
Research Article

Profiling Energy Efficiency and Data Communications for
Mobile Internet of Things

Peramanathan Sathyamoorthy,1 Edith C.-H. Ngai,1 Xiping Hu,2,3 and Victor C. M. Leung4

1Department of Information Technology, Uppsala University, Uppsala, Sweden
2Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
3�e Chinese University of Hong Kong, Shatin, Hong Kong
4Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada

Correspondence should be addressed to Xiping Hu; xp.hu@siat.ac.cn

Received 15 April 2017; Accepted 2 October 2017; Published 7 November 2017

Academic Editor: Xiaoqiang Ma

Copyright © 2017 Peramanathan Sathyamoorthy et al. �is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

�is paper proposes a novel power management solution for resource-constrained devices in the context of Internet of �ings
(IoT). We focus on smartphones in the IoT, as they are getting increasingly popular and equipped with strong sensing capabilities.
Smartphones have complex and asynchronous power consumption incurred by heterogeneous components including their on-
board sensors. �eir interaction with the cloud allows them to o�oad computation tasks and access remote data storage. In
this work, we aim at monitoring the power consumption behaviours of the smartphones, pro	ling both individual applications
and the system as a whole, to make better decisions in power management. We design a cloud orchestration architecture as an
epic predictor of behaviours of smart devices by extracting their application characteristics and resource utilization. We design
and implement this architecture to perform energy pro	ling and data analysis on massive data logs. �is cloud orchestration
architecture coordinates a number of cloud-based services and supports dynamic work
ows between service components, which
can reduce energy consumption in the energy pro	ling process itself. Experimental results showed that small portion of applications
dominate the energy consumption of smartphones. Heuristic pro	ling can e�ectively reduce energy consumption in data logging
and communications without scarifying the accuracy of power monitoring.

1. Introduction

IoT is a convergence of number of technologies such as
sensors, IPv6, wireless communication, and the Internet. Any
real-world objects become smart just by satisfying a few
conditions not limited to (1) being uniquely identi	able, (2)
being able to sense or actuate, and (3) being able to commu-
nicate [1]. �e growth of smart objects is posing challenges
to the research community in energy management, security
[2], and data analytics. Among these challenges, security and
privacy issues a�ect not only the technical system design
level, but also the ethical, behavioural, and policy levels. In
terms of data analytics, we have powerful analytical tools
available with advanced data analysis algorithms [3]. On the
other hand, energymanagement ismore complex and chaotic

considering di�erent applications and usage patterns, which
is our focus in this paper.

Berkeley National Laboratory de	ned energy e�ciency
as using less energy to provide the same service [4]. �e
need for energy e�ciency is highly inevitable in almost
every type of organisations and industries in di�erent sectors
including Information and Communications Technology
(ICT). Energy management in Internet of �ings (IoT) aims
at reducing the electricity, which is bene	cial for many
industries to reduce their electricity bills. As the smart objects
become smaller in size, their small sized batteries provide
limited power for operations. Even though the smart appli-
ances are idle, they could indirectly waste huge amount of
energy in the long term and eventually increase the electricity
bills too. Although ICT can enable energy e�ciency across

Hindawi
Wireless Communications and Mobile Computing
Volume 2017, Article ID 6562915, 15 pages
https://doi.org/10.1155/2017/6562915

https://doi.org/10.1155/2017/6562915

2 Wireless Communications and Mobile Computing

all sectors, at present there is little market incentive to
ensure that network-enabled devices themselves are energy-
e�cient. In fact, up to 80% of their electricity consumption
is used just to maintain a network connection. Even though
the amount of electricity used by each device is small, the
anticipated massive deployment and widespread uses make
the cumulative consumption considerable, as reported by
International Energy Agency in [5].

Herea�er we narrow our focus on smartphones, which
are smart devices that increase in exponential order over the
last ten years. Modern smartphones provide heterogeneous
functionalities including a number of sensors. �ey are one
of the most representative and popular smart objects in the
IoT. Nevertheless, smartphones are resource constraint with
respect to battery, memory, and computation. It is common
for them to o�oad computation and access remote data
storage on the cloud servers via network. Cloud computing
in the IoT leads to thousands of cloud supported applications
and is growing steeply. As a consequence, smartphones are
consuming a lot of energy for communication with the cloud.
Due to the size limitation, e�ort of making powerful batteries
is not able to satisfy the increasing energy demand in the
smartphones. It is important to reduce energy consumption
when developing new kind of applications.

In the last decade, the rising trend in the popularity
of smartphones motivated so�ware developers to increase
application functionality. Based on previous study [6], most
of the power of the smartphones is consumed by wireless
communications and display (e.g., backlight for screen).
In addition, increasing application functionality demands
extra power budget that as a result decreases smartphone
battery lifetime [7]. Smartphones are usually running mul-
tiple applications with di�erent operations at a time. It is
very di�cult to understand and identify the cause of high
energy consumption in this asynchronous power consuming
environment. It is necessary to provide pro	ling of power
consumption from di�erent levels, including system level as a
whole, individual applications, and system calls in operation
level.

In this paper, we propose the 	rst iterative and novel
solution using cloud orchestration for power management on
smartphones. Cloud orchestration aggregates power pro	ling
data from the smartphones and coordinates data storage, data
analysis, learning, and decision-making. By pro	ling data,
the orchestrator learns the power consumption behaviours
and the usage pattern of the participating smartphones. It can
answer questions like the following:

(i) Which applications are most energy consuming on
the smartphones?

(ii) What are the characteristics in applications that con-
sume most of the energy?

�ese 	ndings can be used to further optimize the energy
monitoring framework. For example, the energy pro	ler can
predict and collect only the most important power consump-
tion data logs on the smartphones. Our cloud orchestrator
framework supports dynamic work
ow of processes and
adaptive services 	tting the needs of di�erent users. It aims

for providing overall system power management rather than
making part of the system e�cient. �e cloud orchestration
services can be selected and con	gured dynamically depend-
ing on the application characteristics, usage pattern, time, and
location context. Both o�ine and real-time services can be
supported to provide long-term and large data analytic, or
to give real-time alert on unusual events. Pro	ling energy
consumption creates an opportunity to performbetter energy
management and increase battery lifetime. It helps to under-
stand energy consumption behaviours of a wide range of
applications for optimal battery resource use.

2. Related Works

A lot of e�orts have been made to enable energy e�ciency
in smartphones and IoT in general. �ere are a range of
solutions tried out in the hardware architecture level [8, 9],
data communication level [10, 11], network infrastructure level
[12], and protocols optimization [13]. Di�erent tools have been
developed to measure energy consumption on smart devices
and smartphones. For example, power monitor meter has
been used to provide the current with constant voltage 3.7 V
to the smartphone instead of using the battery [14]. �is
hardware setup can provide accurate power consumption
measurements, but it is a bulky solution not suitable for
ordinary users in their daily usage.

As Intel summed up in [15], So�ware Energy E�ciency
has the signi	cance towards achieving computational e�-
ciency, data e�ciency, context awareness, and idle e�ciency in
broader sense. Nevertheless, current solutions which try to
characterize power consumption on the smartphones usually
focus on speci	c operations, such as communications [10]
or interactions with certain hardware components, such as
LCD or GPS. �ere are several common problems in most
of the existing solutions, including the following: (1) system
as a whole was not considered; (2) trade-o� between com-
ponents was not properly considered; (3) interdependence of
the components was not properly studied; (4) the existing
solutions are suboptimal. In order to address the above
problems, we need a comprehensive approach to understand
the energy consumption of individual applications as well as
their interdependency and signi	cance in the whole system.
A comprehensive analysis can help the users to identify
the most power consuming applications or operations on
their smartphones.�is can also make the power monitoring
process more adaptive to the user behaviour and more
energy-e�cient in a long run.

Measuring power consumption of resources such as CPU,
memory, display, and communication is extremely useful in
	nding the energy-hungry applications, background services,
and processes. In [16], the energy costs for task o�oading
over IEEE 802.11WiFi and 3Ghave beenmodelledmathemat-
ically. For WiFi network, it uses protocol parameters such as
data rate, base rate, and contention window size to derive the
formula. For 3G/4G, Radio Resource Controller (RRC) states
are considered and the total energy consumption is calculated
by three parts, including promotion signalling, data transfer,
and tail energy.

Wireless Communications and Mobile Computing 3

Many existing solutions for power monitoring are run-
ning on the smartphones nowadays [17, 18]. So�ware energy
pro	lers are common tools to measure the energy consump-
tion ofmobile devices, applications running on those devices,
and various hardware components. �ey adopt di�erent
modelling and measurement techniques [19]. �ese energy
pro	lers can monitor the percentage of battery consumed
by di�erent applications. �e advantage of these solutions
is simple to use, but the limited memory and computation
capability of smart devices make it hard to support more
advanced data analysis. It is then di�cult to support large-
scale and long-term analysis of energy consumption data
for both personalized or crowd-based monitoring. Regard-
ing measuring energy consumption, solid background has
been provided in [20]. Internet-of-�ings Architecture is
a consortium rigorously developing architectural reference
models. �ese models serve as initial guidance potentially
towards concrete architecture for the problem of interest and
eventually towards the actual system architecture [21]. In [22],
devices orchestration is explained from the business process
point of view.

With respect to mobile-cloud paradigm, AppATP [23]
leverages cloud computing to manage data transmissions for
mobile apps, transferring data to and from mobile devices
in an energy-e�cient manner. Carat [24] presents a crowd-
sourcing approach for collection energy consumption data
on smartphones and diagnosing energy anomalies from a
community of clients. We share a similar concept of running
data analysis in the cloud and further explore the opportunity
of cloud orchestration services for smartphones. Instead of
taking a black-box process-based approach, we propose a
cloud orchestration approach for energy e�ciency of smart
devices. Cloud orchestration has the capabilities of coordi-
nating di�erent cloud services, such as data storage, analysis,
and processing, in a comprehensive framework. Appropriate
services can be selected according to the need of individual
users. Heuristic pro	ling can be implemented to reduce the
amount of log data and communication overheads. �is
approach is useful in reducing the energy consumption in
the energy pro	ling process itself. Our framework can be
extended easily to include new data mining techniques and
new services contributed by other users. It supports both
individual pro	ling for personalized services and community
analysis using crowdsourced data.

3. Cloud Orchestration for Energy Efficiency

IoT initially has two visions: one is the�ings oriented vision
and the other is the Internet oriented vision. �e �ings
vision emphasizes the sensing and communication capability
of di�erent types of smart devices, which can be standalone
or embedded into di�erent real-world objects. �e Internet
vision focuses on the connectivity of the smart devices and
their interaction with the Internet. Connecting smart devices
to the Internet enables large data storage and analysis that
are not feasible on the resource-limited devices. �e Internet
vision has driven cloud computing for the IoT to provide
advanced data processing and data management capabilities.

Later, when new challenges were introduced such as
unique addressing and storing information, semantic oriented
vision had arisen [25]. According to this new vision, the
participating devices are categorized and the orchestration is
con	gured to support scalable and controlled integrated solu-
tions. In this work, we develop the idea of cloud orchestration
to provide energy e�ciency services for the IoT devices.
A cloud orchestrator is a so�ware system that manages
the interconnections and interactions of di�erent cloud-
based services and processes. It supports dynamic work-

ows to connect various automated processes and associated
resources according to the needs of users and the context
environment [26].

3.1. Data Communications. Data communication in mobile
IoT o�en occurs between smartphones (clients or peers)
and the cloud (server) via interconnected telecommunication
medium such as the Internet. �e important components
for data communication are data, client, server, and the
infrastructure of network and protocols.

Our focus on energy pro	ling is more on the client
side taking into account its applications and communication
interfaces. Pro	ling energy consumption in data commu-
nications is complex. We should consider the protocols at
various levels in the OSI (Open System Interconnectivity),
especially the Internet suite of the TCP/IP protocols. �e
energy consumption of communication interfaces, such as
WiFi, 3G, 4G LTE, Bluetooth, Near Field Communication
(NFC), and GPS, could be measured via the APIs given by
the smartphone operating system, such as Android. It is very
important to capture the events related to communication
interfaces for energy pro	ling.

3.2. Cloud Orchestration Design Goals. �e main goal of our
system design is to provide energy-e�cient decision(s) back
to the service enabled smartphones which are participating
in the orchestration. Orchestration, the concept existing
in the music world, was adopted in process automation of
business world by automating, coordinating, and managing
complex systems, middleware, and services. Energy pro	ling
may impose vulnerability in energy e�ciency. Let us
give an illustrative example. Even a single and careless piece
of code(while(battery.percentage) println(battery
.percentage))may cause the system to run into an in	nite
loop and drain all the battery. �is small mistake can make
any e�ort of power saving become in vain. Hence, there is a
need for intelligent system, which is capable of coordinating
di�erent components and 	nding and categorizing the
energy errors. �e system should have access to powerful
dynamic control system engine for 	xing such errors. To
assist bug 	xing, we may need insights from the big
data of crowdsourced logs/operations over long period
of time. Orchestration has the capabilities of integrating
di�erent types of clouds, processes, and services for power
management, which is an ideal solution.

3.3. EEaaS Orchestration Architecture. We propose a cloud
orchestration architecture, called EEaaS, for power manage-
ment of IoT devices in Figure 1. �e design is open and

4 Wireless Communications and Mobile Computing

Participating
devices

Orchestrator
(with access to
data processing
APIs)

Temporal analysis support

Control
box Decision

enhancer

Wisdom
box

Big data

Knowledge
graph

Spatial analysis support

Figure 1: EEaaS cloud orchestration architecture for powermanage-
ment.

exible, which makes it easy to add, remove, and merge
with new models and services at any granular level in
the orchestrator. �e orchestrator coordinates the following
components, including participating devices, data processor,
big data storage, knowledge graph, wisdom box, control box,
and decision enhancer.

3.3.1. Participating Devices and Smart Pro	ler. �ese are the
smart devices in the IoT that are of interest in minimiz-
ing their energy consumption. Upon registration with the
orchestrator, a fully customizable and lower energy consum-
ing background service application is enabled in the smart
devices. �is service application sends low-level system-call
logs periodically and reports abnormal system behaviours
spontaneously. �ese abnormal events may include acci-
dental system crash or unusual battery drain by speci	c
application. To avoid security and privacy issues, logs are
collected anonymously with unique device pro	le. Not only
is this application a log collector, but also it acts as a local
self-controller attempting to catch energy errors in time and
optimize energy pro	ling in the long run. Its functionalities
are regularly updated by the orchestrator. �e participating
devices report unusual events to the orchestrator in real time.
Since the unusual events contain only small amount of data,
the communication overhead is not so much. On the other
hand, the large volume of logged data on resource utilization
is reported only when the smartphones are connected to the
computer or WiFi network. �is is to avoid the continuous
data communication through mobile cellular networks. Data
	ltering and heuristic pro	ling can be performed to reduce
the amount of data samples in order to save energy.

3.3.2. Data Processor. Data processor is a collection of
APIs for various data processing methods accessible to the
orchestrator. According to the context and the need of user,
appropriate data processing methods will be chosen by the
orchestrator. �e data processor supports both big data
analysis and temporal data analysis. Advanced data mining
techniques can be implemented in the data processor to
perform data 	ltering and data aggregation. For example,

it can characterize the energy consumption behaviour of
di�erent applications on the smartphones and identify the
most power-hungry applications.

3.3.3. Big Data Storage andModern Tools. �edata produced
by the smartphones would be in massive scale over time.
In order to handle these data-intensive operations, we need
big data storage and modern cloud programming paradigms
such asHadoop andApache
ink. For deep analysis of sample
data, powerful computing languages such as Python andR are
required.

3.3.4. Knowledge Graph. When interpreting large volumes of
data logs, dynamic knowledge graph is built and keeps on
updating. Knowledge graph is a knowledge base originally
used by Google to enhance its search engine’s search results
with semantic-search information gathered from a wide
variety of sources. Nodes are quali	ed classes and subclasses
with attribute-value pairs, so that they provide a clear and
structured view of data. Using the knowledge graph, it is
then easy to get speci	c resource utilization and energy
consumption data for analysis with respect to location, device
model, Internet service provider, and various speci	cations.

3.3.5. Wisdom Box. Wisdom box contains a set of learning
algorithms with primary focus on building location speci	c
context information (in the spatial domain). It can capture
the location of the device and correlate the location with
various usage and communication patterns.�e wisdom box
acts as a predictor of trends in data, usage patterns, and
systembehaviour anomalies. It uses combination of statistical
algorithms andmachine learning algorithms tomake energy-
e�cient decisions. �e decisions that are independent of
device, platform, and applications are stored in the decision
enhancer in the orchestration. Device, platform, and appli-
cation speci	c decisions are fused with the knowledge graph
and the reference graph in the orchestration.

3.3.6. Control Box. Control box is a builder of real-time and
dynamic self-controller for the participating devices. It can
also raise alerts and give time-sensitive feedback (temporal
domain) to the users. �e self-controller is implemented as
a service. To make the self-controller even more intelligent,
context related decisions in the spatial domain are used. Feed-
back is received from the participating devices to evaluate the
performance of data log collection.

3.4. Energy-E�cient Data Pro	ling and Communication.
Given that data communication is one of the greatest chal-
lenges for energy e�ciency, cloud-assisted data pro	ling
would seem counterintuitive. Our system design takes smart
logging with minimal data communications to reduce the
overhead. It provides an alternative solution to 	ne-grained
and real-time pro	ling, which is both data- and computation-
intensive. We study existing pro	ling techniques and identify
the most important energy features to design a heuristic
pro	ler. �is heuristic pro	ler collects data intelligently and
maintains minimal communications with the cloud. Our

Wireless Communications and Mobile Computing 5

Table 1: Indicators of energy consumption in EEaaS.

Indicator types De	nitions Example resources

Key energy indicators (KEIs) Primary and key resources in system CPU and memory

Secondary KEI (SKEI) Not frequently used resources but important GPS and Bluetooth

Relative KEI (RKEI) Active only when certain applications are running Camera and activity sensors

Potential cause indicator (PCI) Learned by the orchestrator over time

approach can e�ectively reduce the communication overhead
and energy consumption in the energy pro	ling process itself.

�e orchestrator is designed to able to learn the trends
and patterns of the sample data. A�er learning the character-
istic of di�erent applications, the sampling rates in the pro	ler
can be adjusted adaptively to reduce the data samples of
less active and less energy consuming applications. Heuristic
pro	ling and data 	ltering allow more focused sampling on
key applications that consume most of the energy, while
reducing the total number of data samples for less energy
consuming applications.

3.4.1. Key Energy Indicators. Managing and analysing big
data is not the major cause of energy consumption. �e real
bottleneck is collecting data through frequent and intensive
communications from the participating devices. Instead of
sending all the data logs to the orchestration for analysis,
we classify certain system calls and resource utilization as
primary key factors, called key energy indicators (KEIs), such
as CPU and memory usage. We further categorize the KEI
into secondary key energy indicators (SKEI) and relative key
energy indicators (RKEI). SKEI are not so frequently used
but are important when they are active, such as GPS and
Bluetooth. RKEI are active only when speci	c applications
are running or occur in certain context. Examples of RKEI
include camera and activity sensors. Table 1 summarizes the
de	nition of the indicators.

3.4.2. Potential Cause Indicators. KEIs capture the energy
consumption behaviours and identify the causes of energy
consumption. �en comes the potential cause indicators
(PCI), which can be learned by the orchestration over time.
When the systembecomesmatured enough, the participatory
devices collect and report less amount of data. Crowdsourc-
ing further makes it easy to distribute the workload of data
collection. In the long run, less logs and less communications
from participatory devices are required. More sophisticated
context-aware models in the orchestration are created as a
result.�e work
ows in the orchestration then becomemore
energy-e�cient, as it can adapt to the usage pattern and
context dynamically (see Figure 2).

In Figure 2, the cloud-based smart pro	ler (top-le�)
sends the logged data or control messages from the partici-
pating devices to the cloud.�e logged data are sent together
with the context header, which is used by the orchestration
to indicate the message type. For example, if the context
header is control, then the orchestrator knows that there are
no data logs in themessage but events (issues) being reported

from the participating devices. In this case, the events are
forwarded to control box in order to address the issues.
Otherwise, the other messages (data logs) are forwarded to
the big data module supported by the spatial data processing
unit for classi	cation, prediction, and context generation.�e
data processing unit helps the orchestration to learn what the
KEIs are, so that less signi	cant data can be identi	ed and
removed in the future. When the system becomes mature
enough, the participatory devices will collect mainly the KEI,
so that they can report less amount of data logs to save energy.
�rough iterative learning, the orchestration can build more
sophisticated context-aware energymodels for making better
prediction in energy pro	ling.

3.5. Energy-E�cient Techniques. In addition to energy-
e�cient pro	ling, we present additional techniques that can
help to reduce energy consumption on the mobile phones.
Based on our observations, a lot of mobile applications
are running as background applications, such as Facebook,
GoogleMaps,WeChat, andWhatsApp. It is recommended to
close the applications when the user is not using them. Run-
ning background applications consumes additional energy
and many of these applications are unnecessary. In modern
Android OS, there is optimization function that could be
used to reduce battery consumption. For example, a user may
choose to close background applications when the screen is
locked to help saving energy. If a user may not want to miss
any emails or messages, he or she may choose to close down
background applications selectively to 	t his or her needs.

Moreover, it is bene	cial to turn o� mobile data and GPS
when they are not needed. �is is because data communi-
cation is one of the major sources of battery consumption.
In particular, GPS and mobile data consume much more
energy than WiFi and Bluetooth. Note that Android keeps
location based applications, such as Google Maps, running
in the background, which constantly drains the battery. To
reduce battery consumption, it is best if the user can turn o�
unnecessary hardware radios, such as LTE, NFC, GPS, WiFi,
and Bluetooth.

Another e�ective way to reduce energy consumption
is to check the battery consumption of the mobile using
Android or othermonitoringmobile applications (e.g., Carat,
PowerTutor, and Trepn). �ese applications help to iden-
tify power-hungry applications and detect bugs that cause
unusual high energy consumption on the mobile device.
Figure 3(a) shows the power-intensive applications identi	ed
by Carat [24], a mobile application to generate personal
recommendations for improving battery life. �is screenshot
shows four applications that are correlatedwith higher energy

6 Wireless Communications and Mobile Computing

Cloud-assisted
smart pro�ler

Smart object eco system

with key energy indicators (KEIs) and

potential cause indicators (PCI)

Orchestration
entry

Send:
KEI, PCI logs

anomalies signals

bug reports

+ context header

Receive: updates

latest pro�ling

schemes

Participating

devices’ data

communication

with cloud

Big data
storage

Data analysis

No

Example: KEI data logs

Spatial analysis support

Knowledge

graph

for building

knowledge

Wisdom box for

learning

classi�cation

prediction

contexts

(1) Manage: big data including KEI, PCI

(2) Build: knowledge

(3) Learn: trends & patterns

(4) Classify: KEI, secondary KEI, and

relative KEI

(5) Predict: PCI

(6) Generate: contexts

Decision enhancer

(0) Distribute: smart pro�ler

(1) React: for experienced tickets

(2) Register: new tickets

(3) Refer: spatial knowledge

(4) Recognize: contexts

(5) Update: pro�lers’ schemes

Control box: temporal support

Yes

Header
= control?

Example: anomalies signals

(2) Flow controller

(3) Scaling

(4) Provisioning

(5) Monitoring

(6) Data processing

(1) Job scheduling

Figure 2: EEaaS orchestration inside the box.

user across many devices. Carat recommends that closing
these power-intensive applications may improve battery life.

Similarly, Figure 3(b) shows a list of background appli-
cations that are suggested to be closed during lock screen
by Android. �ese power-intensive applications include Geo
Tracker, Google Maps, WeChat, and WhatsApp. Users may
consider uninstalling power-hungry applications or better
control of their operations. For example, it is possible to
reduce polling from emails, Facebook, or Twitter to save
energy by reducing refresh frequency or enabling manual
polling instead of using automatic and constant polling.

4. Implementation

In this section, we describe the prototype development, the
tools used, and the implementation details.

4.1. Data Inspection. We 	rst explored the data logs of two
smartphones, Samsung SIII running Android version 4.4 and
Nexus 5 running Android version 5.0.�ey are installed with
Android platform tools, such as logcat [27], for logging sys-
tem debug information, and DDMS (Dalvik Debug Monitor
Server) [28] for debugging applications. �ese tools help us

to capture the behaviours of the system and the applications
running on the platform.

WeuseQualcomm’s TrepnPro	ler [29] for collecting data
in suitable formats, namely, SQLite and CSV. Unfortunately,
the eclipse plug-in provided by Trepn su�ers from poor
visualization. �e data in CSV format requires a lot of
cleaning to use. It also has great limitations on the number
of parameters it can pro	le. Nevertheless, the data brings
a lot of insights. We also develop a web application, called
EnergyApp, that helps to study the data in SQLite format.
Figure 4 is a screenshot of a list of mobile applications and
their statistics in the EnergyApp.

4.2. Key Energy Indicators. We soon realize that crowdsourc-
ing methodology results in a lot of data, so that smart
big data management and analysis are needed to reduce
communication and computation overheads. One method is
to select key pro	ling features and ignore the less in
uencing
features. We derive a methodology to extract the KEIs to
reduce the overheads. It relies on two datamining techniques,
decision trees and random forest, to 	gure out the variables of
importance byGini index.Gini indexmeasures the inequality
among values of a frequency distribution. A Gini index of

Wireless Communications and Mobile Computing 7

(a) Power-intensive apps shown by
Carat

(b) Power-intensive apps shown by
Android

Figure 3: Power-intensive applications identi	ed.

Figure 4: A list showing the app statistics in the EnergyApp.

zero expresses perfect equality, while that of one expresses
maximal inequality among values. Gini index is a common
metric used for determining the splits of a decision tree.
�is service is running as so�ware as a service application
in the cloud. A screenshot of the energy data administration
tool is shown in Figure 5. It shows a decision tree on the
le�, which predicts the energy consumption using a set of
resource utilization parameters. �e right side of the 	gure
shows the results of random forests on di�erent resources in
the system.

4.3. Energy-E�cient Cloud Pro	ler. We further develop a
prototype for cloud pro	ler with the following key character-
istics:

(i) Real-time database with autosynchronization sup-
port, such as Firebase, which works reliably with low
latency and energy consumption

(ii) Distributed data protocol, which supports publish-
subscribe services for mobile and web applications

(iii) Client-centric data response, such asGraphQL,which
can reduce the amount of data.

Figure 5: Screenshot of the energy data administration tool devel-
oped in the cloud.

We explain in detail client-centric response because
of importance compared to the others. Mobile and web
applications are heavily using HTTP RESTful services and ad
hoc endpoints to obtain data nowadays. �e core problem
with this approach is that the response data is entirely
decided by the server. �e server-side application might be
responding to the client application with more data than
required. For example, a simple client application showing
current weather is getting more information than what the
application displays on the screen. Facebook is one of the
most energy consuming applications due to user-engaged
usage, according to our measurements. GraphQL [30] is
designed as remedy to the above-mentioned problem. It is a
query data language for the API and a server-side runtime for
executing queries. It provides a complete and understandable
description of the data in the API, giving clients the power to
ask for exactly what they need and nothing more.

5. Experimental Results

Smartphone is a system-on-chip architecture with three key
components, including application processor to handle user

8 Wireless Communications and Mobile Computing

Table 2: ACPI/OSPM de	ned power states.

Global system states
Device power

states
Processor power

states

G0 working D0 fully on C0

G1 sleeping D1 C1

G2/S5 so� o� D2 C2

G3 mechanical o� D3 C3

D3 o�

applications, modem processor to handle transmission and
reception, and peripheral devices (I/O) to interact with the
users. In smartphones, the power consumption of any I/O
component is o�en higher than the power consumption of
the CPU or at least comparable. In [31], the drawbacks of
power models derived from external power meters and so�-
waremodelling are well explained. So�ware powermodelling
does not address the tail power states, which occur when the
components remain powered on and consume energy even
though the CPU is idle. �is problem can be addressed by
system-call tracing to check each component’s power state,
though it may consume more energy. Nevertheless, energy
pro	ling is a very important 	rst step to characterize the
power consumption on smartphones.

�eAdvancedCon	guration and Power Interface (ACPI)
speci	cation [32] has been evolving as a common hardware
interface in Operating System directed con	guration and
Power Management (OSPM) for both the end devices and
the entire systems. When pro	ling an individual application
or entire platform, it is useful to fetch information about
the states of system, device, and processors, so that better
decision can be made to achieve energy e�ciency. Table 2
lists the key global system states, device power states, and
processor power states. For instance, the process power state
C0 indicates that the CPU executes instructions, while C1–C3
are processor sleeping states where the CPU consumes less
energy than C0.

5.1. Energy Consumption in Hardware and So�ware. We
conduct an experiment to study energy consumption of
the hardware and so�ware on a newly installed Android
mobile phone (Huawei Honor 8). �e main purpose of this
experiment is to evaluate the energy consumption of basic
operating system and hardware on a mobile phone. Table 3
shows the energy consumption on the mobile during the
day. We consider a mobile phone with basic functionality
with minimum usage of power-hungry applications (e.g.,
Facebook, YouTube, or games). We can see that the hardware
on the mobile consumes around 34% of the battery and
the so�ware consumes the remaining 66% on the mobile
phone. �e screen takes up most energy consumption in the
hardware during daytime.�e remaining energy in the hard-
ware is taken by the 3G/4G communication and other short-
range communications (e.g., WiFi and Bluetooth). We also
observe that the voice call takes very small amount of power
consumption compared with other hardware components.
On the so�ware side, we see that thismobile user is a frequent

Table 3: Energy consumption in daytime.

Hardware (34%)

Screen (22.05%)

Phone idle (7.66%)

Mobile standby (3.12%)

WiFi (1.14%)

Bluetooth (0.05%)

Voice call (<0.01%)

So�ware (66%)

Google Maps (19.01%)

Android OS (18.63%)

Android System (14.34%)

Google Account Manager (10.16%)

Clock (2.47%)

WeChat (1.89%)

Facebook (1.53%)

Exchange Services (1.42%)

WhatsApp (1.14%)

Media server (1.09%)

Chrome (1.06%)

Phone (0.94%)

System UI (0.73%)

Health (0.56%)

Email (0.55%)

System UI (0.47%)

Gmail (0.38%)

Gallery (0.33%)

user of Google Maps due to his need of driving. Other than
that, the Android Operating System and the Google Account
Manager consume most of the energy on the so�ware side.

We repeat the same experiment on the phone during
the night time. �e purpose is to study the basic operation
consumption on the mobile without using any mobile appli-
cations by the user. Table 4 shows that the hardware of the
phone consumes around half of the power consumption.�e
so�ware consumes the remaining half, mainly for running
the Android System, Android OS, and Google Account
Manager. While the user is sleeping, there is very little power
consumption on mobile applications, such as WhatsApp
and WeChat. �is indicates that these applications run in
the background mode and only check for new messages or
updates from the application servers.

5.2. Pro	ling Data Communications of Mobile Applications.
We use Qualcomm’s Trepn Pro	ler [29] to study the data
communications and resources that the applications con-
sume on the mobile, including CPU usage, memory usage,
and data usage.

As data communication is a major cause of fast energy
drain in the smartphones, we show an interesting exam-
ple of pro	ling data communication patterns of popular
mobile applications. Figure 6 shows the data communication
usage patterns of two popular applications, Google Maps
and YouTube. From the data logs, we observe that both
Google Maps and YouTube are running two threads in their
applications. �e data communications of the two threads in

Wireless Communications and Mobile Computing 9

(a) Google Maps (b) YouTube

Figure 6: Snapshots of pro	led data communication patterns.

Battery poweＬ∗

0

625

1250

1876

2501

3126

3752

4377

5002

P
o

w
er

 (
m

W
)

0 15 45 60

Time (s)

(a) Energy consumption of YouTube

CPU load (normalized)

0 15 45 60

Time (s)

0

12

25

37

50

62

75

87

100
C

P
U

 lo
ad

 (
%

)

(b) CPU utilization of YouTube

Memory usage

0 15 45 60

Time (s)

0

472

945

1417

1890

2363

2835

3308

3780

M
em

o
ry

 u
sa

ge
 (

M
B

)

(c) Memory utilization of YouTube

Figure 7: Battery, CPU, and memory utilization of YouTube.

Table 4: Energy consumption in night time.

Hardware (53%)

Mobile standby (23.33%)

Phone idle (17.99%)

Screen (8.87%)

WiFi (2.49%)

Bluetooth (0.27%)

Voice call (<0.01%)

So�ware (47%)

Android System (15.58%)

Android OS (10.98%)

Google Account Manager (8.81%)

Clock (1.91%)

WhatsApp (1.23%)

WeChat (1.17%)

Media server (1.15%)

Chrome (0.89%)

System UI (0.78%)

Health (0.63%)

Exchange Services (0.69%)

Phone (0.47%)

Email (0.39%)

Google Maps (0.32%)

Huawei Home (0.27%)

Google (0.1%)

Gmail (0.06%)

Facebook (0.05%)

each application share similar patterns, which are indicated
by dark and light colors in the 	gure.

Figure 6(a) shows a snapshot of data communication
pro	ling of Google Maps. �e �-axis is plotted in log

scale, showing the size of data communication at di�erent
time. We observe that there is a sudden increase of data
communication occurring at time interval 70 s–75 s.�rough
careful inspection, we 	nd that it is due to the action of
zooming in the map triggered by the user.

While pro	ling YouTube, a video is randomly picked
for playing in the full screen mode. From Figure 6(b), we
observe high initial data communications due to prefetching.
�en, the video is played smoothly with constant data
communication from 285 s. We believe that the intermittent
communication pattern is due to the communication proto-
col and the reliability of the network.

5.3. Pro	ling Battery, CPU, and Memory Utilization. We
continue to pro	le the battery power consumption, CPU
load, and memory utilization of three representative mobile
applications, including YouTube, Google Maps, and Face-
book. Figure 7(a) shows the battery power consumption of
YouTube. At � = 10 s, a new video is played on YouTube, which
triggers a peak on battery consumption. Similarly, at � = 30 s,
the user selects another video, which triggers another high
consumption of battery. At � = 45 s, the user rotates the screen
to show the video in full screen, which leads to an increase
of energy consumption. Figure 7(b) shows that the CPU load
increases when new videos were played at � = 10 s and � = 30 s.
We also observe an increase of memory usage with similar
patterns in Figure 7(c).

Figure 8(a) shows the battery power consumption of
Google Maps. At � = 0 s, the user enters a new search on
a destination. At � = 15 s, the user starts the journey to
the destination. We observe that the battery consumption is
higher when user starts going on a new route. Figures 8(b)

10 Wireless Communications and Mobile Computing

Battery poweＬ∗

0

694

1388

2083

2777

3472

4166

4861

5555

P
o

w
er

 (
m

W
)

0 15 45 60

Time (s)

(a) Energy consumption of Google Maps

CPU load (normalized)

0 15 45 60

Time (s)

0

12

25

37

50

62

75

87

100

C
P

U
 lo

ad
 (

%
)

(b) CPU utilization of Google Maps

Memory usage

0 15 45 60

Time (s)

0

472

945

1417

1890

2363

2835

3308

3780

M
em

o
ry

 u
sa

ge
 (

M
B

)

(c) Memory utilization of Google Maps

Figure 8: Battery, CPU, and memory utilization of Google Maps.

Battery poweＬ∗

Time (s)

0 15 45 60

0

751

1502

2254

3005

3757

4508

5259

6011

P
o

w
er

 (
m

W
)

(a) Energy consumption of Facebook

CPU load (normalized)

0 15 45 60

Time (s)

0

12

25

37

50

62

75

87

100
C

P
U

 lo
ad

 (
%

)

(b) CPU utilization of Facebook

Memory usage

0 15 45 60

Time (s)

0

472

945

1417

1890

2363

2835

3308

3780

M
em

o
ry

 u
sa

ge
 (

M
B

)

(c) Memory utilization of Facebook

Figure 9: Battery, CPU, and memory utilization of Facebook.

and 8(c) show the corresponding CPU load and memory
usage. We see that the CPU load follows similar pattern to
the battery power, while memory usage remains more or less
the same.

Figure 9(a) shows the battery power consumption of
Facebook. At � = 0 s, the user logs into Facebook and then
starts browsing at di�erent posts of videos and images. As
the user scrolls down the Facebook user interface, we observe
di�erent peaks in the battery power and the CPU load.�ese
are believed to be the loading of new images and videos.
Figures 9(b) and 9(c) show the corresponding CPU load and
memory usage. We see that the CPU load follows similar
pattern to the battery power, while memory usage remains
roughly the same. �e level of memory usage in Facebook is
similar to those in YouTube and Google Maps.

5.4. Cloud-Based Data Pro	ling and Analysis

5.4.1. Energy Consumption. In order to understand and
visualize the energy consumption pattern, the following
experiment has been conducted. We collected the data from
four users over a three-month period from 1 March 2015
to 31 May 2015. �e users have been using Samsung S4 or
NEXUS 5 smartphones. �e data has recorded the energy
consumption and resource usage of the smartphones that
were idle or running actively in daily use. We have chosen
twenty-two applications that were run by all the four users
in this data analysis. �ese 22 applications range from social
media applications, messaging applications, and navigation
applications to personal management applications. �e data
has been cleaned up and processed, so that every resource

utilization of each application has been summarized as
a mean value in an hourly basis. �en, the summarized
data are further aggregated to give an overview of energy
consumption among all the applications.

We compare the total energy consumption and resource
utilization distribution values among di�erent applications
in this experiment. �is result helps us to identify the
most power consuming applications and understand what
resources have been utilized to make them so power hun-
gry. Figure 10(a) compares the energy consumption values
of the 22 applications. �e �-axis shows the total energy
consumption of each application in percentage (among all
applications). �e �-axis shows the application ID from 0 to
21. From the 	gure, we observe that there are four to 	ve
applications, which consume themost energy compared with
the others. We rank the energy consumption percentage of
these 22 applications in Table 5. It shows that the most power
consuming applications are Facebook, followed by Android
Operating System, Google Contacts Sync, and Google App.

We further investigate four key energy indicators (KEIs)
in these applications, including CPU load, memory, data
communication, and number of threads. Figure 10(b) shows
the resource utilization of the applications in percentage.
From the 	gure, we can see that the applications that consume
most energy usually have high utilization in all four kinds
of resources. Take Facebook as an example, it has the
highest data communication and CPU usage among the 22
applications. It also has relatively high number of threads
and memory usage compared with other applications. We
observe similar resource utilization patterns for applications
that have high power consumption. �e shapes of the curves

Wireless Communications and Mobile Computing 11

Energy

1510 20 2550

Application ID

0

5

10

15

20

25

30

35
E

n
er

g
y

as
 u

sa
ge

 o
f

re
so

u
rc

es
 (

%
)

(a) Energy consumption of applications

0

20

40

60

80

100

U
sa

ge
 i

n
 p

er
ce

n
ta

ge

50 15 20 2510

Application ID

CPU

Memory

Data

threads

(b) Resource utilization of applications

Figure 10: Energy consumption and resource utilization.

Table 5: Ranked energy consumption of applications.

ID Application name Energy consumption (%)

20 Facebook 32.270

0 Android System 11.076

6 Google Contacts Sync 8.238

9 Google App 4.490

1 com.qualcomm.qcrilmsgtunnel 3.464

8 System UI 2.788

17 YouTube 2.006

21 Messenger 1.656

2 Nfc Service 1.204

14 Google Keyboard 1.146

11 CaptivePortalLogin 1.008

5 Media Storage 0.808

19 ES File Explorer 0.804

15 Maps 0.616

18 Google Connectivity Services 0.604

7 Google Dialer 0.602

13 Hangouts 0.410

16 Google+ 0.406

10 Calendar 0.404

3 Calendar Storage 0.402

4 User Dictionary 0.400

12 Fit 0.400

in Figures 10(a) and 10(b) follow very similar patterns. It
implies that these four selected resources are very important
when pro	ling energy consumption for the smartphones.

5.4.2. CPU Load. We also observe di�erent CPU load pat-
terns in the applications. Figure 11 shows the CPU load of
the Facebook App. We can see that the Facebook App has
high CPU use when the app is started. A�er that, the CPU

600000100000 475000225000 350000

Timestamp (ms)

0

12.5

25

37.5

50

C
P

U
 lo

ad
 (

%
)

Figure 11: CPU load pattern of Facebook App.

0

3

6

9

12

C
P

U
 lo

ad
 (

%
)

550000 600000450000 500000400000

Timestamp (ms)

Figure 12: CPU load pattern of Google Maps.

load is quite random depending on the operations triggered
by the user, such as uploading photos or sending messages.
Figure 12 shows the CPU load pattern of GoogleMaps, which
is quite periodic due to the regular update of GPS locations.

12 Wireless Communications and Mobile Computing

0

4000

8000

12000

16000

V
ir

tu
al

 m
em

o
ry

 (
M

B
)

0 50 200100 150

�reads

Figure 13: �reads and virtual memory use of applications.

0 25 7550 125100 150

Main memory (RSS) (MB)

0

4

8

12

16

ap

p
li

ca
ti

o
n

s

Figure 14: Main memory use of applications.

By observing the CPU patterns, it helps us to understand
the operation characteristics and energy consumption of
di�erent applications.

5.4.3. �reads and Memory Use. Next, we analyse the cor-
relation of threads and memory use in the applications.
Figure 13 shows the average number of threads and the
average virtual memory use of the 22 applications. As seen
from the 	gure, there is a positive correlation between
the number of threads and virtual memory use. Most of
the applications use less than 50 threads. However, there
are several applications using much more threads than the
others. �e top application, Google Contacts Sync, uses
162 threads and more than 12000MB virtual memory. �e
applicationswith high number of threads areAndroid System
and Facebook, which use more than 100 threads. Google App
uses almost 100 threads and a lot of virtual memory as well.

Figure 14 shows the number of applications consuming
di�erent amount ofmainmemory.Wedivide thememory use
into di�erent ranges and count the number of applications
in each range. �e 	gure shows that most of the applications
consume less than 25MB main memory. However, two
applications, Facebook and Google Contacts Sync, consume
almost 150MBmainmemory. GoogleApp also has highmain
memory use of 100MB.

Figure 15: Screenshot of the energy data administration tool
developed in the cloud.

5.4.4. Analysis for Energy-E�cient Pro	ling. Understanding
the characteristics of applications and energy consumption
patterns on the smartphones is very useful for reducing the
energy consumption in the pro	ling process itself. �rough
simple analysis, we can make initial observations on what
applications consume most energy and what applications
consume insigni	cant amount. Our pro	ler can use this
information to reduce the amount of data being collected on
resource utilization. If we 	lter out the data from applications
that consume less than 1% of the total energy in the system,
we can greatly reduce the number of applications that require
intense monitoring. Take the 22 applications in Table 2 as an
example, we can reduce the number of data samples by 50%,
while still keeping accurate data logs from applications that
consume more than 94% of the total energy in the smart-
phones. In other words, it can save half of the energy in pro	l-
ing without losingmuch accuracy in powermonitoring. Even
if the amount of data from smartphones to cloud is reduced
to only 20%, the orchestrator can still capture almost 80%
of the energy consumption from major applications through
pro	ling. As the orchestrator learns about the characteristics
of applications, it can con	gure the system dynamically to
reduce the data samples of applications that are less frequently
used or consume little energy. �us, the amount of data that
needs to be transferred from smartphones to the cloud will
be signi	cantly reduced.

6. Simulations

We have simulated smartphone data of 100 users with 20
applications.We prepared training data and test data samples
containing 40,000 records and 20,000 records, respectively,
for an hour of usage.

We 	rst applied simple decision tree regression classi	er,
rpart (Recursive Partitioning and Regression Trees), available
in R language. �e decision tree classi	er is tested against
the test data set using 10-fold cross-validation, which results
in 92% accuracy. To conduct the experiment using real
data, the data must be formatted and normalized, and,
most importantly, it requires su�cient amount of data. �e
experiment involves careful preprocessing of data to make
sure of the validity of data. �e data is a�ected by noise and
various interruptions in real time.

Figure 15 shows an example decision tree, which can
predict whether the power consumption is low or high given

Wireless Communications and Mobile Computing 13

Data

�reads

Time

Location

Active

Data

�reads

CPU

Memory

Time

Location

Active

0 2010 4030

MeanDecreaseAccuracy

0 2010 40 50 6030

MeanDecreaseGini

Memory

CPU

Figure 16: Results of random forest.

a resource utilization vector with variables (memory, data,
threads, etc.).

�e values of importance variables are predicted accord-
ing to their in
uence on energy consumption. We found
that the amount of data communications and the number
of threads heavily in
uence the energy consumption. �e
decision tree model predicts for a given set of features (in the
resource utilization vector) whether energy is high or low (0
or 1) as a binary classi	cation problem. Recursive partitioning
in a tree-structured model is used for classi	cation. From
Figure 16, we con	rmed that the above features, such as the
amount of data communications and number of threads,
are the most in
uential factors in energy consumption by
considering the Gini index of the random forest model.

7. Discussions

Orchestrator has been demonstrated as an e�ective behaviour
predictor for the participating devices. �e agent application
installed on the smartphones reports logs to the orchestra-
tor. It will be facilitated by the local validator and action
triggers which will be regularly updated by the orches-
trator on demand to reduce energy consumption in data
logging, communication, and computation. Compared with
smartphone based pro	ling, cloud-based orchestration can
support crowdsourced pro	ling of energy consumption from
multiple users. It also provides necessary resources to support
advanced data mining and machine learning techniques.
�e analysis results from the cloud can be used to enhance
local data 	ltering on the smartphones, which can further
reduce energy consumption in the pro	ling process itself.
In order to successfully deploy such orchestration service,
we need to study and explore all the components and their
interdependencies in detail.

One key contribution of this work is to reduce energy
consumption in the pro	ling process itself by learning the
trend and patterns in communications and operations of
di�erent mobile applications. �rough learning the charac-
teristics of the applications, the orchestrator can identify key
applications and operations that consumemost of the energy.
It can make more accurate prediction and adjust the sample
rates accordingly to minimize energy consumption in the
pro	ling process itself. �e learning results can also be used
to support better operation system and application designs
for energy saving.

Questions that we plan to further investigate include the
following: (1) How to further reduce the energy consuming of
pro	ler? (2) How to reduce data logs reporting andminimize
energy consumption in data communication? (3) How to
make orchestrator an epic predictor of device behaviours? (4)
How to	ndoptimal responsibilities of local agent by ensuring
minimal computation and resources? (5) Is the current
solution the best 	t for mass open source contribution?
(6) What are the most appropriate tools for energy-e�cient
cloud orchestration implementation? We plan to implement
advanced features in the wisdom box and big data modules
and to test the prototype iteratively. Other than smartphones,
we would like to extend this framework for testing with
di�erent types of IoT devices.

We believe that the research questions regarding reducing
energy consumption of the mobile devices will be most
important for the future. Some initial ideas include exploring
lightweight local data processing techniques on the mobile
devices to reduce the amount of data logs to be reported
to the cloud. We would also like to investigate machine
learning methods based on crowdsourced data to pro	le the
energy consumption of di�erent applications both globally
and individually.

14 Wireless Communications and Mobile Computing

8. Conclusions and Future Work

In this paper, we proposed a novel cloud orchestration
framework for improving energy e�ciency for smartphones
in the IoT. �e major advantage of this cloud orchestration
is that it supports dynamic work
ow and con	guration
of di�erent processes and services. We have described the
components of the orchestration and their interactions. Our
architecture design is
exible, so that new components and
advanced functions can be added to the system easily.�e big
data, knowledge graph, and control box are openly accessible,
so that both single user andmass collaborators can participate
and add new methods to the system.

We have conducted experiments using real resource
utilization traces collected by four mobile users in a three-
month period. �e results demonstrated that our pro	ler
can successfully characterize the energy consumption of
di�erent applications and identify themost power consuming
applications. It can also give feedback to the energy pro	ler
to reduce energy consumption in data logging. �e amount
of data logs can be reduced signi	cantly through learning
the key energy indicators and application characteristics.
�is iterative learning process can progressively reduce the
communication and computation overheads in energy pro-
	ling. �ere is great potential that big data knowledge can be
used for solving other problems as well, such as energy bug
detection.

In the future, we would like to investigate advanced data
mining and data 	ltering techniques to further reduce energy
consumption in energy pro	ling. We will explore how data
logging and communication can be optimized considering
the application characteristics, usage pattern, and operation
context.

Conflicts of Interest

�e authors declare that there are no con
icts of interest
regarding the publication of this paper.

Acknowledgments

�is research was partially sponsored by the Swedish
Governmental Agency Vinnova under Research Grant 2015-
00347, STINT initiation grant for international collaboration
IB2013-5237, and the Canadian Natural Sciences and
Engineering Research Council. �is work was also partially
supported by the Shenzhen Engineering Laboratory for 3D
ContentGeneratingTechnologies (no. [2017]476),Guangdong
Technology Project (2016B010108010, 2016B010125003),
National Basic Research Program of China (973 Program)
(no. 2014CB744600), National Nature Science Foundation
of China (61403365, 61402458, 61632014, and 61210010), and
Program of International S&T Cooperation of MOST (no.
2013DFA11140). �e authors would like to acknowledge the
master thesis “Enabling Energy-E�cient Data Communica-
tion with Participatory Sensing and Mobile Cloud” written
by P. Sathyamoorthy (2016), Uppsala University, Sweden
(retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:uu:
diva-274875).

References

[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet
of �ings (IoT): a vision, architectural elements, and future
directions,” Future Generation Computer Systems, vol. 29, no. 7,
pp. 1645–1660, 2013.

[2] J. Chase, �e Evolution of the Internet of �ings, Texas Instru-
ments Incorporated, Dallas, TX, USA, 2013.

[3] M. M. Najafabadi, F. Villanustre, T. M. Khoshgo�aar, N. Seliya,
R. Wald, and E. Muharemagic, “Deep learning applications and
challenges in big data analytics,” Journal of Big Data, vol. 2, no.
1, 2015.

[4] S. Borenstein, “A Microeconomic Framework for Evaluating
Energy E�ciency Rebound And Some Implications,” National
Bureau of Economic Research, 2013.

[5] International Energy Agency, More Data, Less Energy -Making
Network Standby More E�cient in Billions of Connected
Devices, © OECD/IEA, 2014 Licence: https://www.iea.org/tc/
termsandconditions/.

[6] A. Carroll and G. Heiser, “An analysis of power consumption in
a smartphone,” in Proceedings of the USENIX annual technical
conference (USENIXATC’10), pp. 21-21, USENIX Association,
Berkeley, CA, USA, 2010.

[7] A. Dzhagaryan, A. Milenković, M. Milosevic, and E. Jovanov,
“An environment for automated measurement of energy con-
sumed by mobile and embedded computing devices,”Measure-
ment, vol. 94, pp. 103–118, 2016.

[8] A. Tzanakaki, M. P. Anastasopoulos, S. Peng et al., “A converged
network architecture for energy e�cient mobile cloud comput-
ing,” in Proceedings of the International Conference on Optical
Network Design andModeling, pp. 120–125, Stockholm, Sweden,
May 2014.

[9] T. K. Kundu and K. Paul, “Improving Android performance
and energy e�ciency,” in Proceedings of the 24th International
Conference on VLSI Design, VLSI Design 2011, Held Jointly with
10th International Conference on Embedded Systems, pp. 256–
261, Chennai, India, January 2011.

[10] P. Shu, F. Liu, H. Jin et al., “eTime: Energy-e�cient transmission
between cloud and mobile devices,” in Proceedings of the IEEE
INFOCOM 2013 - IEEE Conference on Computer Communica-
tions, pp. 195–199, Turin, Italy, April 2013.

[11] S. Nirjon, A. Nicoara, C.-H. Hsu, J. Singh, and J. Stankovic,
“MultiNets: Policy oriented real-time switching of wireless
interfaces on mobile devices,” in Proceedings of the 18th IEEE
Real Time and Embedded Technology and Applications Sympo-
sium, RTAS 2012, pp. 251–260, Beijing, China, April 2012.

[12] J. Tang, Z. Zhou, J. Niu, and Q. Wang, “An energy e�cient
hierarchical clustering index tree for facilitating time-correlated
region queries in the Internet of�ings,” Journal of Network and
Computer Applications, vol. 40, no. 1, pp. 1–11, 2014.

[13] A. Venčkauskas, N. Jusas, E. Kazanavičius, and V. Štuikys, “An
Energy E�cient Protocol For �e Internet Of �ings,” Journal
of Electrical Engineering, vol. 66, no. 1, pp. 47–52, 2015.

[14] T. Zhang, X. Zhang, F. Liu, H. Leng, Q. Yu, and G. Liang,
“ETrain: making wasted energy useful by utilizing heartbeats
for mobile data transmissions,” in Proceedings of the 35th IEEE
International Conference on Distributed Computing Systems,
ICDCS 2015, pp. 113–122, Columbus, OH, USA, July 2015.

[15] B. Steigerwald and A. Agrawal, “Developing Green So�ware,”
Intel White Paper, vol. 9, 2011.

[16] M.Altamimi, A.Abdrabou,K.Naik, andA.Nayak, “Energy cost
models of smartphones for task o�oading to the cloud,” IEEE

http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-274875
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-274875
https://www.iea.org/tc/termsandconditions/
https://www.iea.org/tc/termsandconditions/

Wireless Communications and Mobile Computing 15

Transactions on Emerging Topics in Computing, vol. 3, no. 3, pp.
384–398, 2015.

[17] Power Pro	les for Android, July 2015, https://source.android
.com/devices/tech/power/index.html.

[18] T.Dao, I. Singh,H.V.Madhyastha, S. V. Krishnamurthy, G. Cao,
and P. Mohapatra, “TIDE: a user-centric tool for identifying
energy hungry applications on smartphones,” in Proceedings of
the 35th IEEE International Conference on Distributed Comput-
ing Systems, ICDCS 2015, pp. 123–132, Columbus, OH,USA, July
2015.

[19] M. A. Hoque, M. Siekkinen, K. N. Khan, Y. Xiao, and S.
Tarkoma, “Modeling, pro	ling, and debugging the energy
consumption of mobile devices,” ACM Computing Surveys, vol.
48, no. 3, 2015.

[20] A. Pathak, Y. C. Hu, and M. Zhang, “Where is the energy
spent insidemy app?: Fine grained energy accounting on smart-
phones with eprof,” in Proceedings of the 7th ACM European
Conference on ComputerSystems, EuroSys’12, pp. 29–42, Bern,
Switzerland, April 2012.

[21] A. Nettstrater, M. Bauer, M. Boussard et al., “Internet of�ings-
Architecture IoT-A Deliverable D1. 3–Updated reference model
for IoT v1.5,” 2012, http://www.meet-iot.eu/deliverables-IOTA/
D1 3.pdf.

[22] A. Gonzlez Garca, M. Alvarez Alvarez, J. Pascual Espada et
al., “Introduction to devices orchestration in internet of things
using SBPMN,” International Journal of Interactive Multimedia
and Arti	cial Intelligence, vol. 1, no. 4, pp. 16–22, 2011.

[23] F. Liu, P. Shu, and J. C. S. Lui, “AppATP: An Energy Conserving
Adaptive Mobile-Cloud Transmission Protocol,” IEEE Transac-
tions on Computers, vol. 64, no. 11, pp. 3051–3063, 2015.

[24] A. J. Oliner, A. P. Iyer, I. Stoica, E. Lagerspetz, and S. Tarkoma,
“Carat: collaborative energy diagnosis for mobile devices,” in
Proceedings of the 11thACMConference onEmbeddedNetworked
Sensor Systems (SenSys ’13), pp. 10:1–10:14, Rome, Italy, Novem-
ber 2013.

[25] L. Atzori, A. Iera, and G. Morabito, “�e internet of things: a
survey,”Computer Networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[26] P. Sathyamoorthy, E. C.-H. Ngai, X. Hu, and V. C. M. Leung,
“Energy e�ciency as an orchestration service for mobile inter-
net of things,” in Proceedings of the 7th IEEE International Con-
ference on Cloud Computing Technology and Science, CloudCom
2015, pp. 155–162, Vancouver, BC, USA, December 2015.

[27] Android Studio,April 2017, “LogcatCommand-lineTool” https://
developer.android.com/studio/command-line/logcat.html.

[28] Android Studio, April 2017, “Dalvik Debug Monitor Server
(DDMS)” https://developer.android.com/studio/pro	le/ddms
.html.

[29] Qualcomm Technologies, Inc., April 2015, “Trepn Pro	ler”
https://developer.qualcomm.com/mobile-development/increase-
app-performance/trepn-pro	ler.

[30] GraphQL, ”Introduction toGraphQL, April 2017, http://graphql
.org/learn/.

[31] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang, “Fine-
grained power modeling for smartphones using system call
tracing,” in Proceedings of the 6th ACM EuroSys Conference on
Computer Systems, EuroSys 2011, pp. 153–167, April 2011.

[32] Emma Jane Hogbin, ACPI: Advanced Con	guration and Power
Interface, CreateSpace Independent Publishing Platform, 2015.

https://source.android.com/devices/tech/power/index.html
https://source.android.com/devices/tech/power/index.html
http://www.meet-iot.eu/deliverables-IOTA/D1_3.pdf
http://www.meet-iot.eu/deliverables-IOTA/D1_3.pdf
https://developer.android.com/studio/command-line/logcat.html
https://developer.android.com/studio/command-line/logcat.html
https://developer.android.com/studio/profile/ddms.html
https://developer.android.com/studio/profile/ddms.html
https://developer.qualcomm.com/mobile-development/increase-app-performance/trepn-profiler
https://developer.qualcomm.com/mobile-development/increase-app-performance/trepn-profiler
http://graphql.org/learn/
http://graphql.org/learn/

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation

http://www.hindawi.com

 Journal of

Volume 201

Submit your manuscripts at

https://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

