Profiling of 95 MicroRNAs in Pancreatic Cancer Cell Lines and Surgical Specimens by Real Time PCR Analysis

Yuqing Zhang, PhD, Min Li, PhD, Hao Wang, PhD, William E. Fisher, MD, Peter H. Lin, M.D, Qizhi Yao, MD, PhD, and Changyi Chen, MD, PhD*
Molecular Surgeon Research Center, Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of Surgery, Baylor College of Medicine and Michael E. DeBakey VA Medical Center, Houston, Texas

Abstract

Background-MicroRNAs (miRNAs) are involved in cancer pathogenesis, apoptosis and cell growth, thereby functioning as either tumor suppressors or oncogenes. However, expression alterations and roles of these miRNAs in pancreatic cancer are largely unknown. We hypothesize that pancreatic cancer may have a unique miRNA profile, which may play a critical role in pancreatic cancer development, progression, diagnosis and prognosis.

Methods-Differential expression of 95 miRNAs was analyzed by real time RT-PCR using the QuantiMir System. All 95 miRNAs chosen for the array are based on their potential functions related to cancer biology, cell development and apoptosis. The expression of miRNAs for pancreatic cancer tissue samples or cancer cell lines was normalized to U6 RNA and compared with those in the relatively normal pancreatic tissues or normal human pancreatic ductal epithelial (HPDE) cells. Human pancreatic tissue with chronic pancreatitis was also included for analysis. Results-In the initial analysis, the expression of most 95 miRNAs was substantially changed in pancreatic cancer tissues ($n=5$) and cell lines ($n=3$) compared with relatively normal pancreatic tissues and HPDE cells. However, each pancreatic cancer tissue or cell type had a substantially different profiling pattern with other cases or cell types as well as chronic pancreatitis tissue, indicating the individual diversity of pancreatic cancer. Further analysis was performed on 10 pancreatic cancer cell lines and 17 pairs of pancreatic cancer/normal tissues. Eight miRNAs were significantly upregulated in most pancreatic cancer tissues and cell lines, including miR-196a, miR-190, miR-186, miR-221, miR-222, miR-200b, miR-15b and miR-95. The incidence of upregulation of these eight genes between normal controls and tumor cells or tissues was ranging from 70% to 100%. The magnitude of increase of these miRNAs in pancreatic cancer samples was ranging from 3 to 2018 fold of normal controls. Conclusions-Pancreatic cancer tissues or cell lines have a unique miRNA profiling pattern at the individual basis as compared with relatively normal pancreatic tissues or cells as well as pancreatitis tissue. Upregulation of eight miRNAs occurs in the most of pancreatic cancer tissues and cell types. These miRNAs may share common pathways in pancreatic cancer pathogenesis. This study may provide useful information for further investigations of functional roles of miRNAs in pancreatic cancer development, progression, diagnosis and prognosis.

[^0]
Keywords

microRNA; pancreatic cancer; real time PCR

Non-coding RNAs are a class of RNAs that do not encode proteins, while possess regulatory functions in gene expression. Non-coding RNAs have drawn a great attention in recent years since. The discovery of small interfering RNAs (siRNAs) and microRNAs (miRNAs) has substantial impact on gene regulation. miRNAs are a novel class of short (typically 18-23 nucleotides) single stranded RNAs, which are identified as a new family of regulatory molecules involved in cancer development [1-4]. miRNAs cause posttranscriptional gene silencing by either inducing target mRNA degradation or by repressing the translation process upon binding to the 3 '-untranslational region (UTR) of their target mRNAs [5]. Mature miRNAs are excised from stem-loop precursors, which are transcribed as part of longer primary transcripts. These primary miRNAs appear to be first processed by the RNase Drosha in the nucleus, after which the precursor miRNAs are exported to the cytoplasm where the RNase Dicer further processes them.

Regulation of miRNA expression has been demonstrated to play a key role in development, cell growth and differentiation processes in a variety of eukaryotic organisms [6,7]. Usually, miRNAs are dysregulated in cancers. Some miRNAs are temporally over-expressed in the early stage of cancer progression and they act like oncogenes by promoting proliferation and/ or repressing apoptosis. Conversely, some miRNAs with tumor-repressor functions are downregulated in cancers. miRNA expression profiles may be unique in different tumors and from different origins. Both normal and malignant cancer tissues may have specific miRNA expression signatures and show differential expression across tumor types. Several studies have demonstrated altered miRNA expression profile in various hematological and solid tumor entities [1,2]. For example, a unique expression signature of only 13 miRNAs differentiated more aggressive form of chronic lymphocytic leukemia from the benign one and was found to be associated with the cancer progression [8]. Expression alterations of specific miRNAs appear to be correlated with clinically malignancy or metastatic phenotypes, and predict the clinical outcome even better than the mRNA expression data [9-11].

Pancreatic cancer is the fourth leading cause of cancer death in the United States [12]. There was 37,170 new cases diagnosed, and approximately 33,370 deaths due to pancreatic adenocarcinoma in 2007 in the United States [13]. Although surgical resection provides a potential cure, about 70% patients still develop early recurrence within 6-12 months following surgery. Due to lack for reliable early detection markers, pancreatic tumors are usually in the advanced stage upon diagnosis. Moreover, pancreatic tumors have a predilection for early vascular dissemination and metastasis to distant organs. Clearly, the discovery of miRNA alterations in pancreatic cancer not only helps us to better understand the biology of this disease, but more importantly provides new prognostic and diagnostic strategies. Due to the high stability of miRNAs even in poorly preserved specimens, they are expected to be a valuable tool in clinical research and biomarkers discovery.

By Northern blotting analysis, several studies have shown that particular miRNAs were altered in pancreatic cancer tumor tissues [14-20]. However, these data are incomplete for many miRNAs or not consistent among studies due to limitations of methodologies and/or different conditions and sample sizes of cancer tissues and cell lines. In the current study, we used real time quantitative PCR, a more reliable detection method, to detect the expression levels of 95 cancer-related miRNAs in well controlled pancreatic cancer specimens and cell lines as well
as pancreatitis tissues. This study may discover a unique miRNA profiling pattern for pancreatic cancer and identify important molecular targets for further functional investigations and for the developments of new diagnostic tools and therapeutic strategies.

Materials and methods

Cell cultures and tissue collections

Human pancreatic cancer cell lines, Panc-1, MIA PaCa-2, BxPC-3, Hs766T, ASPC-1, Capan-1, Capan-2, Panc3.27, HPAF-II, and PL45, were purchased from the American Type Culture Collection (ATCC, Rockville, MD). The human pancreatic ductal epithelium (HPDE) cells were provided as a generous gift from Dr. Ming-Sound Tsao [21,22]. All cells were cultured as previously described [23-26]. Human pancreatic adenocarcinoma specimens and their adjacent normal pancreatic tissues (17 pairs) and one pancreatic tissue sample with chronic pancreatitis were collected from patients who underwent surgery according to an approved human protocol at the Baylor College of Medicine (Houston, TX).

miRNA extraction and reverse-transcription

Total miRNAs of tissues and cultured cells were extracted and purified using mirVana miRNA Isolation kit (Applied Biosystems/Ambion, Austin, TX) following the manufacturer's instructions. Five μ l of RNA was directly converted to cDNA with the QuantiMir ${ }^{\text {TM }}$ RT System (SBI System Biosciences, Mountain View, CA).

Real time RT PCR

Differential expression of 95 miRNAs was analyzed by RT-PCR using the QuantiMir System (SBI System Biosciences). All 95 miRNAs chosen for the array are based on their potential roles in cancer, cell development and apoptosis. The array plate also included the U6 transcript as a normalization signal. The miRNA sequences and primer sequences used in RT-PCR were listed in Table 1. cDNAs from different cell lines and tissue samples were mixed with SYBR® ${ }^{\circledR}$ Green Mastermix (Bio-Rad Laboratories, Hercules, CA) plus the universal reverse primer. Specific primers $(1 \mu \mathrm{l})$ were added each well of the qPCR plate. Expression levels of each mature miRNA were evaluated using comparative threshold cycle (Ct) method as normalized to that of U6 $\left(2^{-\Delta \mathrm{Ct}}\right)$. The fold change of each miRNA was calculated from the expression levels between tumor tissues/cells and normal tissues/cells.

Statistical analysis

The expressions of 8 miRNAs in cancer tissues or cells and normal tissues or cells were compared with paired Student's t-test. Data are presented as means \pm standard deviation (SD). A p value less than 0.05 was considered statistically significant.

Results

The expression of 95 miRNAs in chronic pancreatitis, pancreatic cancer cell lines and surgical specimens

Initially, the expression of 95 miRNAs in 1 pancreatitis tissue, 5 pancreatic cancer tissues and their adjacent benign tissues, 3 human pancreatic cancer cell lines (MIA PaCa-2, Panc-1 and BxPC-3) and HPDE cells was determined by real-time PCR. After normalization to the control U6 expression, the differential expression of miRNAs of pancreatitis tissue compared with normal pancreatic tissues, pancreatic cancer tissues compared with normal pancreatic tissues, and pancreatic cancer cell lines compared with HPDE cells was determined and shown in Fig. 1 and Table 2. Substantial differences of the expression profile of 95 mRNAs were observed between cancer and normal tissues or between cancer cell lines and normal HPED cells at the
individual basis, indicating potential roles of miRNAs in the cancer formation. These differences indicate the individual characteristics and variability of each case compared other cases. The relative expression values for these mature miRNAs spanned 6-logs (from 0.01 to 10000). A number of miRNAs were increased in the most of pancreatic cancer tissues and cell types, but not in normal tissues and cells as well as the pancreatitis sample.

Validation of eight over-expressed miRNAs in more pancreatic cancer cell lines and surgical specimens

From 95 miRNAs, 8 miRNAs (miR-196a, miR-190, miR-186, miR-221, miR-222, miR-200b, miR-15b and miR-95) were identified to have high expression levels more than 3.3-fold both in pancreatic cancer tissue samples and cell lines compared with that in normal pancreatic tissues and HPED cells. The expression of these miRNAs was further analyzed in more samples of pancreatic cancer and normal pancreatic tissue pairs ($n=17$) as well as more pancreatic cancer cell lines $(\mathrm{n}=10)$ by real time PCR. The incidence of expression increase and average fold increase of 8 miRNAs were shown in Fig. 2 and Table 3. Compared with normal HPDE cells, the incidence of 10 pancreatic cancer cell lines exhibited elevated levels of miR-196a (100\%), miR-190 (100\%), miR-186(90\%), miR-221(100\%), miR-222 (100\%), miR-200b (70\%), miR-15b (90%) and miR-95 (90\%) and the increase levels ranged from 3.3 to 79 fold (P < $0.01, \mathrm{n}=10$, Fig. 2A). For the pancreatic cancer tissues compared with normal pancreatic tissues, the expression increases (incidence and fold increase) of miR-196a (82% and 190), $\mathrm{miR}-190$ (88% and 21), miR-186 (94% and 4.5), miR-221 (88% and 32), miR-222 (88% and 32), miR-200b (76% and 43), miR-15b (82% and 2018) and miR-95 (71% and 468) were also observed ($P<0.01$, $\mathrm{n}=17$, Fig. 2B). These data indicate that these miRNAs may share common pathways in the pancreatic cancer pathogenesis.

Discussion

In the current study, a unique 95 miRNA expression profile was observed in human pancreatic cancer tissues and cell lines, and eight miRNAs (miR-196a, miR-190, miR-186, miR-221, miR-222, miR-200b, miR-15b and miR-95) were significantly increased in the most of pancreatic cancer tissues and cell lines compared with normal pancreatic tissues and cells. Many of these miRNAs have not been reported in pancreatic cancer. This study provides new opportunities for studying novel molecular pathways of pancreatic cancer pathogenesis and for developing new strategies for pancreatic cancer diagnosis and treatment.

The mechanism of action of a specific miRNA is usually involved in its nucleotide complementary pairing to the 3^{\prime} UTR of its specific targeting mRNAs, primarily functioning as a negative regulator by repressing target mRNA translation. miRNAs may directly regulate tissue or organ development and cell differentiation as well as maintain normal functions of many organ systems [27]. The alterations in miRNA expression may play an important role in many diseases including pancreatic cancer formation. Using the QuantiMir ${ }^{\text {TM }}$ RT Kit, we tagged and converted mature miRNAs into detectable and quantifiable cDNAs. We used a highly sensitive real time PCR analysis to profile 95 cancer-related miRNAs. This method is more reliable and accurate for detection of miRNA expression and has much less technical noise, but greater reproducibility than traditional cDNA microarray or northern blot analysis. All 95 miRNAs chosen for the array have functional implications with regard to their potential roles in cancer, cell development and apoptosis. Our expression profiling data indicate a large number of miRNAs that are aberrantly expressed in pancreatic cancer tissues and cell lines compared with normal pancreatic tissues and cells. From these profiling data, we observed a diversity nature of miRNA expression among individual pancreatic cancer tissues or cells, which may support the concept of personalized medicine in care of these patients. However, we also observed the expression pattern of many miRNAs was reserved in the most pancreatic
cancer tissues and cell lines studied in the current study. For example, 8 miRNAs (miR-196a, miR-190, miR-221, miR-222, miR-200b, miR-15b and miR-95) were consistently increased in the majority of pancreatic cancer tissues and cell lines. These data indicate that pancreatic cancer may share some common pathways for cancer pathogenesis by regulation of miRNAs. Many of these miRNAs have not been reported before in pancreatic cancer and their biological functions are largely unknown in pancreatic cancer pathogenesis.

Bloomston et al. reported that the high expression of miR-196a-2 was found to predict poor survival in pancreatic cancer patients [16]. miR-196a involves organ development by negatively regulating Hoxb8 [28]. miR-190 was found to be upregulated in human hepatocellular carcinomas [7]. The miR-200 family has been shown to regulate epithelial to mesenchymal transition (EMT) by targeting ZEB1 and SIP1. However, miR-200b was markedly downregulated in cells that had undergone EMT in response to transforming growth factor (TGF)-beta or to ectopic expression of the protein tyrosine phosphatase Pez [29]. Overexpression of miR- 15 b sensitized human gastric cancer cells to anticancer drugs by targeting BCL2 [30]. Inhibition of miR-95 decreased cell growth in HeLa cells [31]. miR-221 was reported to be overexpressed in glioblastoma [32] and in thyroid cancer [33]. miR-221 and $\mathrm{miR}-222$ are clustered on the X chromosome, and both of them are predicted to regulate cell cycle by targeting on kit [33] and p27Kip1 [8]. Our data showed that miR-222 was increased in pancreatic cancers at the level similar to miR-221. Based on the miRNA profiling and their functional studies, miRNA/RNAi-based therapeutics could be attractive strategies for pancreatic cancer treatment.

In summary, pancreatic cancer may have a unique miRNA expression pattern at each individual basis. However, common pathways for pancreatic cancer pathogenesis may exist. Our study suggests that the expression of 8 miRNAs (miR-196a, miR-190, miR-221, miR-222, miR-200b, miR-15b and miR-95) was signficantly increased in the majority of pancreatic cancer tissues and cell lines. Further investigations are required for determination of their molecular functions and mechanisms as well as characterization of these miRNAs as prognostic and/or diagnostic markers in pancreatic cancer. Since miRNAs may regulate multiple oncogenic pathways, they may serve as potential targets for cancer therapy. For examples, antagomirs and chemically modified antisense nucleotides for miRNAs can be used to silence specific endogenous miRNA in vivo [34]. This may provide a novel strategy to treat pancreatic cancer.

Acknowledgments

This study was partially supported by the Michael E. DeBakey Department of Surgery at the Baylor College of Medicine and the Michael E. DeBakey VA Medical Center, Houston, Texas, USA.

The symposium was supported by a grant from the National Institutes of Health (R13 CA132572 to Changyi Chen).

References

1. Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 2006;6:259-269. [PubMed: 16557279]
2. Sevignani C, Calin GA, Siracusa LD, Croce CM. Mammalian microRNAs: a small world for finetuning gene expression. Mamm Genome 2006;17:189-202. [PubMed: 16518686]
3. Barbarotto E, Schmittgen TD, Calin GA. MicroRNAs and cancer: profile, profile, profile. Int J Cancer 2008;122:969-977. [PubMed: 18098138]
4. Kent OA, Mendell JT. A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene 2006;25:6188-6196. [PubMed: 17028598]
5. Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 2006;20:515-524. [PubMed: 16510870]
6. Hornstein E, Mansfield JH, Yekta S, et al. The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature 2005;438:671-674. [PubMed: 16319892]
7. Datta J, Kutay H, Nasser MW, et al. Methylation mediated silencing of MicroRNA-1 gene and its role in hepatocellular carcinogenesis. Cancer Res 2008;68:5049-5058. [PubMed: 18593903]
8. Calin GA, Ferracin M, Cimmino A, et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 2005;353:1793-1801. [PubMed: 16251535]
9. Jeffrey SS. Cancer biomarker profiling with microRNAs. Nat Biotechnol 2008;26:400-4001. [PubMed: 18392022]
10. Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 2007;449:682-688. [PubMed: 17898713]
11. Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature 2005;435:834-838. [PubMed: 15944708]
12. Saif MW. Pancreatic cancer: highlights from the 42nd annual meeting of the American Society of Clinical Oncology, 2006. JOP 2006;7:337-348. [PubMed: 16832131]
13. Jemal A, Tiwari RC, Murray T, et al. Cancer statistics, 2004. CA Cancer J Clin 2004;54:8-29. [PubMed: 14974761]
14. Sun M, Estrov Z, Ji Y, et al. Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol Cancer Ther 2008;7:464-473. [PubMed: 18347134]
15. Gironella M, Seux M, Xie MJ, et al. Tumor protein 53 -induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc Natl Acad Sci U S A 2007;104:16170-16175. [PubMed: 17911264]
16. Bloomston M, Frankel WL, Petrocca F, et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 2007;297:19011908. [PubMed: 17473300]
17. Szafranska AE, Davison TS, John J, et al. MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene 2007;26:4442-4452. [PubMed: 17237814]
18. Lee EJ, Gusev Y, Jiang J, et al. Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer 2007;120:1046-1054. [PubMed: 17149698]
19. Tsuda N, Ishiyama S, Li Y, et al. Synthetic microRNA designed to target glioma-associated antigen 1 transcription factor inhibits division and induces late apoptosis in pancreatic tumor cells. Clin Cancer Res 2006;12:6557-6564. [PubMed: 17085671]
20. Roldo C, Missiaglia E, Hagan JP, et al. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J Clin Oncol 2006;24:4677-4684. [PubMed: 16966691]
21. Furukawa T, Duguid WP, Rosenberg L, et al. Long-term culture and immortalization of epithelial cells from normal adult human pancreatic ducts transfected by the E6E7 gene of human papilloma virus 16. Am J Pathol 1996;148:1763-1770. [PubMed: 8669463]
22. Ouyang H, Mou L, Luk C, et al. Immortal human pancreatic duct epithelial cell lines with near normal genotype and phenotype. Am J Pathol 2000;157:1623-3123. [PubMed: 11073822]
23. Li M, Bharadwaj U, Zhang R, et al. Mesothelin is a malignant factor and therapeutic vaccine target for pancreatic cancer. Mol Cancer Ther 2008;7:286-296. [PubMed: 18281514]
24. Li M, Zhang Y, Liu Z, et al. Aberrant expression of zinc transporter ZIP4 (SLC39A4) significantly contributes to human pancreatic cancer pathogenesis and progression. Proc Natl Acad Sci U S A 2007;104:18636-18641. [PubMed: 18003899]
25. Li M, Yang H, Chai H, et al. Pancreatic carcinoma cells express neuropilins and vascular endothelial growth factor, but not vascular endothelial growth factor receptors. Cancer 2004;101:2341-2350. [PubMed: 15476280]
26. Li M, Zhai Q, Bharadwaj U, et al. Cyclophilin A is overexpressed in human pancreatic cancer cells and stimulates cell proliferation through CD147. Cancer 2006;106:2284-2294. [PubMed: 16604531]
27. Hobert O. Common logic of transcription factor and microRNA action. Trends Biochem Sci 2004;29:462-468. [PubMed: 15337119]
28. Mansfield JH, Harfe BD, Nissen R, et al. MicroRNA-responsive 'sensor' transgenes uncover Hoxlike and other developmentally regulated patterns of vertebrate microRNA expression. Nat Genet 2004;36:1079-1083. 2004. [PubMed: 15361871]
29. Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR- 205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008;10:593-601. [PubMed: 18376396]
30. Xia L, Zhang D, Du R, et al. miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int J Cancer 2008;123:372-379. [PubMed: 18449891]
31. Cheng AM, Byrom MW, Shelton J, Ford LP. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 2005;33:1290-1297. [PubMed: 15741182]
32. Ciafre SA, Galardi S, Mangiola A, et al. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 2005;334:1351-1358. [PubMed: 16039986]
33. He H, Jazdzewski K, Li W, et al. The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci U S A 2005;102:19075-19080. [PubMed: 16365291]
34. Krutzfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 2005;438:685-689. [PubMed: 16258535]

Fig. 1.
The expression pattern of 95 miRNAs in chronic pancreatitis, pancreatic cancer cell lines and surgical specimens. MiRNAs of tissues and cultured cells were extracted and purified using mirVana miRNA Isolation kit and converted to cDNAs with the QuantiMir ${ }^{\mathrm{TM}}$ RT System.
Differential expression was analyzed by RT-PCR using QuantiMir 95 microRNAs array System. U6 primer was also included in the array as a normalization control. After normalizing to the control U6 in all samples, the fold change in 95 miRNAs was calculated by comparing the pancreatic cancer tissue or cell lines with normal pancreatic tissues or HPDE cells. A. Chronic pancreatitis versus normal pancreatic tissue ($\mathrm{n}=1$). B. Pancreatic cancer cell lines versus HPDE cells ($\mathrm{n}=3$). C. Surgical specimens of pancreatic cancer tissues versus their adjacent normal pancreatic tissues ($n=5$).

Fig. 2.
The expression of 8 miRNAs in more pancreatic cancer cell lines and surgical specimens. Expression of 8 miRNAs (miR-196a, miR-190, miR-186, miR-221, miR-222, miR-200b, miR-15b and miR-95) selected from the 95 miRNAs was determined in 10 pancreatic cancer cell lines and 17 pairs of pancreatic cancer tissues and their adjacent normal pancreatic tissues. A. The expression of 8 miRNAs were significantly increased in pancreatic cancer cell lines compared with HPDE cells ($\mathrm{n}=10, P<0.01$). B. The expression of 8 miRNAs were significantly increased in pancreatic cancer tissues compared with their adjacent normal pancreatic cancer tissues (n=17, $P<0.01$).

Table 1
Mature RNA sequences and real time PCR primers for 95 miRNAs.

miRNA	MirBase \#	miRNA Sequence(s)	RT-PCR Primer sequenc(s)
let-7-family	MIMAT0000062, MIMAT0000064, MIMAT0000065, MIMAT0000067	ugagguaguagguuguauaguu, ugagguaguagguuguaugguu, agagguaguagguugcauagu, ugagguaguagauaguauaguu	tgaggtagtaggttgtatagtt, tgaggtagtaggttgtatggtt, agaggtagtaggttgcatagt, tgaggtagtagattgtatagtt
miR-7	MIMAT0000252	uggaagacuagugauuuuguug	tggaagactagtgatttgttg
miR-92	MIMAT0000092	uauugcacuugucceggccug	tattgcacttgtcceggcetg
miR-93	MIMAT0000093	aaagugcuguucgugcagguag	aaagtgctgttcgtgcaggtag
miR-9-1	MIMAT0000441	ucuuugguuaucuagcuguauga	tetttggttatctagctgtatga
miR-101-1	MIMAT0000099	uacaguacugugauaacugaag	tacagtactgtgataactgaag
miR-103	MIMAT0000101	agcagcauuguacagggcuauga	agcagcattgtacagggctatga
miR-106a	MIMAT0000103	aaaagugcuuacagugcagguage	aaaagtgcttacagtgcaggtagc
miR-106b	MIMAT0000680	uaaagugcugacagugcagau	taaagtgctgacagtgcagat
miR-107	MIMAT0000104	agcagcauuguacagggcuauca	agcagcattgtacagggctatca
miR-10b	MIMAT0000254	uacccuguagaaccgaauuugu	taccetgtagaaccgaattgt
miR-1-1	MIMAT0000416	uggaauguaaagaaguaugua	tggaatgtaaagaagtatgta
miR-122a	MIMAT0000421	uggagugugacaaugguguuugu	tggagtgtgacaatggtgttgt
miR-125a	MIMAT0000443	ucccugagacccuuuaaccugug	tccetgagaccetttaacctgtg
miR-125b	MIMAT0000423	ucccugagacccuaacuuguga	tccetgagaccetaacttgtga
miR-126	MIMAT0000444	caunauuacuuuugguacgeg	cattattactttggtacgcg
miR-128b	MIMAT0000676	ucacagugaaccggucucuuuc	tcacagtgaaccggtctetttc
miR-132	MIMAT0000426	uaacagucuacagccauggucg	taacagtctacagccatggtcg
miR-133a	MIMAT0000427	uugguccecuucaaccagcugu	ttggtcccettcaaccagctgt
miR-134	MIMAT0000447	ugugacugguugaccagaggg	tgtgactggttgaccagaggg
miR-135b	MIMAT0000758	uauggcuuuucauuccuaugug	tatggettteattectatgtg
miR-136	MIMAT0000448	acuccauuuguuuugaugaugga	actccatttgtttgatgatgga
miR-137	MIMAT0000429	uauugcuuaagaauacgcguag	tattgcttaagaatacgcgtag
miR-140	MIMAT0000431	agugguuuuacccuaugguag	agtggtttaccetatggtag
miR-141	MIMAT0000432	uaacacugucugguaaagaugg	taacactgtctggtaaagatgg
miR-142-3p	MIMAT0000434	uguaguguuuccuacuunaugga	tgtagtgtttcetacttatgga
miR-143	MIMAT0000435	ugagaugaagcacuguagcuca	tgagatgaagcactgtagctca
miR-145	MIMAT0000437	guccaguuuucccaggaaucccuu	gtccagttttcccaggaatccett
miR-146a	MIMAT0000449	ugagaacugaauuccauggguu	tgagaactgaattccatgggtt
miR-149	MIMAT0000450	ucuggcuccgugucuucacucc	tctggctecgtgtettcactcc
miR-150	MIMAT0000451	ucucccaacccuuguaccagug	tctcccaaccettgtaccagtg
miR-151	MIMAT0000757	acuagacugaagcuccuugagg	actagactgaagctcettgagg
miR-153	MIMAT0000439	uugcauagucacaaaaguga	ttgcatagtcacaaaagtga
miR-154	MIMAT0000452	uagguuauccguguugccuucg	taggttatccgtgttgecttcg
miR-155	MIMAT0000646	uuaaugcuaaucgugauagggg	ttaatgctaatcgtgatagggg

miRNA	MirBase \#	miRNA Sequence(s)	RT-PCR Primer sequenc(s)
miR-15a	MIMAT0000068	uagcagcacauaaugguuugug	tagcagcacataatggttgtg
miR-15b	MIMAT0000417	uagcagcacaucaugguuuaca	tagcagcacatcatggttaca
miR-16	MIMAT0000069	uagcagcacguaaauauuggcg	tagcagcacgtaaatattggcg
miR-17-3p	MIMAT0000071	acugcagugaaggcacuugu	actgcagtgaaggcacttgt
miR-17-5p	MIMAT0000070	caaagugcuuacagugcagguagu	caaagtgcttacagtgcaggtagt
miR-181a	MIMAT0000256	aacauucaacgcugucggugagu	aacattcaacgetgtcggtgagt
miR-181b	MIMAT0000257	aacauucauugcugucgguggg	aacattcattgetgtcggtggg
miR-181c	MIMAT0000258	aacauucaaccugucggugagu	aacattcaacctgtcggtgagt
miR-181d	MIMAT0002821	aacauucauuguugucgguggguu	aacattcattgttgtcggtgggtt
miR-183	MIMAT0000261	uauggcacugguagaauucacug	tatggcactggtagaattcactg
miR-185	MIMAT0000455	uggagagaaaggcaguuc	tggagagaaaggcagttc
miR-186	MIMAT0000456	caaagaauucuccuuuugggcuu	caaagaattctcettttgggctt
miR-188	MIMAT0000457	caucccuugcaugguggagggu	catccettgcatggtggagggt
miR-18a	MIMAT0000072	uaaggugcaucuagugcagaua	taaggtgcatctagtgcagata
miR-190	MIMAT0000458	ugauauguuugauauauuaggu	tgatatgttgatatattaggt
miR-191	MIMAT0000440	caacggaaucccaaaagcagcu	caacggaatcccaaaagcagct
miR-192	MIMAT0000222	cugaccuaugaauugacagce	ctgacctatgaattgacagce
miR-194	MIMAT0000460	uguaacagcaacuccaugugga	tgtaacagcaactccatgtgga
miR-195	MIMAT0000461	uagcagcacagaaauauuggc	tagcagcacagaaatattggc
miR-196a	MIMAT0000226	uagguaguuucauguuguugg	taggtagtttcatgttgttgg
miR-197	MIMAT0000227	uucaccaccuucuccacccagc	ttcaccaccttctccacccagc
miR-198	MIMAT0000228	gguccagaggggagauagg	ggtccagaggggagatagg
miR- 199a+b	MIMAT0000231, MIMAT0000263	cccaguguucagacuaccuguuc, cccaguguuuagacuaucuguuc	cccagtgttcagactacctgttc, cccagtgttagactatctgttc
miR-30b	MIMAT0000420	uguaaacauccuacacucagcu	tgtaaacatcetacactcagct
miR-19a+b	MIMAT0000073, MIMAT0000074	ugugcaaaucuaugcaaaacuga, ugugcaaauccaugcaaaacuga	tgtgcaaatctatgcaaaactga, tgtgcaaatccatgcaaaactga
miR-95	MIMAT0000094	uucaacggguauuuauugagca	ttcaacgggtatttattgagca
miR-20a	MIMAT0000075	uaaagugcuuauagugcagguag	taaagtgettatagtgcaggtag
miR-200a	MIMAT0000682	uaacacugucugguaacgaugu	taacactgtctggtaacgatgt
miR-200b	MIMAT0000318	uaauacugccugguaaugaugac	taatactgcetggtaatgatgac
miR-200c	MIMAT0000617	uaauacugccggguaaugaugg	taatactgccgggtaatgatgg
miR-202	MIMAT0002811	agagguauagggcaugggaaaa	agaggtatagggcatgggaaaa
miR-203	MIMAT0000264	gugaaauguuuaggaccacuag	gtgaaatgttaggaccactag
miR-204	MIMAT0000265	uucccuuugucauccuaugccu	ttccetttgtcatcctatgcet
miR-205	MIMAT0000266	uccuucauuccaccggagucug	tcettcattccaccggagtctg
miR-206	MIMAT0000462	uggaauguaaggaagugugugg	tggaatgtaaggaagtgtgtgg
miR-21	MIMAT0000076	uagcuuaucagacugauguuga	tagcttatcagactgatgttga
miR-210	MIMAT0000267	cugugcgugugacagcggcuga	ctgtgcgtgtgacagcggctga
miR-214	MIMAT0000271	acagcaggcacagacaggcag	acagcaggcacagacaggcag
miR-215	MIMAT0000272	augaccuaugaauugacagac	atgacctatgaattgacagac

miRNA	MirBase \#	miRNA Sequence(s)	RT-PCR Primer sequenc(s)
miR-372	MIMAT0000724	aaagugcugcgacauuugagcgu	aaagtgctgcgacatttgagcgt
miR-373	MIMAT0000726	gaagugcuucgauuuuggggugu	gaagtgcttcgatttggggtgt
miR-218	MIMAT0000275	uugugcuugaucuaaccaugu	ttgtgcttgatctaaccatgt
miR-219	MIMAT0000276	ugauuguccaaacgcaauucu	tgattgtccaaacgcaattct
miR-22	MIMAT0000077	aagcugccaguugaagaacugu	aagctgccagttgaagaactgt
miR-488	MIMAT0002804	cccagauaunggcacucucaa	cccagataatggcactctcaa
miR-221	MIMAT0000278	agcuacauugucugcuggguuuc	agctacattgtctgctgggttt
miR-222	MIMAT0000279	agcuacaucuggcuacugggucuc	agctacatctggetactgggtctc
miR-223	MIMAT0000280	ugucaguuugucaaauaccce	tgtcagttgtcaaataccec
miR-224	MIMAT0000281	caagucacuagugguuccguuua	caagtcactagtggttcegtta
miR-23a	MIMAT0000078	aucacauugccagggauuucc	atcacattgecagggattcc
miR-24	MIMAT0000080	uggcucaguucagcaggaacag	tggetcagttcagcaggaacag
miR-25	MIMAT0000081	cauugcacuugucucggucuga	cattgcacttgtctcggtctga
miR-26a	MIMAT0000082	uucaaguaauccaggauaggc	ttcaagtaatccaggatagge
miR-26b	MIMAT0000083	uucaaguaauucaggauagguu	ttcaagtaattcaggataggtt
miR-27a+b	MIMAT0000084, MIMAT0000419	uucacaguggcuaaguuccge, uucacaguggcuaaguucugc	ttcacagtggctaagttccgc, ttcacagtggctaagttctgc
miR-30c	MIMAT0000244	uguaaacauccuacacucucagc	tgtaaacatctacactctcagc
$\begin{aligned} & \text { miR- } \\ & \text { 29a+b+c } \end{aligned}$	MIMAT0000086, MIMAT0000100, MIMAT0000681	uagcaccaucugaaaucgguu, uagcaccauuugaaaucaguguu, uagcaccauuugaaaucggu	tagcaccatctgaaatcggtt, tagcaccatttgaaatcagtgtt, tagcaccatttgaaatcggt
miR-30a-3p	MIMAT0000088	cuuucagucggauguuugcagc	ctttcagtcggatgttgcagc
miR-30a-5p	MIMAT0000087	uguaaacauccucgacuggaag	tgtaaacatcctcgactggaag
miR-296	MIMAT0000690	agggeccccccucaauccugu	agggccecccetcaatcetgt
U6 snRNA	NCBI: X07425.1	caccacguuuauacgccggug	caccacgttatacgccggtg

Table 2
The expression of 95 miRNAs in chronic pancreatitis, pancreatic cancer cell lines* and surgical specimens**

miRNA	P2	MIA	Panc-1	BxPC-3	T2	T7	T22	T33	T35
let-7-family	0.476319	0.3737123	1.494849	1.328686	0.186856	0.707107	9.3178687	146.0178	106.89125
miR-7	0.065154	0.6328783	0.432269	5.098243	0.151774	1.156688	39.396621	0.210224	1.1095695
miR-92	0.721965	0.4537596	1.292353	2.789487	0.339151	2.158456	0.5212329	4.287094	6.2333166
miR-93	1.827663	1.3755418	3.24901	4.40762	4.69134	2.948538	6.6345564	58.89201	10.556063
miR-9-1	1.569168	0.0245183	1.717131	0.008201	0.358489	0.82932	0.1780063	6.233317	51.268472
miR-101-1	3.226567	0.9930925	0.823591	0.835088	1.265757	1.337928	0.4863275	1.148698	1.4948492
miR-103	3.5801	1.4742692	3.89062	6.276673	4.316913	1.853176	2.9690471	11.87619	3.810552
miR-106a	2.514027	0.7120251	1.569168	2.828427	2.297397	3.317278	21.406841	27.47409	12.996038
miR-106b	2.42839	1.2483305	3.031433	3.506423	3.630077	1.337928	0.8010699	2.86791	0.463294
miR-107	3.810552	1.6245048	4.823231	7.674113	4.027822	1.79005	2.5315132	14.82541	5.464161
miR-10b	3.363586	6.7739625	153.2773	10.33882	1.777685	5.063026	3.732132	95.00951	10.126053
miR-1-1	17.87659	∞	11268.44	2.657372	10.26741	165.4212	0.016176	286.0255	28724.616
miR-122a	0.19751	0.2793218	1.347234	1.494849	0.047696	1.918528	∞	3.680751	3.4822023
miR-125a	0.784584	0.8408964	4.756828	4.594793	1.265757	0.632878	2.4794154	70.0348	36.758347
miR-125b	1.905276	0.1088188	4.198867	2.770219	2.80889	0.907519	33.128478	11.00433	12.295001
miR-126	2.514027	3.4822023	6.868523	3.458149	0.126745	0.946058	100.42676	4.112455	5.5021673
miR-128b	0.432269	2.3949574	8.339726	2.989698	0.876606	2.751084	0.283221	2.17347	4.5630549
miR-132	2.639016	0.3977682	1.729074	5.61778	0.61132	0.707107	0.3391511	3.732132	1.9724654
miR-133a	1.385109	0.5864175	3.758091	1.840375	1.827663	2.07053	9.9176616	0.959264	0.4506252
miR-134	0.316439	0.5358867	7.110741	2.462289	0.211686	0.578344	2.1584565	2.80889	0.5471469
miR-135b	1.375542	1.2570134	0.384219	1.265757	9.781122	7.012846	0.3321715	11.23556	37.271475
miR-136	0.80107	1.1647336	23.58831	3.052518	0.225313	0.41466	0.0133224	0.406126	∞
miR-137	0.042689	23.917588	0.503478	0.795536	0.570382	1.658639	0.0025772	1.140764	261.3791
miR-140	2.234574	2.0562277	3.160165	0.628507	5.540438	0.993092	0.0066612	14.92853	4.9588308
miR-141	0.246558	0.0113592	0.028756	1.375542	0.493116	0.309927	0.6285067	0.323088	0.4413515
miR-142-3p	45.25483	0.2812646	0.406126	1.205808	19.83532	2.657372	0.0418102	10.12605	19.835323
miR-143	3.917681	0.5212329	1.214195	1.526259	13.73705	8.168097	3.4105396	23.75238	22.943284

号	∞	\bar{m}	10	in	8	8	0		$\begin{array}{\|c} \overrightarrow{7} \\ \stackrel{\rightharpoonup}{6} \\ \stackrel{2}{2} \end{array}$		$\left\lvert\, \begin{gathered} \underset{A}{A} \\ \infty \\ \underset{\sim}{\mathcal{O}} \\ \underset{\sim}{2} \end{gathered}\right.$	$\begin{aligned} & \stackrel{0}{0} \\ & 0 \\ & 0 \\ & \underset{i}{2} \end{aligned}$	$\left\lvert\, \begin{gathered} \underset{7}{\underset{j}{2}} \\ \underset{\sim}{2} \end{gathered}\right.$		$\left\lvert\, \begin{aligned} & \underset{\infty}{\infty} \\ & \stackrel{\sim}{\infty} \\ & \underset{\sim}{\mathrm{a}} \end{aligned}\right.$	$\left\lvert\, \begin{gathered} \underset{\sim}{w} \\ \underset{\sim}{n} \\ \underset{\sim}{f} \\ \underset{y}{2} \end{gathered}\right.$	$=1$	$\left\|\begin{array}{l} \stackrel{\rightharpoonup}{0} \\ \stackrel{n}{4} \\ \underset{\sim}{6} \end{array}\right\|$	$\left\|\begin{array}{c} \infty \\ \stackrel{n}{2} \\ \vdots \\ 0 \\ \underset{0}{i} \end{array}\right\|$		$\begin{aligned} & \infty \\ & \stackrel{\infty}{0} \\ & \text { O} \\ & \vdots \\ & 0 \end{aligned}$	$\begin{aligned} & \mathcal{F} \\ & \underset{\sim}{G} \\ & \underset{\sim}{\infty} \end{aligned}$	8	$\begin{aligned} & 0 \\ & \text { D } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{2} \\ & \stackrel{\mu}{2} \\ & \stackrel{0}{0} \end{aligned}$	$\stackrel{N}{\infty}$	$\begin{aligned} & \text { ob } \\ & \stackrel{\infty}{A} \\ & \stackrel{\text { N}}{2} \end{aligned}$	$\begin{aligned} & \bar{\Omega} \\ & \stackrel{\infty}{N} \\ & \underset{\sim}{n} \end{aligned}$	$\left\lvert\, \begin{gathered} \infty \\ \stackrel{\infty}{e} \\ \stackrel{-}{7} \\ \infty \end{gathered}\right.$	con
¢	$\stackrel{0}{6}$	$\dot{\sim}$	$\begin{array}{\|l} \overrightarrow{\mathrm{F}} \\ \stackrel{\rightharpoonup}{\mathrm{a}} \end{array}$	$\stackrel{\substack{\tau \\ \leftrightharpoons}}{ }$	$\stackrel{\stackrel{N}{\circ}}{\stackrel{c}{\mathrm{~m}}}$	$\begin{aligned} & \text { K} \\ & \text { Bo } \\ & \hline 0 \end{aligned}$	$\left\lvert\, \begin{gathered} \stackrel{\sim}{f} \\ \underset{子}{7} \\ \underset{子}{2} \end{gathered}\right.$	$\begin{gathered} i f \\ \underset{i}{c} \\ \underset{i}{2} \end{gathered}$	$\begin{array}{\|c} \tilde{\circ} \\ \stackrel{\rightharpoonup}{6} \end{array}$	$\left.\begin{aligned} & \overrightarrow{0} \\ & \vdots \\ & \vdots \\ & \dot{c} \end{aligned} \right\rvert\,$	$\begin{array}{\|c} \substack{0 \\ \stackrel{0}{n} \\ n} \end{array}$	$\left\|\begin{array}{l} 0.0 \\ \hline 0 \\ 0 \\ 0 \\ -0 \end{array}\right\|$	$\left.\begin{array}{\|c} \overrightarrow{\mathrm{a}} \\ \underset{\sim}{i} \end{array} \right\rvert\,$	$\left\|\begin{array}{c} \bar{y} \\ \vec{y} \\ \underset{\sim}{i} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \stackrel{\rightharpoonup}{\hat{N}} \\ \stackrel{\rightharpoonup}{-} \\ \stackrel{-}{2} \end{gathered}\right.$	$\left\|\begin{array}{c} i \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\left\|\begin{array}{l} \stackrel{\rightharpoonup}{0} \\ \stackrel{\rightharpoonup}{4} \\ \stackrel{\rightharpoonup}{N} \end{array}\right\|$	$\left.\begin{gathered} 0 \\ \text { d } \\ \frac{6}{6} \end{gathered} \right\rvert\,$	$\left.\begin{gathered} \stackrel{\sim}{c} \\ \underset{\sim}{n} \\ \underset{\sim}{2} \end{gathered} \right\rvert\,$	$\begin{aligned} & \stackrel{m}{n} \\ & \underset{\sigma}{i} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{6} \\ & \substack{0 \\ 0} \end{aligned}$	$\begin{aligned} & \overline{\mathrm{N}} \\ & \text { तin } \end{aligned}$	8	$\begin{aligned} & \text { dion } \\ & \stackrel{e}{n} \\ & \underset{n}{2} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \\ & \hline \end{aligned}$		∞ $\stackrel{\infty}{i}$ $\stackrel{y}{n}$	$\frac{\underset{\sim}{f}}{\underset{\sim}{g}}$		N
त్a	$\begin{gathered} \stackrel{\rightharpoonup}{6} \\ \text { ì } \end{gathered}$	$\begin{aligned} & \frac{J}{n} \\ & \stackrel{n}{n} \end{aligned}$	$\begin{aligned} & \overline{\widetilde{m}} \\ & \underset{\sim}{c} \end{aligned}$	\ddagger	$\begin{aligned} & \text { n } \\ & \stackrel{y}{0} \\ & 0 . \end{aligned}$	$\left.\begin{aligned} & \hat{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned} \right\rvert\,$	$\begin{gathered} \stackrel{\circ}{\mathrm{N}} \\ \stackrel{-}{\circ} \end{gathered}$	$\begin{array}{\|c} \stackrel{N}{E} \\ \stackrel{y}{6} \\ \stackrel{n}{2} \end{array}$	$\begin{aligned} & \overline{0} \\ & \stackrel{\rightharpoonup}{n} \\ & \dot{n} \\ & \underset{\infty}{2} \end{aligned}$	$\left\|\begin{array}{l} \infty \\ \stackrel{\infty}{6} \\ \infty \end{array}\right\|$	$\left\|\begin{array}{l} \infty \\ \underset{\sim}{0} \\ \underset{\sim}{2} \end{array}\right\|$	$\begin{array}{\|c} \stackrel{0}{0} \\ \underset{N}{6} \\ \underset{-}{2} \end{array}$		$\left.\begin{array}{\|c\|c} \infty \\ 0 \\ 0 \\ 0 \\ \underset{\sim}{0} \end{array} \right\rvert\,$	$\begin{array}{\|l\|} \substack{\infty \\ 0 \\ \infty \\ \underset{\sim}{0}} \end{array}$	$\left.\begin{array}{\|c} 0 \\ 0 \\ 0 \\ 0 \\ i \end{array} \right\rvert\,$	$\left\|\begin{array}{l} \infty \\ \infty \\ \infty \\ \infty \\ \infty \\ \dot{c} \end{array}\right\|$		$\begin{array}{\|c} \substack{\underset{C}{6} \\ \underset{\sim}{0}} \end{array}$	8	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \dot{\beth} \end{aligned}$		$\begin{aligned} & { }_{2}^{2} \\ & \stackrel{\infty}{6} \\ & \vdots \\ & \hline 6 \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{N}{n} \\ & \tilde{\sim} \\ & \underset{子}{2} \end{aligned}$	$\underset{\substack{\stackrel{\rightharpoonup}{+} \\ \stackrel{y}{\infty}}}{\substack{\text { n }}}$	$\begin{aligned} & \infty \\ & \stackrel{\circ}{0} \\ & \stackrel{e}{6} \\ & i n \end{aligned}$		$\begin{aligned} & \bar{Z} \\ & \stackrel{\rightharpoonup}{3} \\ & \underset{\sim}{i} \end{aligned}$		答
三	$\frac{\underset{\sim}{2}}{\underset{7}{2}}$	$\underset{\sim}{\underset{\sim}{7}}$	$\begin{aligned} & \overline{\mathrm{B}} \\ & \stackrel{\mathrm{i}}{2} \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\lambda}}{\stackrel{\rightharpoonup}{\lambda}}$	$\begin{aligned} & \infty \\ & \text { d } \\ & \text { à } \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{0} \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{c} \\ & \underset{i}{n} \end{aligned}$	$\left\|\begin{array}{l} \vec{n} \\ \stackrel{n}{\infty} \\ \infty \\ 0 \\ 0 \end{array}\right\|$	$\left\lvert\, \begin{gathered} \circ \\ \stackrel{n}{4} \\ \underset{\sim}{4} \end{gathered}\right.$	$\left\|\begin{array}{c} \circ \\ \stackrel{\rightharpoonup}{\mathrm{N}} \\ 0 \end{array}\right\|$	$\begin{aligned} & \mathrm{A} \\ & \mathbf{N} \\ & \underset{\sim}{\mathrm{~A}} \end{aligned}$	$\begin{array}{\|c} \substack{1 \\ \infty \\ \infty \\ \dot{m} \\ \hline} \end{array}$	$\left.\begin{array}{\|c\|c} \infty \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right\rvert\,$	$\left.\begin{array}{\|c\|} \hline 0 \\ \stackrel{\sim}{6} \\ 0 \\ 0 \end{array} \right\rvert\,$	$\begin{array}{\|c} \hat{\lambda} \\ \underset{m}{m} \end{array}$	$\left\|\begin{array}{c} 0 \\ \stackrel{\sim}{0} \\ \stackrel{8}{6} \end{array}\right\|$	$\left\|\begin{array}{l} \vec{\infty} \\ \stackrel{\rightharpoonup}{\partial} \\ \stackrel{i}{0} \end{array}\right\|$	$\begin{array}{\|c} \stackrel{N}{m} \\ \underset{i}{i} \end{array}$	$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{O}{-} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \stackrel{0}{2} \\ & \stackrel{i}{0} \end{aligned}$	$\begin{aligned} & \text { 筇 } \\ & \stackrel{\leftrightarrow}{\infty} \end{aligned}$		$\begin{aligned} & \text { N } \\ & \stackrel{0}{\circ} \\ & \stackrel{O}{0} \end{aligned}$	$\begin{aligned} & \bar{\sim} \\ & \underset{\sim}{4} \\ & \underset{\sim}{4} \end{aligned}$		$\begin{gathered} \infty \\ \stackrel{\infty}{6} \\ \underset{0}{0} \end{gathered}$	$\begin{aligned} & \text { o} \\ & \underset{\infty}{\infty} \\ & \stackrel{\theta}{0} \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { ơ } \\ & \text { G } \\ & \underset{寸}{\prime} \end{aligned}\right.$	N
\％	$\begin{gathered} \frac{0}{9} \\ \vdots \\ \hline \end{gathered}$	$\underset{\sim}{\underset{y}{c}}$	$\begin{gathered} \underset{o}{c} \\ \stackrel{n}{6} \end{gathered}$		$\begin{aligned} & \sqrt{n} \\ & \underset{\sim}{f} \\ & \dot{0} \end{aligned}$	$\frac{2}{f}$	$\begin{aligned} & \text { İ } \\ & \text { on } \\ & \text { ふ̀ } \end{aligned}$	$\begin{gathered} \underset{\sim}{\infty} \\ \stackrel{y}{c} \\ \stackrel{i}{2} \end{gathered}$	$\left\|\begin{array}{c} \underset{0}{0} \\ \underset{O}{0} \\ \underset{-}{0} \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \underset{0}{0} \\ & \stackrel{\rightharpoonup}{\mathrm{~N}} \end{aligned}\right.$	$\begin{array}{\|c} \hat{0} \\ \overrightarrow{7} \\ 0 \end{array}$	$\left\|\begin{array}{c} f \\ \hline \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\left\|\begin{array}{c} \hat{y} \\ \hat{n} \\ \underset{0}{\infty} \\ \underset{i}{2} \end{array}\right\|$	$\begin{array}{\|c} \infty \\ \stackrel{\infty}{n} \\ \hat{\sim} \end{array}$	$\left.\begin{gathered} \infty \\ \infty \\ \infty \\ 0 \end{gathered} \right\rvert\,$	$\left\|\begin{array}{c} \frac{f}{0} \\ m \\ 0 \end{array}\right\|$	$\left\lvert\, \begin{gathered} \underset{0}{0} \\ \underset{O}{0} \\ \underset{-1}{ } \end{gathered}\right.$	$\left\lvert\, \begin{aligned} & \substack{0 \\ \stackrel{n}{0} \\ 0 \\ \hline} \end{aligned}\right.$	$\left\|\begin{array}{c} n \\ 0 \\ 0 \\ 0 \\ \dot{0} \end{array}\right\|$	$\begin{gathered} \stackrel{\infty}{\stackrel{0}{2}} \\ \stackrel{N}{i} \end{gathered}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{8} \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{\stackrel{~}{6}} \\ & \stackrel{1}{n} \end{aligned}$	$\stackrel{\infty}{\infty}$	$\begin{gathered} \underset{\sim}{c} \\ \stackrel{y}{0} \\ \underset{-}{\prime} \end{gathered}$		$\begin{aligned} & \stackrel{+}{2} \\ & \frac{\infty}{\infty} \\ & \stackrel{m}{2} \end{aligned}$	$\begin{aligned} & \text { ob } \\ & \stackrel{\infty}{\infty} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{\otimes} \\ & \stackrel{+}{\mathrm{a}} \end{aligned}$	$\begin{array}{\|l\|l} \underset{\substack{c}}{\text { N}} \\ \text { N- } \end{array}$	
磁		$\stackrel{\leftrightarrow}{\Omega}$	$\begin{aligned} & \stackrel{\rightharpoonup}{6} \\ & \text { Cb } \\ & i \end{aligned}$	$\left\lvert\, \begin{aligned} & 9 \\ & 0 \\ & \hline \end{aligned}\right.$	$\stackrel{\rightharpoonup}{\mathrm{m}}$		$\begin{array}{\|l} \stackrel{\circ}{\mathrm{o}} \end{array}$	$\stackrel{\infty}{\infty}$	$\begin{array}{\|c} \vec{G} \\ \underset{\substack{c}}{\underset{~}{n}} \end{array}$	＋	$\begin{gathered} \substack{6 \\ \underset{子}{2} \\ \hline} \end{gathered}$	$\left\|\begin{array}{c} \infty \\ \infty \\ \infty \\ \underset{\sim}{2} \end{array}\right\|$	$\left\|\begin{array}{c} \underset{\infty}{\infty} \\ \stackrel{y}{n} \\ \underset{i}{i} \end{array}\right\|$	$\left.\begin{gathered} 0 \\ \hline 0 \\ \infty \\ 0 \\ 0 \end{gathered} \right\rvert\,$	$\begin{array}{\|c} \infty \\ \stackrel{0}{0} \\ \underset{y}{c} \\ \underset{\sim}{2} \end{array}$	$\begin{gathered} \substack{0 \\ \vdots \\ \underset{\sim}{c} \\ \underset{\sim}{2} \\ \hline} \end{gathered}$	$\left\|\begin{array}{l} \infty \\ \infty \\ m \end{array}\right\|$	$\left\|\begin{array}{c} 0 \\ \frac{0}{8} \\ \frac{0}{\infty} \end{array}\right\|$		∞ $\stackrel{0}{0}$ 	$\underset{\substack{\underset{\sim}{N} \\ \hline}}{ }$	$\begin{aligned} & \stackrel{\text { n }}{n} \\ & \stackrel{i n}{n} \end{aligned}$		$\underset{\underset{\sim}{\underset{\sim}{\infty}} \underset{\underset{\sim}{\gtrless}}{ }}{ }$	$\begin{aligned} & \text { ৷} \\ & \text { ત̀ } \\ & \text { הָ } \end{aligned}$	$\begin{aligned} & \text { n } \\ & \underset{\sim}{~} \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\circ}}{\stackrel{\infty}{\infty}} \underset{\substack{\infty}}{ }$	$\begin{aligned} & \text { U} \\ & \stackrel{0}{\circ} \\ & \stackrel{\rightharpoonup}{\infty} \\ & \text { N } \end{aligned}$	$\left\|\begin{array}{c} \overrightarrow{O_{0}} \\ \stackrel{0}{c} \\ \stackrel{i}{c} \end{array}\right\|$	$\stackrel{+}{\infty}$
$\underset{\sim}{E}$	$\stackrel{\stackrel{2}{m}}{\underset{\sim}{2}}$	$\begin{aligned} & \mathrm{m} \\ & \stackrel{y}{c} \end{aligned}$	$\underset{\substack{\mathrm{N}}}{\substack{\mathrm{i}}}$	$\underset{\substack{0 \\ \hline \\ \hline}}{ }$		$\left\|\begin{array}{c} \dot{\sim} \\ \infty \\ \infty \\ \infty \end{array}\right\|$	$\left.\begin{array}{\|c\|c} \infty \\ \underset{n}{n} \end{array} \right\rvert\,$	$\begin{gathered} \text { B } \\ \text { Non } \end{gathered}$	$\begin{gathered} \stackrel{\rightharpoonup}{2} \\ \stackrel{\alpha}{\dot{f}} \end{gathered}$	$\begin{aligned} & \infty \\ & \infty \\ & \underset{n}{\infty} \\ & i \end{aligned}$			$\left\|\begin{array}{l} \hat{0} \\ \frac{0}{n} \\ -1 \end{array}\right\|$	$\begin{array}{\|c} \infty \\ \underset{\sim}{2} \\ \tilde{n} \\ 0 \end{array}$	$\stackrel{m}{\underset{\sim}{\underset{~}{N}}}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{\|c} \underset{\sim}{\infty} \\ \underset{\sim}{c} \\ \underset{i}{2} \end{array}$	$\left\|\begin{array}{c} \hat{c} \\ \underset{C}{\infty} \\ \underset{\sim}{2} \end{array}\right\|$	$\left\|\begin{array}{c} \infty \\ 0 \\ \infty \\ \underset{i}{\infty} \end{array}\right\|$	$\stackrel{\text { a }}{\stackrel{\text { a }}{\lambda}}$	$\begin{aligned} & {\underset{N}{0}}^{\text {N }} \\ & \text { qui } \end{aligned}$		$\begin{gathered} \underset{\sim}{\star} \\ \underset{n}{n} \end{gathered}$		$\begin{aligned} & \text { ल్త్ర } \\ & \stackrel{\circ}{\circ} \\ & \underset{O}{2} \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & \vdots \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \stackrel{\leftrightarrow}{\circ} \\ & \stackrel{1}{6} \\ & \dot{\text { G}} \end{aligned}$	$\begin{array}{\|c} \infty \\ \stackrel{\infty}{0} \\ \underset{\sim}{e} \\ \underset{i}{2} \end{array}$	$\stackrel{O}{0}$
\bar{y}	$\begin{array}{\|c} \underset{\substack{0}}{\substack{2}} \end{array}$	$\left\lvert\, \begin{aligned} & \text { 会 } \\ & \vdots \\ & \hline-1 \end{aligned}\right.$	$\begin{array}{\|c} \substack{c \\ \text { ה } \\ \hline} \end{array}$	$\stackrel{\leftrightarrow}{0}$		$\begin{aligned} & \stackrel{\rightharpoonup}{n} \\ & \dot{y} \\ & \underset{\sim}{n} \end{aligned}$	$\underset{-\infty}{\circ}$	$\left.\begin{array}{\|c\|} \hline 8 \\ 0 \end{array} \right\rvert\,$	$\left\lvert\, \begin{aligned} & \text { O} \\ & \text { Oi } \\ & \text { in } \end{aligned}\right.$	$\left.\begin{gathered} \tilde{N}_{0}^{\infty} \\ \stackrel{n}{n} \end{gathered} \right\rvert\,$	$\left.\begin{array}{\|c} \infty \\ \dot{\infty} \\ \hline \end{array} \right\rvert\,$	$\left\lvert\, \begin{gathered} \kappa \\ \tilde{n} \\ \substack{0 \\ 0} \end{gathered}\right.$	$\left\|\begin{array}{c} \underset{0}{\underset{O}{0}} \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\left.\begin{array}{\|c} \substack{0 \\ \hline 0 \\ 0 \\ 0 \\ 0} \end{array} \right\rvert\,$	$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\left\|\begin{array}{c} i \\ \underset{\sim}{i} \\ \underset{y}{c} \\ \underset{o}{2} \end{array}\right\|$	$\left. \right\rvert\,$	$\begin{aligned} & \mathbf{N}_{2} \\ & \stackrel{n}{n} \end{aligned}$	$\begin{aligned} & \hat{A} \\ & \hat{0} \\ & \underset{O}{0} \end{aligned}$	$\begin{gathered} \stackrel{\rightharpoonup}{\circ} \\ \text { ì } \end{gathered}$	$$	$\begin{aligned} & \text { in } \\ & \frac{6}{6} \\ & \text { fí } \end{aligned}$		$\begin{aligned} & \text { H } \\ & \text { C } \\ & \text { N } \\ & - \end{aligned}$	$\begin{aligned} & \text { t } \\ & \text { 人 } \\ & \text { 人 } \end{aligned}$		$\begin{aligned} & \text { O} \\ & \text { O} \\ & \text { ה } \\ & \text { m} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{0} \\ & \stackrel{n}{\infty} \\ & -\infty \end{aligned}$	$\begin{gathered} \overline{\mathrm{I}} \\ \underset{\mathrm{D}}{\mathrm{~J}} \end{gathered}$	－
N	$\begin{array}{\|c\|c\|c\|c\|c\|c\|} \substack{0} \end{array}$	$\stackrel{\sim}{2}$	$\underset{\sim}{c}$	$\begin{aligned} & 8 \\ & \stackrel{8}{3} \end{aligned}$	$\stackrel{\infty}{\infty}$	坒	$\stackrel{\rightharpoonup}{0}$	$\begin{aligned} & \underset{\sim}{n} \\ & \underset{\sim}{n} \end{aligned}$	$\left\|\begin{array}{c} \stackrel{\rightharpoonup}{n} \\ \stackrel{\sim}{n} \end{array}\right\|$	$\left\|\begin{array}{l} 1 \\ 0 \\ 0 . \\ 0 \end{array}\right\|$	$\begin{array}{\|c} \substack{N \\ \tilde{N} \\ \vdots \\ 0 \\ 0} \end{array}$		$\left\|\begin{array}{c} \underset{\sim}{w} \\ \stackrel{y}{3} \\ \underset{\sim}{2} \end{array}\right\|$	$\begin{array}{\|c} \substack{0 \\ 0 \\ \vdots \\ \vdots \\ 0} \end{array}$	$\left\lvert\, \begin{gathered} \underset{N}{\hat{N}} \\ \underset{-}{6} \end{gathered}\right.$	$\left\|\begin{array}{c} 6 \\ f \\ 0 \end{array}\right\|$	$\left.\begin{gathered} \frac{m}{2} \\ \stackrel{N}{n} \\ \underset{-}{2} \end{gathered} \right\rvert\,$	$$	$\left\|\begin{array}{c} \frac{4}{4} \\ i \end{array}\right\|$	$\begin{gathered} \text { y } \\ \text { 人̀ } \end{gathered}$	$\begin{aligned} & \pm \\ & \stackrel{J}{2} \\ & \text { Non } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{i} \\ & \stackrel{\rightharpoonup}{\infty} \\ & \stackrel{\infty}{?} \end{aligned}$	$\begin{aligned} & \text { 志 } \\ & \stackrel{6}{6} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \stackrel{t}{\infty} \\ & \underset{\sim}{\mathrm{i}} \end{aligned}$	$$	$\begin{aligned} & \text { Na } \\ & \stackrel{\rightharpoonup}{\mathrm{O}} \\ & -1 \end{aligned}$		$\begin{aligned} & \underset{N}{\tilde{N}} \\ & \underset{\sim}{n} \end{aligned}$	$\underset{\underset{i}{N}}{\stackrel{N}{\underset{\sim}{2}}}$	－
E				$\begin{array}{\|l\|l} \stackrel{n}{n} \\ \end{array}$	$\begin{array}{\|l\|l\|} \substack{n \\ \underset{n}{n} \\ \hline} \end{array}$	$\begin{array}{\|l\|l} \substack{n \\ \underset{n}{n} \\ n} \end{array}$		$\begin{aligned} & \text { in } \\ & \stackrel{n}{2} \\ & \end{aligned}$						$\begin{aligned} & \frac{\pi}{\infty} \\ & \stackrel{\omega}{n} \\ & \stackrel{n}{n} \end{aligned}$							$\begin{aligned} & \infty \\ & \stackrel{\infty}{2} \\ & \stackrel{\leftrightarrow}{a} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\vec{n}} \\ & \stackrel{\rightharpoonup}{7} \end{aligned}$							$\stackrel{\circ}{7}$

\cdots	$\begin{array}{\|l\|l} \underset{\sim}{\hat{y}} \\ \underset{\sim}{\infty} \\ \underset{\sim}{\infty} \end{array}$		$\begin{aligned} & \text { ơ } \\ & \underset{N}{+} \\ & \underset{\sim}{4} \end{aligned}$	$\begin{aligned} & \text { öj } \\ & \text { N } \\ & \underset{\sim}{\prime} \end{aligned}$	$\begin{aligned} & \text { ঠ̀} \\ & \text { Ǹ } \\ & \dot{J} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { in } \\ & \text { N } \\ & \text { Nin } \end{aligned}$		$\left.\begin{aligned} & \mathbf{o}_{0} \\ & 0 \\ & 0 \\ & \underset{\sim}{0} \end{aligned} \right\rvert\,$	$\left.\begin{aligned} & \hat{0} \\ & \stackrel{\rightharpoonup}{n} \\ & \hat{0} \\ & 0 \end{aligned} \right\rvert\,$		$\left\lvert\, \begin{gathered} n \\ \underset{\sim}{2} \\ \underset{\substack{o \\ \underset{\sim}{c}}}{ } \end{gathered}\right.$	$\left\|\begin{array}{c} \underset{\sim}{\underset{~}{A}} \\ \underset{\sim}{\dot{0}} \end{array}\right\|$	$\begin{gathered} \infty \\ \underset{\sim}{0} \\ \underset{\sim}{2} \\ \underset{0}{2} \end{gathered}$	－	\bigcirc	$\begin{aligned} & \stackrel{m}{\mathrm{O}} \\ & \underset{\mathrm{O}}{\mathrm{~m}} \end{aligned}$	$\begin{array}{\|c} \underset{N}{N} \\ \infty \\ 0 \\ \text { O} \end{array}$		$\begin{aligned} & \text { 긍 } \\ & \text { d } \\ & \text { הु } \end{aligned}$	\bigcirc		$\begin{aligned} & \hat{o}_{0}^{0} \\ & 0 \\ & 0 \\ & 0 \\ & \text { in } \end{aligned}$	$\begin{aligned} & 2 \\ & \text { a } \\ & 0 \\ & 0 \\ & 0 . \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{9} \\ & \stackrel{y}{7} \end{aligned}$	$\left.\begin{array}{\|c} \stackrel{\rightharpoonup}{c} \\ \underset{\sim}{N} \\ \underset{\sim}{j} \end{array} \right\rvert\,$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{0} \\ & \stackrel{0}{\infty} \\ & \infty \\ & \stackrel{\leftrightarrow}{6} \end{aligned}$		$\left\lvert\, \begin{gathered} \infty \\ \stackrel{\infty}{m} \\ \frac{2}{d} \\ \underset{\sim}{2} \end{gathered}\right.$		
\cdots		$\begin{aligned} & \overline{0} \\ & 0 \\ & 0 \\ & \vdots \\ & \underset{n}{2} \end{aligned}$	$\stackrel{N}{\stackrel{N}{E}}$	等 子 子	$\begin{aligned} & \text { er } \\ & \underset{\sim}{6} \\ & \underset{\sim}{\dot{\infty}} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{2} \\ & \stackrel{\sim}{c} \end{aligned}$	$\left.\begin{aligned} & \stackrel{\rightharpoonup}{n} \\ & \frac{n}{n} \\ & - \end{aligned} \right\rvert\,$	$\left\|\begin{array}{c} \infty \\ 0 \\ \omega \\ \infty \\ \infty \\ 0 \end{array}\right\|$	$\left\|\begin{array}{c} \underset{\sim}{\underset{\sim}{2}} \\ \underset{\substack{2}}{ } \end{array}\right\|$	$\left\|\begin{array}{c} n \\ \vdots \\ \vdots \\ \underset{i}{n} \end{array}\right\|$		$\left\lvert\, \begin{gathered} \overrightarrow{0} \\ 0 \\ 0 \\ \vdots \\ \text { in } \end{gathered}\right.$	$\left\|\begin{array}{c} \infty \\ \stackrel{0}{0} \\ \underset{O}{0} \\ \underset{0}{2} \end{array}\right\|$	$\begin{aligned} & \stackrel{\rightharpoonup}{\hat{0}} \\ & \stackrel{\rightharpoonup}{i} \\ & \stackrel{y}{c} \end{aligned}$	$\begin{aligned} & \stackrel{0}{\infty} \\ & 0 \\ & \underset{\sim}{6} \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{L}} \\ & \underset{\mathrm{i}}{\mathrm{i}} \end{aligned}$		$\begin{aligned} & \hat{H} \\ & \text { N} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{array}{\|c} \stackrel{\rightharpoonup}{\hat{O}} \\ \text { B } \end{array}$	$\begin{aligned} & \stackrel{\rightharpoonup}{m} \\ & \stackrel{y}{m} \\ & = \end{aligned}$	$\underset{\underset{\sim}{\underset{\sim}{I}}}{\underset{\sim}{J}}$			$\left\|\begin{array}{c} \infty \\ \stackrel{\infty}{0} \\ \stackrel{0}{0} \\ \underset{\sim}{0} \end{array}\right\|$	$\begin{gathered} \underset{\sim}{2} \\ \underset{\sim}{\underset{q}{q}} \end{gathered}$	$\begin{aligned} & \underset{\sim}{2} \\ & \underset{\sim}{4} \\ & \stackrel{y}{*} \end{aligned}$	$\begin{aligned} & \hat{\alpha} \\ & \dot{\infty} \\ & \underset{\sigma}{6} \end{aligned}$		$\begin{aligned} & \stackrel{\sim}{\sim} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{2} \end{aligned}$		
N				$\begin{aligned} & \text { ప్ర } \\ & \infty \\ & \infty \\ & \infty \\ & \infty \end{aligned}$	$\begin{gathered} \frac{m}{9} \\ \stackrel{y}{4} \\ \underset{\sim}{6} \end{gathered}$	$\begin{aligned} & +\mathbf{\infty} \\ & \stackrel{\infty}{\infty} \\ & \stackrel{\infty}{\infty} \\ & \stackrel{\infty}{i} \end{aligned}$					$\begin{array}{\|c} \stackrel{0}{0} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$		$$		\％	\bigcirc	$\begin{array}{\|l\|l} \infty \\ \\ \infty \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & \text { n } \\ & \text { n } \\ & \text { 答 } \end{aligned}$	$\begin{aligned} & \text { ren } \\ & \text { êo } \\ & \text { O} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \text { d } \\ & \text { o } \\ & \text { on } \end{aligned}$	$\begin{aligned} & \hat{0} \\ & \text { N} \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \underset{\sim}{\sigma} \\ & \stackrel{\omega}{\omega} \\ & \underset{-}{2} \end{aligned}$		$\begin{aligned} & \tilde{o}_{0} \\ & \stackrel{A}{6} \\ & \text { on } \end{aligned}$	$\begin{aligned} & \text { to } \\ & \text { O} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { İ } \\ & \underset{7}{7} \\ & \text { ה } \end{aligned}$		8			
三	$\begin{array}{\|l\|l} \substack{\begin{subarray}{c}{\infty \\ \infty \\ \infty \\ \infty \\ \infty \\ \hline} }} \\ {\hline} \end{array}$			$\begin{aligned} & \text { J } \\ & \text { d } \\ & \text { di } \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\circ}{\circ} \\ & \stackrel{0}{\infty} \\ & \text { ì } \end{aligned}$		$\begin{aligned} & \vec{\infty} \\ & \stackrel{\otimes}{\circ} \\ & \stackrel{\sim}{-} \end{aligned}$	$\begin{gathered} \stackrel{\rightharpoonup}{n} \\ \stackrel{2}{f} \\ \stackrel{y}{2} \end{gathered}$		$\left\|\begin{array}{c} 2 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$		$\left\|\begin{array}{l} 0 \\ \stackrel{0}{i} \\ 0 \\ 0 \end{array}\right\|$		$\begin{aligned} & \vec{\infty} \\ & \infty \\ & \stackrel{\infty}{\infty} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { 兑 } \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\underset{\sim}{c}} \\ & \underset{\sim}{0} \end{aligned}$	$\begin{aligned} & \overline{0} \\ & 0 \\ & 0 \\ & 0 \\ & \underset{\sim}{2} \end{aligned}$		$\begin{aligned} & \underset{\sim}{N} \\ & \Omega \\ & \underset{\delta}{0} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & 0 \\ & \stackrel{\infty}{6} \\ & 0 \end{aligned}$	$\begin{gathered} \stackrel{6}{0} \\ \underset{\sim}{0} \\ \sim \\ 0 \end{gathered}$	$\left.\begin{array}{\|c} \infty \\ \stackrel{0}{n} \\ \vdots \\ 0 \\ 0 \end{array} \right\rvert\,$	$\begin{aligned} & \text { n} \\ & \text { e } \\ & 0 \\ & \text { in } \end{aligned}$		$\begin{aligned} & g \\ & \underset{子}{g} \\ & \dot{子} \end{aligned}$	$\left\|\begin{array}{c} \underset{\sim}{0} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$		$\begin{aligned} & \text { n } \\ & \infty \\ & \vdots \\ & \underset{\sim}{\infty} \end{aligned}$	N	
$\underset{\sim}{\sim}$	$\begin{aligned} & \overline{0} \\ & 0 \\ & \vdots \\ & 0 \\ & \infty \end{aligned}$	$\begin{array}{\|l\|l} I \\ \substack{\infty \\ i n \\ i n} \end{array}$	$\begin{aligned} & \text { N} \\ & \text { N্ণু } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \stackrel{0}{n} \\ & \text { n} \\ & \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{6} \\ & \stackrel{6}{6} \\ & \stackrel{2}{i} \end{aligned}$		$\left\|\begin{array}{c} \overrightarrow{⿳ 亠 丷 厂 犬} \\ \stackrel{\rightharpoonup}{0} \\ \stackrel{\rightharpoonup}{O} \end{array}\right\|$	$\left\|\begin{array}{l} \text { r} \\ 0.0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\begin{array}{\|c} \hline 0 \\ 0 \\ \text { G } \\ \text { ch } \end{array}$		$\left\|\begin{array}{c} \underset{0}{0} \\ 0 \\ 0 \\ 0 \end{array}\right\|$		$\left.\begin{array}{\|l\|} \hline \stackrel{\rightharpoonup}{0} \\ \stackrel{0}{0} \\ 0 \end{array} \right\rvert\,$	$\begin{aligned} & \overrightarrow{\mathrm{N}} \\ & \stackrel{\rightharpoonup}{c} \\ & \mathrm{i} \end{aligned}$	$\begin{array}{\|c} \underset{\sim}{c} \\ \underset{\sim}{c} \end{array}$		$\begin{array}{\|l} \hline \frac{\pi}{n} \\ \frac{6}{n} \\ i \end{array}$	0 $\stackrel{0}{0}$ $\stackrel{7}{6}$	$\begin{aligned} & \underset{\sim}{2} \\ & \underset{\sim}{n} \\ & \underset{0}{0} \end{aligned}$			$\begin{aligned} & \hline \stackrel{0}{2} \\ & \stackrel{\sim}{\infty} \\ & \cdots \end{aligned}$		$\begin{aligned} & \vec{J} \\ & \underset{\sigma}{a} \end{aligned}$			$\begin{aligned} & \text { 士} \\ & \hline \mathbf{0} \\ & \underset{\sim}{2} \end{aligned}$			İ d ה S	
	$\begin{array}{\|l\|} \stackrel{\rightharpoonup}{o} \\ \underset{\sim}{N} \\ \underset{i}{2} \end{array}$	$\begin{aligned} & \text { 容 } \\ & \text { O} \\ & \text { in } \end{aligned}$	$\begin{aligned} & \bar{\infty} \\ & \stackrel{\omega}{a} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{aligned} & \overline{\mathrm{N}} \\ & \stackrel{0}{\mathrm{i}} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \\ & \stackrel{\infty}{\infty} \\ & \stackrel{\rightharpoonup}{i} \end{aligned}$	$\begin{gathered} \underset{0}{\mathrm{O}} \\ \underset{\sim}{7} \end{gathered}$	$\begin{gathered} \frac{m}{a} \\ \frac{0}{m} \\ \underset{子}{2} \end{gathered}$	$\left\|\begin{array}{c} n \\ \underset{n}{c} \\ \underset{c}{n} \end{array}\right\|$		$\left\|\begin{array}{l} \underset{\sim}{0} \\ \infty \\ 0 \\ \infty \\ 0 \end{array}\right\|$	$\begin{aligned} & n \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \end{aligned}$	$\left\lvert\, \begin{gathered} \widehat{y} \\ \underset{\sim}{\infty} \\ \underset{\infty}{心} \\ \underset{i}{2} \end{gathered}\right.$		$\begin{aligned} & \overline{\mathrm{N}} \\ & \stackrel{N}{へ} \end{aligned}$	$\begin{array}{\|l} \hline n \\ \frac{6}{0} \\ \hdashline \cdots \end{array}$		$\begin{aligned} & \widehat{\infty} \\ & \infty \\ & \infty \\ & \stackrel{\infty}{\infty} \\ & \stackrel{\infty}{i} \end{aligned}$		$\left\|\begin{array}{l} \infty \\ \infty \\ \infty \\ \infty \\ \underset{i}{i} \end{array}\right\|$		$$	$\begin{aligned} & \text { n } \\ & \vdots \\ & \vdots \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { in } \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ \stackrel{0}{0} \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\widehat{\circ}} \\ & \stackrel{\rightharpoonup}{\mathrm{N}} \\ & \underset{\sim}{c} \end{aligned}$		$\begin{aligned} & \overrightarrow{\hat{V}} \\ & \mathbf{0} \\ & \hat{\lambda} \end{aligned}$				
			$\stackrel{m}{\underset{\sim}{\mathrm{~N}}}$	$\begin{aligned} & \text { İ } \\ & \text { © } \\ & \text { O} \\ & \dot{子} \end{aligned}$		$\begin{aligned} & \text { N్త్ర } \\ & \text { oू } \\ & \text { O- } \end{aligned}$		$\begin{aligned} & 0 \\ & 0.0 \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\left\|\begin{array}{c} \tilde{1} \\ \stackrel{0}{0} \\ 0 \end{array}\right\|$	$\begin{gathered} \hat{a} \\ \text { a } \\ \underset{\sim}{3} \end{gathered}$			$\begin{gathered} \underset{\infty}{+} \\ \vdots \\ \underset{\sim}{\infty} \\ \underset{i}{2} \end{gathered}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\infty} \\ & \mathbf{o}_{0}^{\infty} \\ & \underset{i}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\substack{0 \\ 0 \\ 0 \\ 0 \\ \underset{\sim}{2}}}{ } \end{aligned}$	8	$\begin{gathered} \stackrel{\rightharpoonup}{i} \\ \underset{\sim}{\infty} \\ \underset{\sim}{\infty} \end{gathered}$			$\begin{gathered} \underset{0}{0} \\ \stackrel{\rightharpoonup}{n} \\ \underset{i}{i} \end{gathered}$	$\begin{array}{\|c} \underset{\sim}{\underset{N}{A}} \\ \underset{\sim}{2} \end{array}$	$\begin{aligned} & \stackrel{\rightharpoonup}{7} \\ & n \\ & n \\ & n \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \vdots \\ & \vdots \\ & \underset{\sim}{2} \end{aligned}$		N N O in i	僉		$\begin{aligned} & \bar{\sigma} \\ & \underset{y}{*} \\ & \underset{\sim}{2} \end{aligned}$		
$\underset{\Sigma}{\mathbb{L}}$	$\begin{array}{\|l} \text { 吉 } \\ \text { 合 } \\ \text { O} \\ \hline \end{array}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \stackrel{n}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$		$$		$\begin{aligned} & 0 \\ & 0 \\ & \hline 0 \\ & \hline 8 \\ & 0 \end{aligned}$	$\left\|\begin{array}{c} \stackrel{\sim}{n} \\ \stackrel{\rightharpoonup}{0} \\ 0 \end{array}\right\|$	$\left.\begin{gathered} n \\ \tilde{y} \\ \underset{\sim}{3} \\ 0 \\ 0 \end{gathered} \right\rvert\,$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\left\|\begin{array}{l} 4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\begin{gathered} 7 \\ \stackrel{7}{2} \\ \underset{7}{7} \\ 0 \end{gathered}$		$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ i \\ 0 \end{array}\right\|$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \infty \\ & \stackrel{\infty}{0} \\ & \stackrel{0}{0} \\ & \underset{\sim}{7} \end{aligned}$		育	$\begin{aligned} & \text { I} \\ & \text { O} \\ & \underset{O}{\otimes} \end{aligned}$	$\left\|\begin{array}{c} \infty \\ 0 \\ 0 \\ \underset{0}{0} \\ 0 \end{array}\right\|$	$\begin{aligned} & \mathbf{o} \\ & \underset{\sim}{4} \\ & \underset{\sim}{6} \end{aligned}$		$\begin{aligned} & \text { ö } \\ & \text { N } \\ & \text { in } \\ & \text { in } \end{aligned}$		$\left\|\begin{array}{c} \infty \\ 0 \\ 0 \\ i \\ 0 \\ i \\ i \end{array}\right\|$	$\begin{gathered} \underset{\sim}{\omega} \\ \tilde{n} \\ \tilde{N} \\ \underset{\sim}{2} \end{gathered}$					
Σ		$\left\lvert\, \begin{aligned} & \mathrm{O} \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}\right.$	$\begin{aligned} & \text { N} \\ & \underset{-}{2} \end{aligned}$	$\begin{aligned} & \frac{7}{2} \\ & \stackrel{0}{6} \\ & 0 . \end{aligned}$	$\begin{aligned} & \text { む్డ్ర } \\ & \stackrel{\rightharpoonup}{\alpha} \\ & \text { O} \end{aligned}$		$\left\|\begin{array}{c} \underset{\sim}{n} \\ \underset{\sim}{n} \\ \stackrel{y}{2} \end{array}\right\|$	$\left\|\begin{array}{l} \underset{\sim}{2} \\ \underset{\sim}{n} \\ \vdots \end{array}\right\|$	$\left.\begin{gathered} \infty \\ \stackrel{\infty}{6} \\ \stackrel{\infty}{\infty} \\ - \end{gathered} \right\rvert\,$	$\left\|\begin{array}{c} \underset{O}{2} \\ 0 \\ 0 \\ \infty \\ 0 \end{array}\right\|$	$\left\|\begin{array}{l} \infty \\ 0 \\ \vdots \\ \hline \end{array}\right\|$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{0} \\ & \stackrel{1}{\hat{1}} \\ & \hline \end{aligned}$	$\left\|\begin{array}{l} \hat{0} \\ \stackrel{\rightharpoonup}{0} \\ 0 \\ 0 \end{array}\right\|$	$\left.\begin{gathered} \underset{\sim}{c} \\ \underset{\sim}{N} \\ \underset{\sim}{n} \end{gathered} \right\rvert\,$	$\left\|\begin{array}{c} \infty \\ \stackrel{\infty}{0} \\ \underset{\substack{c}}{i} \end{array}\right\|$	$\begin{aligned} & \overrightarrow{\hat{a}} \\ & \stackrel{\rightharpoonup}{\infty} \\ & \underset{N}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{n} \\ & \stackrel{N}{n} \\ & \underset{\sim}{2} \end{aligned}$	$\left\|\right\|$	$\left\|\begin{array}{c} n \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ \underset{y}{c} \\ \underset{i}{2} \end{array}\right\|$	\bigcirc			$\begin{aligned} & \text { + } \\ & \text { O} \\ & \text { O} \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { n } \\ & \text { a } \\ & \text { a } \end{aligned}$	$\begin{aligned} & \frac{\circ}{子} \\ & \frac{\square}{子} \end{aligned}$	$$	$\begin{aligned} & \hat{2} \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\left.\begin{aligned} & \tilde{\sim} \\ & \tilde{N} \\ & \underset{\sim}{0} \end{aligned} \right\rvert\,$	¢	
合		$\begin{aligned} & \text { 扁 } \\ & \stackrel{\rightharpoonup}{n} \\ & \end{aligned}$		$\begin{aligned} & \text { に0 } \\ & \stackrel{n}{n} \\ & \hline \end{aligned}$										$\begin{aligned} & \vec{~} \\ & \underset{\tilde{y}}{\boldsymbol{g}} \end{aligned}$		$\begin{aligned} & \underset{y}{ \pm} \\ & \underset{\sim}{\underset{\sim}{n}} \end{aligned}$		$\begin{aligned} & \hat{N} \\ & \underset{\tilde{n}}{\vec{n}} \end{aligned}$	$\begin{aligned} & \underset{\tilde{n}}{\substack{n}} \\ & \hline \stackrel{y}{n} \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{\underset{y}{c}} \\ & \underset{\sim}{\\|} \end{aligned}$						$\begin{aligned} & \underset{\sim}{\underset{\sim}{x}} \\ & \underset{\sharp}{n} \end{aligned}$				泉	

miRNA	P2	MIA	Panc-1	BxPC-3	T2	T7	T22	T33	T35
miR-26a	0.479632	0.8293195	3.434262	4.531536	0.29937	0.61132	22.161751	26.72281	23.26356
miR-26b	0.586417	1.0717735	6.498019	5.205367	0.325335	1.042466	29.040613	56.49299	43.411338
miR-27a+b	0.496546	0.6417129	3.605002	3.732132	1.494849	1.214195	19.027314	24.42015	9.3178687
miR-30c	0.450625	1.591073	5.426417	1.931873	0.539614	0.423373	37.530718	14.02569	8.168097
miR-29a+b+c	1.972465	0.8408964	1.729074	0.993092	0.566442	1.22264	704.27741	3.5801	8.3977335
miR-30a-3p	0.140632	1.4948492	5.540438	1.879045	0.065154	0.376312	15.242208	2.188587	1.1647336
miR-30a-5p	0.273573	2.2657678	5.314743	3.706352	0.389582	0.435275	2.3133764	1.375542	0.528509
miR-296	0.539614	0.1103379	0.432269	1.310393	1.013959	1.505247	1.4539725	5.028053	1.4640857

[^1]Table 3
Eight commonly increased miRNAs in more pancreatic cancer cell lines＊and surgical specimens＊＊

	$\begin{aligned} & \text { 告 } \\ & 0 . \\ & 0.0 \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { D } \\ & \text { I } \\ & \dot{\gamma} \end{aligned}$	$\begin{aligned} & \text { e} \\ & \text { on } \\ & \frac{6}{6} \end{aligned}$	$\begin{aligned} & \bar{Z} \\ & \stackrel{m}{0} \\ & \text { in } \end{aligned}$		$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \\ & \infty \\ & \stackrel{0}{=} \\ & \hline \end{aligned}$	$\begin{aligned} & n \\ & \frac{n}{9} \\ & \infty \\ & \infty \\ & 0 \end{aligned}$		$\begin{aligned} & \overline{\mathrm{N}} \\ & \stackrel{\text { N}}{2} \end{aligned}$	$\begin{aligned} & \underset{寸}{\dot{O}} \\ & \underset{\sim}{\infty} \\ & \dot{\gamma} \end{aligned}$	$\begin{gathered} \underset{O}{O} \\ \underset{\sim}{\mathrm{~N}} \\ \hline \end{gathered}$	$\begin{aligned} & \text { ત } \\ & \text { H } \\ & \text { d } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { t} \\ & \text { A} \\ & \underset{\sim}{7} \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$$	$\begin{aligned} & \overrightarrow{\mathrm{O}} \\ & \text { on } \\ & \infty \\ & \dot{\infty} \end{aligned}$		$\begin{aligned} & \text { N} \\ & \stackrel{\infty}{\infty} \\ & \underset{\sim}{1} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \\ & \stackrel{\infty}{\stackrel{\infty}{0}} \end{aligned}$	$\begin{aligned} & \text { G } \\ & \text { N } \\ & \text { ¿ } \end{aligned}$	$\begin{aligned} & \text { ò } \\ & \text { i } \\ & \text { i } \\ & \text { in } \end{aligned}$	$\begin{gathered} \underset{\sim}{N} \\ \underset{\sim}{n} \end{gathered}$	$\begin{aligned} & \hat{0} \\ & \underset{\sigma}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\delta}{\infty} \\ & \stackrel{\infty}{\sim} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { Ò } \\ & \text { O} \end{aligned}$	$\frac{\stackrel{\infty}{\infty}}{\stackrel{\infty}{\infty}}$	$\bar{\sim}$ ∞ \sim \sim O
$\frac{\stackrel{i n}{n}}{\stackrel{y}{n}}$	$\begin{aligned} & \text { İ } \\ & \stackrel{\sigma}{\sigma} \\ & 0 \end{aligned}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\infty}{\infty} \\ & \underset{\sim}{\infty} \\ & i \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { N } \\ & \stackrel{n}{n} \end{aligned}$	\checkmark	$\begin{aligned} & n \\ & \\ & \end{aligned}$	$\stackrel{n}{\underset{\sim}{n}}$	$\begin{aligned} & \text { n } \\ & \text { on } \\ & \underset{\sim}{\infty} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { ণ } \\ & \underset{\sim}{\infty} \\ & \infty \\ & \text { i } \end{aligned}$	$\begin{aligned} & \underset{\sim}{7} \\ & \underset{\sim}{6} \end{aligned}$		$\begin{aligned} & \stackrel{6}{n} \\ & \stackrel{4}{4} \\ & \end{aligned}$	$$	$\begin{aligned} & \vec{n} \\ & \underset{\sim}{n} \\ & \stackrel{\sim}{N} \end{aligned}$	$$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & 0 \\ & \underset{\infty}{\infty} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \underset{\sim}{0} \\ & \underset{\sim}{c} \end{aligned}$	$\begin{aligned} & \frac{n}{2} \\ & \stackrel{\infty}{\sim} \\ & \underset{j}{2} \end{aligned}$	$\begin{aligned} & \underset{\sim}{7} \\ & \underset{\sim}{7} \end{aligned}$	$\begin{aligned} & \vec{O} \\ & \dot{O} \\ & \dot{~ i} \end{aligned}$	$\frac{\pi}{\pi}$	$\stackrel{\sim}{\underset{\sim}{\sim}}$	$\begin{aligned} & \text { 尔 } \\ & \text { O} \\ & \text { í } \end{aligned}$	$\begin{aligned} & \frac{0}{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\circ}{0} \\ & \underset{m}{2} \end{aligned}$	$\stackrel{\rightharpoonup}{8}$ $\stackrel{n}{n}$ $\stackrel{3}{\circ}$	
	$\begin{aligned} & \text { N} \\ & \text { N } \\ & \text { N } \\ & 0 \end{aligned}$	$\begin{aligned} & N \\ & \underset{N}{N} \\ & 0 . \end{aligned}$	\hat{N} $\stackrel{N}{n}$ \vdots 0	$\begin{aligned} & \frac{m}{a} \\ & \frac{1}{2} \end{aligned}$	$\begin{aligned} & \pm \\ & \stackrel{\pi}{n} \\ & \stackrel{n}{n} \\ & \underset{\vdots}{2} \end{aligned}$	$\begin{aligned} & \text { No } \\ & \underset{\sim}{\circ} \\ & \underset{\infty}{\infty} \end{aligned}$	$\begin{aligned} & \underset{Z}{J} \\ & \underset{\sim}{=} \\ & \hline \end{aligned}$		$\begin{aligned} & \hat{n} \\ & \frac{n}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { J} \\ & \text { N } \\ & \text { N! } \end{aligned}$	$\begin{aligned} & 6 \\ & 0 \\ & ? \\ & 0 \end{aligned}$		$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 8 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { n} \\ & \text { è } \\ & \text { è } \end{aligned}$	$\begin{aligned} & \bar{n} \\ & \stackrel{i}{\circ} \\ & 0 \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\mathrm{O}} \\ & \stackrel{\text { G}}{+} \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{+} \\ & \underset{-}{\top} \end{aligned}$	$\begin{aligned} & +\infty \\ & \underset{\sim}{\infty} \\ & \stackrel{\infty}{\infty} \end{aligned}$	$\begin{aligned} & \pm \\ & \infty \\ & \stackrel{\infty}{n} \\ & \stackrel{=}{3} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \frac{n}{n} \\ & \end{aligned}$	$\begin{aligned} & \text { in } \\ & \text { n } \\ & \underset{\sim}{6} \end{aligned}$	$\begin{gathered} n \\ \infty \\ i n \end{gathered}$	$\begin{aligned} & \text { గ్ర } \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & n \\ & 0 \\ & \frac{0}{i} \end{aligned}$	$\begin{aligned} & \overrightarrow{7} \\ & \mathbf{0} \\ & i \end{aligned}$	$\begin{aligned} & \bar{\circ} \\ & \stackrel{0}{\infty} \\ & \end{aligned}$	N
	$$		∞ $\stackrel{\infty}{2}$ i N ì		$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \vec{\sim} \\ & \text { N } \\ & \text { on } \end{aligned}$	$\begin{aligned} & \pm \\ & \text { I } \\ & \text { N } \\ & \end{aligned}$		$\begin{aligned} & \stackrel{N}{n} \\ & \infty \\ & 0 \end{aligned}$	$\begin{aligned} & \text { m } \\ & \text { Z } \\ & \text { ò } \\ & \text { in } \end{aligned}$		$\begin{aligned} & \text { N} \\ & \stackrel{\rightharpoonup}{6} \\ & \text { N} \\ & \text { nे } \end{aligned}$	$\begin{aligned} & \hat{0} \\ & \stackrel{N}{0} \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{N}{N} \\ & \underset{0}{0} \end{aligned}$	$\begin{aligned} & \stackrel{0}{N} \\ & \underset{\sim}{m} \\ & \underset{i}{n} \end{aligned}$	$\begin{aligned} & \text { o} \\ & \text { ì } \\ & \text { Nु } \end{aligned}$	$\frac{m}{\frac{m}{n}} \underset{\substack{n}}{ }$	$\begin{aligned} & \hat{N} \\ & \underset{\infty}{\infty} \\ & \underset{\sim}{i} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{\sim}{7} \\ & \underset{\sim}{O} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{2} \end{aligned}$		$\frac{\sqrt{a}}{\underset{\sim}{\mathrm{~m}}}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \\ & \infty \\ & \text { ì } \\ & \text { Ni } \end{aligned}$	$\begin{aligned} & \underset{\infty}{n} \\ & \underset{\sim}{n} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \infty \\ & \dot{G} \\ & \underset{\sim}{\circ} \\ & \dot{q} \end{aligned}$	$\begin{aligned} & \pm \\ & \infty \\ & \underset{\sim}{n} \\ & = \end{aligned}$	へె
$\begin{aligned} & \underset{N}{N} \\ & \underset{\sim}{n} \\ & \hline \end{aligned}$				$\begin{aligned} & 0 \\ & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$		त्रे ñ ì ì	$\begin{aligned} & \vec{~} \\ & \stackrel{n}{n} \\ & \stackrel{n}{n} \\ & \end{aligned}$	$\begin{aligned} & N \\ & \underset{A}{N} \\ & \underset{N}{\lambda} \end{aligned}$	N $\underset{\text { N }}{ \pm}$ 	$\begin{aligned} & \text { to } \\ & \dot{y} \\ & 6 \\ & \text { i } \end{aligned}$	$\begin{aligned} & \text { à } \\ & \underset{\sim}{1} \\ & \underset{=}{=} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { B } \\ & \text { ì } \end{aligned}$	$\begin{aligned} & \bar{\sim} \\ & \stackrel{n}{\lambda} \\ & \end{aligned}$	$$	$\begin{aligned} & \text { ò } \\ & \hat{o} \\ & -1 \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{0}{\mathrm{~N}} \\ & \underset{\sim}{\mathbf{N}} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{0} \\ & \text { N } \end{aligned}$		$\underset{\sim}{3}$ $\underset{\sim}{7}$ -	$\begin{gathered} \infty \\ \stackrel{\infty}{\infty} \\ \underset{\sim}{\infty} \\ \dot{N} \end{gathered}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \dot{~} \end{aligned}$	$\frac{i n}{a}$	$\begin{aligned} & \Xi \\ & \vdots \\ & \text { ल } \end{aligned}$	$$	$\begin{aligned} & \text { in } \\ & \text { ón } \\ & \text { ì } \end{aligned}$		\％ O N －
	$\begin{aligned} & \text { Ň } \\ & \text { ה人 } \\ & \text { O} \end{aligned}$			$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$		N N N N	$\begin{aligned} & \infty \\ & \underset{N}{\infty} \\ & \underset{\sim}{\infty} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \underset{\sim}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { y } \\ & \underset{\sim}{1} \\ & \text { N} \end{aligned}$	$\begin{aligned} & \text { o} \\ & \stackrel{+}{+} \\ & \underset{o}{0} \end{aligned}$		$\begin{aligned} & \hat{0} \\ & 0 \\ & 0 \\ & 0 \\ & = \end{aligned}$	$\begin{aligned} & \text { o} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \frac{N}{3} \\ & \frac{\infty}{0} \\ & 0 \end{aligned}$		8	$\begin{aligned} & \text { ô} \\ & \text { ò } \\ & \text { od } \\ & \text { ì } \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \stackrel{\infty}{\infty} \\ & \stackrel{1}{\square} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \underset{\sim}{\circ} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & n \\ & 0 \\ & 0 . \\ & i \end{aligned}$	$\begin{aligned} & \text { t} \\ & \text { ה } \\ & \underset{\sim}{7} \end{aligned}$	$$		$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \underset{\sim}{\infty} \\ & \infty \end{aligned}$	$\begin{aligned} & \stackrel{y}{ \pm} \\ & \underset{\sim}{\square} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \underset{=}{=} \end{aligned}$	
$\begin{aligned} & \stackrel{\rightharpoonup}{\lambda} \\ & \underset{\sharp}{\vec{j}} \end{aligned}$	$\begin{aligned} & \underset{\sim}{n} \\ & \hat{N} \\ & \hat{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \vec{n} \\ & n \\ & n \\ & i \end{aligned}$		$\begin{aligned} & \underset{\sim}{7} \\ & \text { ç } \\ & \text { ה̀ } \end{aligned}$	8	8	8	8	8	8	8	$\begin{aligned} & \underset{0}{0} \\ & \underset{\sim}{4} \\ & \text { cे } \end{aligned}$	$\begin{aligned} & \hat{n} \\ & \hat{0} \\ & \dot{N} \\ & \dot{N} \end{aligned}$	∞ $\stackrel{\infty}{7}$ 0		$\begin{aligned} & \stackrel{\infty}{\infty} \\ & \stackrel{\circ}{\circ} \\ & \hline- \end{aligned}$	$\begin{aligned} & \overline{0} \\ & 0 \\ & 0 \\ & \infty \\ & + \end{aligned}$	$\frac{\stackrel{\infty}{\infty}}{\stackrel{\infty}{\sqrt{n}}} \underset{\infty}{\infty}$	$\begin{aligned} & n \\ & \frac{n}{\infty} \\ & \underset{6}{\infty} \end{aligned}$	8	$\begin{aligned} & \text { O} \\ & \substack{4 \\ \hline \\ \hline} \end{aligned}$	8	$\begin{aligned} & \underset{\sim}{N} \\ & \infty \\ & \underset{\sim}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \underset{\sim}{0} \\ & \text { i } \\ & \text { in } \end{aligned}$	8	n \sim \sim \sim \sim	$\stackrel{\circ}{-}$ $\stackrel{+}{+}$ $\stackrel{+}{\sim}$
品 合	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{\delta} \\ & \underset{0}{2} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\circ} \\ & \stackrel{\rightharpoonup}{\mathrm{m}} \end{aligned}$	$\begin{gathered} \infty \\ \stackrel{\infty}{n} \\ \stackrel{\sim}{\infty} \end{gathered}$	$\begin{aligned} & \text { U} \\ & \text { N } \\ & \text { م } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \underset{\sim}{n} \\ & \underset{\sim}{\dot{N}} \end{aligned}$	$\begin{aligned} & N \\ & \underset{2}{0} \\ & \underset{n}{2} \end{aligned}$	$\begin{aligned} & \underset{\sim}{J} \\ & \underset{\sim}{*} \\ & \underset{\sim}{2} \end{aligned}$		$\begin{aligned} & 0.0 \\ & \underset{0}{0} \\ & \underset{\sim}{6} \end{aligned}$	$\begin{aligned} & \hat{0} \\ & \hat{0} \\ & \text { ob } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \dot{\infty} \\ & \stackrel{\infty}{\leftrightharpoons} \\ & \hline \end{aligned}$	$\begin{aligned} & \hat{0} \\ & \infty \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$$		$\begin{aligned} & \bar{Z} \\ & \stackrel{m}{0} \\ & i \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & \stackrel{n}{n} \\ & \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \dot{0} \end{aligned}$	$\underset{\underset{\sim}{\mathrm{N}}}{\underset{\sim}{\lambda}}$	$\begin{gathered} \underset{\sim}{\underset{G}{t}} \\ \underset{\sim}{n} \end{gathered}$	$\begin{aligned} & \text { N } \\ & \underset{\sim}{8} \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{N} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{n} \\ & \stackrel{n}{=} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \dot{G} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{n} \\ & i \end{aligned}$	$\begin{aligned} & \hat{N} \\ & \underset{\infty}{\infty} \\ & \underset{\sim}{i} \end{aligned}$	ה
苂	Σ	$\begin{aligned} & \bar{j} \\ & \stackrel{\rightharpoonup}{\tilde{0}} \end{aligned}$	\mathbb{k}	$\begin{aligned} & \text { U. } \\ & \text { Uِ㐅 } \\ & \text { n } \end{aligned}$	$\begin{aligned} & \bar{u} \\ & \text { ù } \\ & \text { ù } \end{aligned}$		$\begin{aligned} & \text { N } \\ & \text { స్ } \\ & \text { ت゙ } \end{aligned}$		$\begin{aligned} & 6 \\ & \frac{0}{0} \\ & 0 \end{aligned}$	誌	$\begin{aligned} & \text { 是 } \\ & \text { 采 } \end{aligned}$	\hat{F}	$\stackrel{m}{\mathrm{E}}$	$\frac{\infty}{\digamma}$	$\frac{\partial}{F}$	さ	సิ	$\stackrel{\rightharpoonup}{\ominus}$	$\stackrel{N}{2}$	$\stackrel{\sim}{\ominus}$	$\stackrel{\sim}{6}$	ค	$\stackrel{\sim}{\ominus}$	กิ	$\stackrel{\infty}{\sim}$	$\stackrel{\text { ¢ }}{\sim}$	$\stackrel{\circ}{\circ}$
	－	\sim	m	－	n	\bigcirc	\checkmark	∞	\bigcirc	\bigcirc	こ	\sim	\cdots	\pm	\cdots	\bigcirc	三	\bigcirc	$\stackrel{\sim}{\sim}$	入	त	त	$\stackrel{\text { ̇ }}{ }$	へ	$\stackrel{\sim}{\sim}$	へ	$\stackrel{\infty}{\sim}$

Chronic pancreatitis tissue (row 1). Pancreatic cancer cell lines (rows 2-11). Surgical specimens of pancreatic cancer tissues (rows 12-29).
${ }^{\infty}$ the miRNA was increased in cancer tissues or cells while normal controls had no expression. The expression of all miRNAs was normalized to the U6 level in all tissue samples and cell types.

* Compared with the relatively normal human pancreatic ductal epithelium (HPDE).
** compared with the relatively normal pancreatic tissues.

[^0]: *Address correspondence to: Changyi (Johnny) Chen, MD, PhD, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Mail stop: BCM-390, Houston, TX 77030, Phone: (713) 798-4401, Fax: (713) 798-6633, jchen@bcm.tmc.edu.
 This work was presented at the Molecular Surgeon Symposium on Personalized Genomic Medicine and Surgery at the Baylor College of Medicine, Houston, Texas, USA, on April 12, 2008.

[^1]: the miRNA was increased in cancer tissues or cells while normal controls had no expression. The expression of all miRNAs was normalized to the U6 level in all tissue samples and cell types.
 Compared with the relatively normal human pancreatic ductal epithelium (HPDE).
 ** compared with the relatively normal pancreatic tissues.

