
Profiling Linked Open Data with ProLOD
Christoph Böhm1, Felix Naumann1, Ziawasch Abedjan2, Dandy Fenz2

Toni Grütze2, Daniel Hefenbrock2, Matthias Pohl2, David Sonnabend2

Hasso-Plattner-Institut; Prof.-Dr.-Helmert-Str. 2-3; D-14482 Potsdam, Germany
1firstname.lastname@hpi.uni-potsdam.de

2firstname.lastname@student.hpi.uni-potsdam.de

Abstract— Linked open data (LOD), as provided by a quickly
growing number of sources constitutes a wealth of easily acces-
sible information. However, this data is not easy to understand.
It is usually provided as a set of (RDF) triples, often enough
in the form of enormous files covering many domains. What is
more, the data usually has a loose structure when it is derived
from end-user generated sources, such as Wikipedia. Finally, the
quality of the actual data is also worrisome, because it may be
incomplete, poorly formatted, inconsistent, etc.

To understand and profile such linked open data, traditional
data profiling methods do not suffice. With ProLOD, we propose
a suite of methods ranging from the domain level (clustering,
labeling), via the schema level (matching, disambiguation), to
the data level (data type detection, pattern detection, value
distribution). Packaged into an interactive, web-based tool, they
allow iterative exploration and discovery of new LOD sources.
Thus, users can quickly gauge the relevance of the source for
the problem at hand (e.g., some integration task), focus on and
explore the relevant subset.

I. PROFILING LINKED OPEN DATA

Data profiling comprises a well established set of basic oper-
ations, which analyze a (relational) dataset and create metadata
that is useful to understand the data and to detect irregularities.
Profiling is mostly performed in a column-by-column manner,
for instance to detect frequent value patterns or the uniqueness
of column values. Common profiling methods and tools have
the underlying assumption of a well-defined semantics of the
column and mostly regular data.

These assumptions do not hold for linked open data (LOD)
published on the web. Such data emerge from different
sources, such as open source communities (e.g., Wikipedia)
or projects dedicated to a specific topic (e.g., DrugBank [1]).
These diverse origins cause a diversity of how information is
expressed as data values and how these values are structured.
Nevertheless, these datasets interlink each other. The overall
LOD vision is to enable the generation of new knowledge
based on a wealth of widely available interlinked data. How-
ever, leveraging the variety of such open data requires (i) an
initial understanding of each single dataset and (ii) an overview
of the available data as a whole. Only then, data analysts
can focus on the required subset of LOD for the problem
at hand. Classical profiling techniques are, to the best of our
knowledge, not appropriate to deal with these new massive
sets of open (and thus heterogeneous) data. We propose a new
iterative and interactive methodology for profiling LOD. We
envision a process that allows a user to divide data into groups,
review simple statistics or sophisticated mining results on a

group-level, and then rethink grouping decisions in order to
revise them for refining the profiling result. In this paper, we
report on ProLOD, an initial prototype we developed to step
towards this vision. As a proof-of-concept, we concentrate on
the infobox (without ontology mappings) and short abstract
data subset of DBpedia 3.2 [2]. DBpedia is generated from
Wikipedia and comprises 34.2 million triples.

II. RELATED WORK

Technologies for dealing with large unstructured datasets
are currently under development in two distinct communities,
namely the Semantic Web community as well as the database
community where relevant techniques emerge from the Datas-
pace area. Such large datasets are, on the one hand, published
on the Web according to a set of best practices [3], whereas,
on the other hand, the data stems from heterogenous sources
within a specific scope, such as enterprises, or scientific
collaborations [4].

Currently, several projects attempt to visualize heteroge-
neous data. We briefly discuss two examples: Tabulator [5]
is an RDF browser that is designed to provoke interest in the
Semantic Web for new users as well as to support instant
feedback for developers. The authors promote two different
views – Explore and Analyze. The first allows the traversal
of an RDF graph while the latter enables the analysis of
aggregated data that match a query. The Vispedia project [6]
is an approach to interactively visualize Wikipedia infoboxes.
It allows a user to select an infobox and define a keyword
query, which the system evaluates on the semantic graph of
Wikipedia to extract supplemental information. The result is
presented on a map, a timeline, or in a graph.

Some database research also deals with huge amounts of
triples since triples are a generic way for representing data.
Here, the literature deals with indexing [7], or techniques
for property and path analysis with limited schema informa-
tion [8]. It also discusses storage systems [9] as well as query-,
and data models [8], [10].

As for data profiling in general, there is a wealth of
approaches that can be used to grasp a given dataset, e.g.,
functional dependency discovery [6], and join path explo-
ration [11]. The Bellman project [12] integrates a set of tech-
niques to address poorly structured and dirty data. Addition-
ally, there are numerous tools from commercial vendors, [13],
[14]. However, these tools are inappropriate for unstructured
and heterogeneous datasets, such as DBpedia: (1) Analysis

978-1-4244-6521-7/10/$26.00 © 2010 IEEE ICDE Workshops 2010175

focuses on (one or more) columns, which are not present here.
(2) Mining a dataset’s structure is not possible. (3) Analyses
assume some sort of clean data, which a data analyst aims to
understand – not a dataset that needs to be structured, cleansed
as well as understood at the same time.

III. CLUSTERING AND LABELING

Clustering is a preliminary requirement when dealing with
large and heterogeneous datasets, because millions of triples as
a whole do not allow to derive meaningful results. A predicate,
such as length, could appear in a large variety of contexts and
domains. Calculating value distributions over all its values can
be meaningless. We argue that a good clustering can divide
the data into semantically correlated data(sub)sets, for which
meaningful and insightful profiling results are possible. As a
side-effect, clusters partition data into smaller subsets, better
enabling on-the-fly profiling. Difficulties include the unknown
number of clusters, the size of the dataset and the meaningful
labeling of discovered clusters.

Our prototype provides an initial pre-calculated hierarchical
clustering of the dataset to profile, which can be refined inter-
actively at runtime. The root cluster represents the complete
dataset and each cluster can itself be divided into several
subclusters. In our prototype, the clustering component is the
only part that performs computation on the entire dataset
– namely while computing the initial clusters. All further
profiling steps are implicitly performed only on entities of the
cluster in focus.

In order to deal with the potentially enormous number
of triples during clustering, we employ several strategies.
(1) The initial clustering is computed in a pre-processing
step. (2) Clustering is done using a schema-based similarity
measure. Thus, it only needs to take into account the existence
of predicates of an entity, not their actual values. (3) During
clustering, our prototype employs several heuristics; for exam-
ple, it uses a cluster-internal dissimilarity threshold to decide
whether to further split a cluster into subclusters. Clustering
is based on the well known K-Means algorithm, which is
fast and has been shown to yield near-to-optimum results, in
most cases. Since the number of clusters is unknown, we have
implemented a version that iteratively increments the number
of clusters, as well as one version that recursively invokes
itself on clusters in order to create a cluster hierarchy.

For each cluster, we compute a mean schema: It consists of a
set of predicates that together form a schema that is distinctive
for its cluster and, therefore, constitutes a brief summary
for the structure of its entities. Currently, the mean schema
is computed during clustering, where the n most frequently
occurring predicates of a cluster are selected for its mean
schema. We determine n, the size of the mean schema, as
the average schema size of all entities in that cluster.

To give users more insightful feedback about the content
of the clusters, a labeling is required. Because all entities of
a cluster are semantically correlated, they should have some
common characteristics. In general, many entities have some

textual descriptions as rdfs:comment or some equivalent prop-
erties. Since we do not want to concentrate on a predefined
setting, we treat all strings of length l as texts describing an
entity. Here, manual reviews have shown that we get good
results for l = 100. We compute tf-idf values to determine
the m most important terms of each cluster and use them as
cluster label. Table I shows some examples. Alternatively, if
no textual description could be found, the Top-m properties of
the cluster mean-schema are used as label.

Label Sample subjects
minister politician mayor Angela Merkel

Ted Kennedy
Presidency of George Washington

film directed starring Titanic (1997 film)
Metropolis (film)
Frankenstein (1910 film)

club football league FC Bayern Munich
Liverpool F.C.
Los Angeles Galaxy

TABLE I
EXEMPLARY CLUSTER LABELS AND CORRESPONDING SUBJECTS FOR m=3

IV. SCHEMA DISCOVERY

After having clustered the data into semantically correlated
subsets, a natural next step is to perform more detailed schema
discovery for each of these clusters beyond the mean schema.
Such schema discovery enables initial understanding of the
actual structure of the data, because a set of triples does not
expose much structural information.

We propose a process that includes determining the actual
schema (e.g., distinct attributes of a cluster), finding equivalent
attributes (e.g., name, family name, and surname), and dis-
covering poor attributes, i.e., those that do not contain useful
values for most data entries. More sophisticated analyses dis-
cover attribute correlations, such as association rules, inverse
relations, or foreign key relationships. Note that attributes
mean predicates that have a clean and unified semantics.

Our tool detects positive and negative association rules
that show occurrence dependencies among predicates within a
cluster. As for a book entity from a media cluster, such com-
binations with high combined occurrence are author, isbn, and
genre. To detect these predicate cooccurrences, a version of the
Apriori Algorithm [15] is used. Afterwards, a straightforward
algorithm generates all rules that hold a desired confidence and
correlation coefficient ρ. Table II shows a list of generated
rules that hold in the media cluster for the aforementioned
examples.

Rule Confidence Correlation Coefficient
genre, isbn⇒ author 0.99 0.67
isbn⇒ author 0.92 0.66
isbn⇒ author, genre 0.83 0.66
author, genre⇒ isbn 0.70 0.66
author ⇒ isbn 0.64 0.66
author ⇒ genre, isbn 0.58 0.67

TABLE II
EXAMPLE RULES WITH 10% SUPPORT, 50% CONFIDENCE, AND ρ = 0.4

176

A second way of using association rules is to discover
negative dependencies among predicates [16]. Such negative
rules hint at heterogeneity among the schemata of entities
in the current cluster. Either the cluster is poorly built and
contains entities from different domains, or the negatively
associated predicates have equivalent semantic meanings and
therefore never occur together. For instance, we discovered that
the predicates author and developer are negatively associated
in the media cluster. The rules author ⇒ ¬developer and
developer ⇒ ¬author have a confidence above 90%. In the
spirit of holistic matching [17], we could conclude semantic
equivalence. In fact, ProLOD allows to mark two attributes
within a cluster as equivalent, and further mining will always
combine the values from both. The negative association is
also true for the predicates title and name, which may lead to
the assumption that the media cluster contains different types
of media, such as novels and computer games. Hence, using
standard procedures to find positive and negative association
rules, it is possible to combine results of both methods and
scrutinize assumptions about the schemata of entities. Further-
more, finding association rules within the entire, unclustered
dataset may lead to new ideas for clusters. For example,
highly negative associated schemata would be useful hints for
selecting seeds for the K-Means algorithm (which is left for
future work).

Another proposal to extract schema information is to exam-
ine linked entities. If subject X holds a link to subject Y via
predicate A (XA−→Y), one can denote a semantic connection.
A stronger form of interconnection between two potential
correlated entities are links with inverse predicates A and
B. So if two links X

A−→Y and Y
B−→X exist, one can state

that these two entities are considerably connected. The more
entities are connected via predicates A and B, the higher
the correlation of the inverse predicate pair. In DBpedia 3.2,
there are approx. 13m different links between entities; 4% of
them form inverse predicate pairs. An example is the relation
among the book entity Into the Wild and the author entity
Jon Krakauer: Into the Wild debutWorks−−−−−−−−−→Jon Krakauer and Jon
Krakauerauthor−−−−→ Into the Wild. Table III shows further examples.
Notice that [before,after] is the most frequent inverse link pair,
whereas its correlation coefficient is not as high as others,
because of the remaining frequent independent use of both
predicates. Additionally, there are some occurrences of before
with itself, but the correlation coefficient is negative. This may
point to inconsistencies in the data.

PredicateA−−−−−−−−→ PredicateB←−−−−−−−− Corr Coef Frequency
before after 0.239 28856
sisterStations sisterStations 0.749 7494
precededBy followedBy 0.830 7097
spouse spouse 0.322 1964
before before -0.003 738
star exoplanet 0.895 188

TABLE III
EXAMPLE INVERSE PREDICATES (ORDERED BY FREQUENCY)

Like in the debutWorks example mentioned before, many
links connect entities of different types and, accordingly,

schemata as well as clusters. In conclusion, analyses of links
and inverse predicates can lead to statistics about inter- and
intra-cluster relationships, which help to perform a semantic
(pre-)clustering. Additionally, the existence of inverse pred-
icates may indicate the existence of redundant information
about the same fact (e.g., followedBy and precededBy, or
spouse with itself).

V. DATA TYPES AND PATTERN STATISTICS

Having a set of clusters and some knowledge about its
structure, traditional profiling methods are applicable. Here,
we gather statistics about data types and pattern distribu-
tions by analyzing the object values of the RDF triples.
In Wikipedia, many users modify articles and use different
syntax to represent the same fact. In addition, predicates are
often misused when no applicable predicate exists. Profiling
statistics support the detection of such discordant values or
misused predicates and facilitate to find valid formats for
specific predicates.

A characteristic of linked data is the fact that an object value
can be an internal link to another subject, an external link or
a literal. Internal links are pointers to data within the local
source; we consider only literal values and external links for
further statistics, since we find that computing basic values for
internal links is not useful. Profiling internal links is left for
future work. At this point, we do also not yet follow external
links for simplicity reason. Literals can be of different data
types. Here, type detection using regular expressions is the
first layer of profiling object values.

In the next step, we determine the value distribution within
these data types. Values of numeric data types are divided
into ranges. For non-numeric data types, we generate patterns
and determine their frequencies. To visualize huge numbers of
different patterns (even for a single predicate), we introduce
normalized patterns. Such normalized patterns summarize
patterns by identifying sequences of the same character and
reducing these sequences to a single character. Furthermore,
ProLOD is able to drill down to the actual data values
represented by the pattern or numeric range.

ProLOD statistics are best illustrated by the example pred-
icate zipcode. Usually, zip codes are sequences of digits, i.e.,
data type Integer is expected. Due to DBPedia’s heterogeneous
data, String data was also discovered. One normalized pattern
found is a-9, which represents all strings that have a sequence
of letters followed by a sequence of digits separated by a
sequence of hyphens. In our example, the only pattern normal-
ized this way is AA-99999, which captures zip codes preceded
by a country code. For this, it is useful to leverage ProLOD’s
drill-down functionality to find out such information.

VI. THE PROLOD TOOL

ProLOD is a web-based prototype. We store the triples to
profile in a relational database to be able to perform basic
database operations. The profiling process is divided into two
phases: pre-processing and realtime profiling.

177

The purpose of the pre-processing phase is to build ad-
ditional data structures that enable realtime profiling in the
second phase. During pre-processing, our prototype executes
several computations on the input data: (1) The triples are
transformed and stored in a normalized database schema.
(2) Each triple is enriched with data type and pattern informa-
tion. (3) An initial clustering is computed and cluster-labels are
determined. Since the pre-processing phase is computationally
intensive and not yet highly optimized the DBpedia dataset
load and preprocessing takes about one day.

In the realtime profiling phase, the user interacts with the
web interface, shown in Figure 1. The interface is divided
into a cluster tree view on the left and a details view on the
right. The cluster view enables users to explore the cluster
tree and to select a cluster for further investigation. This
view can also be used to modify the clustering by creating
new clusters, merging existing ones, or reclustering with a
different k. After selecting a cluster, the user can find facts
and statistics about it in the details view, which can also be
used to perform schema discovery. Further, it allows cluster
modification through additional filtering.

Fig. 1. The ProLOD web interface.

VII. SUMMARY AND OUTLOOK

Data profiling, when applied to heterogeneous data, must
be extended beyond the typical tasks of determining value
distributions and patterns, finding outliers in columns, etc.
Rather, profiling tools need to enable users to create an
assessment of the data at hand. This begins at source-level,
where clustering can help to identify the domain(s) of the
data and their representative schema. The need for assessment
continues at attribute-level, where attributes can store data of
wildly different semantics and values of same semantics are
spread over many attributes. Finally, traditional data profiling
tasks apply.

Due to the heterogeneity of the underlying data, a profiling
tool can no longer have a mere reporting functionality; it is
necessary to allow users to interactively learn insights about
the data during subsequent profiling steps. Hence, performance
can no longer concentrate on offline reporting, but must allow
user feedback and perform on-the-fly profiling.

With ProLOD, we have developed a corresponding proto-
type, concentrating on the DBpedia infobox dataset. In its
current form, it is only a starting point, implementing a subset

of possible tasks1. An important aspect of future work is
scalability to even larger datasets. While DBpedia with its
34 million triples is already formidable, the Billion Triple
Challenge2 hints at typical future data volumes. Finally, we
plan to examine possible uses of ProLOD, for instance to
help Wikipedia authors in writing infoboxes or to enable rapid
integration of LOD sources.

Acknowledgements. This research was supported in part by
the German Research Society (DFG grant no. NA 432).
Additionally, we thank Christian Bizer and Georgi Kobilarov
for providing DBpedia to the community and for their valuable
feedback on ProLOD.

REFERENCES

[1] D. S. Wishart, C. Knox, A. Guo, D. Cheng, S. Shrivastava, D. Tzur,
B. Gautam, and M. Hassanali, “DrugBank: a knowledgebase for drugs,
drug actions and drug targets,” Nucleic Acids Research, vol. 36, pp.
901–906, 2008.

[2] C. Bizer, J. Lehmann, S. A. Georgi Kobilarov, C. Becker, R. Cyganiak,
and S. Hellmann, “DBpedia A Crystallization Point for the Web of
Data,” Journal of Web Semantics: Science, Services and Agents on the
World Wide Web, vol. 7, p. 154165, 2009.

[3] C. Bizer, T. Heath, and T. Berners-Lee, “Linked Data - The Story So
Far,” Int. Journal on Semantic Web and Information Systems, 2009.

[4] M. Franklin, A. Halevy, and D. Maier, “From Databases to Dataspaces:
A New Abstraction for Information Management,” SIGMOD Record,
vol. 34, pp. 27–33, 2005.

[5] T. Berners-Lee, Y. Chen, L. Chilton, D. Connolly, R. Dhanaraj, J. Hol-
lenbach, A. Lerer, and D. Sheets, “Tabulator: Exploring and analyzing
linked data on the semantic web,” in Proc. of the 3rd Int. Semantic Web
User Interaction Workshop, 2006.

[6] B. Chan, L. Wu, J. Talbot, M. Cammarano, and P. Hanrahan, “Vispedia:
Interactive Visual Exploration of Wikipedia Data via Search-Based In-
tegration,” IEEE Transactions on Visualization and Computer Graphics,
vol. 14, pp. 1213–1220, 2008.

[7] X. Dong and A. Halevy, “Indexing Dataspaces,” in Proc. of the ACM
Int. Conf. on Management of Data (SIGMOD), 2007, pp. 43–54.

[8] B. Howe, D. Maier, N. Rayner, and J. Rucker, “Quarrying dataspaces:
Schemaless profiling of unfamiliar information sources,” in Proc. of the
ICDE Workshop on Information Integration Methods, Architectures, and
Systems (IIMAS), 2008, pp. 270–277.

[9] D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach, “Scalable
semantic web data management using vertical partitioning,” in Proc. of
the Int. Conf. on Very Large Databases (VLDB), 2007, pp. 411–422.

[10] A. Balmin and E. Curtmola, “Wikianalytics: Ad-hoc querying of highly
heterogeneous structured data,” in Proc. of the Int. Conf. on Data
Engineering (ICDE) Demo, 2009.

[11] C. M. Procopiuc and D. Srivastava, “Database Exploration Using Join
Paths,” in Proc. of the Int. Conf. on Data Engineering (ICDE), 2008,
pp. 1331–1333.

[12] T. Johnson, A. Marathe, and T. Dasu, “Database Exploration and
Bellman,” IEEE Data Engineering Bulletin, vol. 26, pp. 34–39, 2003.

[13] “IBM InfoSphere Information Analyzer,” http://www.ibm.com/software/
data/infosphere/information-analyzer, last access: 07/2009.

[14] “ORACLE DATA PROFILING,” http://www.oracle.com/technology/
products/oracle-data-quality, last access: 07/2009.

[15] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association
Rules in Large Databases,” in Proc. of the Int. Conf. on Very Large
Databases (VLDB), 1994, pp. 487–499.

[16] M.-L. Antonie and O. R. Zaı̈ane, “Mining positive and negative asso-
ciation rules: an approach for confined rules,” in European Conf. on
Principles of Data Mining and Knowledge Discovery (PKDD), 2004,
pp. 27–38.

[17] S.-L. Chuang and K. C.-C. Chang, “Integrating web query results:
holistic schema matching,” in Proc. of the Int. Conf. on Information
and Knowledge Management (CIKM), 2008, pp. 33–42.

1A screencast is available at http://tinyurl.com/prolod-01
2http://challenge.semanticweb.org

178

