nu

�.1 C u/

�2

D O

�

k2�2k�2
n

k!2

�

:

It follows that

V.Xn;k/ � �2k�1
n

.k � 1/!2.2k � 1/
.k D o.�n//;

which proves the variance estimate in Theorem3.
This line of computations can be extended to higher moments.For example, a similar reasoning for

m D 3 yields

Vk;3.x/ D
Z x

0

Vk�1;3.t/ dt C
Z x

0

�

3Vk�1;2.t/Vk�1;1.t/ C V 3
k�1;1.t/

�

dt

D 3
X

0�`<k

X

0�j<`

�

2j

j

��

j C 2`

`

�

xkCjC`

.k C j C `/!
C

X

0�j<k

�

3j

j ; j ; j

�

xkC2j

.k C 2j /!
I

and

Wk;3.x/ D 3
X

0�`�k

X

0�j<`

�

2j

j

��

j C 2`

`

�

xkCjC`

.k C j C `/!
C

X

0�j�k

�

3j

j ; j ; j

�

xkC2j

.k C 2j /!
;

which was used to computeE.Xn;k � �n;k/3 in Figure1. However, the resulting expressions soon become
very involved. Thus we focus directly on asymptotics of these polynomials and not on exact expressions.
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Asymptotics of theV and W polynomials. First, by (48), we have

Vk;1.x/ D Wk;1.x/ � xk

k!
.x 2 C/;

for k D o.jxj/.
Next, by (49), we have the following estimates fork D o.x/

Vk;2.x/ D x2k�1

.k � 1/!2.2k � 1/

0

@1 C
X

1�j�k

2k � 1

2k � j

Y

1�`<j

�

k � `

x
� k � `

2k � j � `

�

1

A

� x2k�1

.k � 1/!2.2k � 1/
;

and

Wk;2.x/ D Vk;2.x/ C V 2
k;1.x/ � x2k

k!2
:

The general pattern is as follows.

Lemma 8. If k D o.jxj/, wherex 2 C is large, then
8

ˆ

ˆ

<

ˆ

ˆ

:

Vk;m.x/ � xm.k�1/C1

.k � 1/!m.m.k � 1/ C 1/
;

Wk;m.x/ � xmk

k!m
:

(50)

Proof. We use induction onm. We already proved (50) for m D 1; 2. Assumem � 3. By (47) and
induction

Vk;m.x/ D
Z x

0

Wk�1;m.t/ dt

� 1

m

X

1�j<m

�

m

j

�

j

Z x

0

tj.k�2/C1

.k � 2/!j.j .k � 2/ C 1/
� t .k�1/.m�j/

.k � 1/!m�j
dt C

Z x

0

Vk�1;m.t/ dt

� x.k�1/mC1

.k � 1/!m..k � 1/m C 1/
C
Z x

0

Vk�1;m.t/ dt:

Hence, by iteration,

Vk;m.x/ �
X

0�j<k

.mj /!

j !m
� xkCj.m�1/

.k C j .m � 1//!

� x.k�1/mC1

.k � 1/!m..k � 1/m C 1/
:

Moreover, by applying (47) and induction again

Wk;m.x/ � 1

m

X

1�j�m

�

m

j

�

j
xj.k�1/C1

.k � 1/!j.j .k � 1/ C 1/
� xk.m�j/

k!m�j

� xmk

k!m
:

This proves (50).
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Proof of Proposition 2. By Cauchy’s formula, we have

E

�

eXn;k i�=�n;k

�

D 1

2� i

I

jzjD"

z�nQk .z; i�=�n;k/ dz:

We then deform the integration circle onto the left contour shown in Figure3, whereın D �2
n=n. For the

larger circle, we have

1

2� i

Z

jzjD1Cın=n

z�nQk.z; i�=�n;k/ dz D O

 

e��2
n sup

jzjD1Cın=n

jQk.z; i�=�n;k/j
!

:

Now by the estimate

�n;k D O

�

ƒ�1=2 �k
n

k!

�

;

and (50), we have

Vk;m.log.n=!n//��m
n;k D O

�

ƒ�.m�2/=2
�

.m � 1/;

for any complex sequence!n satisfying1 � j!nj D O.�K
n /. It follows that the contribution from the

large circle is bounded above by

1

2� i

Z

jzjD1Cın=n

z�nQk.z; i�=�n;k/ dz D O
�

n��2
n e��2

nCKƒ
�

;

D O .n�"/ ;

uniformly for j� j � "
p

ƒ.
Whenz 2 H1, we make the change of variablesz 7! 1 � �=n and apply the estimate (50), which gives

Qk

�

1 � �

n
;

i�

�n;k

�

D n

�
exp

(

�k
n

k!�n;k

i�

�

1 C O

� j log� j
ƒ

��

� �2

2

�

1 C O

� j log� j
ƒ

��

C O

 

ƒ
X

m�3

j� jm
m!ƒm=2

!)

:

From this we deduce that ifj� j � "ƒ1=6, then

Qk

�

1 � �

n
;

i�

�n;k

�

D n

�
exp

�

�k
n

k!�n;k

i� � �2

2

��

1 C O

�

.j� j C j� j3/
j log� jp

ƒ

��

I

and if "ƒ1=6 � j� j � "ƒ1=2, then

Qk

�

1 � �

n
;

i�

�n;k

�

D O

�

n

j� j j� j�"e��2=2CK j� j3=
p

ƒ

�

D O

�

n

j� j1�"
e��2=4

�

;

for sufficiently small".
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These estimates then yield

E.eX �

n;k
i� / D e��2=2

2� i

Z

H0

e�

�

�

1 C O

�

.j� j C j� j3/
j log� jp

ƒ

���

1 C O

� j� j2
n

��

d� C O .n�"/

D e��2=2

�

1 C O

� j� j C j� j3p
ƒ

��

C O .n�"/ ;

uniformly for j� j � "ƒ1=6, where the contourH0 is shown in Figure3, and similarly

E.eX �

n;k
i� / D O

�

e��2=4 C n�"
�

;

uniformly for "ƒ1=6 � j� j � "ƒ1=2. This completes the proof of Proposition2.

b

1

C

H1

1=n

z

b

1 C ın

z 7! 1 � �
n

b

�

H0
0

Figure 3:The Hankel contours used to derive the asymptotics of the moments ofXn;k .

Proof of Theorem 3. We now apply the Berry-Esseen smoothing inequality (see Petrov, 1975)

sup
x2R

ˇ

ˇP
�

X �
n;k < x

�

� ˆ.x/
ˇ

ˇ D O

�

1p
ƒ

C J

�

;

where

J D
Z "

p
ƒ

�"
p

ƒ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E

�

eX �

n;k
i�
�

� e��2=2

�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

d�

D
�
Z

j� j�ƒ�1=2

C
Z

ƒ�1=2�j� j�"ƒ1=6

C
Z

"ƒ1=6�j� j�"ƒ1=2

�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E

�

eX �

n;k
i�
�

� e��2=2

�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

d�

DW J1 C J2 C J3:
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The integralJ1 is assessed as follows.

J1 �
Z

j� j�ƒ�1=2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E

�

eX �

n;k
i�
�

� 1

�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

d� C
Z

j� j�ƒ�1=2

ˇ

ˇ

ˇ

ˇ

ˇ

e��2=2 � 1

�

ˇ

ˇ

ˇ

ˇ

ˇ

d�

� E.X �2
n;k/

Z

j� j�ƒ�1=2

j� j d� C
Z

j� j�ƒ�1=2

j� j d�

D O.ƒ�1/:

By (44), the integralJ2 satisfies

J2 D O

�

ƒ�1=2

Z

ƒ�1=2�j� j�"ƒ1=6

.1 C �2/e��2=2 d� C n�"

Z

ƒ�1=2�j� j�"ƒ1=6

j� j�1 d�

�

D O
�

ƒ�1=2 C n�" logƒ
�

D O
�

ƒ�1=2
�

:

The last integralJ3 is estimated by using (45)

J3 D O

�Z

"ƒ1=6�j� j�"ƒ1=2

��1e��2=4 d� C n�" logƒ

�

D O
�

ƒ�1=2
�

:

This proves Theorem3.
In particular, Theorem3 implies and completes the case˛ D 0 in Theorem1.

An alternative proof of Theorem 1 .ii/. The above approach based onV W -polynomials can also be
refined to give an alternative proof of Theorem1. We outline the main steps.

First, by (47) and induction, we can prove that

8

ˆ

ˆ

<

ˆ

ˆ

:

Vk;m.x/ � �m

�

k

x

�

.k=x/m�1

m
� xmk

k!m
;

Wk;m.x/ � �m

�

k

x

�

xmk

k!m
;

uniformly for 0 < k=jxj < m1=.m�1/ and large complexx, where�m.u/ is defined recursively by

�m.u/ D 1

m � um�1

X

1�h<m

�

m

h

�

�h.u/�m�h.u/uh�1 .m � 2/;

with �1.u/ D 1.
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Then whenk=�n ! ˛, 0 < ˛ < m1=.m�1/,

E.X m
n;k/ D Œzn�

z

1 � z
Wk;m.L.z//

� 1

2� i

Z

H

e���1Wk;m.log.n=�// d�

� �m.˛/

2� i

Z

H

e���1 .�n � log�/mk

k!m
d�

� �m.˛/
�mk

n

k!m
1

2� i

Z

H

e���1�m˛ d�

� �m.˛/

�.1 C m˛/
� �mk

n

k!m

� �m.˛/
�.1 C ˛/m

�.1 C m˛/
�m

n;k ;

for a suitably chosen Hankel contourH. And it is straightforward to check, by (7), that

�m.˛/
�.1 C ˛/m

�.1 C m˛/
D �m.˛/:

Note that this approach does not apply to profiles of binary search trees.

7 Profiles of random binary search trees

We consider briefly in this section random binary search trees whose profiles have been widely studied; see
Drmota and Hwang (2005a) and the references therein. Our method of moments and contraction method
apply. While the results for both trees are very similar, there is no range for binary search trees where the
limit law of the profile is normal.

Let Yn;k denote the number of external nodes at distancek from the root andZn;k the number of
internal nodes at levelk (root being at level0) in a random binary search tree ofn nodes (as constructed
from a random permutation ofn elements). Then fork; n � 1

Yn;k
DD YJn;k�1 C Y �

n�1�Jn;k�1;

Zn;k
DD ZJn;k�1 C Z�

n�1�Jn;k�1;

with the initial conditionsYn;0 D ın;0 and Zn;0 D 1 � ın;0, whereJn is uniformly distributed over

f0; : : : ; n � 1g, the summands are independent andYn;k
DD Y �

n;k
, Zn;k

DD Z�
n;k

. Note thatZn;k D
P

j>k Yn;j 2j�k .

Mean values. The expected value ofYn;k satisfies (see Drmota and Hwang, 2005a and the references
therein)

E.Yn;k/ D 2k

n!
s.n; k/ D .2�n/k

�.˛n;k/k!n

�

1 C O

�

1

�n

��

;

theO-term holding uniformly for1 � k � K�n.
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For internal nodes, the asymptotic behavior is different

E.Zn;k/ D 2k

n!

X

j>k

s.n; j /

�

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

2k � .2�n/k

.1 � ˛n;k/�.˛n;k/nk!
; if 1 � k � �n � K

p
�nI

2kˆ.�xn;k/; if xn;k WD .k � �n/=
p

�n D o..�n/1=6/I
.2�n/k

.˛n;k � 1/�.˛n;k/nk!
; if �n C K

p
�n � k � K�n;

where the error terms in the first and the third approximations are of the form

O

�

.2�n/k

jk � �nj2nk!

�

;

and that of the middle isO..1 C jxn;kj3/=
p

�n/; see (51) below.
Note that

logE.Yn;k/

�n

! ˛ � 1 � ˛ log.˛=2/;

and the right-hand side is positive when˛� < ˛ < ˛C, where0 < ˛� < 1 < ˛C are the two real zeros of
the equationz � 1 � z log.z=2/ or e.z�1/=z D z=2. These two constants are sometimes referred to as the
binary search tree constants(or the fill-up level and height constants, respectively).

The limit law. Define the map

T W M ! M; � 7! L

�˛

2
U ˛�1Z C ˛

2
.1 � U /˛�1Z�

�

;

whereZ; Z�; U are independent andL.Z/ D L.Z�/ D �.
The constants is defined bys WD 2 when 2 �

p
2 < ˛ < 2 C

p
2 and 1 < s < % when ˛ 2

.˛�; ˛C/ n .2 �
p

2; 2 C
p

2/, where% 2 .1; 2� solves the equation%.˛ � 1/ C 1 D 2.˛=2/%.
Similar to Proposition1, we have the following properties.

Proposition 3. If ˛� < ˛ < ˛C, then the restriction ofT to Ms.1/ has a unique fixed pointY .˛/. In
addition,EjY .˛/j% D 1 for ˛ 2 .˛�; ˛C/ n .2 �

p
2; 2 C

p
2/.

Limit distribution when ˛� < ˛ < ˛C. The above estimates for the mean values ofYn;k andZn;k

say roughly that internal nodes are asymptotically full (ofsizes2k) for the first�n � K
p

�n levels, while
external nodes are relatively sparse there. Observe that the second order term ofE.Zn;k/ is asymptotically
of the same order asE.Yn;k/ when˛ < 1. This suggests that we should consider

NZn;k WD
�

2k � Zn;k ; if ˛� � ˛ < 1I
Zn;k ; if 1 � ˛ < ˛C:

Theorem 5. Let Y .˛/ and % be defined as in Proposition3. Assume thatk D ˛�n C o.�n/. Then for
˛� < ˛ < ˛C,

Yn;k

E.Yn;k/
;

NZn;k

E. NZn;k/

D�! Y .˛/;

with convergence of all moments for˛ 2 Œ1; 2� but not for˛ outsideŒ1; 2�.
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Chauvin et al. (2005) proved almost sure convergence forYn;k=E.Yn;k/ when˛� < ˛ < ˛C; their
result is stronger than convergence in distribution but does not imply convergence of all moments.

As in Theorem4, we can derive a convergence rate for the�2-distance when2 �
p

2 < ˛ < 2 C
p

2

and for�s when˛ 2 .˛;˛C/ n .2 �
p

2; 2 C
p

2/.

Moments of the limit law. The integral moments�m.˛/ of Y .˛/ satisfy (when they exist)�0.˛/ D
�1.˛/ D 1 and form � 2

�m.˛/ D .˛=2/m

m.˛ � 1/ C 1 � 2.˛=2/m

X

1�h<m

�

m

h

�

�h.˛/�m�h.˛/
�.h.˛ � 1/ C 1/�..m � h/.˛ � 1/ C 1/

�.m.˛ � 1/ C 1/
:

Observe that the polynomialm.z � 1/ C 1 � 2.z=2/m has two positive zerosz�
m andzC

m , wherez�
m 2

Œ2 �
p

2; 1/ andzC
m 2 .2; 2 C

p
2� for m � 2. And the two sequences of zeros for increasingm satisfy (see

Table1)
z�

m " 1; zC
m # 2:

Thus the intervalŒ1; 2� is the only range where convergence of all moments holds.
More precisely,�m.˛/ is finite whenz�

m < ˛ < zC
m and we have convergence of the firstm-th moment

(but not the.m C 1/-st moment) forYn;k=E.Yn;k/ and NZn;k=E. NZn;k/ there. In particular, if̨ � < ˛ �
2 �

p
2 or 2 C

p
2 � ˛ < ˛C, thenY .˛/ has no second moment. This is consistent with the result in

Drmota and Hwang (2005a).

m 2 3 4 5 6

z�
m 0:58578 0:69459 0:76045 0:80420 0:83509

zC
m 3:41421 3:06417 2:86989 2:74376 2:65416

m 7 8 9 10 11

z�
m 0:85790 0:87533 0:88903 0:90006 0:90912

zC
m 2:58668 2:53372 2:49085 2:45532 2:42531

Table 1:Approximate numeric values ofz�
m andzC

m for m D 2; : : : ; 11.

Limit distributions when ˛ D 1. Note thatY .1/ D Y .2/ � 1.
The following theorem states that there is a delicate difference between the limit distribution ofYn;k

and that ofZn;k (properly normalized) when̨ D 1 C O.1=
p

�n/.

Theorem 6. Assumek D �n C tn;k , wheretn;k D o.�n/. If jtn;k j ! 1, then

Yn;k � E.Yn;k/

2tn;k.2�n/k�1=.nk!/

M�! Y 0.1/I

if tn;k D O.1/, then the sequence of random variables.Yn;k � E.Yn;k//=
p

V.Yn;k/ does not converge to a
fixed limit law.

For internal nodes, uniformly fortn;k D o.�n/,

Zn;k � E.Zn;k/

.2�n/k=.nk!/

M�! Y 0.1/:
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Thus the periodicity does not play a special role for internal nodes when̨ D 1. Note that the normal-
izing constants differ by the factor̨n;k � 1 D tn;k=�n.

The limit lawY 0.1/ can also be defined as

Y 0.1/
DD 1

2
Y 0.1/ C 1

2
Y 0.1/

� C 1 C 1

2
logU C 1

2
log.1 � U /;

with independent summands andY 0.1/
DD Y 0.1/

�. Note that the random variables
P

j�0 Zn;j =2j have
mean equal to

P

1�j�n j �1 and converge toY 0.1/ (after centered and normalized).
Since the distribution ofY 0.1/ is uniquely characterized by its moment sequence, the convergence in

distribution is also implied by the Frechet-Shohat moment convergence theorem.

The quicksort limit law when ˛ D 2.

Theorem 7. Assumę n;k D 2 C tn;k=�n, wheretn;k D o.�n/. If jtn;k j ! 1, then

Yn;k � E.Yn;k/

2tn;k.2�n/k�1=.nk!/
;

Zn;k � E.Zn;k/

2tn;k.2�n/k�1=.nk!/

M�! Y 0.2/I

if tn;k D O.1/, then neither of two sequences

(

Yn;k � E.Yn;k/
p

V.Yn;k/
;
Zn;k � E.Zn;k/
p

V.Zn;k/

)

converges to a fixed limit law.

The limit lawY 0.2/ is essentially the quicksort limit law (see Hwang and Neininger, 2002)

Y 0.2/
DD U Y 0.2/ C .1 � U /Y 0.2/

� C 1

2
C U logU C .1 � U / log.1 � U /;

with independent summands on the right-hand side andY 0.2/
DD Y 0.2/�.

Convergence in distribution in the case whenjtn;k j ! 1 is also implied.
The approach given in this paper gives not only the bimodality of the variancesV.Yn;k/ andV.Zn;k/

but also the extremal (reachable) orders ofjE.Yn;k � E.Yn;k//mj and jE.Zn;k � E.Zn;k//mj for m � 3

when˛ D 2.

Sketch of proofs. We sketch a few steps for internal nodes, external nodes being similar and simpler.
Starting from the recurrence for the probability generating function ofZn;k

Pn;k.y/ D 1

n

X

0�j<n

Pj ;k�1.y/Pn�1�j ;k�1.y/ .n � 2I k � 1/;

with P0;0.y/ D 1 andPn;0.y/ D y for n � 1, we have the recurrence for the mean value

E.Zn;k/ D 2

n

X

0�j<n

E.Zj ;k�1/ .n � 2I k � 1/:
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Lemma 9. The solution to the recurrence

an;k D 2

n

X

0�j<n

aj ;k�1 C bn;k ;

is given explicitly by

an;k D bn;k C 2

n

X

0�j<n

X

0�r<k

bj ;k�1�r Œur �
Y

j<`<n

�

1 C 2u

`

�

;

whereb0;k WD a0;k .

Then we have, by applying the exact solution withbn;0 D 1 for n � 1 andbn;k D 0 otherwise,

E.Zn;k/ D 2

n
Œuk�1�

X

1�j<n

Y

j<`<n

�

1 C 2u

`

�

D 2k Œuk�1�
1

u � 1

�

�.n C u/

�.n C 1/�.u C 1/
� 1

�

D 2k

2� i

I

jujD˛n;k>1

u�k�1 1

u � 1

�

n C u � 1

n

�

du: (51)

Thus

E.Zj ;k�1/ C E.Zn�1�j ;k�1/ � E.Zn;k/

D 2k

2� i

I

jujD˛n;k

u�k�1nu�1�.u; j=n/
�

1 C O.j �1 C .n � j /�1/
�

du;

where

�.u; x/ D uxu�1 C u.1 � x/u�1 � 2

2�.u/.u � 1/
:

Note that, unlike recursive trees and external nodes of binary search trees,�.1; x/ is not zero and�.1; x/ D
1C 1

2
logxC 1

2
log.1�x/. This is why there is no periodic case for internal nodes when˛ D 1CO.1=

p
�n/.

All estimates required forE.Zn;k/ and for its differenceE.Zj ;k�1/ C E.Zn�1�j ;k�1/ � E.Zn;k/ can
be derived as for recursive trees. For example, we have, uniformly for �n C K

p
�n � k � K�n,

E.Zn;k/ � .2�n/k

.˛ � 1/�.˛/k!n
:

8 Conclusions

Most random trees in discrete probability or data structures have height of order either in
p

n or in logn;
see Aldous (1991). While profiles and other related processes defined on random trees of

p
n-height have

been thoroughly studied in the literature (see Aldous, 1991, Drmota and Gittenberger, 1997, Kersting,
1998, Pitman, 1999, and the references therein), profiles oftrees with logarithmic height have received
little attention (except for digital search trees; see Aldous and Shields, 1988, Jacquet et al., 2001). This
paper shows that the phenomena exhibited in such trees are drastically different yet highly attractive.
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A detailed study of more general random search trees (including m-ary search trees, quadtrees, fringe-
balanced binary search trees, etc.) will be given elsewhere.

Many questions remain unclear at this stage. For example, are there more “humps” or valleys for higher
central moments or cumulants in the central range? Are thereinteresting process approximations? How
to simulate the limit laws appearing in this paper? And what happens when̨ D e for recursive trees and
˛ D ˛�; ˛C for binary search trees? Do we still have the same convergence in distribution forXn;k=�n;k

when�n;k ! 1? Note that for recursive trees,E.Xn;k/ ! 1 for k � e�n � e1 log�n, wheree1 > 1=2,
but V.Xn;k/ ! 1 for k � 4

log4
�n � e2 log�n, wheree2 > 1=.2 log4/. Since4= log4 � 2:88 > e, there

is still a small range ink where the mean goes to zero but the variance goes to infinity.
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