
ACTA
UNIVERSITATIS
UPSALIENSIS
UPPSALA
2012

Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 1000

Profiling Methods for Memory
Centric Software Performance
Analysis

DAVID EKLÖV

ISSN 1651-6214
ISBN 978-91-554-8541-2
urn:nbn:se:uu:diva-182594

Dissertation presented at Uppsala University to be publicly examined in
Informationsteknologiskt centrum, Polacksbacken, Pol/2446, Lägerhyddsvägen 1, Uppsala,
Friday, December 21, 2012 at 13:00 for the degree of Doctor of Philosophy. The examination
will be conducted in English.

Abstract
Eklöv, D. 2012. Profiling Methods for Memory Centric Software Performance Analysis. Acta
Universitatis Upsaliensis. Digital Comprehensive Summaries of Uppsala Dissertations from
the Faculty of Science and Technology 1000. 51 pp. Uppsala. ISBN 978-91-554-8541-2.

To reduce latency and increase bandwidth to memory, modern microprocessors are often
designed with deep memory hierarchies including several levels of caches. For such
microprocessors, both the latency and the bandwidth to off-chip memory are typically about
two orders of magnitude worse than the latency and bandwidth to the fastest on-chip cache.
Consequently, the performance of many applications is largely determined by how well they
utilize the caches and bandwidths in the memory hierarchy. For such applications, there are two
principal approaches to improve performance: optimize the memory hierarchy and optimize
the software. In both cases, it is important to both qualitatively and quantitatively understand
how the software utilizes and interacts with the resources (e.g., cache and bandwidths) in the
memory hierarchy.

This thesis presents several novel profiling methods for memory-centric software
performance analysis. The goal of these profiling methods is to provide general, high-level,
quantitative information describing how the profiled applications utilize the resources in the
memory hierarchy, and thereby help software and hardware developers identify opportunities
for memory related hardware and software optimizations. For such techniques to be broadly
applicable the data collection should have minimal impact on the profiled application, while
not being dependent on custom hardware and/or operating system extensions. Furthermore, the
resulting profiling information should be accurate and easy to interpret.

While several use cases are presented, the main focus of this thesis is the design and evaluation
of the core profiling methods. These core profiling methods measure and/or estimate how
high-level performance metrics, such as miss-and fetch ratio; off-chip bandwidth demand; and
execution rate are affected by the amount of resources the profiled applications receive. This
thesis shows that such high-level profiling information can be accurately obtained with very
little impact on the profiled applications and without requiring costly simulations or custom
hardware support.

David Eklöv, Uppsala University, Department of Information Technology, Computer Systems,
Box 337, SE-751 05 Uppsala, Sweden.

© David Eklöv 2012

ISSN 1651-6214
ISBN 978-91-554-8541-2
urn:nbn:se:uu:diva-182594 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-182594)

To Ann-Sofie

List of papers

This thesis is based on the following papers, which are referred to in the text

by their Roman numerals.

I David Eklov and Erik Hagersten. StatStack: Efficient Modeling of LRU

Caches. In Proceedings of the 2010 IEEE International Symposium on

Performance Analysis of Systems and Software (ISPASS), White

Plains, NY, USA, March 2010

II David Eklov, David Black-Schaffer and Erik Hagersten. Fast Modeling

of Cache Contention in Multicore Systems. In Proceedings of the the

6th International Conference on High Performance and Embedded

Architecture and Compilation (HiPEAC), Heraklion, Crete, Greece,

January 2011

III David Eklov, Nikos Nikoleris, David Black-Schaffer and Erik

Hagersten. Cache Pirating: Measuring the Curse of the Shared Cache.

In Proceeding of the 40th International Conference on Parallel

Processing (ICPP), Taipei, Taiwan, September 2011

IV David Eklov, Nikos Nikoleris, David Black-Schaffer and Erik

Hagersten. Quantitative Characterization of Memory Contention.

Technical Report 2012-029, Department of Information Technology,

Uppsala University, Sweden, October 2012. Submitted for publication.

V David Eklov, Nikos Nikoleris and Erik Hagersten. A Profiling Method

for Analyzing Scalability Bottlenecks on Multicores. Technical Report

2012-030, Department of Information Technology, Uppsala University,

Sweden, October 2012. Submitted for publication.

Reprints were made with permission from the publishers. All papers are ver-

batim copies of the original publications but are reformatted to the one column

format of this book.

Comments on my Participation

I I am the principal author and principal investigator.

II I am the principal author and principal investigator.

III I am the principal author and principal investigator. Nikos Nikoleris

contributed to the discussions and provided reference data.

IV I am the principal author and principal investigator. Nikos Nikoleris

contributed to the discussions.

V I am the principal author and principal investigator. Nikos Nikoleris

contributed to the discussions, wrote the initial version of the instru-

mentation framework and helped porting the OpenMP benchmarks to

Pthreads.

Other Publications

Conference Papers

• Andreas Sandberg, David Eklov and Erik Hagersten. Reducing Cache

Pollution Through Detection and Elimination of Non-Temporal Memory

Accesses, In Proceedings of Supercomputing (SC), New Orleans, LA,

USA, November 2010

• Andreas Sembrant, David Eklov and Erik Hagersten. Efficient Software-

based Online Phase Classification, In Proceeding of the International

Symposium on Workload Characterization (IISWC), Austin, TX, USA,

November 2011,

Book Chapters

• Erik Hagersten, David Eklov and David Black-Schaffer. Efficient Cache

Modeling with Sparse Data, Chapter in “Processor and System-on-Chip

Simulation”, editors Olivier Temam and Rainer Leupes. Springer, 2010

Extended Abstracts

• David Eklov, David Black-Schaffer and Erik Hagersten. StatCC: A Sta-

tistical Cache Contention Model, In the Proceedings of 19th Interna-

tional Conference on Parallel Architectures and Compilation Techniques

(PACT), Vienna, Austria, September 2010

• David Eklov, Nikos Nikoleris, David Black-Schaffer and Erik Hager-

sten. Bandwidth Bandit: Understanding memory Contention, In the Pro-

ceedings of 21th International Conference on Parallel Architectures and

Compilation Techniques (PACT), Minneapolis, MN, September 2012

Contents

1 Introduction . 11

1.1 Contributions . 12

1.1.1 Statstack . 12

1.1.2 StatCC . 12

1.1.3 Cache Pirating . 12

1.1.4 Bandwidth Bandit . 13

1.1.5 Speedup Stacks . 13

1.2 Thesis Outline . 13

2 Background . 15

2.1 Memory Hierarchies . 15

2.2 Data Locality . 16

2.3 Performance Counters . 17

3 Statstack and StatCC . 18

3.1 Input Data: Reuse Distance Distribution . 18

3.2 Output Data: Stack Distance Distribution . 20

3.3 Cache Misses . 22

3.3.1 Compulsory Misses . 22

3.3.2 Capacity Misses . 22

3.3.3 Conflict Misses . 23

3.3.4 Misses due to Cache Sharing . 23

3.4 Miss Ratio Curves . 24

4 The Pirate and the Bandit . 27

4.1 Cache Pirate . 29

4.1.1 Case Study . 31

4.2 Bandwidth Bandit . 32

4.2.1 Case Study . 36

5 Speedup Stacks . 38

5.1 Speedup Stacks . 39

5.2 Case Study 1: Single-threaded applications . 40

5.3 Case Study 2: Multi-threaded applications . 42

6 Summary and Conclusions . 44

7 Introduction in Swedish . 45

8 Acknowledgement . 48

References . 49

1. Introduction

The long latency and limited bandwidth to off-chip memory have been identi-

fied as two potential bottlenecks of present and future computer systems [25,

33]. To reduce latency and increase bandwidth to memory, modern micro-

processors are often designed with deep memory hierarchies including several

levels of caches. For such microprocessors, both the latency and the band-

width to off-chip memory are typically about two orders of magnitude worse

than the latency and bandwidth to the level-one cache. Consequently, the per-

formance of many applications is largely determined by how well they utilize

the caches and bandwidths in the memory hierarchy.

For such applications, there are two principal approaches to improve perfor-

mance: optimize the memory hierarchy and optimize the software. Hardware

developers can, for example, increase cache size and bandwidths or change

the cache organization in order to better match the requirements of the target

workloads. Software developers, on the other hand, might, for example, use

different data structures and/or reorganize the memory access pattern to match

the memory hierarchy on the target computer system. In order to be success-

ful, it is important, for both hardware and software developers, to qualitatively

and quantitatively understand how the software interacts with the memory hi-

erarchy.

To this end, this thesis presents the design and evaluation of several novel

profiling methods for memory-hierarchy-centric software performance anal-

ysis. The goal of these profiling methods is to provide general, high-level,

quantitative information describing how the profiled applications utilize the

resources (e.g., cache and bandwidths) in the memory hierarchy, and thereby

help software and hardware developers to identify opportunities for, and as-

sess the benefit of, memory related hardware and software optimizations. For

such techniques to be broadly applicable the data collection should have min-

imal impact on the profiled application, while not being dependent on custom

hardware and/or operating system extensions. Furthermore, we argue that for

software developers it is often important to obtain profiling information that

captures the software’s behavior on real hardware.

While several use cases are presented, the main focus of this thesis is not on

specific applications of these profiling methods (e.g., compiler optimizations,

process schedulers and thread placement algorithms). Instead, the focus is on

the core profiling technologies, their implementation and evaluation, and how

to interpret the resulting profiling information in a general context. These core

profiling methods measure and/or estimate how high-level performance met-

rics, such as miss- and fetch ratio; off-chip bandwidth demand; and execution

11

rate are affected by the amount of resources profiled applications receive. This

thesis shows that such high-level profiling information can be accurately ob-

tained on real hardware with very little impact on the profiled application and

without requiring costly simulations or custom hardware support.

1.1 Contributions

1.1.1 Statstack

Statstack (Paper I) is a profiling method that captures the profiled application’s

Miss Ratio Curve (MRC). The MRC reports the application’s cache miss ra-

tio as a function of its available cache capacity and thereby captures the pro-

filed application’s data locality. There are many ways in which MRC can be

captured, e.g., full system simulations (e.g., [3, 21]), binary instrumentation

(e.g., [20, 24]) and stack distance based methods (e.g., [11, 19, 30, 34]). All

these methods incur two main costs. The cost of capturing the profiling infor-

mation and the cost of (post) processing it. Statstack reduces both these costs

by employing statistical sampling techniques.

1.1.2 StatCC

In order to improve the utilization of the available cache capacities, many

multi-cores share the last-level cache among its cores. This enables pro-

grams/threads that have higher demands for cache capacity to use more of

the shared cache than other co-running programs/threads that demands less

cache capacity. This, however, can adversely increase the number of cache

misses of the co-running programs/threads (compared to when they get to use

equal shares of the cache capacity). StatCC (Paper II) enables us to estimate

the number of additional misses incurred due to cache sharing for co-running

instances of single-threaded applications. This method is based on Statstack

and therefore enjoys the same low cost of collecting profiling information.

1.1.3 Cache Pirating

Cache Pirating (Paper III) is a method for obtaining any performance metrics

available through hardware performance counters, such as miss- and fetch-

ratios, off-chip bandwidth demand, and execution rate, as a function of the

profiled application’s available cache capacity. This data is obtained while

the profiled application runs on a real, commodity multi-core. As a result,

Cache Pirating has the following benefits. First, the profiling data represents

the profiled application’s behaviour on real multi-core, as opposed to a simu-

lated multi-core, including out-of-order execution, memory level parallelism

12

and hardware prefetching. Second, the profiling overhead is low compared to

simulation and instrumentation-based alternatives.

We present several examples of how to interpret the data captured using

Cache Pirating, and a case study in which we show how Cache Pirating can be

used to understand and predict how the memory hierarchy limits the through-

put when co-running multiple instances of a single-threaded application.

1.1.4 Bandwidth Bandit

While Cache Pirating can measure an application’s off-chip bandwidth de-

mand, it cannot be used to determine how the application is affected the by

off-chip bandwidth limitations that can arise when multiple programs/threads

share the off-chip memory bandwidth. The Bandwidth Bandit (Paper IV) is

a method for obtaining any performance metrics available through hardware

performance counters as a function of the profiled application’s available off-

chip memory bandwidth. This data enables us to determine how the profile

application is affected by off-chip memory bandwidth limitations. Similarly

to Cache Pirating, this data is obtained while the profiled application runs on

a real, commodity multi-core, and therefore has the same benefits as Cache

Pirating.

We present several examples of how to interpret the data captured by the

Bandwidth Bandit. Furthermore we present a case study in which we show

how the captured data can be used to predict how off-chip memory band-

width limitations impact the throughput when co-running multiple instances

of a single-threaded application, which cannot be done based solely on data

captured with Cache Pirating.

1.1.5 Speedup Stacks

A key property of multi-threaded programs is how their execution times scale

when increasing the number of threads. However, there are several factors that

can limit the scalability of multi-threaded programs. A speedup stack reports

how much each of these scalability bottlenecks limits the program’s speedup.

This thesis presents a method for obtaining speedup stacks for both multiple

co-running instances of single-threaded applications and for multi-threaded

applications (Paper V). It captures speedup stacks while the profiled program

runs on a real, commodity multi-core, and therefore has similar benefits as

Cache Pirating and the Bandwidth Bandit.

1.2 Thesis Outline
The remainder of this thesis is organized as follows. First, we briefly discuss

how memory hierarchies are organized in modern general purpose multi-core

13

processors and highlight some of their performance implications, including a

discussion about the data locality principle (Chapter 2). Then, we introduce

Statstack, our main contribution in the area of data locality analysis (Chap-

ter 3). This chapter includes a discussion about the different types of cache

misses and, importantly, which of these types of misses Statstack estimates.

We then introduce Cache Pirating and the Bandwidth Bandit (Chapter 4). The

main focus of this chapter is on how interpret the data obtained using the

methods. In addition, we also present several case studies in which we use the

Cache Pirate and the Bandwidth Bandit to predict and explain the throughput

of co-running applications. Finally, we introduce a novel profiling method for

obtaining speedup stacks on real, commodity multi-cores (Chapter 5).

14

2. Background

2.1 Memory Hierarchies
The performance of many software applications is largely determined by the

speed at which the memory system can deliver data. There are many different

memory technologies with different speed characteristics that can be used in a

memory system. Ideally, one would want memory systems to make exclusive

use of the fastest memory technology available. However, as is often the case,

there is a trade-off between speed, capacity and cost. Given the large mem-

ory demands of today’s applications, it is generally not feasible for a memory

system to exclusively use the fastest available memory technology. The con-

ventional solution is to build a hierarchical memory system. Most applications

access a few, relatively small parts of their data more frequently than others.

Hierarchical memory systems therefore use small but fast memories to hold

the most frequently used data, while the less frequently used data is kept in

large but slow memories. This way, most of the data requests will be ser-

viced by the small, fast memories while the large, slow memories ensure that

memory system can accommodate large data demands.

Figure 2.1 shows a typical memory hierarchy found in modern multi-core

servers and desktop processors (similar to those of Intel’s Nehalem and Sandy

Bridge architectures). It has three levels of caches, L1, L2 and L3, which are

are small, fast memories, residing on the same chip as the processor cores.

Each core has a private L1 and L2 cache, while the L3 cache is shared among

the cores. Each consecutive cache level is larger, but slower, than the previ-

ous, lower level. The caches are managed in hardware which uses heuristics to

identify and store the most frequently used data in the cache memories. Since

caches are managed by hardware, they are functionally transparent to software.

Higher up in the memory hierarchy is the main memory, which consists of rel-

atively large, but slow, off-chip (i.e., external) memory modules. The cores

communicate with the main memory via an on-chip (i.e., integrated) memory

controller. The memory controller has three independent memory channels,

each connecting up to three memory modules. Contrary to the caches, the

main memory is managed by software (often the operating system). That is,

the software has full control over what data is stored in the main memory. At

the top of the memory hierarchy are the hard drives. They too are managed by

software, typically using a file system. Compared to main memory, traditional

hard drives are much slower, but also much cheaper (per bit of storage) than

main memory. Typical server and desktop computers therefore have substan-

tially larger hard drive capacities than main memory capacities.

15

Hard Drive

SDRAM SDRAM SDRAM

Main Memory

Memory

Memory Controller

L3$

core

L1$

L2$

core

L1$

L2$

Processor Chip

Channels

Figure 2.1. Memory hierarchy of a typical, modern, mulit-core processors.

2.2 Data Locality

Central to the success of caches is their ability to exploit applications’ data

locality. Data residing in memory is referred to by its memory address (i.e.,

its location in main memory). The data locality principle [9, 10] says that

recently accessed memory locations, and nearby memory locations, are more

likely to be accessed in the near future, than other, non-related memory loca-

tions. As defined above, data locality can be broken up into two basic types:

spatial- and temporal locality. Spatial locality refers to the phenomena that

a memory accesses to a certain memory location is often closely followed by

memory accesses to nearby memory locations. This is a result of the com-

mon programming practice of storing related data items at nearby memory

locations, for example, using programming constructs such as classes and/or

arrays. Temporal locality, on the other hand, refers to the phenomena that re-

cently accessed memory locations are likely to be accessed again in the near

future.

Caches exploit applications’ data locality the following main ways. The

basic unit with which an application reads and writes data is called a data

word. However, in the event of a cache miss, the cache controller fetches and

installs a whole cache block, containing the requested data words as well as

several of its immediate neighbors. This effectively exploits an application’s

spatial locality by potentially turning accesses, performed in the near future, to

the additionally fetched data words into cache hits. Temporal locality, on the

other hand, is exploited by keeping the most recently accessed cache blocks

16

in the cache, which, according the principle of temporal locality, are likely

to be accessed again in the near future. This is the responsibility of the cache

replacement policy. For example, the Least Recently Used (LRU) replacement

policy attempts to evict the least recently used cache block, thereby ensuring

that the most recently used cache blocks remains in the cache.

It is important to note that the data locality principle is merely the obser-

vation that many commonly used programming patterns often have an inherit

data locality. It does not grantee that all applications have large degrees of data

locality. However, as the data locality of an application has large impact on

the effectiveness of caches, and consequently the application’s performance,

it is highly desirable that applications ample good data locality.

2.3 Performance Counters

In order help programmers to optimize their applications, most processors im-

plement a set of hardware performance counters that can be programmed to

count the occurrence of various events during the execution of an application.

For example, they can be programmed to count the number of memory re-

quests serviced by the different levels of the memory hierarchy. These event

counts can be used to determine whether an application suffers from mem-

ory hierarchy related performance issues. Sometimes, they can even be used

to identify the specific instructions and/or data structures that are causing the

memory issues. For expert programmers, this information can be enough to

figure out how to resolve the memory issues, which typically involve using

alternative data structures and/or reorganizing the computations. This, how-

ever, might involve fair amount of trial and error and can be a both a tedious

and time consuming process. Since programmer productivity is important for

keeping development costs low, methods and tools that simplify the above

optimization process is therefore very valuable.

17

3. Statstack and StatCC

Statstack, presented in Paper I, is a profiling method for capturing applica-

tions’ miss ratio curves (MRCs) [22] for fully-associative caches with least

recently used replacement policies. The information captured by Statstack is

fundamental to data locality analysis. Statstack is inspired by StatCache [4, 5]

– a fast cache model for caches with random replacement. Specifically, Stat-

stack uses the same input data as StatCache, and can therefore use the low-

overhead profiling method of StatCache to collect profiling data.

Statstack can, in some respects, be thought of as an alternative to cache sim-

ulators. A simple trace driven cache simulator takes as input a memory access

trace, i.e. the sequence of memory addresses referenced by an application

during its execution. Often, the result of the simulation is the application’s

cache hit ratio1 for the simulated cache size (or potentially several different

cache sizes). However, simulating a cache can be expensive. It typically has

two main costs. First, the cost of capturing the memory access trace. This can

be done in many ways. For example using dynamic instrumentation frame-

works such as PIN [20] and Valgrind [24] or using system simulators such as

Simics [21] and Simplescalar [3]. As a memory access trace contains all mem-

ory addresses accessed by the profiled application, capturing the trace requires

each memory instruction (i.e., load and store instructions) to be instrumented.

As a result, the instrumentation overhead can be significant. The second cost

is that of running the actual cache simulation. For each simulated memory

access, the simulator has to the following: 1) Determine whether the accessed

data is in the (simulated) cache and record the access as a hit or a miss ac-

cordingly. 2) Updated the state required by the replacement policy, and in the

case of a cache miss, simulate the replacement policy in order to determine

which cache block to evict. While each such sequence of operations is not

very expensive, performing them for each memory access in the address trace

can add up to a significant cost. Statstack aims at reducing both of these costs.

3.1 Input Data: Reuse Distance Distribution

Figure 3.1 gives a high-level overview of Statstack. Unlike a trace-driven

cache simulator, Statstack does not require a complete memory access trace.

1In this work, we define hit/miss ratio as the number of cache hits/misses divided by the number

of memory accesses.

18

fr
eq

u
en

cy

reuse distance

Statstack

fr
eq

u
en

cy

stack distance

m
is

s
ra

ti
o

cache size

Figure 3.1. Statstack flowchart. The input to Statstack is a sparse reuse distance

distribution (far left). As an intermediate step, Statstack produces a stack distance

distribution (second from right), and, finally, it produces a miss ratio curve (far right).

A
a1

B
a2

B
a3

C
a4

D
a5

C
a6

A
a7

Figure 3.2. Subsequence of a memory access trace. The circles on the horizontal time

axis represent memory accesses. The memory accesses a1 and a7 both access cache

block A. The reuse distance of a1 is therefore five ((7− 1)− 1). The five memory

accesses executed between memory access a1 and a7 reference three unique cache

blocks, namley B, C and D. The stack distance of a1 is therefore three.

Instead, its input is the profiled application’s reuse distance distribution. A

reuse distance is the number of memory accesses executed between two con-

secutive memory accesses to the same cache block. This is illustrated in Fig-

ure 3.2. Here, a1 and a7 are two consecutive memory accesses to cache block

A. The reuse distance of memory accesses a1 is equal to five since there are

five memory accesses executed between a1 and a7. Furthermore, suppose that

a7 is the last memory access to reference cache block A. In this case, the reuse

distance of a7 is defined to be infinite. Figure 3.3 shows an example reuse dis-

tance distribution. An application’s reuse distance distribution is simply the

distribution of its memory accesses’ reuse distances.

The nature of the reuse distance is such that individual reuse distance can

be easily and efficiently measured using hardware performance counters and

hardware memory watch points. Additionally, a reuse distance distribution

can be accurately estimated based on a sparse sample of the profiled applica-

tion’s memory access. These two factors combined allow for very low cost

data capturing. Berg et al. [5] presents a accurate reuse distance sampler that

measures the reuse distances of randomly selected memory accesses. Their

sampler use hardware performance counters readily available on most com-

modity processor. As such it does not require any custom hardware support.

On average, the sampled application’s is slowed down by 40%. In order to

further reduce the overhead of Berg’s original sampler, Sembrant et al. [28]

extended it with an online program phase detection mechanism [29]. They

rely on the observation that recurring program phases typically have very sim-

19

0.0

0.2

0.4

0.6

0.8

1.0

1 10 100

fr
eq

u
en

cy

reuse distance

Figure 3.3. An example reuse distance distribution. (Note the log scale on the hori-

zontal axis.)

ilar reuse distance distribution, and only collect reuse distance distributions of

the first occurrence of each unique program phase. This reduces the slowdown

of the sampled applications to 20%, on average.

Under the fairly loose definition of temporal locality outlined in Chapter 2,

the reuse distance can be viewed as a direct measure of temporal locality.

The way to think about this is as follows. The cache state is only updated in

the event of a memory accesses. From the point of view of the cache, time

can therefore be measured in executed memory accesses. The reuse distance

measures the time between two accesses to the same cache block and thereby

measures temporal data locality. However, while being a measure of temporal

locality, the reuse distance does not necessarily indicate whether a previously

accessed cache block still remains in the cache when it is accessed for a second

time. For random replacement policies, this is instead determined by the num-

ber of evictions (i.e., cache misses) that has occurred since the cache block

was last accessed [5]. This is not necessarily the same as the reuse distance

of the pair of accesses referencing the cache block. For caches with LRU

replacement, this is instead determined by the stack distance.

3.2 Output Data: Stack Distance Distribution

Statstack is based on a set of mathematical formulas which takes as input the

profiled application’s reuse distance distribution and computes its stack dis-

tance distribution for a fully-associative cache. This only requires two passes

of relatively inexpensive computations over the reuse distance distribution and

is therefore much less costly than full cache simulations. (For details see Pa-

per I.) The stack distance [22] is the number of unique cache blocks accessed

between two consecutive accesses to the same cache block. This is illustrated

in Figure 3.2. Here, the stack distances of a1 is equal to three, since there are

20

A B B C D C A

MRU

LRU

A B

A

B

A

C

B

A

D

C

B

A

C

D

B

A

A

C

D

B

Figure 3.4. LRU Stack. The figure shows the contention of the LRU stack after the

execution of the memory accesses on the horizontal time-line.

three unique cache blocks accessed by the memory accesses executed between

a1 and a7.

The stack distance is closely tied to the LRU replacement policy. Concep-

tually, the LRU replacement policy maintains the cache lines on a fixed sized

stack whose size equals the number of cache lines in the cache. On a cache

hit, the accessed cache line is moved to the top of the stack. On a cache miss,

the cache block held in the cache line at the bottom of the stack is evicted.

The newly fetched cache block is installed in this cache line which is moved

to the top of the stack. This is illustrated in Figure 3.4. In this context, the

stack distances can be alternatively defined as the accessed cache line’s dis-

tance from the top of an infinite LRU stack at the time when it is accessed.

Memory accesses whose stack distances are less than or equal to the cache

size (measured in cache lines), therefore results in cache hits. Otherwise, if

their stack distances are less than the cache size, they result in cache misses.

Internally, before computing the stack distance distribution, Statstack first

computes a mapping from reuse distances to stack distances. This mapping

can then applied as follows: 1) To the reuse distances of a specific memory

instruction, thereby producing the stack distances of the instruction. This en-

ables data locality analysis of individual instructions. 2) To the reuse distances

of all memory instructions accessing a specific data structure, thereby produc-

ing the stack distance distribution of the data structure. This allows for data

locality analysis of individual data structures. 3) To the application’s entire

reuse distance distribution to get the application’s stack distance distribution.

This flexibility enables Statstack to be used for many different data locality

analyses. For example, Statstack have been integrated in Acumem Virtual Per-

formance Expert [14]. Furthermore, we have shown that Statstack can been

effectively used to find memory instructions that pollute the caches with data

that is not reused while live in the caches [27]. This information was then feed

to a compiler optimization pass that automatically reduce the cache pollution.

21

3.3 Cache Misses

Before discussing how Statstack estimates miss ratio curves, we look at some

of the causes of cache misses. A cache miss occurs when a memory request

is made to a cache block that is not currently resident in the cache. There

are several reasons for why a cache block is not cached and therefore several

reasons for why cache misses occur. Hill et al. [17] categorized cache misses

into the following three broad categories: compulsory, capacity and conflict

misses.

3.3.1 Compulsory Misses

A compulsory cache miss occurs when a cache block is accessed for the first

time. The first access to a it must necessarily result in a cache miss, unless the

cache block was prefetched. As such, compulsory cache miss are independent

of the cache size, i.e., increasing the cache size will not reduce the number of

conflict misses. The number of compulsory misses experienced by an applica-

tion is proportional to its memory footprint, i.e., the total amount of memory

accessed by the application.

Statstack estimates the number of compulsory cache misses by counting

the number of infinite reuse distances in the application’s reuse distance dis-

tribution. All cache blocks accessed by an application must necessarily be

accessed one last time, resulting in an infinite reuse distance. However, as

Statstack uses a sampler that only measures the reuse distances of a few ran-

domly selected memory accesses, the number of infinite reuse distances in the

reuse distance distribution must be multiplied with the sample period in order

to get the number of compulsory cache misses.

3.3.2 Capacity Misses

For fully associative caches there are only two types of misses: compulsory

and capacity. Capacity misses, as the name suggests, are due to limited cache

capacity. In the event of a cache miss, the cache controller might have to evict

a previously installed cache block to make room for the accessed cache block.

If the evicted cache block is later accessed (after having been evicted) that

memory access will result in a capacity miss. Since it is the responsibility

of the cache replacement policy to select which cache blocks to evict, the

number of capacity misses experienced by an application is determined by the

effectiveness of the replacement policy.

For LRU caches, a capacity miss occurs when the volume of data accessed

since the last time the cache block in question was accessed exceeds the cache

capacity. Recall that the stack distance is the number of unique cache blocks

accessed between two consecutive accesses to the same cache block. Since

the volume of data accessed during a given time interval is equal to the num-

22

ber of unique cache blocks accessed during the interval, the stack distance

determines whether a memory access results in a capacity miss or not.

3.3.3 Conflict Misses

Conflict misses are due to conflicts between cache blocks mapping into the

same the set of a set-associative cache. How to define and measure conflict

misses is still an open question [26]. The traditional approach, however, is to

simulate a both fully associative and a set-associative cache of the same size,

and compare the resulting number of misses. The difference between the two

are then the conflict misses [16]. While this a fairly reasonable approach, it

has a few draw backs. For example, it is possible that an application has a

lower miss ratio for a set associative cache than a fully associative cache. The

traditional method of computing the conflict miss ratio would in this case yield

a negative conflict miss ration.

Statstack does not handle conflict misses. Most of today’s benchmark ap-

plications have relatively few conflict misses (compared to capacity misses)

for caches with reasonable associativities, so presently this is not a big is-

sue. However, in the future we might see machines with many cores sharing

caches of low associativity, resulting in relatively few cache-ways per core

and potentially more conflict misses. However, we argue that, for the general-

purpose data locality analysis conflict misses are less relevant. Data locality

is a property of the applications. However, for a given application, the num-

ber of conflict misses are determined by the cache architecture, specifically its

associativity, and therefore not a property of the application.

3.3.4 Misses due to Cache Sharing

Cache sharing – i.e., when multiple cores share a cache (e.g., see the level-

three cache in Figure 2.1) – can improve the utilization of the shared cache

capacity. However, as alluded to above, it can also result in additional cache

misses (as compared to when one core gets all the cache capacity). This oc-

curs because the threads running on the cores sharing cache get to use only a

fraction of the total shared cache capacity2. While this class of misses are not

essential for interpreting the data provided by Statstack, this thesis presents

method, called StatCC, presented in Paper II, based on Statstack, that esti-

mates these additional cache misses, which we briefly talk about here.

StatCC is a method that accurately predicts the shared cache miss ratios

of a set of co-running applications based on their individual reuse distance

distributions. This allows StatCC to use the low-overhead samplers presented

2Technically, for set-associative caches, each thread competes for and gets to use a fraction of

each cache-set. StatCC, however, ignores this and instead models a fully-associative cache. For

details see Paper II.

23

0%

2%

4%

6%

8%

10%

12%

32k
64k

128k
256k

512k
1M 2M 4M 8M

m
is

s
ra

ti
o

cache size

470.lbm

(a)

0%

1%

2%

3%

4%

5%

6%

32k
64k

128k
256k

512k
1M 2M 4M 8M

m
is

s
ra

ti
o

cache size

471.omnetpp

(b)

Figure 3.5. Miss ratio curves for 470.lbm (a) and 471.omnetpp (b).

by Berg et al. [5] and Sembrant et al. [28] to collect the required profiling

information. StatCC is best described as a two-step process. First, it predicts

the shared cache miss ratios of the co-running applications, given that we know

their relative CPIs. This is done by transforming the individual reuse distance

distributions of the co-running applications into the reuse distance distribution

of the interleaved access stream presented to the shared cache. Once we have

this combined distribution, we can use Statstack to estimate the shared cache

miss ratio. Of course, this method is of little use unless we know the CPIs

of the co-scheduled applications to begin with. Under the assumption that we

can predict an application’s CPI based upon its miss ratio (e.g., using [1, 13,

18, 31]), we can write the following simple equation system, shown here for

two co-running applications:

{

cpi1 =CPI (miss_ratio1 (cpi1,cpi2))

cpi2 =CPI (miss_ratio2 (cpi1,cpi2)) .
(3.1)

This equation system can be readily solved for CPIs of the co-scheduled appli-

cations (cpi1 and cpi2) by a general purpose equation solver. We then use these

CPIs to compute the applications’ shared cache miss ratios (miss_ratioi(cpi1,cpi2)).

3.4 Miss Ratio Curves

Once Statstack has computed the application’s stack distance distribution, the

application’s cache miss ratio, for any given range of cache sizes (i.e., the

application’s MRC), can be easily calculated in a single pass over the stack

distance distribution. The miss ratio for a given cache size is simply the frac-

tion of memory accesses whose stack distances is greater than or equal to the

cache size (measured in cache lines). This fraction can be computed for all

cache sizes in a single pass over the stack distances distribution.

24

Figure 3.5 show the MRCs for LBM and OMNet++ captured by Statstack.

LBM’s MRC has two distinct, large knees, at 64kB and 4MB. This indicates

that LBM accesses two distinct data sets that require cache sizes of 64kB and

4MB to fit in the cache, respectively. This however is not necessarily the sizes

of the data sets. Accesses to these data sets might be interleaved with accesses

to other data. These sizes (64kB and 4MB) therefore indicate the cache sizes

needed to hold specific data set plus the interleaved data. Furthermore, the flat

plateaus to the left of the knees indicate poor data locality. Consider the data

set corresponding to the knee at 4MB. Since the MRC is flat between 256kB

and 4MB, any additional cache space beyond 256kB will not be utilized unless

the cache is larger than 4MB. We note that MRCs with sharp knees and flat

plateaus (like LBM’s) often indicate regular, sequential access pattern. This

observation will be further discussed in Section 4.1. OMNet++’s MRC is

significantly different. It gradually drops off. (Notice that the x-axis is on log-

scale.) This means that OMNet++ benefits from gradually larger cache sizes,

it therefore has better data locality than LBM.

At this point one might ask: Why do we need MRCs when an application’s

miss ratio can be measured with hardware performance counters? The sim-

ple answer is that performance counters only gives us the miss ratios for the

caches sizes available on the specific machine on which the measurements are

performed. While this information shows how well the application utilizes the

caches of this machine, it does not provide much information about the appli-

cation’s data locality. Importantly, in cases where the cache utilization is poor,

it does not provide much insight into what is causing the poor utilization. An

important example of when the miss ratio provided by performance counters

is insufficient is when measuring an application’s working-set.

The working set of an application can be loosely defined as the smallest

cache size for which the application does not experience any capacity misses.

The working set is not necessarily the same as the footprint (i.e., the amount

of data accessed during an entire execution). For example, consider an appli-

cation that accesses every element of a large array once. This application has

very poor data locality, however since it does not reuses any of its data it will

not experience any capacity misses. (It will however experience compulsory

misses.) Its working set size is zero, while its footprint equals the size of the

array. Given the miss ratio for a specific cache sizes provided by performance

counters, we can only determine whether the working set is smaller or larger

than this specific cache sizes. Roughly, if the miss ratio is zero, the working

set is smaller than the cache size, otherwise it is larger.

When analyzing an application’s MRC we can easily find the application’s

working set. First, consider applications with trivial compulsory miss ratios.

For such applications, the working-set sizes is, by definition, equal to the cache

size for which the MRC intersects the x-axis, i.e., becomes zero. However,

for applications with non-trivial compulsory miss ratios, the MRC will never

intersect the x-axis. Recall that a compulsory miss ratio is independent of the

25

cache size. For such applications, the working set equals the cache size at

which the MRC flattens out and becomes parallel to the x-axis.

26

4. The Pirate and the Bandit

The main purpose of data locality analysis is to find opportunities to improve

the miss ratio and ultimately the performance of the analyzed application.

However, reducing the miss ratio of an application does not always improve its

performance. High-end processors often implement latency-hiding techniques

such as prefetching and out-of-order execution. While these techniques do not

reduce the amount of data that has to be fetched from main memory, they

do hide the latency (i.e., the service time) of the memory requests serviced

by the higher levels of the memory hierarchy, thereby reducing the cost of

cache misses. When increasing the cache capacity available to an application

with a large degree of data locality, some of its memory accesses that origi-

nally resulted in cache misses are turned into cache hits. For example, this is

the case for OMNet++. (See Figure 3.5). In terms of miss ratio, the appli-

cation therefore utilizes the additional cache capacity. However, the latency

of these memory accesses might already have been hidden by latency hiding

techniques. Consequently, the application’s performance might not signifi-

cantly improve, despite the increased cache capacity and reduced miss ratio.

From a performance point of view, it therefore does not utilize the additional

cache capacity.

While MRCs provide the data needed to analyze an application’s cache

utilization in terms of miss ratio, they are not well suited for analyzing cache

utilization in terms of performance. For this we need to know the application’s

performance (e.g., Cycles Per Instructions, CPI) as a function its available

cache capacity. Furthermore, in order to analyzing an application’s off-chip

memory bandwidth utilization, we need to know its CPI as a function of its

available off-chip memory bandwidth. This data allow us to determine how

applications’ performance are affected when increasing both their available

cache capacity and off-chip memory bandwidth, and therefore to analyze their

utilization of those two resources. To this end, this thesis makes two key

contribution: Cache Pirating (Paper III) and Bandwidth Bandit (Paper IV).

These two profiling methods enable us to measure any performance metric

available through hardware performance counters as a function of the available

cache capacity and off-chip memory bandwidth.

There are a number of options how to obtain data for analyzing applica-

tions’ utilization of the memory hierarchy. Cycle-accurate simulators (such

as [3, 7]) can provide data with high level of detail and can be extended to

measure almost any imaginable performance metric. While simulations are

extremely valuable for computer architecture design space explorations, it is

27

not necessarily the best option for application performance analysis. In this

case, the goal is often to analyze the application’s performance on the actual

target architecture. This would in many cases require the simulator to be val-

idated against the target architecture. However, as this is not always required

for design space exploration, few simulators are validated against real archi-

tectures. However, there are exceptions (e.g., [8]). Furthermore, software

performance analysis should ideally be done with realistic working sets. This

can inhibit the use of simulators as the simulation time might be unacceptable.

In the context of software performance analysis, an alternative to simula-

tors are hardware performance counters. They are mainly designed to count a

predefined set of performance related events, such as cache, TLB and branch

predictor misses, which occur during the execution of an application. As the

application is run on the real target hardware it does not suffer any slowdown.

This enables the measurement of performance metrics while the applications

run with large, realistic input sets, which is important for application perfor-

mance analysis. Furthermore the measurements reflect the performance of the

application on real hardware. However, as we pointed out in Chapter 2, the

performance counters can only be used to measure cache misses and perfor-

mance for the cache sizes of the caches in the memory hierarchy of the target

computer. This makes it hard to determine whether an application benefits

from increasing the cache capacity available to it, i.e. whether it can utilize

any additional cache capacity.

The Cache Pirate (Paper III) and Bandwidth Bandit (Paper IV) enable the

measurement of any performance metric available through performance coun-

ters as a function of the cache capacity and off-chip memory bandwidth avail-

able to the profiled application. This information allows us to determine how

well an application utilizes both cache capacity and off-chip memory band-

width, which are two important resources in the cache hierarchy. Both meth-

ods work by co-running a stress application with the target application (the one

which is measured). These stress applications “steal” a configurable amount

cache capacity, in the case of the Cache Pirate, and off-chip memory band-

width, in the case of the Bandwidth Bandit, from the target application. As

a result the target application only gets to use the remaining cache capac-

ity and memory bandwidth. Measuring the target application while it is co-

running with the stress applications enables us to measure any performance

metric available through hardware performance counters, such as execution

rate (IPC) and off-chip memory bandwidth (GB/s), as a function of both the

cache capacity and off-chip memory bandwidth available to the target appli-

cation.

28

0%

2%

4%

6%

8%

2M 4M 6M

fe
tc

h
/m

is
s

ra
ti

o

cache size

470.lbm

fetch ratio
miss ratio

(a)

0%

2%

4%

6%

8%

2M 4M 6M

fe
tc

h
/m

is
s

ra
ti

o

cache size

471.omnetpp

fetch ratio
miss ratio

(b)

Figure 4.1. Fetch and miss ratio curves for 470.lbm (a) and 471.omnetpp (b).

4.1 Cache Pirate

Figure 4.1 shows the miss ratio and fetch ratio curves obtained using Cache

Pirating for LBM and OMNet++ on a quad-core Intel Nehalem machine with

an 8MB shared last-level cache. In these graphs, miss ratio is the ratio of

memory accesses that result in cache block being fetched from main mem-

ory. These fetches are called demand fetches. The fetch ratio includes both

demand fetches and (hardware and software) prefetches. It therefore accounts

for all cache blocks fetched from main memory. As such, the fetch ratio is

always greater than or equal to the miss ratio. In Chapter 3 we did not dis-

tinguish between the two. When prefetching is disabled, the miss ratio and

fetch ratio are the same. However, when enabling prefetching, the fetch ratio

might increase. This is because the prefetchers might mistakenly fetch cache

blocks that are never used. Statstack does not model hardware prefetching.

However, under the assumption that the fetch ratio is the same, regardless if

prefetching is enabled or disabled, Statstack always reports fetch ratios. As

this is often the case, the data provided by Statstack approximates the profiled

application’s fetch ratio.

Figure 4.1(a) shows the fetch ratio and miss ratio of LBM. There are several

things to note in this graph. First, the miss ratio is much lower than the fetch

ratio, which indicates that the hardware prefetchers are successfully prefetch-

ing useful data. This is expected as LBM performs a stencil computation

with a very regular, and therefore easily prefetchable access, pattern. Second,

despite the successful prefetching, LBM’s miss ratio still increases when its

available cache capacity is reduced. We would therefore expect LBM’s CPI

to increase accordingly. However, Figure 4.2(a), which reports LBM’s CPI

as a function of its available cache capacity, shows that this is not the case.

Instead, LBM’s CPI is independent on its available cache capacity. This is be-

cause LBM issues most of its loads in the beginning of each step (iteration) of

the stencil computation. Furthermore, these loads are independent, and most

29

0

1

2

3

2M 4M 6M

C
P

I

cache size

470.lbm

(a)

0

1

2

3

2M 4M 6M

C
P

I

cache size

471.omnetpp

(b)

Figure 4.2. CPI as a function of cache size for 470.lbm (a) and 471.omnetpp (b).

0

1

2

3

4

2M 4M 6M

b
an

d
w

id
th

(G
B

/s
)

cache size

470.lbm

(a)

0

1

2

3

4

2M 4M 6M

b
an

d
w

id
th

(G
B

/s
)

cache size

471.omnetpp

(b)

Figure 4.3. Bandwidth as a function of cache size for 470.lbm (a) and 471.omnetpp

(b).

of the additional cache misses can therefore be issued in parallel. As a result,

their latencies can be effectively hidden by out-of-order execution.

In terms of fetch ratio, LBM clearly utilizes additional cache capacity.

Its fetch ratio improves when it receives more cache capacity. However, in

terms of performance, LBM does not utilize the cache. This is shown in

Figure 4.2(a), where LBM’s CPI is virtually flat, indicating LBM is able to

maintain a constant CPI when its available cache capacity is reduced. This,

however, comes at the cost of an increased demand for off-chip memory band-

width. Figure 4.3(a) shows LBM’s off-chip memory bandwidth demand as a

function of its available cache capacity. As LBM’s fetch ratio increases when

its cache capacity is reduced, the memory system has to supply it with data

at a higher rate in order to maintain a constant execution rate. In the case

of LBM, we can essentially trade cache capacity for off-chip memory band-

width. In this context, Figure 4.3(a) can be viewed as reporting the exchange

rate between cache capacity and off-chip memory bandwidth.

30

1

2

3

4

1 2 3 4

th
ro

u
g

h
p

u
t

instances

471.omnetpp

measured
predicted

ideal

1

2

3

4

1 2 3 4

th
ro

u
g

h
p

u
t

instances

470.lbm

measured
predicted

ideal

Figure 4.4. Aggregate throughput of multiple co-running instances of 471.omnetpp

(a) and 470.lbm (b).

Figure 4.1(b) shows the fetch ratio and miss ratio of OMNet++, which, ex-

cept for a small offset, are almost identical. This indicates that the hardware

prefetchers are not able to fetch much of OMNet’s data. This suggests the

OMNet has a much less regular access pattern, than LBM. Consequently, its

CPI, shown in Figure 4.2(b) does increase when its available cache capacity

is reduced, and it OMNet++ therefore utilizes additional cache capacity, both

in terms of fetch ratio and performance. Furthermore, as both its fetch ra-

tio and CPI increase in concert when its available cache capacity is reduced,

its off-chip memory bandwidth demand does not significantly increase. The

increased demand for data fetches is offset by the reduced execution rate.

4.1.1 Case Study

To give a concrete example of how one can use the data obtained using Cache

Pirating, this section presents a case study in which we analyze how the ag-

gregate throughput scales when co-running multiple instances of LBM and

OMNet++.

Figure 4.4(a) shows the aggregate throughput when running up to four in-

stances of OMNetT++ on a quad core Intel Nehalem processor with an 8MB

shared last-level cache. As the figure shows, the throughput does not scale per-

fectly. For example, when running four instances, we observed a total through-

put of only three times that of a single instance. When running multiple in-

stances of the same application, all instances typically receive equal portions

of the shared cache capacity. When increasing the number of co-runners, the

cache capacity available to each individual instance is therefore reduced.

In light of the analysis of OMNeT++ in the previous section, it is not sur-

prising that its throughput does not scale perfectly. Since OMNeT++’s perfor-

mance decreases when its available cache capacity is reduced, it does indeed

utilize its cache capacity. When running four instances of OMNet++, each

31

0

1

2

3

4

2M 4M 6M

b
an

d
w

id
th

(G
B

/s
)

cache size

470.lbm

(a)

0

4

8

12

1 2 3 4

b
an

d
w

id
th

(G
B

/s
)

cores

470.lbm

10.4GB/s

measured
required

(b)

Figure 4.5. (a) Bandwidth as a function of cache size and (b) bandwidth demand for

one, two, three and four co-running instances of 470.lbm.

instance will receive approximately 2MB of the shared cache capacity, and

therefore run at a CPI of 2.0, or 20% slower than when they get to use all

of the shared cache capacity. (See Figure 4.2(b).) Based on the CPI data in

Figure 4.2(b) we can accurately predict the observed throughput scaling. This

prediction is shown in Figure 4.4(a) (the graph labeled “predicted”). As the

throughput prediction matches the measured throughput almost perfectly, we

can conclude that the limited throughput is due to OMNeT’s fairly good cache

utilization.

LBM is a different case. In the previous section we saw that LBM does

not utilize the cache at all, and we therefore expect its throughput to scale per-

fectly. However, as shown in Figure 4.4(b), this is not the case. To understand

this, we look at LBM’s off-chip memory bandwidth curve in Figure 4.5(a).

(Figure 4.5(a) shows the same data as Figure 4.3(a) but is repeated here for

convenience.) This data shows the off-chip bandwidth required by LBM to

achieve the CPI in Figure 4.2(a). It shows that when LBM’s available shared

cache capacity is reduced it requires more bandwidth. Figure 4.5(b) shows the

required and measured off-chip bandwidth for running up to four instances of

LBM. As Figure 4.5(b) shows, when running three instances, each instance

require 3GB/s, for a total of 9GB/s, which is less than the system’s maxi-

mum bandwidth of 10.4GB/s. However, the required bandwidth to run four

instances at the CPI shown in Figure 4.5(b) is 12GB/s, which is more than the

system’s maximum.

4.2 Bandwidth Bandit

In the previous section we saw that when co-running four instances of LBM,

the memory system could not deliver the bandwidth required to achieve perfect

32

0

10

20

lbm streamcluster

soplex
mcf

0

1

2

sl
o
w

d
o
w

n
(%

)

b
an

d
w

id
th

(G
B

/s
)

slowdown bandwidth

Figure 4.6. Slowdown due to memory contention (left vertical axis) and bandwidth

demand (right vertical axis) of four single-threaded applications. The slowdown is

the execution when the applications experience memory contention relative to that

when they are running alone (i.e., they have exclusive access to all off-chip memory

resources).

(linear) throughput scaling. This bandwidth limitation is due to contention for

off-chip memory resources, which is the topic of this section.

When co-running multiple application/threads, they contend for the shared

memory resources, e.g., memory controllers; data and address buses; and

DRAM banks. In terms of performance, this has two main effects. First, it

limits the bandwidth available to the instances. This is largely due to limits on

the number parallel memory requests that can be kept in-flight at various lev-

els in the memory hierarchy. Second, it increases accesses latencies. This is

due to several factors, for instance: DRAM bank conflicts, which occur when

two or more instances are trying to access the same bank at the same time; and

page-cache conflicts, which occur when a row cached on behalf of one appli-

cation/thread is evicted in order to cache a row of another application/thread.

As mentioned above, contention for off-chip memory resources affect both

the bandwidth available to and latencies achieved by the co-running applica-

tion. To further complicate matters, different applications can have signifi-

cantly different sensitivities to reduced bandwidths and increased latencies.

Figure 4.6 show the slowdown of four applications when experiencing con-

tention for off-chip memory resources. The four applications are co-run with

the same set of co-runners, and therefore experience the same amount of mem-

ory contention. However, Streamcluster and Soplex have much larger slow-

down than LBM and MCF. The figure also shows the applications’ bandwidth

demands. It would seem reasonable that applications with higher bandwidth

demands are more sensitive to contention as they consume more memory re-

sources. However, Figure 4.6 clearly shows that this is not the case. In the

33

0

1

2

3

4

5

6

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

B
an

d
w

id
th

(G
B

/s
)

IP
C

Bandit Bandwidth (GB/s)

470.lbm

Target BW
Target IPC
Total BW

Figure 4.7. Data obtained using the Bandwidth Bandit.

context of software performance analysis, it is therefore important to quantify

applications’ sensitivities to contention for off-chip memory resources.

Cache Pirating enables us to measure the profiled application’s demand for

off-chip memory bandwidth. However, as shown in Figure 4.6, this data does

not indicate how the application’s performance is impacted by reduced band-

widths and increased latencies. To analyze this we therefore need different

data. However, as mentioned above, there are many shared resources in the

off-chip part of the memory hierarchy. Analyzing the contention for each of

these resources individually, and then inferring their overall performance im-

pact, can be intractable. Ideally, we want to summarize their total performance

impact with a single metric. The amount of memory contention generated by

an application is generally higher for applications that generate more off-chip

memory traffic, i.e., applications that consume more off-chip memory band-

width. In this section, we therefore study how an application’s performance

is impacted as a function of how much off-chip memory bandwidth their co-

runners consume.

Figure 4.7 shows the data obtained using the Bandwidth Bandit for LBM.

To get this data we co-run LBM with the stress application (the Bandit) that

consumes a configurable amount of off-chip memory bandwidth and mea-

sured the bandwidth and IPC achieved by LBM. To highlight the impact of

bandwidth limitations, this data was obtained on a machine with only one

out of three memory channels activated. This roughly reduces the available

bandwidth with a factor of three. As we want to measure the impact due to

contention for off-chip memory resources in isolation, we ensure the Ban-

dit application accesses memory in way that such that it consumes a trivial

amount of cache capacity (for further details see Paper IV). Figure 4.7 has

three curves; Target BW, the target application’s, in this case LBM’s, band-

34

width; Target IPC, the target application’s IPC; and Total BW, the sum of the

Target’s and the Bandit’s bandwidths. The scales for the two bandwidth curves

(Target BW and Total BW) are shown on the left vertical axis, while the Target

IPC is shown on the right vertical axis. The horizontal axis shows the Bandit’s

bandwidth.

There are several things to note in Figure 4.7. First, the total bandwidth

(labeled “Total BW”) levels out at about 5.7GB/s. This is the saturation

bandwidth (i.e., maximum achievable aggregate bandwidth) for this set of co-

runners (LBM and Bandit). This occurs when the Bandit’s bandwidth reaches

about 3.8GB/s. Further increasing the Bandit’s bandwidth reduces the band-

width achieved by LBM so that the total bandwidth remains at 5.7GB/s. Sec-

ond, when LBM runs alone (i.e., not co-running with the Bandit) its band-

width is about 2GB/s. When the bandwidth consumed by the Bandit is in-

creased (moving to the right along the horizontal axis), LBM’s bandwidth

stays at this level (2GB/s) until the Bandit’s bandwidth reaches the point at

which the total bandwidth levels out. Third, LBM’s IPC curve follows the

same trend as its bandwidth curve. As the Target’s fetch ratio is not impacted

by the Bandit, the Target’s bandwidth is determined by its IPC (bandwidth =
IPC× f etch_ratio). Finally, the saturation bandwidth depends on the set of

co-runners. However, we can always find it by identifying the level at which

the total bandwidth levels out.

Based on the above observations we can draw the following conclusions.

First, even at fairly modest bandwidths, the contention generated by the Ban-

dit causes the Target’s access latencies to increase. However, LBM’s perfor-

mance is not negatively affected before the off-chip memory bandwidth sat-

urates. This indicates that LBM’s performance is not impacted by increased

access latencies. Second, once the bandwidth saturates, LBM’s performance

drops proportionally to the bandwidth consumed by its co-runners. This al-

lows us to explain why LBM does did not achieve perfect (linear) scaling in

the case study presented in Section 4.1.1. Based on Figure 4.5(b) we know that

the total bandwidth demand of four co-running instances of LBM is 12GB/s.

However, the total bandwidth actually measured when running four instances

is 10.4GB/s (see Figure 4.5(b)). This suggests that the four instances saturate

the off-chip memory bandwidth. Now, since the bandwidth is saturated and

the achieved bandwidth is 87% of the demand, we expect the each LBM in-

stance to run 13% slower than when the bandwidth is not saturated. The IPC

of LBM before saturation is about 1.4 (see Figure 4.2(a)) the aggregate IPC of

four instances is therefore 4.9 (4× 0.87× 1.4), and the resulting normalized

throughput is 3.5 (4.9/1.4). This is very close match to the measured through-

put and therefore shows that we can indeed use what we learned about LBM

from analyzing its bandwidth data to predict this sub-linear scaling.

35

0

1

2

3

4

1 2 3 4

T
h

ro
u

g
h

p
u

t

Instances

471.omnetpp

Bandit-Predicted
Naive-Predicted

Reference

(a)

0%

10%

20%

30%

40%

0% 20% 40% 60% 80% 100%
0.0

0.1

0.2

0.3

0.4

0.5

T
ar

g
et

B
an

d
w

id
th

T
ar

g
et

IP
C

Bandit Bandwidth

471.omnetpp

Bandwidth
IPC

(b)

Figure 4.8. Relative throughput (left) and Bandwidth Bandit data of OMNet++.

4.2.1 Case Study

In this section we present a case study in which we show how the data obtained

using the Bandwidth Bandit can be used to estimate the throughput when co-

running multiple instances of OMNet++.

In order to factor out the impact of cache sharing, we partitioned the 8MB

shared, last-level cache on our quad-core Nehalem machine so that each co-

running instance always gets 2MB of cache capacity each. To achieved this

we patched the Linux kernel to add support for page coloring. This allows us

to study the impact of contention for off-chip memory resources in isolation.

Figure 4.8(a) show the normalized aggregate throughput of OMNet++. It

clearly does not scales perfectly (i.e., linearly). To investigate this we look at

OMNet’s bandwidth graphs in Figure 4.8(b). In this figure, the bandwidths are

expressed as a percentage of the saturation bandwidth. This data shows that,

contrary to that of LBM, the IPC of OMNet++ does increase long before the

bandwidth saturates, which indicates that it OMNet++ is sensitive to increased

access latencies.

Given the bandwidth data of an application, finding the throughput of a

given number of co-running instances is a two-step process. First, we use the

bandwidth graphs to find the bandwidths of the co-running instances. Then,

we use these bandwidths to find the co-running instances’ individual IPCs,

which give us the finally overall throughput.

Bandwidth: When co-running multiple instances of the same application,

all instances get an equal amount of bandwidth, finding the bandwidth of one

instance therefore gives us the bandwidth of all instances. Finding how much

bandwidth one of the co-running instances get amounts to finding the (x, y)-

point on its bandwidth graph where y = x, y = 2x and y = 3x for two, three and

four co-running instances, respectively. For example, the y value which is the

solution to y = 2x is the bandwidth of one instance, when its co-running with

two instance that together consumes twice the bandwidth of the first instance.

36

The above equations can be easily solved using standard fixed-point methods.

Their solutions of are marked with circles in Figure 4.8(b).

Throughput: Once we know the bandwidth of all instances, we can simply

read out their IPC in Figure 4.8(b), and the aggregate through put is then the

sum of the instances IPCs.

Figure 4.8(a) show the throughput predicted using the Bandwidth Bandit

("Bandit-Predicted") and the measured reference throughput ("Reference"). It

also show a "naive" throughput prediction ("Naive-Predicted"). Because the

bandwidth demand of OMNet++ is slightly less than 25% of the saturation

bandwidth, which is less than the system peak bandwidth, we would not expect

four instances to saturate the bandwidth. (Their total bandwidth demand is less

than 100% of the saturation bandwidth.) Therefore, without any additional

information, our best (although naive) prediction would have been that the

throughput scales linearly.

37

5. Speedup Stacks

A key property of multi-threaded programs is how their execution times scale

when increasing the number of threads. This can be illustrated in a speedup

graph which reports a program’s speedup as a function of its number of threads.

See Figure 5.1. For multi-threaded programs to fully utilize the increasing

core counts of present and future multi-core processors, their performance

has to scale linearly with the number of threads. However, there are sev-

eral factors that can limit the scalability of multi-threaded programs. Besides

Amdahl’s law, Eyerman et al. [12] identified the following main scalability

bottlenecks: contention for cache capacity and off-chip memory resources;

cache coherency; synchronization; load imbalance and parallelization over-

heads. The program shown in Figure 5.1 does not achieve perfect (linear)

speedup. For example, it only achieves a speedup of 2.5 with four threads.

While a speedup graph shows how a multi-threaded program scales, it does

not alone provide enough information to determine why the program scales

in this way. To this end Eyerman et al. [12] introduced the concept of the

speedup stack, illustrated in Figure 5.1. The speedup stack reports how much

each of the scalability bottlenecks (listed above) limits the program’s speedup.

It consists of several components, one for each scalability bottleneck. The

heights of the components represent how much the program’s speedup is re-

duced due to the corresponding scalability bottlenecks. The scalability of the

program in Figure 5.1 is limited by three bottlenecks: contention for cache

capacity (cache), contention for off-chip memory (memory) and synchroniza-

tion (synch). For this program, the largest component is cache, and the major

factor limiting its speedup is therefore contention for cache capacity. This

suggests that the most effective way to increase its scalability is to reduce the

contention for cache capacity. A software developer could, for example, im-

prove data locality, while a hardware architect could increase cache sizes.

Heirman et al. [15] and Eyerman et al. [12] both present methods for obtain-

ing speedup stacks. Heirman’s method requires simulations, while Eyerman’s

rely on custom hardware performance counter support. While they report en-

couraging results, both methods have drawbacks which we address in this pa-

per. First, accurately simulating real multi-core hardware is a big challenge.

For example, besides being relatively slow, it might require detailed and undis-

closed information about the simulated multi-core. Second, as of yet none of

the major chip manufacturers implement the performance counting hardware

required by Eyerman’s method.

In Paper V we present a software-only profiling method for obtaining speedup

stacks on commodity multi-cores. The method targets symmetric, fork-join

38

1

2

3

4

1 2 3 4

sp
ee

d
u

p

threads

perfect
measured

(a)

1

2

3

4

1 2 3 4

sp
ee

d
u

p

threads

lock
memory

cache

(b)

Figure 5.1. Speedup graph (a) and corresponding speedup stack (b).

style parallel programs with limited data sharing. This includes many data

parallel applications. The method captures speedup stacks for each parallel

phase (i.e., between a fork and the corresponding join) of the profiled applica-

tion. The resulting speedup stacks report three components: 1) contention for

cache capacity; 2) contention for off-chip memory resources; and 3) synchro-

nization, which includes lock contention, barrier synchronization and load im-

balance. These components represent the main scalability bottlenecks of the

targeted class of programs.

5.1 Speedup Stacks
We define the speedup stack in terms of the speedup that a multi-threaded pro-

gram would achieve when run on a hypothetical machine where the scalability

bottlenecks can be eliminated one-by-one, but which is otherwise identical to

a real, commodity multi-core. This hypothetical machine can be thought of

as follows. To eliminate the bottlenecks due to synchronization, all threads

should perform as if they never had to wait for the other threads. For exam-

ple, in the case of lock contention, each thread should perform as if the other

threads never held the lock in question. To eliminate the scalability bottlenecks

due to contention for shared resources (cache capacity and off-chip memory

resources), all threads should perform as if they had exclusive access to the

shared resource.

To this end we develop a framework that allow us to profile each individ-

ual thread of a mulit-threaded program while running them in an environ-

ment where we can control the presence/absence of the scalability bottlenecks.

The basic idea is to first eliminate all scalability bottlenecks and reintroduce

them one-by-one. In order to eliminate the scalability bottlenecks, we run

the profiled thread alone and thereby giving it access to all shared resources,

e.g., cache capacity, off-chip memory resources and critical sections. This is

39

A B C D E

Running

Halted

Target

barrier joinfork

time

Figure 5.2. Chart showing how the profiling framework works. A© Halt all but the

profiled thread. B© The profiled thread reached a barrier, start the other threads and let

them catch up. C© At this point, all threads have reached the barrier. Repeat A until

the join is reached. D© The profiled thread reached the join, halt it and let the other

threads catch up. E© All threads have made it through the parallel phase. Profiling

done.

achieved as follows. At the beginning of a parallel phase we halt all but one

thread which we profile, and let it run alone until it reaches a synchronization

barrier. At this point, we halt the profiled thread and let the others catch up.

When all threads have reached the synchronization barrier, we again halt all

but the profiled thread and repeat the above process. Alternating the two sets

of threads between barriers guarantees a correct execution in terms of syn-

chronization. This is illustrated in Figure 5.2. Furthermore, as the profiled

thread runs alone, it gets exclusive access to the shared cache capacity and the

off-chip memory resources; and does not experience any lock contention, the

other threads do not hold any locks while waiting at the barrier.

To introduce scalability bottlenecks in the above environment, we use tech-

niques such as Cache Pirating (Paper III). Cache Pirating lets us limit the cache

capacity available to the profiled thread. For example, this allows us to emu-

late an environment in which the profiled thread has access to a limited amount

of shared cache capacity, but at the same time has access to all off-chip mem-

ory resources and does not have to wait for access to locks. For further details

please see Paper V.

5.2 Case Study 1: Single-threaded applications

In this section we present speedup stacks for multiple co-running instances

of single threaded applications. Figure 5.3 shows the speedup stacks of OM-

Net++ and LBM. These speedup stacks were obtained on a quad-core Intel

Nehalem machine. As each instance performs the same amount of work no

matter how many are co-running, we look at aggregate throughput rather than

speedup. Furthermore, as they have separate address spaces and do not syn-

chronize, the only two scalability bottlenecks that can limit their throughput

are contention for cache capacity and off-chip memory resources, and their

speedup stacks will therefore only consist of the corresponding two compo-

40

0

1

2

3

4

1 2 4 1 2 4

sp
ee

d
u

p
memory

cache

470.lbm471.omnetpp

Figure 5.3. Speedup stack of co-running instances of OMnet++ (a) and LBM (b).

nents - cache and memory. In the following we briefly discuss how to inter-

pret OMNet++’s and LBM’s speedup stacks and how their throughputs can be

improved.

Figure 5.3 shows OMNet’s speedup stack. It reveals that OMNet’s through-

put is limited mainly by contention for cache capacity. This is consistent with

the results of the analysis presented in Section 4.1.1. There are two options to

improve OMNet’s throughput, either improve data locality and thereby reduce

its working set; or increase the cache size. To achieve perfect scaling, the CPI

of each co-running instance has to be the same as that of a single instance run-

ning alone, which is about 1.70 (see Figure 4.2(b)). Consider the case of four

co-running instances. If each instance gets 6MB of cache, their CPIs would

be about 1.73. This corresponds to a relative aggregate throughput of 3.93

(1.70/1.73× 4). Therefore, reducing the working set size by approximately

4MB or increasing the cache capacity available to each instance by 4MB (i.e.,

increasing the cache size by 16MB (6× 4− 8MB)), would result in close to

perfect scaling up to four co-running instances.

Figure 5.3 shows LBM’s speedup stack. LBM’s throughput is limited by

contention for off-chip memory resources. In Section 4.1.1 we drew the fol-

lowing conclusions about LBM. First, as its CPI is virtually flat, LBM is not

directly affected by how much cache capacity it receives, and will scale per-

fectly as long as the off-chip memory bandwidth demands of the co-running

instances are met. LBM’s bandwidth demand when co-running four instances

is 12GB/s (4× 3GB/s). However, when co-running four instances, the ag-

gregate bandwidth actually achieved is only 10.6GB/s, which is less than the

demand (see Figure 4.5(b)). This behaviour is reflected in LBM’s speedup

stack.

To improve LBM’s throughput there are two options, either increase the

available off-chip memory bandwidth or reduce the bandwidth demand. First,

41

0

1

2

3

4

1 2 4 1 2 4 1 2 4

sp
ee

d
u

p
lock

memory
cache

oceanfluidanimatefluidanimate-one-lock

Figure 5.4. Speedup stacks for three data parallel applications.

as the bandwidth demand is 12GB/s, increasing the available off-chip mem-

ory resources such that a bandwidth of 12GB/s can be achieved would result

in perfect (linear) scaling. Second, Figure 4.3(a) shows that increasing the

cache size by 10MB (4 × 2.5MB) would reduce the bandwidth demand of

each instance to about 2.7GB/s. This would result in an aggregate demand of

10.8GB/s (4×2.7GB/s) which is just about what three memory channels can

sustain. Increasing the cache size by 10MB would therefore result in perfect

(linear) throughput scaling.

5.3 Case Study 2: Multi-threaded applications
Figure 5.4 shows the speedup stacks, including synchronization components,

for the three data parallel benchmarks from. These three benchmarks are the

ones with the largest synchronization overheads that we could find that do not

use condition variables (which we currently do not support)1. We present data

for two versions of fluidanimate. Fluidanimate iteratively computes over a set

of particles in a three dimensional space which is split into sub-spaces, one for

each thread. In a single iteration several different properties are computed for

each particle, between which the threads synchronize using a single barrier.

In the vanilla version of fluidanimate, each particle has its own lock. When a

thread computes on a particle residing on a boundary of its sub-space, it has

to grab the lock associated with the particle’s neighbors. To introduce more

lock contention we created a version of fluidanimate that uses a single lock

(fluidanimate-one-lock).

1We measured the synchronization overheads of all data parallel benchmarks in PARSEC [6],

NAS [23] and SPLASH2 [32] that do not use condition variables. With four threads only

fluidanimate and ocean had significant significant synchronization overheads.

42

There are several things to note. Figure 5.4 shows that both fluidanimate

versions have large lock components, and that fluidanimate-one-lock version

lock component is larger than vanilla fluidanimate, as expected. The cache

component is slightly smaller for the vanilla version. As there is more lock

contention in the single lock version, the threads spend more time spinning

waiting for access to the lock. During this time they do not utilize the shared

cache capacity, which allows the non-spinning threads access to more cache

capacity. This causes fluidanimate-one-lock to have a slightly smaller cache

component than vanilla fluidanimate.

Finally, we note that all three benchmarks in Figure 5.4 have virtually zero

memory components. This expected as their memory bandwidth demands at

four threads are low (1.8GB/s, 1.9GB/s and 1.7GB/s, respectively) and can

be easily satisfied. For our method to predict a memory component of zero,

the speedups estimated using Cache Pirating and the method to estimate syn-

chronization overheads, presented above, must match up. This is indeed the

case, and indicates that both these methods make accurate predictions, as it is

unlikely that both methods have errors that balance each other to produce a

zero memory component.

43

6. Summary and Conclusions

The performance of many applications is largely determined by how well they

utilize the resources in the memory hierarchy. For such applications, there

are two principal approaches to improve performance: optimize the memory

hierarchy and optimize the software. In both cases, it is important to both

qualitatively and quantitatively understand how the software interacts with the

memory hierarchy. To this end, this thesis presents several novel profiling

methods for memory-centric software performance analysis. The goal of these

profiling methods is to provide general, high-level, quantitative information

describing how the profiled applications utilize the resources in the memory

hierarchy. For such techniques to be broadly applicable the data collection

should have minimal impact on the profiled applications while at the same time

not be dependent on custom hardware and/or operating system extensions.

In this thesis we mainly focus on the following two key resources: caches

and off-chip memory bandwidth. A general way to present how well an ap-

plication utilizes these resources is to plot performance metrics, such as miss

ratio, fetch ratio and CPI, as a function of how much of the resources the ap-

plication receives. This thesis shows that such high-level profiling information

can indeed be accurately obtained with little impact on the profiled application

and without requiring costly simulations or custom hardware support. To ob-

tain this type of information, we propose and evaluate three approaches: Stat-

stack, the Cache Pirate and the Bandwidth Bandit. Statstack, which is mainly

geared towards data locality analysis, employs statistical sampling techniques

and estimates the profiled application’s miss ratio curve. The profiling data

required by Statstack can be obtained at low cost by using hardware perfor-

mance counters and watchpoints. The latter two methods, Cache Pirate and the

Bandwidth Bandit, use hardware performance counters to directly measure the

profiled application while it is running on a commodity multi-core. As a result,

they capture the profiled application’s behavior on real, commodity hardware

with a limited impact on the profiled applications’ execution times.

While the main focus of this thesis is on the design and evaluation of the

core profiling and how to interpret the resulting data in a general context, we

presents several case studies. In these case studies, we show how to apply

the obtained profiling data to analyze both the throughput when co-running

multiple instances of single-threaded applications and the scalability of muti-

threaded applications on a commodity multi-core. Furthermore, the type of

data captured by the profiling methods presented in this thesis have been suc-

cessfully used by Acumem ThreadSpotter [2].

44

7. Introduction in Swedish

Utvecklingen inom halvledarindustrin har under de senaste decennierna gått

otroligt fort men tyvärr har inte all typer av datorkomponenter utvecklats i

samma hastighet. Till exempel har processorkärnornas klockfrekvens generellt

utvecklats mycket snabbare än primärminnenas frekvens, vilket kan leda till

problem när dessa ska användas tillsammans. När processorkärnornas hastig-

het ökar, ökar normalt sett även hastigheten med vilken de behöver läsa och

skriva data till primärminnet. Om primärminnet inte klarar av att leverera data

i den takt som processorkärnorna kräver, kommer hela datorsystemets hastig-

het att begränsas av primärminnets hastighet.

På senare tid har processorernas frekvensutveckling börjat plana ut. Detta

beror huvudsakligen på att deras effektförbrukning har nått ohållbara nivåer.

För att dra nytta av den fortsatta ökningen av antalet transistorer på halvledar-

chipen har datorindustrin istället gått över till att integrera flera processorer på

samma chip. Idén bakom detta är att två processorer på en given tid kan utföra

samma mängd jobb som en enda processor med dubbla frekvensen. I teorin

skulle därför beräkningstiden kunna halveras genom att dubblera antalet pro-

cessorer. Förhoppningen är att kunna öka antalet processorer i en sådan takt att

kraven på ökad beräkningshastighet kan mötas utan att nämnvärt öka proces-

sorernas frekvens, vilket skulle leda till att effektförbrukningen kunde hållas

nere. Men, eftersom två processorer efterfrågar dubbelt så mycket data som

en processor, givet att deras frekvenser ar desamma, blir resultatet fortfarande

att datorsystemens hastighet kan begränsas av primärminnets hastighet.

Till vilken grad datorsystemets hastighet är begränsad av primärminnet be-

ror på de individuella datorprogrammens krav på primärminnet. Många av

dagens datorprogram läser och skriver stora mängder data. Exekveringstiden

för många av dessa program är därför ofta till en hög grad beroende av hur

snabbt minnessystemet kan leverera data. Det leder till att moderna datorsys-

tem måste ha både stora och snabba primärminnen. Det finns många olika

typer av minnen som kan användas i ett minnessystem, med olika hastighet

och kostnad. En enkel lösning skulle vara att endast använda den snabbaste

typen av minne men detta skulle kunna resultera i en onödigt hög tillverkn-

ingskostnad. Den traditionella lösningen är därför att bygga hierarkiska min-

nessystem.

Under en given tidsperiod läser och skriver datorprogram normalt sett en-

dast en relativt liten delmängd av deras totala datamängd. Den här observa-

tionen kallas datalokalitetsprincipen. Hierarkiska minnessystem drar nytta av

datalokalitetsprincipen genom att använda små, snabba minnen, så kallade ca-

cheminnen, för att spara den mest frekvent använda datan och stora, långsamma

45

minnen for att spara den mindre frekvent använda datan. På så vis kommer

de flesta läsningar och skrivningar hanteras av de små, snabba cacheminnena

vilket gör att minnessystemet blir signifikant snabbare, samtidigt som kost-

naden hålls nere. Figur 2.1 visar en minneshierarki liknande den som finns i

Intels Nehalem-processorer.

Graden av datalokalitet, dvs. storleken på den mest frekvent använda datamäng-

den, varierar ofta mellan olika program. Olika program ställer alltså olika

krav på minneshierarkin. I optimeringen av minneshierarkier drar man även

nytta av egenskaper som programmens läs- och skrivmönster, vilka också kan

variera mellan olika program. Både datorarkitekter, som designar minneshier-

arkier, och mjukvaruutvecklare, som skriver högprestandaprogram, kan därför

dra nytta av kvalitativ och kvantitativ kännedom om programmens krav på

minneshierarkin.

Den här avhandlingen presenterar flera nya profileringsmetoder för min-

neshierarkicentriska prestandautvärderingar. Målet med dessa profileringsme-

toder är att generera generell, lättolkad, kvantitativ information som beskriver

hur väl det profilerade programmet utnyttjar cacheminnena i minneshierarkin.

Datorarkitekter kan använda sådan information for att avgöra hur många och

hur stora cacheminnen minneshierarkin bör innehålla. Mjukvaruutvecklare

kan använda sådan information for att avgöra om någon eller några av datas-

trukturerna inte får plats i cacheminnet och på så sätt identifiera de datastruk-

turer som, om möjligt, bör bytas ut eller på annat sätt ändras.

För att den här typen av profileringsmetoder ska vara användbara, krävs

det att datainsamlingen har minimal påverkan på det profilerade programmet.

Detta är viktigt av två huvudsakliga anledningar: För det första innebär mini-

mal påverkan att tiden det tar att profilera programmet blir kort. Detta tillåter

profilering av riktiga program som annars skulle kunna ta flera dagar att profil-

era. För det andra, i de fall då profileringen sker genom att mäta det profilerade

programmets egenskaper medan det exekverar på riktig hårdvara innebär min-

imal påverkan att profileringsdatan representerar det profilerade programmets

verkliga beteende. Om profileringsmetoden påverkar programmets beteende

på ett oönskat sätt kan detta distordera den uppmätta profileringsdatan. För

att vara generellt tillämpbara är det även önskvärt att den här typen av pro-

fileringsmetoder inte kräver hårdvarustöd som inte finns tillgängligt i dagens

processorer.

Profileringsmetoderna som presenteras i den här avhandlingen kan ge en

mängd olika prestandamått som funktioner av hur stor del av cacheminnena en

applikation använder. Den här informationen beskriver bland annat de profil-

erade programmens marginella förbättring när cacheminnenas respektive stor-

lekar ökas och beskriver på så vis hur väl den profilerade applikationen utnytt-

jar cacheminnena. Vidare har de presenterade metoderna minimal oönskad in-

verkan på de profilerade programmen, utan att kräva specialdesignad hårdvara.

Flera fallstudier presenteras, där profileringsmetoderna används för att analy-

sera prestandakonsekvenserna av att köra flera parallella instanser av enkel-

46

trådade program på flerkärniga processorer med delade cacheminnen. Det

visas även hur profileringsmetoderna kan kombineras för att tillåta analys av

hur skalbarheten hos multitrådade program påverkas av resursbegränsningar i

minneshierarkin.

47

8. Acknowledgement

This thesis is a result of collaboration. It had not been written without the

support and encouragement from many. To begin I would like to thank my

supervisors Erik Hagersten and David Black-Schaffer: Erik, for all the inter-

esting and challenging discussion and encouragement. David, for encuraging

me to trust my own instincts and for the countless hours he spent improving

the presentation in our papers. Many thanks go to my co-author Nikos Niko-

leris who provided great insights and spent many late nights working on the

Cache Pirating, Bandwidth Bandit and Speedup Stack papers. Furthermore, I

would like to thank the other members of the Uppsala Architecture Research

Team: Andreas Sandberg, Muneeb Khan and Andreas Sembrant for all inter-

esting discussions and for creating an inspiring work environment. I would

also like to thank Mikael “Lax” Laaksoharju for proofreading the introduction

in Swedish.

This work was supported in part by the Swedish Foundation for Strategic

Research through the CoDeR-MP (Computationally Demanding Real-Time

Applications on Multicore Platforms) project and by the Swedish Research

Council within UPMARC (Uppsala Programming for Multicore Architecture

Research Center).

48

References

[1] A. Fedorova, M. Seltzer and M. D. Smith. A Non-Work-Conserving Operating

System Scheduler for SMT Processors. In Proceedings of the Workshop on the

Interaction between Operating Systems and Computer Architecture (WIOSCA),

in conjunction with ISCA-33, Boston, MA, USA, June 2006.

[2] Acumem. Acumem threadspotterTM.

http://www.roguewave.com/portals/0/products/threadspotter/

docs/2011.1/manual/index.html.

[3] Todd Austin, Eric Larson, and Dan Ernst. Simplescalar: An infrastructure for

computer system modeling. Computer, 35, 2002.

[4] Erik Berg and Erik Hagersten. Statcache: A probabilistic approach to efficient

and accurate data locality analysis. In Proceedings of the 2004 IEEE

international symposium on performance analysis of systems and software,

ISPASS, Austin, Texas, USA, 2004.

[5] Erik Berg and Erik Hagersten. Fast data-locality profiling of native execution.

In Proceedings of ACM SIGMETRICS 2005, Banff, Canada, 2005.

[6] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis,

Princeton University, 2011.

[7] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali

Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna,

Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay

Vaish, Mark D. Hill, and David A. Wood. The gem5 simulator. SIGARCH

Comput. Archit. News, 39(2), 2011.

[8] Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. Sniper: exploring the

level of abstraction for scalable and accurate parallel multi-core simulation. In

Proceedings of 2011 International Conference for High Performance

Computing, Networking, Storage and Analysis, SC, 2011.

[9] Peter J. Denning. The locality principle. Commun. ACM, 48(7), 2005.

[10] Peter J. Denning and Stuart C. Schwartz. Properties of the working set model.

Commun. ACM, 15(3), 1972.

[11] Chen Ding and Yutao Zhong. Predicting Whole-Program Locality Through

Reuse Distance Analysis. SIGPLAN Not., 38(5), 2003.

[12] Stijn Eyerman, Kristof Du Bois, and Lieven Eeckhout. Speedup stacks:

Identifying scaling bottlenecks in multi-threaded applications. In ISPASS, 2012.

[13] Stijn Eyerman, Lieven Eeckhout, Tejas Karkhanis, and James E. Smith. A

Mechanistic Performance Model for Superscalar out-of-order Processors. ACM

Trans. Comput. Syst., 27(2):1–37, 2009.

[14] Erik Hagersten, Mats Nilsson, and Magnus Vesterlund. Improving cache

utilization using acumem VPE. In Parallel Tools Workshop, 2008.

[15] W. Heirman, T. E. Carlson, Shuai Che, K. Skadron, and L. Eeckhout. Using

cycle stacks to understand scaling bottlenecks in multi-threaded workloads. In

IISWC, 2011.

49

[16] John L. Hennessy and David A. Patterson. Computer Architecture, Fourth

Edition: A Quantitative Approach. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 2006.

[17] M. D. Hill and A. J. Smith. Evaluating associativity in CPU caches. IEEE

Trans. Comput., 38(12), 1989.

[18] Tejas S. Karkhanis and James E. Smith. A First-Order Superscalar Processor

Model. SIGARCH Comput. Archit. News, 32(2):338, 2004.

[19] Yul H. Kim, Mark D. Hill, and David A. Wood. Implementing Stack Simulation

for Highly-Associative Memories. SIGMETRICS Perform. Eval. Rev., 19(1),

1991.

[20] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff

Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin:

building customized program analysis tools with dynamic instrumentation. In

Proceedings of the 2005 ACM SIGPLAN conference on Programming language

design and implementation, PLDI, Chicago, IL, USA, 2005.

[21] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren,

Gustav Hållberg, Johan Högberg, Fredrik Larsson, Andreas Moestedt, and

Bengt Werner. Simics: A Full System Simulation Platform. Computer, 35,

2002.

[22] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation Techniques

for Storage Hierarchies. IBM Systems Journal, 9(2), 1970.

[23] NASA. NAS parallel benchmarks.

http://www.nas.nasa.gov/publications/npb.html.

[24] Nicholas Nethercote and Julian Seward. Valgrind: A Framework for

Heavyweight Dynamic Binary Instrumentation. SIGPLAN Not., 42, 2007.

[25] Brian M. Rogers, Anil Krishna, Gordon B. Bell, Ken Vu, Xiaowei Jiang, and

Yan Solihin. Scaling the bandwidth wall: challenges in and avenues for CMP

scaling. In Proceedings of the 36th annual international symposium on

Computer architecture, ISCA, 2009.

[26] Daniel Sanchez and Christos Kozyrakis. The ZCache: Decoupling ways and

associativity. In Proceedings of the 2010 43rd Annual IEEE/ACM International

Symposium on Microarchitecture, MICRO, 2010.

[27] Andreas Sandberg, David Eklöv, and Erik Hagersten. Reducing cache pollution

through detection and elimination of non-temporal memory accesses. In

Proceedings of the 2010 ACM/IEEE International Conference for High

Performance Computing, Networking, Storage and Analysis, SC, 2010.

[28] Andreas Sembrant, David Black-Schaffer, and Erik Hagersten. Phase guided

profiling for fast cache modeling. In Proceedings of the Tenth International

Symposium on Code Generation and Optimization, CGO, San Jose, California,

2012.

[29] Andreas Sembrant, David Eklov, and Erik Hagersten. Efficient software-based

online phase classification. In Proceeding of the International Symposium on

Workload Characterization, IISWC, Austin, Texas, 2011.

[30] Rabin A. Sugumar and Santosh G. Abraham. Efficient Simulation of Caches

Under Optimal Replacement with Applications to Miss Characterization. In

Proceedings of the 1993 ACM SIGMETRICS conference on Measurement and

modeling of computer systems, 1993.

50

[31] Tarek M. Taha and Scott Wills. An Instruction Throughput Model of

Superscalar Processors. IEEE Trans. Comput., 57(3):389–403, 2008.

[32] Ioannis E. Venetis. Modified SPLASH-2.

http://www.capsl.udel.edu/splash/.

[33] Wm. A. Wulf and Sally A. McKee. Hitting the memory wall: implications of

the obvious. SIGARCH Comput. Archit. News, 23(1), March 1995.

[34] Yutao Zhong, Steven G. Dropsho, Xipeng Shen, Ahren Studer, and Chen Ding.

Miss Rate Prediction Across Program Inputs and Cache Configurations. IEEE

Trans. Comput., 56(3), 2007.

51

Acta Universitatis Upsaliensis
Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 1000

Editor: The Dean of the Faculty of Science and Technology

A doctoral dissertation from the Faculty of Science and
Technology, Uppsala University, is usually a summary of a
number of papers. A few copies of the complete dissertation
are kept at major Swedish research libraries, while the
summary alone is distributed internationally through
the series Digital Comprehensive Summaries of Uppsala
Dissertations from the Faculty of Science and Technology.

Distribution: publications.uu.se
urn:nbn:se:uu:diva-182594

ACTA
UNIVERSITATIS
UPSALIENSIS
UPPSALA
2012

	Abstract
	List of papers
	Comments on my Participation
	Other Publications
	Contents
	1. Introduction
	1.1 Contributions
	1.1.1 Statstack
	1.1.2 StatCC
	1.1.3 Cache Pirating
	1.1.4 Bandwidth Bandit
	1.1.5 Speedup Stacks

	1.2 Thesis Outline

	2. Background
	2.1 Memory Hierarchies
	2.2 Data Locality
	2.3 Performance Counters

	3. Statstack and StatCC
	3.1 Input Data: Reuse Distance Distribution
	3.2 Output Data: Stack Distance Distribution
	3.3 Cache Misses
	3.3.1 Compulsory Misses
	3.3.2 Capacity Misses
	3.3.3 Conflict Misses
	3.3.4 Misses due to Cache Sharing

	3.4 Miss Ratio Curves

	4. The Pirate and the Bandit
	4.1 Cache Pirate
	4.1.1 Case Study

	4.2 Bandwidth Bandit
	4.2.1 Case Study

	5. Speedup Stacks
	5.1 Speedup Stacks
	5.2 Case Study 1: Single-threaded applications
	5.3 Case Study 2: Multi-threaded applications

	6. Summary and Conclusions
	7. Introduction in Swedish
	8. Acknowledgement
	References
	Acta Universitatis Upsaliensis

