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Abstract— This paper presents a novel two-stage load profile 

super-resolution (LPSR) framework, ProfileSR-GAN, to 
upsample the low-resolution load profiles (LRLPs) to high-
resolution load profiles (HRLPs). The LPSR problem is 
formulated as a Maximum-a-Posteriori problem. In the first-stage, 
a GAN-based model is adopted to restore high-frequency 
components from the LRLPs. To reflect the load-weather 
dependency, aside from the LRLPs, the weather data is added as 
an input to the GAN-based model. In the second-stage, a polishing 
network guided by outline loss and switching loss is novelly 
introduced to remove the unrealistic power fluctuations in the 
generated HRLPs and improve the point-to-point matching 
accuracy. To evaluate the realisticness of the generated HRLPs, a 
new set of load shape evaluation metrics is developed. Simulation 
results show that: i) ProfileSR-GAN outperforms the state-of-the-
art methods in all shape-based metrics and can achieve 
comparable performance with those methods in point-to-point 
matching accuracy, and ii) after applying ProfileSR-GAN to 
convert LRLPs to HRLPs, the performance of a downstream task, 
non-intrusive load monitoring, can be significantly improved. This 
demonstrates that ProfileSR-GAN is an effective new mechanism 
for restoring high-frequency components in downsampled time-
series data sets and improves the performance of downstream 
tasks that require HR load profiles as inputs. 
 

Index Terms—Generative Adversarial Networks, load profile 
generation, machine learning, non-intrusive load monitoring, 
super-resolution, synthetic data. 

I.  INTRODUCTION 
t is a common practice for utilities to downsample smart 
meter measurements from high-resolution (HR) to low-

resolution (LR) (e.g., 15-, 30-, or 60-minute) [1]. This will 
significantly lower the costs for communicating, storing, and 
processing the data collected from millions of smart meters. 
Note that to be more specific, in this paper, HR refers to the 
sampling of data in 5-minute intervals or less.   

In the past, smart meter data were mainly used for energy-
related analysis, such as calculating monthly bills. A common 
practice is to record the total energy consumed in a sampling 
interval of 15 or 30 minutes, through which an average power 
consumption for the interval is computed. During this process, 
fast power variations within each sampling interval are lost, as 
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shown in Fig. 1 (a) and (c). This is called the smoothing effect 
of signal averaging. 

In recent years, two global activities, electrification in the 
transportation sector [2, 3] and decarbonization [4] in the 
energy sector, greatly expedited the integration of distributed 
energy resources (DERs), such as solar, wind, batteries, 
controllable loads, and electric vehicle chargers. However, 
uncertainties and variabilities inherent in renewable generation 
outputs and battery charging/discharging actions will lead to 
more frequent large and rapid power variations, causing circuit 
overloads and weakening voltage stability [5]. Consequently, 
for high-DER penetration distribution grids, where fast power 
variations are visible, it is increasingly important to use HR load 
profiles for conducting planning and operation studies such as 
quasi-static power flow analysis or non-intrusive load 
monitoring (NILM). 

Recovering the HR data from the LR data is a data up-
sampling process. In the past, interpolation is widely used to 
up-sample LR load profiles or patch the missing data. However, 
the main drawback of interpolation is that it cannot restore intra-
interval power fluctuations.  

In image processing, super-resolution (SR) [6] refers to the 
technique of generating HR images from LR images, as 
illustrated in Fig. 1 (c) and (d). A wide variety of deep-learning 
methods have been developed for image SR, for example, 
ultrasound imaging [7], line-fitting [8], and iris recognition [9]. 
Similarly, in audio signal processing, audio super-resolution 
(ASR) is used to recover the HR audio signals from the LR 
signals using deep-learning models [10]. 

SR

 
 (a) A daily LR profile  (b) An LR image         (c) A daily HR profile (d) An HR image    
Fig. 1. An illustration of super-resolution problems. Generating c from a is an 
LPSR problem. Generating d from b is an image SR problem. Load profile data 
source: Pecan Street [11]. 

Motivated by image and audio SR, we define load profile 
super-resolution (LPSR) as a technique for generating realistic 
HR load profiles from LR load profiles. In power system 
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applications, the development of LPSR is still in its infancy 
stage. In [12], Liu et al. developed super-resolution perception 
(SRP) for processing smart meter data. SRP combines 
Convolution Neural Network (CNN) with supervised learning 
based on Mean Square Error (MSE) loss. However, the MSE-
based supervised learning algorithms can introduce unrealistic 
details and cause over-smoothing in the reconstructed HR data. 
This drawback has also been widely observed in image 
recovery studies [13].  

Generative Adversarial Network (GAN) [14] based methods 
are widely used in solving image SR problems. Because the 
adversarial training between Generator and Discriminator can 
effectively capture the inherent probability distribution of the 
HR data, GAN-based methods can usually obtain more realistic 
SR results than the CNN or MSE based approaches [15]. 

In the power system domain, GAN has been used for 
generating load profiles [16, 17], wind farm outputs [18], 
simulating load forecasting uncertainty [19], synthesizing 
appliance power signatures [20], and appliance-level energy 
disaggregation [21]. However, to the best of our knowledge, 
using GAN-based methods for LPSR is still an uncharted area.  

Thus, in this paper, we present a two-stage load profile super-
resolution (LPSR) framework, ProfileSR-GAN. In the first 
stage, a GAN-based model is adopted to restore high-frequency 
components from the low-resolution load profiles (LRLPs). To 
reflect the load-weather dependency, aside from the LRLPs, the 
weather data is added as an input to the GAN-based model. The 
LPSR problem is formulated as a Maximum-a-Posteriori 
problem. To make the generated HRLPs more realistic, we use 
the method introduced in [13, 22] to construct the Generator 
loss function so that adversarial and feature-matching losses 
can be used to effectively recover the high-frequency 
components missed in the downsampling process. In the second 
stage, a polishing network is designed to connect to the GAN 
model to remove unrealistic power fluctuations from the 
generated HRLPs. A new set of load shape evaluation metrics 
is developed for evaluating the realisticness of the generated 
profiles and for comparing the performance with other state-of-
the-art algorithms. 

The main contributions of this paper are summarized as 
follows. Firstly, we formulated the LPSR problem as a 
Maximum-a-Posteriori problem that can be solved using GAN-
based approaches. We added weather data as an input to the 
GAN model to reflect the load-weather dependency. Secondly, 
we proposed connecting a polishing network to the GAN model 
to remove unrealistic power fluctuations in the GAN generated 
HR load profiles. This significantly improves the ProfileSR-
GAN performance on the point-to-point matching accuracy. 
Thirdly, we designed the performance evaluation metrics for 
evaluating the realisticness of the generated HR profiles. Our 
simulation results show ProfileSR-GAN outperforms the state-
of-the-art algorithms. As an effective mechanism for restoring 
high-frequency components, ProfileSR-GAN can improve the 
performance of downstream tasks (e.g., NILM) that require HR 
load profiles as inputs. 

The rest of the paper is organized as follows. Section II 
formulates the LPSR problem and introduces the ProfileSR-

GAN framework. Experimental results are presented in Section 
III. Section IV concludes the paper.  

II.  METHODOLOGY 
Let PHR represent the HR measurements with N data points. 

PLR is the set of LR measurements down-sampled from PHR by 
averaging α continuous samples, where α is called the scale-up 
factor. Thus, PLR has M data points and M = N/α. The down-
sampling process can be expressed as 

( )

LR HR

1 1

1 m

m n m
n m

P P
α

α

η
α = − +

= +∑  

,m M n N∀ ∈ ∀ ∈                                 (1) 
where ƞ represents noises caused by disturbances in the data 
acquisition process; n and m are the index of the HR and LR 
measurements, respectively.  

As shown in Fig. 2, when a 1-minute load profile is down-
sampled to 5-, 15-, and 30-minute load profiles, the high-
frequency components will be filtered out because of the 
smoothing effect in signal averaging. The smoothing effect 
becomes more obvious when 𝛼𝛼 increases. Compared with the 
1-minute load profile, the 15- and 30-minute load profiles have 
lower load peaks and contain slower power variations. In 
addition, individual device on/off and cycling behaviors are no 
longer distinguishable. In the next few sections, we will 
introduce the ProfileSR-GAN for restoring the intra-interval 
power variations from LR load profiles. 
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Fig. 2. Daily load profiles with different granularity. Assuming that the HR load 
profile has a sampling period of 1-minute. Then, 𝛼𝛼 equals 5, 15, and 30 for the 
5-, 15-, and 30-minute load profiles. Data source: Pecan Street[11]. 

A.  Load Profile Super Resolution Problem Formulation 
Super-resolution algorithms originate from the image 

processing domain for processing 2-dimensional images. The 
1-dimensional LPSR problem can be formulated as a Maximum 
a Posteriori (MAP) estimation problem as introduced in [23]. 

From the Bayesian rule, we have 

( ) ( )
( )

LR HR HR
HR LR

LR

| ( )
| =

p P P p P
p P P

p P
                    (2) 

where p(PHR| PLR) is the conditional probability of PHR given 
PLR, p(PLR| PHR) is the conditional probability of PLR given PHR, 
and p(PHR) and p(PLR) are the prior probability of the HR and 
LR load profiles, respectively. 

The objective function of an LPSR problem is to maximize 
the probability of the occurrence of PHR for a given PLR. Using 
the MAP estimation method presented in [23], the estimated 
HR profile, 𝑃𝑃�HR, can be obtained by 

( ) ( )( )HR

HR LR HR HR
ˆ

ˆ ˆ ˆarg max log | log
P

P p P P p P= +         (3) 

where 𝑃𝑃�HR is the estimated HR load profile. 
In (3), the first term is commonly modeled using the Mean 

Squared Error between the actual LR profile, 𝑃𝑃𝐿𝐿𝐿𝐿 and the LR 
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profile downsampled from the estimated HR one, 𝑃𝑃�𝐿𝐿𝐿𝐿 [6, 24, 
25]. The second term represents the prior knowledge of PHR, 
which normally is modeled with a regulation factor to alleviate 
the ill-posedness of the SR problem [25]. Note that we refer to 
the prior knowledge as the information a learner already has 
before learning a new problem [26]. 

The traditional approaches only rely on minimizing the MSE 
loss[10, 12] to find a 𝑃𝑃�HR. However, in practice, there is only 
one LR observation for a HR profile. As a result, solely relying 
on �P�LR-PLR�

2
2  can make the LPSR problem ill-posed, i.e., (3) 

may not have a unique solution [6]. For example, it is possible 
that the same LR profile can be obtained by down-sampling two 
different HR profiles.  

Therefore, it is essential to constrain the solution space by 
introducing the prior knowledge of PHR into the SR problem 
formulation, as formulated by the second term in (3). In this 
paper, two types of prior knowledge are used. First, weather 
data and LR profiles are used as inputs to account for the known 
dependency of electricity consumption on the weather. Second, 
the two terms used in the generator loss function (refer to 
Section II.C): adversarial loss and feature-matching loss, 
represent prior knowledge of the shape characters extracted by 
the discriminator network from the actual waveforms. 
B.  Generative Adversarial Network 

A GAN model consists of two components: a generator 
network (G) and a discriminator network (D), as shown in Fig. 
3. A latent vector z, usually a Gaussian noise, is used as the 
input to generate the target output G(z). Then, the generator 
output, G(z), which is the generated data, and the real data, x, 
are sent to D. The goal of D is to distinguish which data sets are 
real and which are fake.  

The training of a GAN model is an alternative and adversarial 
process: G tries to generate samples G(z) that can fool D; D 
learns to identify G(z) from x by assigning larger probabilities 
to x and smaller ones to G(z). As introduced in [14], this process 
is formulated as a minimax game  

      ( )
( )~minmax , [log ( )]=
xx xpG D

V D G D   

  
( )~ [log(1 ( ( )))]+ −
zz zp D G          (4) 

where V(D,G) is the reward function, p(x) and p(z) are the 
probability distributions of training data and latent vector, is 
the expectation operator.  

Real data
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Fig. 3.   The original generative adversarial network (GAN) model. 

The GAN model learns the distribution-to-distribution 
mapping from the input to the output through the adversarial 
training of G and D. In the LPSR problem formulation, we use 
the LRLPs obtained from smart meter measurements as inputs 
to learn the mapping from the implicit LRLP distritbution to the 
realistic HRLP distribution. By doing so, when a new LRLP is 
provided, the trained G can generate a corresponding HRLP 
according to the learned LRLP-to-HRLP distribution mapping. 
In addition, we introduce additional loss terms and a polishing 
network to achieve a relatively low MSE, as shown in Section 
II-C. 

C.  ProfileSR-GAN 
In this section, we introduce architecture design, generator 

loss function selection, and polishing network loss function 
selection of the proposed ProfileSR-GAN framework. 

    1)  Network Architecture 
As shown in Fig. 4, ProfileSR-GAN is a two-stage process. 

In the first stage, LR profiles and their corresponding weather 
data are used as inputs of the GAN-based model to generate HR 
profiles through adversarial training. In the second stage, a 
polishing network will remove unrealistic power fluctuations 
from the GAN generated HR profiles. 
    The generator network is a deep CNN. We firstly use 
convolution layers to extract high-level features from the input 
data. Then, we implement transpose convolution layers to 
recover the HR profiles. Inspired by [22],  we use ReLU as the 
activation function. Residual blocks are inserted between two 
consecutive convolutional layers [27] to alleviate the gradient 
diminishing issue. We also adopt batch normalization following 
each convolutional layer [28] to enhance the training process. 
    The architecture summarized by Radford et al. [29] is used 
for constructing the discriminator network. The activation 
function is LeakyReLU. The discriminator network is trained 
to solve the maximization problem defined by (4). It contains 
four convolutional layers with an increasing number of kernels 
from 4 to 32. This allows us to compress the input profiles to 
high-level feature maps. Finally, the resulting feature maps will 
go through a fully connected (FC) layer and a sigmoid function 
to obtain the probability for real/fake classification. The 
polishing network is also a deep CNN bearing similar network 
structures as those of the generator, except that the two up-
sampling transpose convolution layers are removed, and the 
number of kernels is reduced.  

    2)  Loss function design for the generator network 
Let θG be the parameter of the generator network. The 

generator loss, LG, is minimized to find an optimal θG by  
( )( )LR HRmin ,θθ G

G
GL G P P                             (5) 

1 2G cont advs featL L L Lλ λ= + +                      (6) 

where Lcont is the content loss; Ladvs is the adversarial loss; Lfeat 
is the feature-matching loss; λ1 and λ2 are the weight 
coefficients.  
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Fig. 4. The 2-stage ProfileSR-GAN architecture with corresponding kernel size (k), number of feature maps (n), and stride (s) indicated for each convolution layer. 

To compute the content loss, Lcont, MSE is used to calculate 
the point-to-point distance between the generated and the   
ground truth HR profiles as  

2LR HR
2

1 ( )θ= −
GcontL G P P

N
                     (7) 

By minimizing the MSE, the generator is incentivized to find 
the maximum likelihood estimation of ground truth. However, 
relying solely on MSE-based Lcont leads to over-conservative 
results in LPSR. As shown in Fig. 5, the generated HR profile 
is overly smooth, so it cannot restore high-frequency, large 
power variations. To resolve this issue, two loss terms, Ladvs and 
Lfeat, are used in (6). 
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Fig. 5. The LR profile, the HR profile generated based solely on Lcont, and the 
real HR profile. All profiles are daily. Data source: Pecan Street [11]. 

The discriminator in GAN is trained to distinguish the fake 
from the real by minimizing the discriminator loss function, LD, 
calculated as  

HR LR[log ( ) log(1 ( ( )))]=
D D GDL D P D G Pθ θ θ− + −        (8)     

where θD is the parameters of the discriminator networks.  
Let the second term related to θG in (8) be the adversarial loss 

Ladvs. We have 
LRlog(1 ( ( )))θ θ= −

D GadvsL D G P                    (9) 

By minimizing Ladvs, the generator network favors solutions 
that cannot be distinguished as “fake” by the discriminator 
network to make the generated HR more realistic. Inspired by 
[14], we rewrite (9) as  

LRlog( ( ( )))θ θ= −
D GadvsL D G P                    (10) 

to provide sufficient gradients and add robustness to the training 

process. 
The feature-matching loss, Lfeat, is defined as the distance 

between high-level feature maps extracted by the hidden layers 
of the discriminator network [30]. It is calculated as 

( ) ( ) 2LR HR

1

( )θϕ ϕ
=

= −∑ G

J

feat j j
j

L G P P             (11) 

where φj(·) represents the output of the jth intermediate 
convolution layer of the discriminator network, given real/fake 
HR profiles as inputs. J is the number of intermediate layers 
involved in the loss function. As shown in Fig. 6, the extracted 
feature maps are quite different between real and fake profiles. 
Because high-frequency large power variations can be 
embedded in those hidden features, using Lfeat can train the 
generator to generate more realistic HR profiles.  
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Fig. 6. Hidden feature maps extracted by the convolutional layers of the 
discriminator network. Load data source: Pecan Street [11]. 

Note that the output of the discriminator network is a binary 
classifier (yes/no) and cannot be directly used to calculate how 
close the generated load profile resembles the actual. However, 
one can compare feature values in each hidden convolutional 
layer when fake and actual profiles are examined. By 
minimizing Lfeat, the generator will favor solutions that share 
similar features with the actual HR profiles to make the results 
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more realistic.  

    3)  Loss function design for the polishing network 
Since the GAN model recovers the high-frequency 

components by reducing the adversarial loss and feature-
matching loss, its performance in minimizing MSE loss is 
compromised. This is because point-to-point matching 
accuracy is sacrificed in exchange for the flexibility of 
generating more realistic details.  

To resolve this issue, the loss function of the polishing 
network, Lpol, is designed to have two new loss terms: the 
outline loss, Loutl, and the switching loss, Lswit, so we have 

outl switpol LL L= +                             (12) 
2HR HR

max max 2

1 ˆ( ) ( )outlL P P
N

ξ ξ= −               

2HR HR
max max 2

1 ˆ( ) ( )P P
N

ξ ξ+ − − −            (13) 

2
HR HR

max max
2

1 ˆ
swit PL P

N
ξ ξ∆ − ∆=               (14) 

HR HR HR HR HR HRˆ ˆ ˆ( 1) ( ),     ( 1) ( )P P n P n P P n P n∆ = + − ∆ = + −  
where ξmax is the max pooling operator [31] moving across the 
entire signal with a kernel size of kmax at stride smax , ∆ is the 
first-order difference operator. Note that Loutl focuses on 
comparing the local peaks and valleys of the generated profile 
with the ground truth profile. This is also a proven effective 
solution used in solving image segmentation problems [32]. 
Lswit focuses on comparing the change of load between two 
consecutive sampling intervals so that the load changing rates 
are similar to the ground truth profile.  

Figure 7 shows an example of a daily load profile before and 
after polishing. Note that, the on/off of appliances normally lead 
to flat upper and lower boundaries instead of arbitrarily 
fluctuations. This is because an appliance usually runs at a 
relatively fixed power level. Together, Loutl and Lswit help flatten 
the unrealistic fluctuations to improve the point-to-point 
matching accuracy. 
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  (a) Before polishing           (b) After polishing              (c) Ground truth 

Fig. 7. An illustration of comparing the envelopes of the generated daily HR 
profiles (before and after polishing) with that of the actual daily load profile. 

D.  Evaluation Metrics 
In the image SR problem, evaluations of the restored HR 

images are usually based on a human-judgment-based 
measurement, called the Mean Opinion Score testing. However, 
in LPSR, substantial domain knowledge and expertise are 
required to visually distinguish whether a generated load profile 
is realistic. Therefore, we need a set of metrics for evaluating 
the quality of the generated HR load profiles. 

MSE, as a point-wise comparison between two waveforms, 
is insufficient for comparing the shape of waveforms. For 
example, a minor time shift in waveforms can lead to a large 

MSE, even though the two waveforms have the same shape. 
Therefore, in this paper, we introduce three shape-wise load 
profile evaluation metrics: Peak Load Error (PLE), Frequency 
Component Error (FCE), and Critical Point Error (CPE). The 
metrics are calculated as 

LR HRmax( ( )) max( )
G

P G PLE Pθ −=                   (15) 

R

1

L HR( )) ( )1 (
G

G PF PCE
N θ −=              (16) 

LR HR( ( )1 ( ))C
N

G P PPE −= ∑ ∑           (17)  

where  is the Discrete Fourier Transform operator and  is 
the Ramer Douglas Peucker operator [33]. 

PLE measures the peak load difference between the ground-
truth HR profiles and the restored HR profiles by SR 
algorithms. PLE has a clear physical meaning and is important 
because accurately restoring the intra-interval peak load is 
critical for the distribution system operation and planning.  

FCE measures the frequency-domain similarity between two 
profiles. Since the key challenge of LPSR is to restore the intra-
interval, high-frequency components, FCE can compare the 
frequency-domain characteristics to evaluate the effectiveness 
of the SR algorithms.   

Ramer Douglas Peucker algorithm simplifies a waveform in 
the time domain by eliminating non-critical points and keeping 
only shape-defining points [33]. Consequently, CPE measures 
the difference between the number of critical points of two 
waveforms to compare their similarity.  

III.  SIMULATION RESULTS 
To train and test the proposed model, we use the 1-minute 

smart meter data set collected from 148 residential households 
in Austin, TX in 2015 by the PECAN Street association [11]. 
The hourly weather-related data set, including dry ball 
temperature, visibility, humidity, wind speed, sunrise and 
sunset time, are downloaded from [34] and then up-sampled to 
minute-level resolution by linear interpolation to pair with the 
LR load profiles.  

The annual data are split into daily data. After excluding the 
days with missing data or abnormal data, we finally have 
53,000 sets of daily load profiles. Those profiles are divided 
into two groups: 70% for training, 15% for validation, and 15% 
for testing. The 1-min data is down-sampled to 5-min and 30-
min to obtain PHR and PLR, so the scale factor α is 6. The 
Gaussian noise, ƞ, has a zero mean with a variance of 0.01. 

A.  Training Setup 
Adam, an algorithm for first-order gradient-based 

optimization of stochastic objective functions introduced in 
[35], is used with momentum terms β1 = 0.99 and β2 = 0.999. 
The slope of the LeakyReLU is 0.2. Hyperparameters are tuned 
on the validation dataset listed in Table I. Deep neural network 
models are built in the PyTorch environment and trained on a 
single GPU of NVIDIA GeForce RTX 3080. The training time 
is approximately 10 hours. 

To demonstrate the impact of introducing GAN-based 
components (Ladvs and Lfeat), we design a CNN model that has 
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the same network structure as that of the ProfileSR-GAN 
generator (see the upper left part in Fig. 4) as a controlled 
experiment. The CNN model is purely trained by the MSE loss 
defined in equation (7). The linear interpolation (LERP) method 
with a scale-up factor of α = 6 is used as the benchmark case. 
Other SR approaches, including SRP [12], ASR [10] are also 
included in performance evaluation. 

(c) Scores (b3) Feature loss

ProfileSR-GAN
CNN

Real HR

ProfileSR-GAN
CNN

(a) Discriminator loss

(b) Generator loss

(b1) Content loss

(b2) Adversarial loss

ProfileSR-GAN
CNN

(d) Polisher loss

(e) Outline loss

(f) Switching loss

0.4

0.6

0.8

1.0
10-1

∑ ∑ 

epoch epoch epoch

epoch epoch epoch

epoch epoch epoch
 

Stage1                                                   Stage2 
Fig. 8. Training curves. (a) discriminator loss of ProfileSR-GAN, (b) generator 
loss of ProfileSR-GAN and CNN, (b1) content loss of ProfileSR-GAN and 
CNN, (b2) adversarial loss of ProfileSR-GAN generator, (b3) feature loss of 
ProfileSR-GAN generator, (c) scores of real, fake HR profiles given by 
discriminator. (d) polishing loss, (e) outline loss, (f) switching loss. 

TABLE I 
HYPERPARAMETER SETUP 

Parameter Value 
Learning rate 1e-4 

Ladvs weight - λ1  0.05 
Lfeat weight - λ2 0.5 

Batch size 32 
Max pooling kernel size - kmax 3 

Max pooling stride - smax 1 

Training epochs 300(GAN) + 
300(polishing) 

Figure 8 shows the loss plots in the two stages and scores 
given by the discriminator for the real and generated HR 
profiles during the GAN training process. The following 
observations are made for each training stage. 
    1)  Initialization (0 - 10 epoch) 

As shown in Fig. 8(a), initially, there is a sharp decrease of 
the discriminator loss. This means that the discriminator is 
learning the feature differences between the real and generated 
HR profiles quickly. Consequently, the discriminator starts to 

assign a higher score to the real profile and a lower score to the 
fake one, as shown in Fig. 8(c). Meanwhile, as shown in Fig. 
8(b), although both CNN and ProfileSR-GAN have decreased 
generator losses, the generator loss of ProfileSR-GAN starts to 
bounce back quickly. This is because the decrease of content 
loss (see Fig. 8(b1)) is offset by the increase of the adversarial 
loss (see Fig. 8(b2)) and the feature-matching loss (see Fig. 
8(b3)). 

    2)  Evolving (10-50 epoch):  
In this stage, for ProfileSR-GAN, the adversarial training 

allows the generator and discriminator to improve each other. 
The discriminator loss keeps decreasing, showing that the 
discriminator becomes more effective in identifying the real HR 
profiles from the fake ones. Note that despite the increasing 
generator loss, the performance of the generator continues to 
improve. This shows that guided by the discriminator, the 
generator is learning to achieve an optimal trade-off between 
Achieving lower MSE error and generating more realistic 
profiles. In other words, the content loss is sacrificed to lower 
the adversarial loss and feature losses. In contrast, the CNN 
model merely focuses on minimizing the MSE content loss.  
    3)  Balanced (after 100 epoch):  

After about 100 epochs, the generator and the discriminator 
of ProfileSR-GAN reach a balance in performance. There is no 
further decrease in discriminator loss, showing that the 
generator has the ability to generate realistic HR profiles to fool 
the discriminator. Meanwhile, the scores assigned to profiles by 
the discriminator are also stabilized: the score of a fake HR 
profile generated by the CNN model is around 0.2, much lower 
than those received by ProfileSR-GAN around 0.38). Note that 
the score of a real profile is approximately 0.62.  

For the polishing network, both the outline loss and the 
switching loss drop sharply during the first 20 epochs and then 
stabilize at around 300th epoch.  

B.   LPSR results and Performance Evaluation 
The LPSR results and metric values are summarized in Table 

II and Figs. 9 to 11. From the results, we have the following 
observations. 
  Visual comparison of the generated daily load profiles. 

As shown in Figs. 9 and 10, the generated intra 30-min 
high-frequency components from ProfileSR-GAN are 
very similar to the ground truth profiles in terms of the 
magnitude of generated peaks, appliance cycling 
behaviors, and the envelopes of the load profiles. LERP 
and ASR fail to generate the intra 30-min power 
variations. In the daily profiles generated by SRP and 
CNN, the intra 30-min power variations are unrealistic 
with peak loads lower than that of the actual. This shows 
that ProfileSR-GAN can learn to exclude unrealistic 
components that are easy-to-be-identified-as-a-fake 
through the use of a discriminator. 
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Fig. 9. LPSR results for generating daily load profiles (upsampling from 30-min to 5-min resolution). Lower resolution (LR), linear interpolation (LERP), 
convolution neural network (CNN), ProfileSR-GAN (unpolished), ProfileSR-GAN, and ground truth (GT). Data source: Pecan Street [11]. 

  Comparison of MSE: As shown in Table II, MSE-based 
methods outperform the GAN-based model in achieving 
the lowest MSE. This is reasonable since MSE is the 
only optimization objective those models need to take 
care of. However, only emphasizing point-wise MSE on 
averaging the point-to-point distance leads to smooth 
outputs. As shown in Figs. 9 and 10, such processes will 
filter out high-frequency components because 
recovering high-frequency detail is risking high point-to-
point mismatch. A similar soothing effect has also been 
observed in the image SR problem and is reported in 
[13]. The results in Table II also shows that after adding 
a polishing network, there is an 18% improvement in 
MSE, showing the effectiveness of adding a  polishing 
network to the ProfileSR-GAN architecture for 
improving point-wise accuracy 

  Comparison of PLE: From Table II and Figs. 9 and 10, 
we can see that the magnitude of the peak in the 
ProfileSR-GAN generated profile is very similar to that 
in the ground truth curves. On the contrary, the peak load 
restored by LERP and MSE-based methods has a 
relatively large gap with the ground truth. Successfully 
restoring the load peaks is critical for distribution circuit 
analysis because load peaks often represent critical 
operating conditions.  

  Comparison of FCE: From the spectrum plots in Fig. 10, 
we can see that the ProfileSR-GAN model can recover 
more high-frequency components than LERP and MSE-
based methods.  

  Comparison of CPE: As shown in Table II and Fig. 10, 
ProfileSR-GAN achieved the best performance in 
critical points matching. We can see that the simplified 
profile of ProfileSR-GAN is still very similar to the 

ground truth, indicating that they have similar profile 
complexity. The profiles generated by MSE-based 
methods and LERP, by contrast, have much fewer 
critical points. 

  Comparison of the distribution of the shape-wise 
evaluation metrics on test set: As shown in Fig. 11, 
ProfileSR-GAN consistently outperforms LERP and 
other MSE-based models in terms of PLE, FCE, CPE 
while maintaining an acceptable MSE level.  

 
Fig. 10. Comparison of frequency components and critical point errors. (From 
top to bottom: HR profiles, the frequency components amplitude acquired by 
DFT, the simplified profile by RDP approximation. The critical points are 
shown with black markers. All load profiles are daily. From left to right: SR 
results of MSE-based CNN model, ProfileSR-GAN model, and real data). Data 
source: Pecan Street [11]. 
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TABLE II 
METRIC EVALUATION RESULTS 

SR method LERP ASR SRP CNN 
ProfileSR 

GAN-
(unpolished) 

ProfileSR 
GAN 

(polished) 

MSE 
mean 0.55 0.44 0.42 0.41 0.61 0.51 
Gain / 20% 24% 25% -11% 7% 

PLE 
mean 1.38 0.99 0.92 0.91 0.86 0.73 
Gain / 28% 33% 34% 38% 47% 

FCE 
mean 7.22 5.83 5.36 5.38 4.81 4.65 
Gain / 19% 26% 25% 33% 36% 

CPE 
mean 0.65 0.41 0.29 0.31 0.26 0.25 
Gain / 37% 55% 52% 60% 62% 

* "Gain" represents the improvement w.r.t LERP baseline 
 

 

Fig. 11. Violin plots of the performance metrics. Medians are shown as the 
white markers. 

C.  Distribution Visualization 
The main advantage of using GAN-based methods is to 

generate HR profiles that have a similar probability distribution 
as the ground truth, which can hardly be achieved by MSE-
based methods. To demonstrate this advantage, we select the 
generated daily HR profiles of a single house from April 1st to 
September 1st in 2015 to visualize the distribution, as shown in 
Fig. 12. We firstly use discrete Fourier transformation to extract 
the frequency-domain components of the generated HR profiles 
using different SR methods. Then, we use t-SNE [36] to reduce 
the dimension to 2-D for better visualization. We can see that 
the distribution of ProfileSR-GAN is the closest to the ground 
truth distribution. Meanwhile, Wasserstein distance is 
employed to quantify the distribution distances between the SR 
results and the ground truth. As shown in Table III, ProfileSR-
GAN also achieves the best performance.  

TABLE III 
WASSERSTEIN DISTANCE OF DISTRIBUTIONS 

              SR models 
Metrics LERP ASR SRP CNN ProfileSR

-GAN 
Wasserstein 

distance 
X-axis 4.560 4.518 3.391 3.506 0.679 
Y-axis 1.170 1.136 1.089 1.066 0.256 

 
Fig. 12. 2D t-SNE visualization of the frequency components extracted from 
generated HR profiles using different SR methods. The data source for the 
actual load profile: Pecan Street [11].   

D.  Performance Comparison under Different Scale-up Factor  
To evaluate the impact of the scale-up factor α, we compare 

the case of α=6 (i.e. from LR-30min to HR-5min) with two 
other cases: α=12 (i.e. from LR-60min to HR-5min) and α=3 
(i.e. from LR-15min to HR-5min). We keep the same 
ProfileSR-GAN network structure shown in Fig. 4 and alter 
only the stride of the transpose convolution layer of the 
generator network to cope with different α values.  

 
Fig. 13. Performance evaluation of cases with different scale-up factors. 

As shown in Fig. 12, when α decreases, all SR methods 
perform better (i.e., four error metrics tend to reduce). This is 
expected because a smaller α represents a less ill-posed LPSR 
problem, making the problem easier to solve. In most cases, the 
MSE-based methods still outperform the GAN-based methods 
in MSE. We also observe that the MSE of ProfileSR-GAN 
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significantly reduces when α decreases, showing that the LPSR 
problem becomes easier to solve when there are fewer points to 
recover in an interval. 

Moreover, compared with LERP and MES-based learning, 
ProfileSR-GAN is more effective for larger α (e.g., α = 12 and 
α = 6). Because for a large α, the LPSR problem is highly ill-
posed: restoring the ground truth HR profile from the observed 
individual LR profile is challenging. However, the ProfileSR-
GAN generator can approximate the distribution of the realistic 
HR profile dataset under the guidance of the feature-matching 
loss and adversarial loss.  Therefore, it can generate HR samples 
that have a better chance to be realistic.  

When α is small (e.g., α=3), the distribution approximation 
ability of the GAN-based method becomes less essential 
because each individual LP profile already contains enough 
information to recover the new missing points in an interval, 
making the MSE-based model better choices. 

E.  Impact of Weather Data 
As mentioned in Section III.A, weather data serves as part of 

the prior knowledge in this paper to enhance the GAN-based 
model performance. To assess the impact of the weather data 
on the performance of ProfileSR-GAN, we conduct a controlled 
experiment: we train two identical ProfileSR-GAN models, one 
with and the other without weather data. The performance 
metrics of the two models are summarized in Table IV. We can 
see that using the weather data as input achieves better 
performance in all four metrics.  

TABLE IV 
PERFORMANCE COMPARISON FOR QUANTIFYING THE IMPACT OF USING 

WEATHER DATA AS INPUT. 

Metrics Weather 
Data 

α=12 
(60 to 5min) 

α=6 
(30 to 5min) 

α=3 
(15 to 5min) 

MSE with 0.782 0.512 0.201 
without 0.793 0.524 0.213 

PLE with 1.081 0.731 0.475 
without 1.145 0.765 0.491 

FCE with 5.964 4.652 3.125 
without 5.982 4.725 3.163 

CPE with 0.243 0.247 0.227 
without 0.251 0.252 0.259 

F.  SR Results for Non-intrusive Load Monitoring 
NILM methods are used to disaggregate electricity 

consumption from the smart meter level to the appliance level 
by capturing the unique signatures of each appliance. Because 
LPSR aims at restoring the high-frequency components of a 
down-sampled load profile, NILM is a natural downstream task 
and can be used to evaluate the effectiveness of LPSR. If the 
high-frequency load signatures can be recovered by LPSR, the 
NILM algorithm should be able to achieve better performance. 

As shown in Fig. 14, the experiment includes four steps: 
1) LPSR implementation. Five different LPSR methods are 

used, including the proposed ProfileSR-GAN and four other 
benchmarking methods, to upsample the 30-min aggregated LR 
load profiles back to 5-min HR load profiles.  

2) NILM model training. The NILM models are trained using 
the real 5-min aggregated profiles. The outputs of the NILM are 
5-min appliance level profiles. The trained NILM models can 
recognize appliances once provided with an aggregated load 

profile. In this paper, we will use three different NILM models: 
Denoising Autoencoder (DAE) [37], sequence to point model 
(Seq2Point) [38], and sequence to sequence model (Seq2Seq) 
[38]. These models are provided by the Non-intrusive Load 
Monitoring Toolkit (NILMTK) [39], which is an open-source 
NILM algorithm platform.  

3) NILM model testing. After the NILM models are trained, 
they are fed with the HR profiles generated in step 1 to evaluate 
how well the appliance profiles can be recognized.  

4) NILM result evaluation. The recognized appliance profiles 
in step 3 are compared with the ground truth to evaluate the 
NILM performance when using up-sampled load profiles by 
ProfileSR-GAN.  

(aggregated) (appliance )

NILM 
training

Fake HR profile
(aggregated)

Appliance 
(prediction)

LR profile
(aggregated)

NILM
evaluation

LPSR
models

(LERP/ASR/
SRP/CNN/

ProfileSR-GAN)

NILM
models

(DAE/Seq2Seq
/Seq2Point)

weather+ Real HR profile

 
Fig. 14. Flowchart of the NILM experiments. Data source: Pecan Street [11]. 

Pecan Street data set paired with weather data from [34] is 
used to support the NILM experiments. We randomly selected 
four residential users from the data set. Each user has five 
appliances, i.e., air conditioner, electric furnace, fridge, 
dishwasher, and microwave. The data is one-month length from 
August 1st to September 1st, 2015 with 1-min granularity. We 
downsample the original 1-min aggregated profiles and 
appliance level profiles to 5-min as PHR and 30-min as PLR. The 
first 20 days are used for training the NILM models, and the last 
11 days for evaluation.  

Two metrics are adopted to evaluate the NILM performance 
for each appliance. The first is the root mean square error 
(RMSE): 

( )2

1

1 ˆ
T

t t
t

RMSE y y
T =

= −∑                        (18) 

where T is the profile length, yt is the actual power consumption 
of the target appliance at time t, and y�t  is the corresponding 
NILM estimation. The second metric is the Overall Error (OE) 
[40], which measures the percentage power consumption 
mismatch between the NILM estimation and the ground truth. 

ˆˆ/ /t t t t
t t t t

OE y Y y Y= −∑ ∑ ∑ ∑                   (19) 

Where Yt denote the actual aggregated power consumption of 
all appliances at time t, and Y� t  is the corresponding NILM 
estimation. The calculation results are shown in Table V.  
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TABLE V  
PERFORMANCE COMPARISON OF DIFFERENT NILM ALGORITHMS 

Appliance 
Metrics Root mean square error (kW) Overall error (10-1) 

Houses LERP ASR SRP CNN 
ProfileSR- 

GAN 
LERP ASR SRP CNN 

ProfileSR- 
GAN 

Air-
conditioner 

1 1.063 1.049 1.024 1.016 0.969 0.780 0.883 0.403 0.430 0.346 
2 1.216 1.201 1.071 1.103 1.048 2.417 2.303 1.587 1.917 0.758 
3 1.348 1.350 1.134 1.199 0.922 4.949 4.925 2.620 3.004 1.102 
4 0.793 0.809 0.710 0.727 0.679 0.713 0.790 0.404 0.453 0.104 

mean 1.105 1.102 0.985 1.011 0.905 2.215 2.225 1.253 1.451 0.578 

Fridge 

1 0.105 0.106 0.105 0.105 0.106 0.145 0.155 0.128 0.144 0.040 
2 0.071 0.074 0.074 0.078 0.067 0.325 0.285 0.233 0.261 0.160 
3 0.102 0.104 0.089 0.088 0.084 2.703 2.712 1.258 1.539 0.482 
4 0.078 0.079 0.078 0.079 0.078 0.278 0.335 0.138 0.153 0.236 

mean 0.089 0.091 0.087 0.087 0.084 0.863 0.872 0.439 0.524 0.230 

Electric 
furnace 

1 0.118 0.116 0.106 0.106 0.090 0.329 0.362 0.162 0.138 0.130 
2 0.063 0.064 0.057 0.058 0.056 0.687 0.634 0.501 0.644 0.474 
3 0.299 0.299 0.220 0.243 0.201 0.571 0.569 0.689 0.654 0.349 
4 0.071 0.073 0.066 0.067 0.064 0.055 0.057 0.049 0.064 0.021 

mean 0.138 0.138 0.112 0.119 0.103 0.410 0.405 0.350 0.375 0.244 

Dish 
washer 

1 0.127 0.135 0.100 0.114 0.075 0.453 0.495 0.293 0.329 0.051 
2 0.364 0.365 0.321 0.333 0.224 1.378 1.362 0.832 0.990 0.151 
3 0.128 0.123 0.102 0.106 0.073 1.434 1.351 0.636 0.755 0.248 
4 0.089 0.086 0.105 0.095 0.087 0.065 0.049 0.163 0.123 0.025 

mean 0.177 0.177 0.157 0.162 0.115 0.832 0.814 0.481 0.549 0.119 

Microwave 

1 0.085 0.084 0.083 0.084 0.083 0.114 0.124 0.130 0.138 0.156 
2 0.023 0.022 0.022 0.022 0.021 0.023 0.018 0.018 0.020 0.010 
3 0.028 0.028 0.013 0.014 0.013 0.468 0.453 0.037 0.055 0.023 
4 0.123 0.122 0.121 0.122 0.120 0.489 0.492 0.433 0.458 0.160 

mean 0.065 0.064 0.060 0.060 0.059 0.273 0.272 0.154 0.168 0.087 

As shown in Table V, using ProfileSR-GAN for upsampling 
achieves the best performance in most cases. This is because 
NILM algorithms rely heavily on capturing the load switching 
signature in the aggregated load profile (e.g., the rising and 
falling edges, the spikes), which are usually caused by the 
appliance ON/OFF or cycling activities. Thus, by restoring the 
high-frequency waveforms, ProfileSR-GAN makes it easier for 
NILM to identify appliance-level load profiles and energy 
consumption patterns. The MSE-based SR methods produce 
over-smoothed HR profiles, which provides fewer waveform 
signatures for NILM to capture. These results further 
demonstrate the value of the proposed ProfileSR-GAN model. 
Figure 15 shows the NILM results for the air conditioner 
identification as an illustration of the results. 
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Fig. 15. NILM results comparison for air conditioner based on Seq2Seq 
algorithm. Data source for the ground truth data set: Pecan Street [11]. 

IV.  CONCLUSION 
In this paper, we propose ProfileSR-GAN, a 2-stage GAN-

based method for solving LPSR problems. In the first stage, a 
GAN-based model is trained to restore the high-frequency 
components from the low-resolution data. In the second stage, 
a polishing network is developed to remove unrealistic power 
fluctuations in the GAN generated high-resolution load 
profiles. Compared with conventional up-sampling methods, 
such as interpolation and CNN-based methods, the proposed 
ProfileSR-GAN achieves superior performance in restoring 
high-frequency components inside sampling intervals. The 
overall performance improvements attribute to three aspects: 
the adversarial training of the GAN-based model, the inclusion 
of weather data, and the fine-tuning of the polishing network.  

The simulation results demonstrate that ProfileSR-GAN 
achieved 36%-62% improvements in shape-related evaluation 
metrics compared with the baseline method (i.e., the linear 
interpolation method). An application of ProfileSR-GAN is 
presented as a case study to demonstrate that applying 
ProfileSR-GAN on upsampling can benefit downstream tasks 
that require the use of high-resolution load profiles. Simulation 
results show that when using ProfileSR-GAN to upsample the 
low resolution profiles before conducting NILM, appliance-
level activities can be better recognized by the NILM 
algorithms.   

Our future work will be focused on evaluating the 
performance of ProfileSR-GAN on other time-series data sets 
such as wind and solar power outputs. 
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