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Abstract 
 
Background: Chronic opioid exposure is common world-wide, but behavioural performance remain 

under investigated. This study aimed to investigate visuospatial memory performance in opioid 

exposed and dependent clinical populations and its associations with measures of intelligence and 

cognitive impulsivity. 

Methods: We recruited 109 participants: i) patients with a history of opioid dependence due to 

chronic heroin use (n=24), ii) heroin users stabilised on methadone maintenance treatment (n=29), 

iii) participants with a history of chronic pain and prescribed tramadol and codeine (n=28) and iv) 

healthy controls (n=28). The neuropsychological tasks from the Cambridge Neuropsychological Test 

Automated Battery (CANTAB) included the Delayed Matching to Sample (DMS), Pattern Recognition 

Memory (PRM), Spatial Recognition Memory (SRM), Paired Associate Learning (PAL), Spatial Span 

Task (SSP), Spatial Working Memory (SWM) and Cambridge Gambling Task (CGT). Pre-morbid 

general intelligence was assessed using the National Adult Reading Test (NART). 

Results: As hypothesised this study identified differential effects of chronic heroin and methadone 

exposures on neuropsychological measures of visuospatial memory (p<0.01) that were independent 

of injecting behaviour and dependence status. The study also identified an improvement in DMS 

performance (specifically at longer delays) when the methadone group was compared to the heroin 

group and also when the heroin group was stabilised onto methadone.  

Results identified differential effects of chronic heroin and methadone exposures on various 

neuropsychological measures of visuospatial memory independently from addiction severity 

measures, such as injecting behaviour and dependence status.  

 
 
4479 Words, 79 References, 5 Tables, 1 Supplementary Table, 2 Figures 

 
 
 
 
 
 
 
 
 
 
Introduction 
 



3 
 

Working memory is a limited capacity cognitive system that functions to hold information in an 

active manner to facilitate the performance of complex cognitive tasks (Miyake & Shah, 1999). Such 

tasks include, for example, language comprehension, learning, abstract thinking (Twamley et al. 

2006), problem-solving (Westen, 2006), understanding the meaning of complex texts and planning 

verbal communications (Zihl et al. 1979). Working memory (WM) is limited in both capacity and 

duration and is often used synonymously, but inaccurately, with the term “short term memory” 

(Westen, 2006). Baddeley & Hitch (1974) expanded upon this WM concept and proposed a 

tripartite working memory model that includes a central executive and two ‘slave systems’; the 

phonological loop and the visuospatial store. The visuospatial store is further broken down into (1) 

visual memory information that includes dimensions such as colour and shape and (2) spatial 

memory information that includes capacity to understand, reason and to remember 

the spatial relations among objects or space. (Baddeley & Logie, 1999; Mammarella et al. 2008). 

There is accruing evidence that the two components of visuospatial memory are selectively engaged 

and/or processed by distinct brain regions and neuropsychological functions (Della Sala et al. 1999; 

Passolunghi et al. 2010, Bormann et al.2015; Erikson et al. 2015).  

 

There are a few brain imaging studies on visuospatial memory impairments among drug users. 

Kubler and colleagues reported that cocaine dependent individuals were impaired in visuospatial 

working memory. These were associated with prefrontal, cingulate and striatal regions (Kubler et al. 

2005). In another study opiate dependent individuals were impaired in working memory-related 

brain areas (Bach et al, 2012). 

 

Hyman and colleagues have conceptualised the behavioural phenomena typically described as 

‘addiction’ to a “pathological usurpation of the neural mechanisms of learning and memory that 

under normal circumstances serve to shape survival behaviours related to the pursuit of rewards 

and the cues that predict them” (Hyman., 2005; Hyman et al. 2006). 

 

In support of the potential centrality of learning and memory changes within drug addiction, two 

recent meta-analyses of observational studies suggested that chronic opioid exposure is associated 

with deficits across a range of different neuropsychological domains including attentional set-

shifting, spatial planning and (Baldacchino et al. 2012; 2016; Tolomeo et al. 2016; 2018). However, 

these meta-analyses also suggested that opioid exposed groups with apparent working memory 

impairments are a highly heterogenous group with mixed ages, educational attainment, gender and 

socio-economic status (Baldacchino et al. 2012, 2016). Additionally, visuospatial memory 

http://en.wikipedia.org/wiki/Short_term_memory
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impairments in opioid exposed groups are confounded by, for example, comorbid personality 

disorders (Prosser et al. 2008), anxiety and/or depression (Henry et al. 2012), past and present 

medical conditions, neurological disorders and history of head trauma and non -fatal overdose 

(anoxic) episodes (Prosser et al. 2008; Rounsaville et al. 1982; Shmygalev et al. 2011; Specka et al. 

2000). Cognitive function may also be influenced by the global sedative effects of opioid drugs, sub-

acute responses to the drugs or the presence of untreated withdrawal states (Baldacchino et al. 

2016) at time of testing. Table 1 summarises studies that have recorded significant impairments in 

visuospatial memory in chronic opioid using populations.  

 

INSERT TABLE 1 here 

 

The present study aimed to extend our understanding of neurocognitive performance in dependent 

and non-dependent opioid users, focusing on visuospatial memory function. Employing an 

ambispective cohort design, we tested representative samples of male participants exposed to illicit 

and therapeutic opioid drugs and matched, non-substance using, healthy controls. Specifically, the 

study aimed to determine if performance on tasks measuring visuospatial memory,  especially 

delayed memory performance, which is very sensitive for the varying of ‘executive demands’, was 

affected by (1) the type of the opioid exposure (methadone vs. heroin) at different stages of 

treatment seeking, (2) the context (opioids prescribed for pain control compared with illicit opioids) 

and (3) the presence or absence of syndromal opioid dependence (opioid dependent compared to 

non–opioid users) and (4) administration route – injection status (opioid dependent and injecting 

compared with dependent and non-injecting participants). We have previously identified and 

reported differential effects of heroin, methadone and prescribed analgesic medication on 

neurocognitive measures of impulsivity (Baldacchino et al. 2014) from the same study cohort.  

 

Method 

Participants 

Ethical permission for the conduct of this study was provided by the East of Scotland Research Ethics 

Service (REC reference number: 06/S1401/32). A full description of the participants can be found in 

Baldacchino et al (2014). Male only participants were recruited from UK NHS substance misuse and 

pain management services. A control group of healthy participants was also recruited. All 

participants were screened to exclude lifetime or current histories of psychosis, PTSD, neurological 
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and neurodevelopmental disorders, borderline or psychopathic personality disorders, head injuries; 

individuals with a lifetime history of non-fatal overdose episodes requiring medical attention (e.g. 

ambulance call out, CPR), co-occurring benzodiazepine, psychostimulant and alcohol dependence. 

All participants were screened by an experienced clinician (AB) for acute opioid and opioid 

withdrawal symptoms prior to the neuropsychological testing. 

 

The Heroin group (H) (N=24) were ‘first time’ referrals to a structured Methadone Maintenance 

Treatment (MMT) programme. The Methadone group (M) (N=29) were established and stable 

participants in a MMT programme with objective confirmation of absence of illicit drug use for more 

than six months. Eighteen of the twenty-nine MMT group participants who showed objective 

continuing clinical stability were retested six months after baseline testing. All recruits making up the 

H and MMT cohorts presented initially with opioid dependence and reported a history of more than 

three years of continuous and daily illicit opioid use.  

 

Heroin participants (H) performed repeated neuropsychological testing during a single blinded 

procedure that permitted the objective observation of participants (a) 3-5 hours after their last 

illicit heroin administration to minimise the confounding cognitive effects of acute intoxication; (b) 

10-15 hours after the last heroin dose in a state of controlled opioid withdrawal and subsequently (c) 

following more than two weeks on a stable dose of MMT. Clinically this is known as tolerance testing 

which is a single-blinded procedure that permitted the objective observation of individuals during 

stages of acute intoxication, withdrawal and subsequent stabilisation on a fixed dose methadone 

within a period of 7-14 days (Baldacchino, 2011).  

 

The two opioid dependent groups (H and M groups) were matched for lifetime drug use history, 

morphine equivalent dosages and other drug use (including tobacco smoking) history 30 days prior 

to baseline testing. The CANTAB neuropsychological tests presented here refer to the standard tests 

selected from the batteries used at baseline testing. Where available, parallel versions of the tasks 

were used with the same participant to minimise practice effects.  

 

This approach offered the opportunity to test whether any visuospatial memory measures that 

differed from those of control participants represented a stable phenomenon, or could be modified 

by differential opioid exposure and switch to an alternate opioid (MMT). A cohort of non-dependent 

participants prescribed opioids for chronic pain for more than 3 years (P) (N=28) with no history of 

‘illicit’ opioid use, or methadone treatment, was also recruited. This group were prescribed 
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tramadol, codeine, or both, for moderate chronic pain. Both P and HC groups were tested only once 

(Table 2). 

 

 

INSERT TABLE 2 here 

 

 
Instruments 
(A) Clinical: All subjects were screened using the MINI Plus v 5.0 (Sheehan et al. 1998), Maudsley 

Addiction Profile (MAP) (Marsden et al. 1998), and Fagerström Test for Nicotine Dependence (FTND) 

(Fagerström & Schneider, 1989). Urine samples were collected from all participants to confirm their 

history of recent opioid intake and to confirm the absence of any other illicit drugs throughout the 

study period. The Clinical Opiate Withdrawal Scale (COWS) (Wesson & Ling, 2003), quantified the 

level of opioid withdrawal in the heroin group. A senior research nurse and an experienced clinician 

conducted the assessments. Both were clinically trained. No participants had HIV or AIDS or other 

medical comorbidities that could affect cognitive functions.  

 

(B) Cognitive: The neuropsychological tasks from the Cambridge Neuropsychological Test Automated 

Battery (CANTAB) (Robbins et al. 1994) were selected on the basis of their known sensitivity to 

detect impairments in (a) visual [Delayed Matching to Sample (DMS), Pattern Recognition Memory 

(PRM), Spatial Recognition Memory (SRM) and Paired Associate Learning (PAL) and (b) spatial 

[Spatial Span Task (SSP), and Spatial Working Memory (SWM) memory performance. Pre-morbid 

general intelligence was assessed using the National Adult Reading Test (NART) (Nelson, 1982) 

(Supplementary Table 1). 

 

Data Analysis 

Data meeting assumptions of normality and homogeneity of variance were analysed using ANOVA 

(Winer et al.  1991). All other data were compared using appropriate non-parametric tests (e.g. 

Kruskal-Wallis and Mann-Whitney tests). Preliminary analysis of all the experimental and control 

groups separately indicated that the samples did not come from normally distributed populations 

with the same standard deviation. A planned (a priori) contrasts analysis was, therefore, run to test 

for significant differences between the four independent study groups. Mann Whitney U tests 

established that NART, age, morphine equivalent dosage and previous alcohol use all needed to be 

used as covariates for further analyses.  
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Mann Whitney U tests were also performed to examine: (a) sociodemographic characteristics for 

participants in the H group, comparing those who experienced the lowest (n=8) and highest (n=8) 

scores on the COWS. Similarly, the same test was used to determine if there were differences 

between the H group of participants who were tested at baseline and those who were followed up 

and tested in withdrawal and, subsequently, on methadone. (b) sociodemographic characteristics for 

participants in the MMT group, comparing those tested at baseline (n=29) and those followed up 

after six months (n=18). (c) sociodemographic characteristics for participants in the H and M groups 

comparing those with a lifetime subjective history of injecting illicit opioids (n=41) and those with no 

history of injecting (n=11). A high COWS score was defined as a score between 18-25; a low COWS 

score was defined as a score 8-14. 

The data were first analysed using an omnibus test to determine if significant differences existed 

between the groups. If the test revealed significance, appropriate pair wise comparisons were 

performed. In order to control for family wise error, post hoc Bonferroni corrected pairwise 

comparisons was used (Fields, 2009). P values <0.01 were considered significant. This minimised the 

effects of multiple comparisons, subgroup analyses and/or repeated measures as we were 

considering a family of statistical inferences simultaneously (Sainani, 2009). Those reported as 

between p<0.05 and p>0.01 are presented as non-significant trends when they are considered 

relevant to substantiate the interpretation of other significant results. 

 

ANCOVA was used to test for group differences with respect to visuospatial memory performance 

measures. The PRM and SWM outcomes did not meet assumptions of normality and were square 

root transformed prior to performing the ANCOVA. However, PAL outcomes were log10 transformed 

prior to performing the ANCOVA. For incremental levels of difficulty within the testing sessions, the 

within‐subject factor DIFFICULTY was introduced, (e.g. SWM (between/within search errors), SSP 

(span length between 1-9), DMS (0, 4 and 12 second delays), and PAL (1, 2, 3, 6, or 8 shapes)). 

Homogeneity of variance was assessed using the Mauchly Sphericity Test. Where data sets 

significantly (p<0.05) violated this requirement, the Greenhouse Geisser Epsilon (^ε) correction 

parameter for degrees of freedom was used to calculate a more conservative p value for each F 

ratio. 

 

Further a priori subgroup analyses were conducted using (1) a two-group factor reflecting 

DEPENDENCE status (H and M groups vs P and HC groups) and (2) a two-group factor reflecting 

INJECTING status (H and M injecting vs. H and M never injecting groups) separately as between 

subject factors. Importantly, we had specific a priori hypotheses about the impact of dependence for 
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the H and M groups, however we could not draw any particular conclusion about the exposure of 

the opiate use. In addition, we used DEPENDENCE as a proxy clinical measure of severity without any 

biological basis. 

Similarly, repeated measures ANCOVA was used to evaluate all neuropsychological performance 

measures between the H group at baseline, in controlled opioid withdrawal and subsequently when 

stabilised on methadone with presumed opioid receptor occupancy state as a within-subjects factor. 

Similarly, repeated measures ANCOVA was performed for the M group at baseline and at six months 

follow up with duration as a within-subjects factor.  

All analyses were conducted using SPSS for Windows (v.18, SPSS Inc. Chicago, Ill.).  

 

Results 

Demographic characteristics 

A description of demographics, drug use and smoking variables for the four groups is presented in 

Table 3. The H and M groups differed from the P and HC groups with respect to several clinical 

characteristics. Opioid dependent participants started to drink alcohol approximately two years 

earlier than the other groups. The mean morphine equivalent daily dose for the P group was 

significantly lower (59.1 mg) than the H and M groups (165.9mg) (p<0.001).   

 

INSERT TABLE 3 here 

 

When comparing high against low scores for COWS in the H group, there were no differences 

between age (p=0.88), SIMD score (p=0.75), years in education (p=0.38), years when starting using 

alcohol (p=0.07), alcohol amount used in last month (p=0.87) or current level of nicotine 

dependence (Fagerström scores) (p=0.96)  

Similarly, there were no group differences identified on these measures when comparing H group 

tested at baseline and those retested either through the tolerance testing protocol six months later 

when taking methadone. There were no significant differences with demographic and drug use 

characteristics between injecting participants (n=43) and non-injecting participants (n=10). However, 

NART scores were significantly higher (p<0.01) in the injecting group.  

Visual Memory 



9 
 

Performance on DMS 

There was a significant effect on the percentage of correct responses [GROUP F (3,100) =10.3, 

p<0.001]. There were no significant performance differences between groups with respect to the 

simultaneous matching condition. Post hoc Bonferroni comparisons, however, showed participants 

from the H group made significantly more errors than (a) the HC group at the 0 (p<0.005), 4 

(p<0.001) and 12 second (p<0.001) delay stages, (b) the P group for the 4 (p<0.01) and 12 (p<0.005) 

second delay stages and (c) the M group for 0 (p<0.005), 4 (p<0.005) and 12 (p<0.001) second delay 

stages (Figure 1). In summary the H group exhibited significant delay-dependent memory 

impairment when compared with the comparison and control groups. 

 

INSERT FIGURE 1 here 

 

Performance on PRM, SRM and PAL 

There were no significant GROUP effects on the number of correct trials [F<1] and mean response 

latencies [F<1] on the PAL and PRM tests. There was a non-significant GROUP trend on the total 

number of correct trials [F (3,102) = 3.6, p=0.02] on the SRM only.  

Spatial memory 

Performance on SSP 

There was a significant GROUP [F (3,102) =16.8, p<0.001] effect for total errors. Post hoc Bonferroni 

comparisons showed that the participants from the H group significantly made more errors 

compared to the M (p<0.001, d=1.25) and HC (p<0.005, d=1.14) groups (Figure 2). The total error 

score for the P group lay between those of the H, M and HC groups and did not differ significantly 

from any of the other three groups (p=1.0).   

There was also a significant GROUP [F (3,101)=3.7, p<0.01] effect for span length with post hoc 

Bonferroni comparisons showing the M group was significantly less able to recall successfully the 

longest sequence compared to HC group (p<0.01, d-1.17). The span length for the H (p=.41) and the 

P (p=.21) groups lay between those of the M and HC groups and did not differ significantly from any 

of the other groups (Figure 2). 

 

INSERT FIGURE 2 here 

Performance on SWM 
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There was a non-significant GROUP trend for: total mean errors [F(3,102)=3.2, p=0.03] and strategy 

score [F(3,102)=2.9,p=0.04]  

 

INSERT TABLE 4 here 

 

Chronic opioid dependence or injecting status and visuospatial memory performance  

There were no significant effects for either of the factors DEPENDENCE or INJECTING STATUS on any 

of the DMS, PRM, SRM, and PAL outcome measures.  

However, there were significant DEPENDENCE effects for total errors [F (3,104)=6.5, p<0.01] on the 

SWM, but with no significant DEPENDENCE effects on the strategy score [F(1,104)=4.8,p=0.03]. 

There was a significant DEPENDENCE status and task difficulty interaction on the SWM test for total 

errors [F (3,133.75)=6.2, p<0.01]. Analysis using INJECTING status failed to reveal any significant 

effects or interactions on any SWM outcomes. 

There was a significant effect of DEPENDENCE status [F (1,103) = 7.1, p<0.01] for span length on the 

SSP test, but not for total errors [F (1,104)=1.1, p=0.29]. There was no significant effect on INJECTING 

status on SSP outcomes.  

 

Type of the opioid exposure at different stages of treatment and visuospatial memory 

performance.  

When the H group was tested during different states of opioid exposure (tolerance testing) there 

was a significant effect of on the DMS mean correct latency [F (2, 34.22)=10.5, p<0.001]. Post hoc 

Bonferroni comparisons showed a significant improvement at the 12 second delay stage (p<0.001) 

but not the 0 second and 4 second delay conditions. These improvements were noted in comparison 

with the stable MMT, the ‘withdrawal’ stage (p<0.005) and the illicit heroin stage (p<0.001). There 

was no effect on PRM, SRM, PAL , SSP and SWM outcomes. 

 

There was a trend (p<0.05) for the M group to improve on DMS and SWM outcomes in selecting the 

right stimulus following prolonged exposure to a stable dose of methadone. There were no 

significant additional effects on all PRM, SRM, PAL, and SSP outcomes in the M group following 

prolonged exposure to a stable dose of methadone. 

Discussion 
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This study identified differential effects of chronic heroin and methadone exposures on 

neuropsychological measures of visuospatial memory that were independent of estimates of 

addiction severity (injecting behaviour, dependence status). The study also identified an 

improvement in DMS performance (specifically at longer delays) when the M group were compared 

to the H group and also when the H group was tolerance tested and then stabilised on methadone.  

 

 

INSERT TABLE 5 here 

 

Interpretation 

Although there are likely commonalities in the ways in which all opioids can affect cognitive 

performance, much can be learned from considering the distinctive features of each type of opioid 

and its effect on visuospatial memory. In this study, we have described significant differences in 

performance between the heroin, methadone and chronic pain groups. The H but not the M group 

differentially showed impairment in visual memory whereas both the H and M groups showed 

impairment in spatial memory. Importantly, the performance of the licit opioid exposed group was 

broadly similar to that of the HC group. However due to the significantly lower dose equivalence in 

the licit opioid group one needs to cautiously suggest that the impairments in visuospatial memory 

reported are evoked by chronic exposure to illicit opioids.  Participants with potential confounders, 

such as impaired mood state (Jollant et al. 2007), non-fatal overdoses, co-morbid personality 

disorders (Vassileva et al. 2007) or a co-occurrence of polydrug dependence were excluded from the 

study. Thus, the impairments in visuospatial memory measures, seen in the participants who are 

opioid dependent, cannot be caused by these potential confounders.  

 

Heroin users presented with significant delayed memory impairments when compared to either M 

or P groups using a cross sectional comparison. These impairments diminished with a longer 

duration of stable methadone. Additionally, within-subject comparisons of participants who had 

used illicit heroin but had been transferred to a stable dose of methadone for only a few weeks also 

described a significant improvement in visuospatial impairments when stabilised on methadone. The 

poor performance of the H  group compared to the M group supports previous findings of deficits in 

learning and memory that may be a function of damage from neurotoxicity to the hippocampal 

formation in the temporal lobe (Day et al. 2003) which is structurally altered by drug addictions 

(Robbins & Everitt, 2002) and possibly reversed through administration of opioid replacement 

therapy such as methadone.  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1991277/#R18
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1991277/#R65
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However, since DMS outcome impairment did increase significantly as a function of delay in the 

heroin group, the results are also suggesting that the impairment might also lie in higher order 

cognitive executive processes rather than solely as impairment in the memory storage process.  

Additionally, tasks such as Paired Associates Learning (PAL) are associated with hippocampal 

function and may be highly sensitive to identify those with memory impairments. 

 

Even though this study did not investigate the cognitive impairments observed in response to 

different opioids using molecular pharmacological techniques one still needs to be aware that 

heroin, methadone, codeine and tramadol interact with different μ opioid receptor subtypes 

exhibiting different activation profiles. This results in subtle pharmacological differences in potency, 

effectiveness, tolerability and neurotoxicity of the drugs (Pasternak, 2012). These opioids also have 

variable agonist activity at both δ and κ opioid receptors (Pathan & Williams, 2012). Furthermore, 

the active metabolites of heroin and methadone display multimodal subunit-dependent antagonism 

of 5-HT3 receptors (Deeb et al. 2009) and methadone, but not heroin, displays N-methyl- D-

aspartate (NMDA) receptor antagonist properties (Davis & Inturrisi, 1999). The licit opioid users 

were prescribed either tramadol, codeine or both in much lower morphine equivalent doses. 

Tramadol, like methadone, is an opioid receptor agonist that, in addition to its MOP effects, also 

have activity at other non-opioid sites through the modulation of serotonin and norepinephrine 

reuptake (Pathan & Williams, 2012). These cellular and molecular variations might determine 

different neuropsychological impairments (Baldacchino et al. 2014). 

 

The different neuropsychological impairments observed in the heroin and methadone cohorts might 

be linked to other factors that could selectively influence visuospatial processing. Human studies 

found impaired vigilance and slower reaction times in patients receiving high doses of methadone 

(Hepner et al. 2002). This suggests that there might be a trade-off between the intended effects of 

opioid agonists and the promotion of cognitive abilities. Current results suggest that spatial working 

memory capacity is intact in opiate-dependent patients when treated with a moderate opioid dose. 

However, there may be individual patients (e.g., those treated with high opioid doses, using illicit 

heroin or using non-opioid drugs frequently) that show deficits in spatial working memory. The strict 

methodology of our study attempted to minimise such effects. 

 

Limitations 
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This study recruited treatment-seeking males and, thus, results may not generalise to non-treatment 

seeking, or female, populations (Ardila et al. 2011; McGivern et al. 2012). It is important to 

appreciate the potential impact social deprivation and ageing may have on the neuropsychological 

performance in opioid dependence (Hackman et al. 2010). Studies indicate that negative and 

stressful events during the early life period can persistently affect brain development and cognitive 

function such as learning and memory (Krugers et al. 2017; Hanson et al. 2015). Drug use and risk 

factor histories of participants were, by necessity, based upon self-report, and no blood, hair or 

saliva samples taken to validate accuracy of the information. Neuropsychological research has 

shown that consumption of alcohol, benzodiazepines and psychostimulants are potentially 

important confounding variables (Koob & Volkow, 2010). The present study used stringent criteria 

to exclude regular and dependent users of most psychoactive substances. The exception to this was 

lack of nicotine use in the healthy controls. We could not control for the effects of this 

psychostimulant and this may have influenced our results due to its known effects on visuospatial 

memory (Richards et al. 2003).This study also conducted urine drug screen analysis to confirm 

absence of recent amphetamine, opioids, benzodiazepine and cocaine use prior to every session.  

 

Opioid-dependent participants had a mean daily dose of 165 mg morphine equivalent. The P group, 

however, had a significant lower mean daily dose of 59.1 mg morphine equivalent. Opioids can 

cause measurable cognitive impairment even at low doses and equi-analgesic doses of different 

opioids may have nonlinear and non-equivalent adverse cognitive effects (Gagnon et al. 1999). 

Opioid drug dose is often the only drug treatment variable that is included in the analyses of 

correlates of performance in visuospatial memory. Grevert et al. (1977) reported a statistically 

significant correlation (0.37) between methadone dose and trials needed for correct visual 

recognition. However, when more rigorous statistical methods have been used (such as covariance 

or regression analyses), the relationships between methadone (Yin et al. 2012; Prosser et al. 2008; 

Soyka et al. 2008; Specka et al. 2000) or buprenorphine (Lintzeris et al. 2006; Loeber et al. 2008; 

Shmygalev et al. 2011) doses and cognitive performance have turned out to be very low and 

statistically non-significant. In this study we could not repeat cognitive testing in the healthy control 

and we could not recruit groups with similar socioeconomic status. It would be warranted for future 

studies as this will give a further confirmation of the cognitive improvement found in this study   

Finally we want to highlight that there is no literature to compare, if any, dose related cognitive 

effects between prescribed methadone, tramadol, codeine and/or combinations. 

 

Clinical Interpretation 
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This study identified opioid specific visuospatial memory impairments that need to be considered 

within the recovery-oriented treatment programmes for opioid dependent populations (Ekthiari et 

al. 2017). The visuospatial memory impairments will have implications for the successful outcomes 

of current non-pharmacological approaches, such as relapse prevention techniques and motivational 

enhancement therapies since all these interventions demand intact sophisticated encoding and 

retrieval strategies, visual processing and inhibition of irrelevant information. These approaches are 

reported to improve outcomes in individuals with opioid dependence when they are used to 

complement traditional therapeutic interventions (Ruiz-Sánchez de León et al. 2011; Rezapour et al. 

2015). The aims of these novel clinical interventions are to improve the general cognitive 

functioning, in particular executive and memory functioning, which the results of this study suggest 

may be compromised in opioid dependent treatment seeking populations.  
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Tables 
 
Table 1: Summary of previous research exploring visuospatial memory profiles in opioid-dependent individuals 
 

Visuospatial memory 
(sketchpad) 

Illicit heroin use 
and exhibiting 
opioid 
dependence 

Chronic methadone users in opioid dependent 
individuals 

Chronic buprenorphine 
users in opioid 
dependent individuals 

Abstinent but previously 
opioid dependent users 

Polydrug misuse but 
predominantly opioid 
dependent

 

Visual memory (visual 
cache) e.g. colour and 
shapes 

Stevens et al 
(2007)↓ 
d=0.39 (DMS) 
 

Prosser et al (2006)↓ d=0.97 (BVRT) 
Pirastu et al (2006)↓ d=8.26 (BVRT) 
Lin et al (2012) ↓ d=0.60 (WAIS-III) and d= 3.29 
(BVRT) 
McDonald et al (2013) ↓d=0.87 (RCFT) 
Wang et al (2014) ↓ d=0.31 (WAIS-III) and d=0.64  
(span of visual memory)  
Yates et al (2009) ↓ d=1.08 (WAIS-III)  

Pirastu et al (2006)↓ 
d=1.16 (BVRT) 
 

1
Prosser et al (2006) 

↑ d=0.57 (BVRT) 
1
McDonald et al (2012) ↑ 

d=0.32 (PAL) 
Yan et al (2013) ↓ d=0.92 
(SOPT) 
 
 
 

Ersche et al ( 2006 ; 2005)  
↓d=0.62 (PRM) ; ↓d=0.88 
(PAL) 
 
Ornstein et al (2000)  
↓ d=0.80 (PRM) ; 
↓ d=0.89 (PAL) 
 
Bach et al (2012) 
↔ d=0.27 (SWMT) 
 

Spatial memory (inner 
scribe) e.g. movement 
sequences 

 Darke et al (2000)↓ d=0.85 (Digit Symbol inWAIS III) 
McDonald et al (2013) ↓ d=0.75 (WAIS-III)  
 

  
 

Ornstein et al (2000) 
 ↓ d=0.87 (SRM) 
↓ d=0.53 (SWM) 

*= Opioid group compared with healthy controls unless otherwise stated; 
1
= Abstinent group compared with methadone and/or buprenorphine group and NOT healthy controls 

 
p<0.05; ↔= no difference in neuropsychological performance; ↓= neuropsychological impairment present; ↑= improvement in neuropsychological performance when compared to healthy 
controls, d= Cohen’s effect size defined as the difference between two means divided by a standard deviation for the data. Standardised effect sizes are reported regardless of the statistical 
significance (p-value) of the results reported in the original studies 
 
BVRT= Benton Visual Retention Test; RCFT= Rey Complex Figure Test; SOPT= Self-Ordered Pointing Test; WAIS-III= Weschler Adult Intelligence Scale- 3

rd
 Edition; WMSR= Weschler Memory 

Scale Revised; CANTAB:DMS= Delayed Matching to Sample;  PAL= Paired Associate Learning Task, PRM= Pattern Recognition Memory; SSP=Spatial Span
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Table 2: Study procedures 
 

Testing  
Sessions 

Illicit or licit  
opioid use 

Opioid 
withdrawal 

2-4 weeks 
on 
methadone 

6 months on 
methadone 

HEROIN  [H]         † † † — 

CHRONIC PAIN  [P]         †  — — — 

METHADONE [M]         † — — † 

HEALTHY CONTROL [HC]         † — — — 

        †= tested; —= not tested 
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Table 3: Comparative demographic, clinical and substance use data for experimental and 
control groups 
Demographic and clinical data HEROIN  (H) METHADONE 

(M) 
PAIN (P) HEALTHY 

CONTROLS (HC) 
Sig.¹ 
 

N 24 29 28 28 n/a 

Age (yrs)* 26.30 (3.45) 27.30 (2.34) 33.97 (4.35) 24.12 (3.56) H >P= p<0.001 
M>P and M>HC = p<0.01 

SIMD* 3.60(1.9) 3.41 (1.4) 4.60(2.0) 5.90 (2.5) H >HC and M>HC =p<0.001 
M >P =p<0.01 

Unemployed (%) 87.50 86.2 50 0 p<0.001 

Stable accommodation (%)² 87 93 100 92.80 M >P =p<0.005 

Education (yrs) * 10.80(1.5) 10.60 (2.3) 11.18 (1.22) 15.40 (2.1) H >HC, P>HC and M>HC = p<0.001 

NART  * 106.10 (12.2) 108.90 (7.6) 115.90 (4.9) 118.30 (5.1) P>H and HC>H= p<0.001 
HC>M = p<0.001; P>M= p<0.01 

Drug, nicotine and alcohol 
histories (self-report) 

HEROIN 
 

METHADONE 
 

PAIN 
 

HEALTHY 
CONTROLS 

Sig.¹ 
H/M vs P/C 

Percentage nicotine smokers 91.67 89.65 39.29 3.57 H>P,H>HC, M>P, M>HC =p<0.001 

Days of alcohol use (last 30 
days) * 

2.20(6.1)(n=10)   4.0(4.9) 
(n=15) 

5.10(8.3)  
(n=17) 

4.00(6.3) 
(n=17)  

ns 

Type of opioids and number of 
participants  

Heroin n=24  Methadone 
n=29 
 

Tramadol n= 
18 
Codeine 
n=13*2 

       n/a n/a 

Daily  intake expressed as 
morphine equivalence (mg)⁰ * 

184.50(82.1) 
(n=24) 

 147.40 (59.3) 
(n=29) 

59.10(46.8) 
(n=28) 

       n/a H>P and M>P =p<0.001 

Age first used heroin (yrs) * 19.40 (4.1) 
(n=24) 

17.90(2.6) 
(n=29) 

      n/a        n/a ns 

Age opioid dependent (yrs) * 20.90 (3.9) 
(n=24) 

19.90(2.8) 
(n=29) 

      n/a        n/a ns 

Age injecting opioids  (yrs) * 20.50 (4.0) 
(n=17) 

19.10(6.0) 
(n=29) 

      n/a        n/a ns 

Years of opioid use* 6.10 (2.9) 
(n=24) 

8.80(2.8) 
(n=29) 

5.00(2.3) 
(n=28) 

        n/a M>H and M>P= p<0.001 
 

Stable methadone use (yrs) *    n/a 1.30(0.5) 
(n=29) 

       n/a         n/a n/a 

Days of heroin use (last 30 days) 
* 

29.50(2.7)(n=24
) 

     n/a         n/a         n/a ns 

 
Sig ¹= significance at p<0.01 two tailed, ²Stable accommodation = own house + rented accommodation + living with parents 
(excluded hostel, student and homeless),  
 
*=mean total scores (+/- standard deviation), *

1= 
mean,

 
*

2
= Some participants prescribed Tramadol were also prescribed 

Codeine hence total number (31) higher than number recruited (n=28), 
 
 n/a =no data is relevant as the Pain and HC groups did not present with illicit heroin use and/or dependence history, yrs=years, 
SIMD= Scottish Index of Multiple Deprivation, NART= National Adult Reading Test, %= percentage, ns=not significant, N=Total 

number in group, yrs=years, n= number of individuals analysed, mg=milligrammes, ⁰Opioid equivalence: [Viewing et al (2005)].
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Table 4: Summary of baseline neuropsychological findings for memory and learning (not 
adjusted for covariates). 
 
 HEROIN 

N=24 
METHADONE 
N=29 

CHRONIC PAIN 
N=28 

HEALTHY CONTROL 
N=28 

  

Memory and 
Learning 

Mean (s.d) Mean (s.d) Mean (s.d) Mean (s.d) Sig. d 

Delayed Matching 
to Sample (DMS)  

      

Total Number of 
Correct Responses 
(all delays) 

22.04 (3.59) 25.76 (2.87) 25.39 (3.04) 27.43 (1.89) P>H*** 
C>H*** 

1.00 
1.87 

Mean Correct 
Latency (all delays) 

3630.61(922.64) 4372.35 (1579.98) 3310.22(1049.63) 3536.67(745.99) M>P** 0.79 

       

Paired Associate 
Learning (PAL) 
(log10) 

      

Total Errors 
(Adjusted) 

0.22 (0.45) 0.46 (0.64) 0.01 (0.06) 0.00 (0.00) NS  

Mean Errors to 
Success 

0.51 (0.26) 0.42 (0.19) 0.45 (0.27) 0.29 (0.19) C<H* 0.97 

Mean Trials to 
Success 

0.45 (0.09) 0.41 (0.06) 0.43 (0.09) 0.37 (0.05) C<H* 1.10 

Memory Score 1.23 (0.11) 1.30 (0.06) 1.27 (0.08) 1.33 (0.06) C>H*** 1.13 

Stages Completed 0.94 (0.03) 0.95 (0.02) 0.95 (0.02) 0.95 (0.00) NS  

Stages complete 
1

st
 trial 

0.79 (0.08) 0.84 (0.05) 0.82 (0.07) 0.87 (0.04) C>H*** 1.26 

       

Pattern 
Recognition 
Memory (PRM) 
(SQRT) 

      

Percentage Trials       

Correct 9.18 (0.69) 9.27 (0.51) 9.26 (0.49) 9.64 (0.46) C>H* 0.78 

Incorrect 3.37 (1.97) 3.46 (1.46) 3.43 (1.52) 1.97 (1.74) C<H* 
C<M* 

0.75 
0.92 

Correct Response 
Latency 

      

Correct 45.82 (5.36) 47.88 (5.98) 46.37 (6.74) 46.60 (5.56) NS  

Incorrect 49.80 (11.99) 54.48 (11.74) 50.22 (10.76) 50.15 (8.96) NS  

       

Spatial 
Recognition 
Memory (SRM) 

      

Number of Trials       

Correct 15.58 (2.21) 16.48 (1.94) 15.89 (1.77) 17.75 (1.51) C>H*** 1.15 

Incorrect 4.42 (2.21) 3.52 (1.94) 4.11 (1.77) 2.25 (1.51) C<M*** 1.15 

Mean Latency       

Correct 1979.04 (432.81) 2358.89 (810.68) 2035.71 (505.51) 2040.19 (469.3) NS  

Incorrect 2172 (878.02) 2520.36 (966.13) 2199.65 (737.71) 2456.38 (122.41) NS  

d= effect size, SQRT= square root transformation; log10 = logarithmic 10 transformation, Sig= significance,  
*= p<0.01, **= p< 0.005, ***=p<0.001, NS= no significant impairment in neuropsychological outcomes with p<0.01, 
H=HEROIN Group, P=CHRONIC PAIN Group, M= METHADONE Group, C=HEALTHY CONTROL Group. 
 
 
 

 
 
 



25 
 

Table 5: Summary of results from analysis of visuospatial test outcomes*.Unless specified comparison is with HEALTHY CONTROL and/or 
PAIN participants1 

 

 HEROIN vs METHADONE vs 
CHRONIC PAIN vs HEALTHY 
CONTROL  

Opioid DEPENDENCE (OD) 
vs Non- Opioid 
DEPENDENCE  (Non- OD)  

INJECTING (INJ) vs non- 
injecting 

(a) Visual Memory    

Delayed Matching to Sample (DMS)    

 Total Correct Responses (0,4,12 second delay 
stages) 

            ↓HEROIN                     ↔             ↔ 

Pattern Recognition Memory (PRM)    

Total Number of Correct Trials*                    ↔                     ↔             ↔ 

Spatial Recognition Memory (SRM)    

Total Number of Correct Trials*               ↓HEROIN                      ↔              ↔ 

Paired Associate Learning (PAL)    

Mean Total Number of  Errors*                    ↔                      ↔               ↔ 

Memory Score*               ↓HEROIN                      ↔               ↔ 

(b)Spatial Memory    

Spatial Span (SSP)    

Span Length*          ↓METHADONE                ↓OD > Non- OD               ↔ 

Total Errors*               ↓HEROIN                         ↔               ↔ 

Spatial Working Memory (SWM)    

Total  Search Errors*     ↓HEROIN,↓METHADONE            ↓OD > Non- OD               ↔ 

Between Search Errors*     ↓HEROIN,↓ METHADONE            ↓OD > Non- OD               ↔ 

Within Search Errors*                    ↔                     ↔                ↔ 

Double  Search Errors*                    ↔                     ↔                ↔ 
 

* 
= ANCOVA ‘between subject factor’ of GROUP, DEPENDENCE and INJECTING analysed separately; 

1
= significant effects with p<0.01, ↓=significant neuropsychological 

impairments present, ↔= no significant neuropsychological impairments present 
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Figures 
 
Legend 
 
Figure 1: DMS-Percentage of correct responses at different delay conditions (Means and Standard Deviation). Post hoc Bonferroni comparisons 
identified participants from the HEROIN group significantly making more errors than did: the HEALTHY CONTROL group in the 0 (**p<0.005), 4 
(***p<0.001) and 12 second (***p<0.001) delay stages, the CHRONIC PAIN  group for the 4 (*p<0.01) and 12 (**p<0.005) second delay stages 
and the METHADONE group for 0(**p< 0.005), 4 (**p<0.005) and 12 (***p<0.001) second delay stages.  
 
Sim= Simultaneous condition, SD= Standard Deviation. 
 
 

Figure 2:  

A- Total errors in Spatial Span (SSP) task (Means and Standard Deviation). Overall participants significantly made more errors [F (3,102) 

=16.8, p<0.001]. Post hoc Bonferroni comparisons identified the HEROIN group participants significantly making more errors compared 

to the METHADONE (p<0.001) and HEALTHY CONTROL (p<0.005) groups. The total errors for the CHRONIC PAIN participants lay 

between those of the HEROIN, METHADONE and HEALTHY CONTROL participants and did not differ significantly from these three 

groups (p=1.0).   

B- Span length in the SSP task (Means and Standard Deviation). Overall participants were significantly unable to recall successfully the 

longest sequence [F(3,101)=3.7,p<0.01] with Post hoc Bonferroni comparisons identifying the METHADONE group as the group that 

significantly was less able to recall successfully the longest sequence compared to the HEALTHY CONTROL group (p<0.01). 

 

 
 
 

 
 
 
 


