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ABSTRACT
Recent spates of cyber-attacks and frequent emergence of
applications affecting Internet traffic dynamics have made
it imperative to develop effective techniques that can ex-
tract, and make sense of, significant communication pat-
terns from Internet traffic data for use in network operations
and security management. In this paper, we present a gen-
eral methodology for building comprehensive behavior pro-
files of Internet backbone traffic in terms of communication
patterns of end-hosts and services. Relying on data min-
ing and information-theoretic techniques, the methodology
consists of significant cluster extraction, automatic behav-
ior classification and structural modeling for in-depth inter-
pretive analyses. We validate the methodology using data
sets from the core of the Internet. The results demonstrate
that it indeed can identify common traffic profiles as well as
anomalous behavior patterns that are of interest to network
operators and security analysts.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations—Network monitoring

General Terms
Algorithms, Measurement, Performance, Security

Keywords
Behavior profiles, Traffic measurement, Network monitoring

1. INTRODUCTION
As the Internet continues to grow in size and complex-

ity, the challenge of effectively provisioning, managing and
securing it has become inextricably linked to a deep under-
standing of Internet traffic. Although there has been sig-
nificant progress in instrumenting data collection systems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’05, August 21–26, 2005, Philadelphia, Pennsylvania, USA.
Copyright 2005 ACM 1-59593-009-4/05/0008 ...$5.00.

for high-speed networks at the core of the Internet, devel-
oping a comprehensive understanding of the collected data
remains a daunting task. This is due to the vast quantities
of data, and the wide diversity of end-hosts, applications
and services found in Internet traffic. While there exists an
extensive body of prior work on traffic characterization on
IP backbones – especially in terms of statistical properties
(e.g., heavy-tail, self-similarity) for the purpose of network
performance engineering, there has been very little attempt
to build general profiles in terms of behaviors, i.e., commu-
nication patterns of end-hosts and services. The latter has
become increasingly imperative and urgent in light of wide
spread cyber attacks and the frequent emergence of disrup-
tive applications that often rapidly alter the dynamics of
network traffic, and sometimes bring down valuable Inter-
net services. There is a pressing need for techniques that
can extract underlying structures and significant communi-
cation patterns from Internet traffic data for use in network
operations and security management.

The goal of this paper is to develop a general methodol-
ogy for profiling Internet backbone traffic that i) not only
automatically discovers significant behaviors of interest from
massive traffic data, ii) but also provides a plausible in-
terpretation of these behaviors to aid network operators
in understanding and quickly identifying anomalous events
of significance. This second aspect of our methodology is
both important and necessary due to voluminous interest-
ing events and limited human resources. For these purposes,
we employ a combination of data mining and information-
theoretic techniques to automatically cull useful informa-
tion from largely unstructured data, and classify and build
structural models to characterize host/service behaviors of
similar patterns.

In our study we use packet header traces collected on In-
ternet backbone links in a tier-1 ISP, which are aggregated
into flows based on the well-known five-tuple - the source IP
address (srcIP), destination IP address (dstIP), source port
(srcPrt), destination port (dstPrt), and protocol fields.
Since our goal is to profile traffic in terms of communication
patterns, we start with the essential four-dimensional fea-
ture space consisting of srcIP, dstIP, srcPrt and dstPrt.
Using this four-dimensional feature space, we extract clus-
ters of significance along each dimension, where each cluster
consists of flows with the same feature value (referred to as
cluster key) in the said dimension. This leads to four collec-
tions of interesting clusters – srcIP clusters, dstIP clusters,
srcPrt clusters, and dstPrt clusters. The first two represent



a collection of host behaviors while the last two represent
a collection of service behaviors. In extracting clusters of
significance, instead of using a fixed threshold based on vol-
ume, we adopt an information-theoretic approach that culls
interesting clusters based on the underlying feature value
distribution (or entropy) in the fixed dimension. Intuitively,
clusters with feature values (cluster keys) that are distinct
in terms of distribution are considered significant and ex-
tracted; this process is repeated until the remaining clus-
ters appear indistinguishable from each other. This yields
a cluster extraction algorithm that automatically adapts to
the traffic mix and the feature in consideration.

Given the extracted clusters along each dimension of the
feature space, the second stage of our methodology is to
discover “structures” among the clusters, and build com-
mon behavior models for traffic profiling. For this purpose,
we first develop a behavior classification scheme based on
observed similarities/dissimilarities in communication pat-
terns (e.g., does a given source communicate with a single
destination or with a multitude of destinations?). For ev-
ery cluster, we compute an information-theoretic measure of
the variability or uncertainty of each dimension except the
(fixed) cluster key dimension, and use the resulting metrics
to create behavior classes. We study the characteristics of
these behavior classes over time as well as the dynamics of
individual clusters, and demonstrate that the proposed clas-
sification scheme is robust and provides a natural basis for
grouping together clusters of similar behavior patterns.

In the next step, we adopt ideas from structural modeling
to develop the dominant state analysis technique for mod-
eling and characterizing the interaction of features within
a cluster. This leads to a compact “structural model” for
each cluster based on dominant states that capture the most
common or significant feature values and their interaction.
The dominant state analysis serves two important purposes.
First, it provides support for our behavior classification –
we find that clusters within a behavior class have nearly
identical forms of structural models. Second, it yields com-
pact summaries of cluster information which provides inter-
pretive value to network operators for explaining observed
behavior, and may help in narrowing down the scope of a
deeper investigation into specific clusters. In addition, we
investigate additional features such as average flow sizes of
clusters (in terms of both packet and byte counts) and their
variabilities, and use them to further characterize similar-
ities/dissimilarities among behavior classes and individual
clusters.

We validate our approach using traffic data collected from
a variety of links at the core of the Internet, and find that our
approach indeed provides a robust and meaningful way of
characterizing and interpreting cluster behavior. We show
that several popular services and applications, as well as
certain types of malicious activities, exhibit stable and dis-
tinctive behavior patterns in terms of the measures we for-
mulate. The existence of such “typical” behavior patterns
in traffic makes it possible to separate out a relatively small
set of “atypical” clusters for further investigation. To this
end, we present case studies highlighting a number of clus-
ters with unusual characteristics that are identified by our
profiling techniques, and demonstrate that these clusters ex-
hibit malicious or unknown activities that are worth inves-
tigating further. Thus our technique can become a powerful
tool for network operators and security analysts with ap-

plications to critical problems such as detecting anomalies
or the spread of hitherto unknown security exploits, profil-
ing unwanted traffic, tracking the growth of new services or
applications, and so forth.

The contributions of this paper are summarized as follows:

• We present a novel adaptive threshold-based clustering
approach for extracting significant clusters of interest
based on the underlying traffic patterns.

• We introduce an information-theoretic behavior classi-
fication scheme that automatically groups clusters into
classes with distinct behavior patterns.

• We develop structural modeling techniques for inter-
pretive analyses of cluster behaviors.

• Applying our methodology to Internet backbone traf-
fic, we identify canonical behavior profiles for captur-
ing typical and common communication patterns, and
demonstrate how they can be used to detect interest-
ing, anomalous or atypical behaviors.

The remainder of the paper is organized as follows. Sec-
tion 1.1 briefly discusses the related work, and Section 2
provides some background. The adaptive-threshold cluster-
ing algorithm is presented in Section 3. In Section 4 we
introduce the behavior classification and study its tempo-
ral characteristics. We present the dominant state analysis
and additional feature exploration in Section 5, and apply
our methodology for traffic profiling in Section 6. Section 7
concludes the paper.

1.1 Related Work
Most of the prior work has analyzed specific aspects of

traffic or applied metrics that are deemed interesting a pri-
ori to identify significant network events of interest. For
example, [1, 2] focus on efficient techniques for identifying
“heavy-hitters” in one or several dimensions, and [3, 4] focus
on identifying port scans. [5] studies the behavior of flash
crowds, while [6, 7, 8] focus on analyzing worm and other
exploit activities on the Internet. Research in [9, 10, 11]
applies signal processing and statistical inference techniques
for identifying traffic anomalies, mostly from the perspective
of link-level traffic aggregate. Signature-based intrusion de-
tection systems such as SNORT [12] or Bro [13] look for well-
known signatures or patterns in network traffic, while several
behavior-based anomaly detection systems (see, e.g., [14, 15]
and references therein) have been developed using data min-
ing techniques. In [16], information-theoretic measures are
proposed for evaluating anomaly detection schemes.

Closer to our work, [17] focuses on resource consumption
in network traffic, and develops a clustering algorithm that
automatically discovers significant traffic patterns along one
or multiple dimensions using fixed volume thresholds. The
studies in [18, 19] focus on communication patterns or pro-
files of applications instead of broader network traffic. Con-
current with our work, [20, 21] are most similar in spirit,
and in a sense are complementary, to ours. In [20], the au-
thors study the “host behaviors” (communication patterns)
at three levels, with the objective to classify traffic flows us-
ing packet header information only. Arguably, our entropy-
based behavior classification and dominant state analysis
provide a formal framework to analyze host behaviors at
functional and application levels. As an extension to their



early work [9, 10], the authors in [21] also use entropy to
characterize traffic feature distributions, with emphasis on
detecting network-wide traffic anomalies at PoP-level OD
(origin-destination) flows: the PCA-based subspace method
is used to separate “anomalies” from “normal” traffic. In
contrast, our objective is to build behavior profiles at host
and service levels using traffic communication patterns with-
out any presumption on what is normal or anomalous.

2. BACKGROUND AND DATASETS
Information essentially quantifies “the amount of uncer-

tainty” contained in data [22]. Consider a random variable
X that may take NX discrete values. Suppose we randomly
sample or observe X for m times, which induces an empir-
ical probability distribution1 on X, p(xi) = mi/m, xi ∈ X,
where mi is the frequency or number of times we observe X
taking the value xi. The (empirical) entropy of X is then
defined as

H(X) := −
�

xi∈X

p(xi) log p(xi) (1)

where by convention 0 log 0 = 0.
Entropy measures the “observational variety” in the ob-

served values of X [23]. Note that unobserved possibili-
ties (due to 0 log 0 = 0) do not enter the measure, and
0 ≤ H(X) ≤ Hmax(X) := log min{NX , m}. Hmax(X) is
often referred to as the maximum entropy of (sampled) X,

as 2Hmax(X) is the maximum number of possible unique val-
ues (i.e., “maximum uncertainty”) that the observed X can
take in m observations. Clearly H(X) is a function of the
support size NX and sample size m. Assuming that m ≥ 2
and NX ≥ 2 (otherwise there is no “observational variety”
to speak of), we define the standardized entropy below – re-
ferred to as relative uncertainty (RU) in this paper, as it
provides an index of variety or uniformity regardless of the
support or sample size:

RU(X) :=
H(X)

Hmax(X)
=

H(X)

log min{NX , m}
. (2)

Clearly, if RU(X) = 0, then all observations of X are of
the same kind, i.e., p(x) = 1 for some x ∈ X; thus obser-
vational variety is completely absent. More generally, let A
denote the (sub)set of observed values in X, i.e., p(xi) > 0
for xi ∈ A. Suppose m ≤ NX . Then RU(X) = 1 if and only
if |A| = m and p(xi) = 1/m for each xi ∈ A. In other words,
all observed values of X are different or unique, thus the ob-
servations have the highest degree of variety or uncertainty.
Hence when m ≤ NX , RU(X) provides a measure of “ran-
domness” or “uniqueness” of the values that the observed
X may take – this is what is mostly used in this paper, as
in general m � NX .

In the case of m > NX , RU(X) = 1 if and only if
mi = m/NX , thus p(xi) = 1/NX for xi ∈ A = X, i.e.,
the observed values are uniformly distributed over X. In
this case, RU(X) measures the degree of uniformity in the
observed values of X. As a general measure of unifor-
mity in the observed values of X, we consider the condi-
tional entropy H(X|A) and conditional relative uncertainty
RU(X|A) by conditioning X based on A. Then we have
H(X|A) = H(X), Hmax(X|A) = log |A| and RU(X|A) =

1With m → ∞, the induced empirical distribution ap-
proaches the true distribution of X.

Table 1: Multiple links used in our analysis.

Link Time Util. Duration Packets Trace size
L1 01/28/2004 78 Mbps 24 hours 1.60 G 95 GB
L2 01/28/2004 86 Mbps 24 hours 1.65 G 98 GB
L3 02/06/2004 40 Mbps 3 hours 203 M 12 GB
L4 02/06/2004 52 Mbps 3 hours 191 M 11 GB
L5 04/07/2003 207 Mbps 3 hours 518 M 28 GB

H(X)/log|A|. Hence RU(X|A) = 1 if and only if p(xi) =
1/|A| for every xi ∈ A. In general, RU(X|A) ≈ 1 means that
the observed values of X are closer to being uniformly dis-
tributed, thus less distinguishable from each other, whereas
RU(X|A) � 1 indicates that the distribution is more skewed,
with a few values more frequently observed. This measure
of uniformity is used in Section 3 for defining “significant
clusters of interest”.

We conclude this section by providing a quick descrip-
tion of the datasets used in our study. The datasets consist
of packet header (the first 44 bytes of each packet) traces
collected from multiple links in a large ISP network at the
core of the Internet (Table 1). For every 5-minute time slot,
we aggregate packet header traces into flows, which is de-
fined based on the well-known 5-tuple (i.e., the source IP
address, destination IP address, source port number, desti-
nation port number, and protocol) with a timeout value of
60 seconds [24]. The 5-minute time slot is used as a trade-
off between timeliness of traffic behavior profiling and the
amount of data to be processed in each slot.

3. EXTRACTING SIGNIFICANT CLUSTERS
We start by focusing on each dimension of the four-feature

space, srcIP, dstIP, srcPrt, or dstPrt, and extract “sig-
nificant clusters of interest” along this dimension. The ex-
tracted srcIP and dstIP clusters yield a set of “interesting”
host behaviors (communication patterns), while the srcPrt

and dstPrt clusters yield a set of “interesting” service/port
behaviors, reflecting the aggregate behaviors of individual
hosts on the corresponding ports. In the following we intro-
duce our definition of significance/interestingness using the
(conditional) relative uncertainty measure.

Given one feature dimension X and a time interval T , let
m be the total number of flows observed during the time
interval, and A = {a1, . . . , an}, n ≥ 2, be the set of dis-
tinct values (e.g., srcIP’s) in X that the observed flows
take. Then the (induced) probability distribution PA on
X is given by pi := PA(ai) = mi/m, where mi is the num-
ber of flows that take the value ai (e.g., having the srcIP

ai). Then the (conditional) relative uncertainty, RU(PA) :=
RU(X|A), measures the degree of uniformity in the ob-
served features A. If RU(PA) is close to 1, say, > β = 0.9,
then the observed values are close to being uniformly dis-
tributed, and thus nearly indistinguishable. Otherwise, there
are likely feature values in A that “stand out” from the
rest. We say a subset S of A contains the most significant
(thus “interesting”) values of A if S is the smallest subset
of A such that i) the probability of any value in S is larger
than those of the remaining values; and ii) the (conditional)
probability distribution on the set of the remaining values,
R := A − S, is close to being uniformly distributed, i.e.,
RU(PR) := RU(X|R) > β. Intuitively, S contains the most
significant feature values in A, while the remaining values
are nearly indistinguishable from each other.
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(c) srcPrt dimension
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(e) srcIP dimension
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(f) dstIP dimension
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(g) srcPrt dimension
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(h) dstPrt dimension

Figure 1: The total number of distinct values and significant clusters extracted from four feature dimensions of L1 over a one-

day period (top row). The corresponding final cut-off threshold obtained by the information-based significant cluster extraction

algorithm (bottom row).

To see what S contains, order the feature values of A based
on their probabilities: let â1, â2, . . . , ân be such as PA(â1) ≥
PA(â2) ≥ · · · PA(ân). Then S = {â1, â2, . . . , âk−1} and
R = A − S = {âk, âk+1, . . . , ân} where k is the smallest
integer such that RU(PR) > β. Let α∗ = âk−1. Then α∗

is the largest “cut-off” threshold such that the (conditional)
probability distribution on the set of remaining values R is
close to being uniformly distributed.

Algorithm 1 Entropy-based Significant Cluster Extraction

1: Parameters: α := α0; β := 0.9; S := ∅;
2: Initialization: S := ∅; R := A; k := 0;
3: compute prob. dist. PR and its RU θ := RU(PR);
4: while θ ≤ β do

5: α = α × 2−k; k + +;
6: for each ai ∈ R do

7: if PA(ai) ≥ α then

8: S := S ∪ {ai}; R := R − {ai};
9: end if

10: end for

11: compute (cond.) prob. dist. PR and θ := RU(PR);
12: end while

Algorithm 1 presents an efficient approximation algorithm2

(in pseudo-code) for extracting the significant clusters in S
from A (thereby, the clusters of flows associated with the
significant feature values). The algorithm starts with an ap-
propriate initial value α0 (e.g., α0 = 2%), and searches for
the optimal cut-off threshold α∗ from above via “exponential
approximation” (reducing the threshold α by an exponen-
tially decreasing factor 1/2k at the kth step). As long as
the relative uncertainty of the (conditional) probability dis-

2An efficient algorithm using binary search is also devised,
but not used here.

tribution PR on the (remaining) feature set R is less than
β, the algorithm examines each feature value in R and in-
cludes those whose probabilities exceed the threshold α into
the set S of significant feature values. The algorithm stops
when the probability distribution of the remaining feature
values is close to being uniformly distributed (> β = 0.9).
Let α̂∗ be the final cut-off threshold (an approximation to
α∗) obtained by the algorithm.

Our algorithm adaptively adjusts the “cut-off” threshold
α̂∗ based on the underlying feature value distributions to ex-
tract significant clusters. Fig. 1 presents the results we ob-
tain by applying the algorithm to the 24-hour packet trace
collected on L1, where the significant clusters are extracted
in every 5-minute time slot along each of the four feature
dimensions. In the top row we plot both the total number
of distinct feature values as well as the number of signifi-
cant clusters extracted in each 5-minute slot over 24 hours
for the four feature dimensions (note that the y-axis is in log
scale). In the bottom row, we plot the corresponding final
cut-off threshold obtained by the algorithm. We see that
while the total number of distinct values along a given di-
mension may not fluctuate very much, the number of signif-
icant feature values (clusters) may vary dramatically, due to
changes in the underlying feature value distributions. These
changes result in different cut-off thresholds being used in
extracting the significant feature values (clusters). In fact,
the dramatic changes in the number of significant clusters
(or equivalently, the cut-off threshold) also signifies major
changes in the underlying traffic patterns.

To provide some specific numbers, consider the 15th time
slot. There are a total of 89261 distinct srcIP’s, 79660
distinct dstIP’s, 49511 srcPrt’s and 50602 dstPrt’s. Our
adaptive-threshold algorithm extracts 117 significant srcIP



clusters, 273 dstIP clusters, 8 srcPrt clusters and 12 dstPrt

clusters, with the resulting cut-off threshold being 0.0625%,
0.03125%, 0.25% and 1%, respectively. We see that the num-
ber of significant clusters is far smaller than the number of
feature values n, and that the cut-off thresholds α̂∗ for the
different feature dimensions also differ. This shows that no
single fixed threshold would be adequate in the definition of
“significant” behavior clusters.

4. CLUSTER BEHAVIOR CLASSIFICATION
In this section we introduce an information-theoretic ap-

proach to characterize the “behavior” of the significant clus-
ters extracted using the algorithm in the previous section.
We show that this leads to a natural behavior classification
scheme that groups the clusters into classes with distinct
behavior patterns.

4.1 Behavior Class Definition
Consider the set of, say, srcIP, clusters extracted from

flows observed in a given time slot. The flows in each clus-
ter share the same cluster key, i.e., the same srcIP address,
while they can take any possible value along the other three
“free” feature dimensions. Hence the flows in a cluster in-
duce a probability distribution on each of the three “free”
dimensions, and thus a relative uncertainty measure can be
defined. For each cluster extracted along a fixed dimension,
we use X, Y and Z to denote its three “free” dimensions,
using the convention listed in Table 2. Hence for a srcIP

cluster, X, Y , and Z denote the srcPrt, dstPrt and dstIP

dimensions, respectively. This cluster can be characterized
by an RU vector [RUX , RUY , RUZ ].

Table 2: Convention of free dimension denotations.

Cluster key Free dimensions
X Y Z

srcIP srcPrt dstPrt dstIP
dstIP srcPrt dstPrt srcIP
srcPrt dstPrt srcIP dstIP
dstPrt srcPrt srcIP dstIP

In Fig. 2(a) we represent the RU vector of each srcIP

cluster extracted in each 5-minute time slot over a 1-hour
period from L1 as a point in a unit-length cube. We see
that most points are “clustered” (in particular, along the
axises), suggesting that there are certain common “behavior
patterns” among them. Fig. 3 shows similar results using
the srcIP clusters on four other links. This “clustering”
effect can be explained by the “multi-modal” distribution of
the relative uncertainty metrics along each of the three free
dimensions of the clusters, as shown in Figs. 2(b), (c) and
(d) where we plot the histogram (with a bin size of 0.1) of
RUX , RUY and RUZ of all the clusters on links L1 to L5

respectively. For each free dimension, the RU distribution
of the clusters is multi-modal, with two strong modes (in
particular, in the case of srcPrt and dstPrt) residing near
the two ends, 0 and 1. Similar observations also hold for
dstIP, srcPrt and dstPrt clusters extracted on these links.

As a convenient way to group together clusters of similar
behaviors, we divide each RU dimension into three cate-
gories (assigned with a label): 0 (low), 1 (medium) and 2

(high), using the following criteria:

L(ru) =

���
��

0(low), if 0 ≤ ru ≤ ε,

1(medium), if ε < ru < 1 − ε,

2(high), if 1 − ε ≤ ru ≤ 1,

(3)

where for the srcPrt and dstPrt dimensions, we choose
ε = 0.2, while for the srcIP and dstIP dimensions, ε =
0.3. This labelling process classifies clusters into 27 possible
behavior classes (BC in short), each represented by a (label)
vector [L(RUX), L(RUY ), L(RUZ)] ∈ {0, 1, 2}3. For ease
of reference, we also treat [L(RUX), L(RUY ), L(RUZ)] as
an integer (in tierary representation) id = L(RUX) · 32 +
L(RUY ) · 3 + L(RUZ) ∈ {0, 1, 2, . . . , 26}, and refer to it
as BCid. Hence srcIP BC6 = [0, 2, 0], which intuitively
characterizes the communicating behavior of a host using a
single or a few srcPrt’s to talk with a single or a few dstIP’s
on a larger number of dstPrt’s. We remark here that for
clusters extracted using other fixed feature dimensions (e.g.,
srcPrt, dstPrt or dstIP), the BC labels and id’s have a
different meaning and interpretation, as the free dimensions
are different (see Table 2). We will explicitly refer to the
BCs defined along each dimension as srcIP BCs, dstIP BCs,
srcPrt BCs and dstPrt BCs. However, when there is no
confusion, we will drop the prefix.

4.2 Temporal Properties of Behavior Classes
We now study the temporal properties of the behavior

classes. We introduce three metrics to capture three differ-
ent aspects of the characteristics of the BC’s over time: i)
popularity: which is the number of times we observe a par-
ticular BC appearing (i.e., at least one cluster belonging to
the BC is observed); ii) (average) size: which is the average
number of clusters belonging to a given BC, whenever it is
observed; and iii) (membership) volatility: which measures
whether a given BC tends to contain the same clusters over
time (i.e., the member clusters re-appear over time), or new
clusters.

Formally, consider an observation period of T time slots.
For each BCi, let Cij be the number of observed clusters
that belong to BCi in the time slot τj , j = 1, 2, . . . , T ,
Oi the number of time slots that BCi is observed, i.e.,
Oi = |{Cij : Cij > 0}|, and Ui be the number of unique
clusters belonging to BCi over the entire observation pe-
riod. Then the popularity of BCi is defined as Πi = Oi/T ;

its average size Σi = �T

j=1 Cij/Oi; and its (membership)

volatility Ψi = Ui/�T

j=1 Cij = Ui/(ΠiOi). If a BC contains
the same clusters in all time slots, i.e., Ui = Cij , for every
j such that Cij > 0, then Ψi = 0. In general, the closer Ψi

is to 0, the less volatile the BC is. Note that the member-
ship volatility metric is defined only for BC’s with relatively
high frequency, e.g., Π > 0.2, as otherwise it contains too
few “samples” to be meaningful.

In Figs. 4(a), (b) and (c) we plot Πi, Σi and Ψi of the
srcIP BC’s for the srcIP clusters extracted using link L1

over a 24-hour period, where each time slot is a 5-minute
interval (i.e., T = 288). From Fig. 4(a) we see that 7 BC’s,
BC2 [0,0,2], BC6 [0,2,0], BC7 [0,2,1], BC8 [0,2,2], BC18

[2,0,0], BC19 [2,0,1] and BC20 [2,0,2], are most popular, oc-
curring more than half of the time; while BC11 [2,0,2] and
BC12 [2,1,0] and BC24 [2,2,1] have moderate popularity, oc-
curring about one-third of the time. The remaining BC’s
are either rare or not observed at all. Fig. 4(b) shows that
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Figure 2: The distribution of relative uncertainty on free dimensions for srcIP clusters from L1 during a 1-hour period.
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Figure 3: The distribution of relative uncertainty on free dimensions for srcIP clusters from L2,3,4,5 during a 1-hour period.

the five popular BC’s, BC2, BC6, BC7, BC18, and BC20,
have the largest (average) size, each having around 10 or
more clusters; while the other two popular BC’s, BC8 and
BC19, have four or fewer BC’s on the average. The less
popular BC’s are all small, having at most one or two clus-
ters on the average when they are observed. From Fig. 4(c),
we see that the two popular BC2 and BC20 (and the less
popular BC11, BC12 and BC24) are most volatile, while the
other five popular BC’s, BC6, BC7, BC8, BC18 and BC19

are much less volatile. To better illustrate the difference in
the membership volatility of the 7 popular BC’s, in Fig. 4(d)
we plot Ui as a function of time, i.e., Ui(t) is the total num-
ber of unique clusters belonging to BCi up to time slot t. We
see that for BC2 and BC20, new clusters show up in nearly
every time slot, while for BC7, BC8 and BC19, the same
clusters re-appear again and again. For BC6 and BC18,
new clusters show up gradually over time and they tend to
re-occur, as evidenced by the tapering off of the curves and
the large average size of these two BC’s.

4.3 Behavior Dynamics of Individual Clusters
We now investigate the behavior characteristics of indi-

vidual clusters over time. In particular, we are interested in
understanding i) the relation between the frequency of a clus-
ter (i.e., how often it is observed) and the behavior class(es)
it appears in; and ii) the behavior stability of a cluster if it
appears multiple times, namely, whether a cluster tends to
re-appear in the same BC or different BC’s?

We use the set of srcIP clusters extracted on links with
the longest duration, L1 and L2, over a 24-hour period as
two representative examples to illustrate our findings. Fig.5
shows the frequency distribution of clusters in log-log scale,

where the x-axis is the cluster id ordered based on its fre-
quency (the most frequent cluster first). The distribution is
“heavy-tailed”: for example more than 90.3% (and 89.6%)
clusters in L1 (and L2) occur fewer than 10 times, of which
47.1% (and 55.5%) occur only once; 0.6% (and 1.2%) oc-
cur more than 100 times. Moreover, the most frequent
clusters all fall into the five popular but non-volatile BC’s,
BC6, BC7, BC8, BC18 and BC19, while a predominant ma-
jority of the least frequent clusters belong to BC2 and BC20.
The medium-frequency clusters belong to a variety of BCs,
with BC2 and BC20 again dominant.

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

Clusters

F
re

qu
en

cy

L
1

L
2

Figure 5: Frequencies of all srcIP clusters on L1 and L2.

Next, for those clusters that appear at least twice (2443
and 4639 srcIP clusters from link L1 and L2, respectively),
we investigate whether they tend to re-appear in the same
BC or different BC’s. We find that a predominant majority
(nearly 95% on L1 and 96% on L2) stay in the same BC
when they re-appear. Only a few (117 clusters on L1 and
337 on L2) appear in more than 1 BC. For instance, out
of the 117 clusters on L1, 104 appear in 2 BC’s, 11 in 3
BC’s and 1 in 5 BC’s. We refer to these clusters as “multi-
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Figure 4: Temporal properties of srcIP BCs using srcIP clusters on L1 over a 24-hour period.

BC” clusters. We have performed an in-depth analysis on
the “behavior transitions” of these “multi-BC” clusters in
terms of their RU vectors (RUVs), the detail of which can be
found in [25]. We find that most of the behavior transitions
(i.e., a cluster from one BC to another BC) are between
“neighboring” or “akin” BC’s (e.g., from BC7 to BC8), more
a consequence of the choice of ε in Eq.(3), rather than any
significant behavioral changes. Only a very few (e.g., only
28 out of the 117 “multi-BC” clusters on L1) exhibit large
“deviant” behavior transitions (e.g., from a BC to a “non-
akin” BC) that are due to significant traffic pattern changes,
and thus can be regarded as unstable clusters.

We conclude this section by commenting that our obser-
vations and results regarding the temporal properties of be-
havior classes and behavior dynamics of individual clusters
hold not only for the srcIP clusters extracted on L1 but
also on other dimensions and links we studied. Such results
are included in [25]. In summary, our results demonstrate
that the behavior classes defined by our RU-based behavior
classification scheme manifest distinct temporal characteris-
tics, as captured by the frequency, populousness and volatil-
ity metrics. In addition, clusters (especially those frequent
ones) in general evince consistent behaviors over time, with
only a very few occasionally displaying unstable behaviors.
In a nutshell, our RU-based behavior classification scheme
inherently captures certain behavior similarity among (sig-
nificant) clusters. This similarity is in essence measured by
how varied (e.g., random or deterministic) the flows in a
cluster assume feature values in the other three free dimen-
sions. The resulting behavior classification is consistent and
robust over time, capturing clusters with similar temporal
characteristics.

5. STRUCTURAL MODELS
In this section we introduce the dominant state analysis

technique for modeling and characterizing the interaction
of features within a cluster. We also investigate additional
features, such as average flow sizes of clusters and their vari-
abilities for further characterizing similarities/dissimilarities
among behavior classes and individual clusters. The dom-
inant state analysis and additional feature inspection to-
gether provide plausible interpretation of cluster behavior.

5.1 Dominant State Analysis
Our dominant state analysis borrows ideas from struc-

tural modeling or reconstructability analysis in system the-

ory ([26, 27, 28]) as well as more recent graphical models
in statistical learning theory [29]. The intuition behind our
dominant state analysis is described below. Given a cluster,
say a srcIP cluster, all flows in the cluster can be repre-
sented as a 4-tuple (ignoring the protocol field) 〈u, xi, yi, zi〉,
where the srcIP has a fixed value u, while the srcPrt (X
dimension), dsrPrt (Y dimension) and dstIP (Z dimension)
may take any legitimate values. Hence each flow in the clus-
ter imposes a “constraint” on the three “free” dimensions
X, Y and Z. Treating each dimension as a random variable,
the flows in the cluster constrain how the random variables
X, Y and Z “interact” or “depend” on each other, via the
(induced) joint probability distribution P(X, Y, Z). The ob-
jective of dominant state analysis is to explore the interac-
tion or dependence among the free dimensions by identifying
“simpler” subsets of values or constraints (called structural
models in the literature [26]) to represent or approximate the
original data in their probability distribution. We refer to
these subsets as dominant states of a cluster. Hence given
the information about the dominant states, we can repro-
duce the original distribution with reasonable accuracy.

We use some examples to illustrate the basic ideas and
usefulness of dominant state analysis. Suppose we have a
srcIP cluster consisting mostly of scans (with a fixed srcPrt

220) to a large number of random destinations on dstPrt

6129. Then the values in the srcPrt, dstPrt and dstIP

dimensions these flows take are of the form 〈220, 6129, ∗〉,
where ∗ (wildcard) indicates random or arbitrary values.
Clearly this cluster belongs to srcIP BC2 [0,0,2], and the
cluster is dominated by the flows of the form 〈220, 6129, ∗〉.
Hence the dominant state of the cluster is 〈220, 6129, ∗〉,
which approximately represents the nature of the flows in
the cluster, even though there might be a small fraction of
flows with other states.

For want of space, in this paper we do not provide a formal
treatment of the dominant state analysis. Instead in Fig. 6
we depict the general procedure we use to extract dominant
states from a cluster. Let {A, B, C} be a re-ordering of the
three free dimensions X, Y, Z of the cluster based on their
RU values: A is the free dimension with the lowest RU,
B the second lowest, and C the highest; in case of a tie,
X always precedes Y or Z, and Y precedes Z. The dom-
inant state analysis procedure starts by finding substantial
values in the dimension A (step 1). A specific value a in
the dimension A is substantial if the marginal probability
p(a) :=�b

�
c p(a, b, c) ≥ δ, where δ is a threshold for se-

lecting substantial values. If no such substantial value exists,



Table 3: Dominant states for srcIP clusters on L1 in a 1-hour period: δ = 0.2.

srcIP No. of Structural Models Range of Range of Range of Range of Brief Comments
BC’s Clusters µ(P KT) CV (P KT ) µ(BT ) CV (BT )

BC2 119 srcPrt(·)→dstPrt(·)→dstIP(*) small low small low mostly ICMP
[0, 0, 2] or scanning traffic

114 srcPrt(0)→dstPrt(0)→dstIP(*)[>99%] [1,2] [0,1.6] [72,92] [0,8.9] ICMP traffic
1 srcPrt(1026)→dstPrt(137)→dstIP(*)[100%] 1 0 78 0 137: NetBIOS
1 srcPrt(1153)→dstPrt(1434)→dstIP(*)[>98%] 1 0 404 0 1434: MS SQL
3 srcPrt(220)→dstPrt(6129)→dstIP(*)[100%] [1,2] [0, 1.2] [40,80] [0,2.6] 6129: Dameware

BC6 16 srcPrt(·)→dstIP(· · · )→dstPrt(*) large high large high server replying
[0, 2, 0] to a few hosts

2 srcPrt(25)→dstIP(· · · )→dstPrt(*) [10,15] [1041,2217] [120,750] [36,102] 25: Email
5 srcPrt(53)→dstIP(· · · )→dstPrt(*) [1,5] [8.6,78] [160,380] [111,328] 53: DNS

7 srcPrt(80)→dstIP(· · · )→dstPrt(*) [3,31] [460,1.2 ∗ 104] [195,1.2 ∗ 105] [16,1612] 80: Web

2 srcPrt(443)→dstIP(· · · )→dstPrt(*) [3,12] [320,1.5 ∗ 104] [2166,1.1 ∗ 105] [29,872] 443: https

BC7 19 srcPrt(·)→dstIP(· · · )→ dstPrt(*) large high large high server replying
[0, 2, 1] to many hosts

2 srcPrt(25)→dstIP→dstPrt(*) [14,35] [1129,1381]] [2498,3167]] [190,640] 25: Email

17 srcPrt(80)→dstIP→dstPrt(*) [4,26] [210,9146] [671,1.0 ∗ 104] [29,3210] 80: Web

BC8 7 srcPrt(.)→(dstPrt(*),dstIP(*)) large high large high server replying to
[0, 2, 2] large # of hosts

7 srcPrt(80)→(dstPrt(*),dstIP(*)) [4,27] [1282,1.1 ∗ 104] [740, 1.5 ∗ 104] [72, 598] 80: Web

BC18 10 dstPrt(·)→(·)dstIP→srcPrt(*) medium high medium high host talking to
[2, 0, 0] a server on fixed dstPrt

3 dstPrt(53)→dstIP→srcPrt(*) [2,5] [32,1.5 ∗ 105] [120,325] [82,878] 53: DNS
7 dstPrt(80)→dstIP→srcPrt(*) [3,18] [26,6869] [189,1728] [87,5086] 80: Web

BC19 6 dstPrt(·)→dstIP(*)→srcPrt(*) medium high medium high host talking to multiple
[2, 0, 1] hosts on fixed dstPrt

2 dstPrt(53)→dstIP(*)→srcPrt(*) [2,6] [28,875] [116,380] [112,456] 53: DNS
3 dstPrt(80)→dstIP(*)→srcPrt(*) [4,16] [72.3356] [220,2145] [122,2124] 80: Web
1 dstPrt(7070)→dstIP(*)→srcPrt(*) 3 462 288 261 7070: RealAudio

BC20 58 dstPrt(·)→(srcPrt(*),dstIP(*)) small low small low host talking to large
[2, 0, 2] # hosts on fixed dstPrt

44 dstPrt(135)→(srcPrt(*),dstIP(*)) [1,2] [0,1.6] [48,96] [0,2.7] 135: Microsoft RPC
1 dstPrt(137)→(srcPrt(*),dstIP(*)) 1 0 78 0 137: NETBIOS
2 dstPrt(139)→(srcPrt(*),dstIP(*)) 3 0 144 0 139: NETBIOS
2 dstPrt(445)→(srcPrt(*),dstIP(*)) [1,3] [0,2.2] [48,144] [0,3.6] 445: Microsoft-DS
1 dstPrt(593)→(srcPrt(*),dstIP(*)) 1 0 48 0 593: http RPC
2 dstPrt(901)→(srcPrt(*),dstIP(*)) [1,2] [0,1.6] [48,96] [0,3.9] 901: SMPNAMERES
3 dstPrt(3127)→(srcPrt(*),dstIP(*)) [1,3] [0,1.8] [48,144] [0,2.9] 3127: myDoom worm
1 dstPrt(6129)→(srcPrt(*),dstIP(*)) 1 0 40 0 6129: Dameware
1 dstPrt(17300)→(srcPrt(*),dstIP(*)) 1 0 48 0 17300: unknown
1 dstPrt(34816)→(srcPrt(*),dstIP(*)) 1 0.2 64 0.5 34816: unknown

BC24 1 dstIP(.)→srcPrt(*)→dstPrt(*) - - - - two hosts chatting
[2, 2, 0] on random ports

1 dstIP(.)→srcPrt(*)→dstPrt(*) 1 0 889 0 vertical scan

we stop. Otherwise, we proceed to step 2 and explore the
“dependence” between the dimension A and dimension B by
computing the conditional (marginal) probability of observ-
ing a value bj in the dimension B given ai in the dimension
A: p(bj |ai) :=�

c
p(ai, bj , c)/p(ai). We find those substan-

tial bj ’s such that p(bj |ai) ≥ δ. If no substantial value exists,
the procedure stops. Otherwise, we proceed to step 3 com-
pute the conditional probability, p(ck|ai, bj), for each ai, bj

and find those substantial ck’s, such that p(ck|ai, bj) ≥ δ.
The dominant state analysis procedure produces a set of
dominate states of the following forms: (∗, ∗, ∗) (i.e., no dom-
inant states), or ai → (∗, ∗) (by step 1), ai → bj → ∗ (by
step 2), or ai → bj → ck (by step 3). The set of domi-
nate states is an approximate summary of the flows in the
cluster, and in a sense captures the “most information” of
the cluster. In other words, the set of dominant states of a
cluster provides a compact representation of the cluster.
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Figure 6: General procedure for dominant state analysis.

We apply the dominant state analysis to the clusters of

four feature dimensions extracted on all links with varying
δ in [0.1, 0.3]. The results with various δ are very similar,
since the data is amenable to compact dominant state mod-
els. Table 3 (ignoring columns 4-7 for the moment, which we
will discuss in the next subsection) shows dominant states of
srcIP clusters extracted from link L1 over a 1-hour period
using δ = 0.2. For each BC, the first row gives the total
number of clusters belonging to the BC during the 1-hour
period (column 2) and the general or prevailing form of the
structural models (column 3) for the clusters. The subse-
quent rows detail the specific structural models shared by
subsets of clusters and their respective numbers. The no-
tations dstIP(·), srcPrt(· · · ), etc., indicate a specific value
and multiple values (e.g., in dstIP) that are omitted for clar-
ity, and [> 90%] denotes that the structural model captures
at least 90% of the flows in the cluster (to avoid too much
clutter in the table, this information is only shown for clus-
ters in BC2). The last column provides brief comments on
the likely nature of the flows the clusters contain, which will
be analyzed in more depth in Section 6.

The results in the table demonstrate two main points.
First, clusters within a BC have (nearly) identical forms of
structural models; they differ only in specific values they
take. For example, BC2 and BC20 consist mostly of hosts
engaging in various scanning or worm activities using known
exploits, while srcIP clusters in BC6, BC7 and BC8 are
servers providing well-known services. They further sup-
port our assertion that our RU-based behavior classification
scheme automatically groups together clusters with simi-
lar behavior patterns, despite that the classification is done
oblivious of specific feature values that flows in the clusters



take. Second, the structural model of a cluster presents a
compact summary of its constituent flows by revealing the
essential information about the cluster (substance feature
values and interaction among the free dimensions). It in it-
self is useful, as it provides interpretive value to network op-
erators for understanding the cluster behavior. These points
also hold for clusters extracted from other dimensions [25].

5.2 Exploring Additional Cluster Features
We now investigate whether additional features (beyond

the four basic features, srcIP, dstIP, srcPrt and dstPrt)
can i) provide further affirmation of similarities among clus-
ters within a BC, and in case of wide diversity, ii) be used to
distinguish sub-classes of behaviors within a BC. Examples
of additional features we consider are cluster sizes (defined
in total flow, packet and byte counts), average packet/byte
count per flow within a cluster and their variability, etc. In
the following we illustrate the results of additional feature
exploration using the average flow sizes per cluster and their
variability.

For each flow fi, 1 ≤ i ≤ m, in a cluster, let PKTi and
BTi denote the number of packets and bytes respectively
in the flow. Compute the average number of packets and
bytes for the cluster, µ(PKT ) = �i PKTi/m, µ(BT ) =
�

i
BTi/m. We also measure the flow size variability in

packets and bytes using coefficient of variance, CV (PKT ) =
σ(PKT )/µ(PKT ) and CV (BT ) = σ(BT )/µ(BT ), where
σ(PKT ) and σ(BT ) are the standard deviation of PKTi

and BTi.
In Table 3, columns 4-7, we present the ranges of µ(PKT ),

CV (PKT ), µ(BT ) and CV (BT ) of subsets of clusters with
the similar dominant states, using the 1-hour srcIP clusters
on L1. Columns 4-7 in the top row of each BC are high-level
summaries for clusters within a BC (if it contains more than
one cluster): small, medium or large average packet/byte
count, and low or high variability. We see that for clusters
within BC6, BC7, BC8 and BC18, BC19, the average flow
size in packets and bytes are at least 5 packets and 320 bytes,
and their variabilities (CV (PKT ) and CV (BT )) are fairly
high. In contrast, clusters in BC2 and BC20 have small
average flow size with low variability, suggesting most of the
flows contain a singleton packet with a small payload. The
same can be said of most of the less popular and rare BCs.

Finally, Figs. 7(a)(b)(c)(d) show the average cluster sizes3

in flow, packet and byte counts for all the unique clusters
from the dataset L1 within four different groups of BC’s (the
reason for the grouping will be clear in the next section):
{BC6, BC7, BC8}, {BC18, BC19}, {BC2, BC20}, and the
fourth group containing the remaining less popular BC’s.
Clearly, the characteristics of the cluster sizes of the first
two BC groups are quite different from those of the second
two BC groups. We will touch on these differences further
in the next section. To conclude, our results demonstrate
that BC’s with distinct behaviors (e.g., non-akin BC’s) of-
ten also manifest dissimilarities in other features. Clusters
within a BC may also exhibit some diversity in additional
features, but in general the intra-BC differences are much
less pronounced than inter-BC differences.

3We compute the average cluster size for clusters appearing
twice or more.

6. APPLICATIONS
We apply our methodology to obtain general profiles of

the Internet backbone traffic based on the datasets listed
in Table 1. We find that a large majority of the (signif-
icant) clusters fall into three “canonical” profiles: typical
server/service behavior (mostly providing well-known ser-
vices), typical “heavy-hitter” host behavior (predominantly
associated with well-known services) and typical scan/exploit
behavior (frequently manifested by hosts infected with known
worms). The canonical behavior profiles are characterized
along the following four key aspects: (i) BCs they belong to
and their properties, (ii) temporal characteristics (frequency
and stability) of individual clusters, (iii) dominant states,
and (iv) additional attributes such as average flow size in
terms of packet and byte counts and their variabilities.

Clusters with behaviors that differ in one or more aspects
of the three canonical profiles automatically present them-
selves as more interesting, thus warrant closer examination.
Generally speaking, there are two types of interesting or
anomalous behaviors we find using our behavior profiling
methodology: i) novel or unknown behaviors that match
the typical server/service profile, heavy-hitter host profile,
or scan/exploit profile, but exhibit unusual feature values,
as revealed by analyses of their dominant states; and ii) de-
viant or abnormal behaviors that deviate significantly from
the canonical profiles in terms of BCs (e.g., clusters belong-
ing to rare BCs), temporal instability (e.g., unstable clusters
that jump between different BCs), or additional features.

6.1 Server/Service Behavior Profile

Table 4: Three canonical behavior profiles.

Profile Dimension BCs Examples

Servers srcIP BC6,7,8 web, DNS, email
or dstIP BC18,19,20

Services srcPrt BC23 aggregate service
dstPrt BC25 traffic

Heavy srcIP BC18,19 NAT boxes
Hitter Hosts dstIP BC6,7 web proxies, crawlers

Scans srcIP BC2,20 scanners, exploits
or dstIP BC2,8 scan targets
Exploits dstPrt BC2,5,20,23 aggregate exploit traffic

As shown in Table 4, a typical server providing a well-
known service shows up in either the popular, large and
non-volatile srcIP BC6 [0,2,0], BC7 [0,2,1] and BC8 [0,2,2],
or dstIP BC18 [2,0,0], BC19 [2,0,1] and BC20 [2,0,2] (note
the symmetry between the srcIP and dstIP BCs, with the
first two labels (srcPrt and dstPrt) swapped). These BCs
represent the behavior patterns of a server communicating
with a few, many or a large number of hosts. In terms of
their temporal characteristics, the individual clusters asso-
ciated with servers/well-known services tend to have a rel-
atively high frequency, and almost all of them are stable,
re-appearing in the same or akin BCs. The average flow size
(in both packet and byte counts) of the clusters shows high
variability, namely, each cluster typically consists of flows of
different sizes.

Looking from the srcPrt and dstPrt perspectives, the
clusters associated with the well-known service ports almost
always belong to the same BC’s, e.g., either srcPrt BC23

[2,1,2] or dstPrt BC25 [2,2,1], representing the aggregate
behavior of a (relatively smaller) number of servers commu-
nicating with a much larger number of clients on a specific
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Figure 7: Average cluster size (in flow, packet and byte count) distributions for clusters within four groups of BC’s for srcIP

clusters on L1. Note that in (c) and (d), the lines of flow count and packet count are indistinguishable, since most flows in the

clusters contain a singleton packet.

well-know service port. For example, Fig. 8(a) plots the
cluster sizes (in flow, packet and byte counts) of the dstPrt

TCP 80 cluster (representing aggregate behavior of all web
servers) over the 24-hour period, whereas in Fig. 8(b) we
plot the corresponding RUsrcPrt, RUsrcIP and RUdstIP of
its three free dimensions over time. We see that the dstPrt

TCP port 80 cluster is highly persistent, observed in ev-
ery time slot over the 24-hour period, with the number of
srcIP’s (web servers) fairly stable over time. The cluster
size over time shows a diurnal pattern, but otherwise does
not fluctuate dramatically. In addition, the packet and byte
counts of the cluster are considerably larger than the total
number of flows, indicating that on the average each flow
contains at least several packets and a few hundred bytes.
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Figure 8: Cluster sizes (in flow, packet and byte
counts) and RU measures of the dstPrt 80 cluster
(aggregate web traffic) on L1 over time.

An overwhelming majority of the srcIP clusters in BC6,7,8

are corresponding to Web, DNS or Email servers. They
share very similar behavior characteristics, belonging to the
same BC’s, stable with relatively high frequency, and con-
taining flows with diverse packet/byte counts. Among the
remaining clusters, most are associated with http-alternative
services (e.g., 8080), https(443), real audio/video servers
(7070), IRC servers (6667), and peer-to-peer (P2P) servers
(4662). Most interestingly, we find three srcIP clusters with
service ports 56192, 56193 and 60638. They share similar
characteristics with web servers, having a frequency of 12,
9 and 22 respectively, and with diverse flow sizes both in
packet and byte counts. These observations suggest that

they are likely servers running on unusual high ports. Hence,
these cases represent examples of “novel” service behaviors
that our profiling methodology is able to uncover.

6.2 Heavy Hitter Host Behavior Profile
The second canonical behavior profile is what we call the

heavy-hitter host profile, which represents hosts (typically
clients) that send a large number of flows to a single or a few
other hosts (typically servers) in a short period of time (e.g.,
a 5-minute period). They belong to either the popular and
non-volatile srcIP BC18 [2,0,0] or BC19 [2,0,1], or the dstIP
BC6 [0,2,0] and BC7 [0,2,1]. The frequency of individual
clusters is varied, with a majority of them having medium
frequency, and almost all of them are stable. These heavy-
hitter clusters are typically associated with well-known ser-
vice ports (as revealed by the dominant state analysis), and
contain flows with highly diverse packet and byte counts.
Many of the heavy-hitter hosts are corresponding to NAT
boxes (many clients behind a NAT box making requests to a
few popular web sites, making the NAT box a heavy hitter),
web proxies, cache servers or web crawlers.

For example, we find that 392 and 429 unique srcIP clus-
ters from datasets L1 and L2 belong to BC18 and BC19.
Nearly 80% of these heavy hitters occur in at least 5 time
slots, exhibiting consistent behavior over time. The most
frequent ports used by these hosts are TCP port 80 (70%),
UDP port 53 (15%), TCP port 443 (10%), and TCP port
1080(3%). However, there are heavy-hitters associated with
other rarer ports. In one case, we found one srcIP clus-
ter from a large corporation talking to one dstIP on TCP
port 7070 (RealAudio) generating flows of varied packet and
byte counts. It also has a frequency of 11. Deeper inspec-
tion reveals this is a legitimate proxy, talking to an Audio
server. In another case, we found one srcIP cluster talking
to many dstIP hosts on TCP port 6346 (Gnutella P2P file
sharing port), with flows of diverse packet and byte counts.
This host is thus likely a heavy file downloader. These re-
sults suggest that the profiles for heavy-hitter hosts could
be used to identify these unusual heavy-hitters.

6.3 Scan/Exploit Profile
Behaviors of hosts performing scans or attempting to spread

worms or other exploits constitute the third canonical pro-
file. Two telling signs of typical scan/exploit behavior [30]
are i) the clusters tend to be highly volatile, appearing and



disappearing quickly, and ii) most flows in the clusters con-
tain one or two packets with fixed size, albeit occasionally
they may contain three or more packets (e.g., when per-
forming OS fingerprinting or other reconnaissance activi-
ties). For example, we observe that most of the flows using
TCP protocol in these clusters are failed TCP connections
on well-known exploit ports. In addition, most flows using
UDP protocol or ICMP protocol have a fixed packet size
that matches widely known signature of exploit activities,
e.g., UDP packets with 376 bytes to destination port 1434
(Slammer Worm), ICMP packets with 92 bytes (ICMP ping
probes). These findings provide additional evidence to con-
firm that such clusters are likely associated with scanning
or exploit activities.

A disproportionately large majority of extracted clusters
fall into this category, many of which are among the top
in terms of flow counts (but in general not in byte counts,
cf. Fig. 7). Such prevalent behavior signifies the sever-
ity of worm/exploit spread and the magnitude of infected
hosts (cf. [7, 8]). On the plus side, however, these hosts
manifest distinct behavior that is clearly separable from
the server/service or heavy hitter host profiles: the srcIP

clusters (a large majority) belong to BC2 [0,0,2] and BC20

[2,0,2], corresponding to hosts performing scan or spreading
exploits to random dstIP hosts on a fixed dstPrt using ei-
ther fixed or random srcPrt’s; the dstIP clusters (a smaller
number) belong to BC2 [0,0,2] and BC8 [0,2,2], reflecting
hosts (victims of a large number of scanners or attacks) re-
sponding to probes on a targeted srcPrt. Using specific
dstPrt’s that are targets of known exploits, e.g., 1434 (used
by SQL Slammer), the aggregate traffic behavior of exploits
is also evidently different from that of normal service traffic
behavior (e.g., web): the dstPrt clusters typically belong
to BC23 [2,1,2], but sometimes to BC2 [0,0,2], BC5 [0,1,2],
or BC20 [2,0,2], representing a relatively smaller number of
srcIP hosts probing a larger number of dstIP hosts on the
target dstPrt using either fixed or random srcPrt’s. This is
in stark contrast with normal service traffic aggregate such
as web (i.e., dstPrt 80 cluster), where a much larger num-
ber of clients (srcIP’s) talk to a relatively smaller number of
servers (dstIP’s) using randomly generated srcPrt’s, thus
belonging to dstPrt BC25 [2,2,1].

In addition to those dstPrt’s that are known to have
exploits, we also find several (srcIP) clusters that mani-
fest typical scan/exploit behavior, but are associated with
dstPrt’s that we do not know to have known exploits. For
example, we find that in one time slot a srcIP cluster is
probing a large number of destinations on UDP port 12827,
with a single UDP packet. This host could simply engage
in some harmless scanning on UDP port 12827, but it could
also be a new form of RATs (remote access trojans) or even
a precursor of something more malicious. Further inspec-
tion is clearly needed. Nonetheless it illustrates that our
profiling technique is capable of automatically picking out
clusters that fit the scan/exploit behavior profile but with
unknown feature values. This will enable network opera-
tors/security analysts to examine novel, hitherto unknown,
or ”zero-day” exploits.

6.4 Deviant or Rare Behaviors
We have demonstrated how we are able to identify novel or

anomalous behaviors that fit the canonical profiles but con-
tain unknown feature values (as revealed by the dominant

state analysis). We now illustrate how rare behaviors or de-
viant behaviors are also indicators of anomalies, and thus
worthy of deeper inspection. In the following, we present a
number of case studies, each of which is selected to highlight
a certain type of anomalous behavior. Our goal here is not
to exhaustively enumerate all possible deviant behavioral
patterns, but to demonstrate that building a comprehensive
traffic profile can lead to the identification of such patterns.

Clusters in rare behavior classes. The clusters in the
rare behavior classes by definition represent atypical behav-
ioral patterns. For example, we find three dstPrt clusters
(TCP ports 6667, 113 and 8083) suddenly appear in the
rare dstPrt BC15 [1,2,0] in several different time slots, and
quickly vanish within one or two time slots. Close examina-
tion reveals that more than 94% of the flows in the clusters
are destined to a single dstIP from random srcIP’s. The
flows to the dstIP have the same packet and byte counts.
This evidence suggests that these dstIP’s are likely experi-
encing a DDoS attack.

Behavioral changes for clusters. Clusters that exhibit
unstable behaviors such as suddenly jumping between BCs
(especially when a frequent cluster jumps from its usual BC
to a different BC) often signify anomalies. In one case,
we observe that one srcIP cluster (a Yahoo web server) on
L1 makes a sudden transition from BC8 to BC6, and then
moves back to BC8. Before the transition, the server is
talking to a large number of clients with diverse flow sizes.
After the behavior transition to BC6, a single dstIP ac-
counts for more than 87% of the flows, and these flows all
have the same packet and byte counts. The behavior of the
particular client is suspicious. This example illustrates how
fundamental shifts in communication patterns can point a
network security analyst to genuinely suspicious activities.

Unusual profiles for popular service ports. Clusters
associated with common service ports that exhibit behaviors
that do not fit their canonical profiles are of particular con-
cern, since these ports are typically not blocked by firewalls.
For example, we have found quite a few srcIP clusters in
BC2 and BC20 that perform scans on dstPrt 25, 53, 80,
etc. Similar to the clusters with known exploit ports, these
srcIP clusters have small packet and byte counts with very
low variability. Note that these common service ports are
generally used by a very large number of clients, thereby
making it impossible to examine the behavior of each client
individually. Our profiling technique, however, can auto-
matically separate out a handful of potentially suspicious
clients that use these ports for malicious activities.

7. CONCLUSIONS
Extracting significant or interesting events from vast masses

of Internet traffic has assumed critical importance in light
of recent cyber attacks and the emergence of new and dis-
ruptive applications. In this paper, we have used data-
mining and information-theoretic techniques to automati-
cally discover significant behavior patterns from link-level
traffic data, and to provide plausible interpretation for the
observed behaviors. We have demonstrated the applicabil-
ity of our profiling approach to the problem of detecting
unwanted traffic and anomalies. We are currently in the pro-
cess of implementing an on-line anomaly detection system
based on our profiling methodology, and carefully evaluat-



ing false positives and false negatives of this methodology
using trace-driven traffic simulations. In addition, we are
looking into the problems of correlating anomalies on multi-
ple links, handling changes in traffic patterns due to routing
updates, and addressing “stealthy” attacks that attempt to
mask their malicious activities with seemingly benign traf-
fic. Finally, we also would like to understand the implica-
tions and potential benefits of extending our profiling ap-
proach beyond flow-level header information to application-
level payload carried in IP packets.
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