
 Open access Proceedings Article DOI:10.1049/IC:19960225

Profiling of SIGNAL programs and its application in the timing evaluation of design
implementations — Source link

A.A. Kountouris, P. Le Guernic

Institutions: Orange S.A.

Published on: 22 Feb 1996

Topics: Language Of Temporal Ordering Specification, Functional specification, System requirements specification,
Esterel and Implementation

Related papers:

 Polychrony for system design

 Programming real-time applications with SIGNAL

 The synchronous languages 12 years later

 Synthesis of Discrete-Event Controllers Based on the SignalEnvironment

 Code generation in the SACRES project

Share this paper:

View more about this paper here: https://typeset.io/papers/profiling-of-signal-programs-and-its-application-in-the-
1k7u0bfm0g

https://typeset.io/
https://www.doi.org/10.1049/IC:19960225
https://typeset.io/papers/profiling-of-signal-programs-and-its-application-in-the-1k7u0bfm0g
https://typeset.io/authors/a-a-kountouris-416qzk8zcy
https://typeset.io/authors/p-le-guernic-2h2d42icrz
https://typeset.io/institutions/orange-s-a-274clkl3
https://typeset.io/topics/language-of-temporal-ordering-specification-2wx8z8wx
https://typeset.io/topics/functional-specification-1xz26d2r
https://typeset.io/topics/system-requirements-specification-10nc9772
https://typeset.io/topics/esterel-1hhpjnbr
https://typeset.io/topics/implementation-u7j6mxko
https://typeset.io/papers/polychrony-for-system-design-1cwj0o6epa
https://typeset.io/papers/programming-real-time-applications-with-signal-4k9855ndbn
https://typeset.io/papers/the-synchronous-languages-12-years-later-55re7ed5k3
https://typeset.io/papers/synthesis-of-discrete-event-controllers-based-on-the-3pyu9m09gv
https://typeset.io/papers/code-generation-in-the-sacres-project-4h5iqeapuf
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/profiling-of-signal-programs-and-its-application-in-the-1k7u0bfm0g
https://twitter.com/intent/tweet?text=Profiling%20of%20SIGNAL%20programs%20and%20its%20application%20in%20the%20timing%20evaluation%20of%20design%20implementations&url=https://typeset.io/papers/profiling-of-signal-programs-and-its-application-in-the-1k7u0bfm0g
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/profiling-of-signal-programs-and-its-application-in-the-1k7u0bfm0g
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/profiling-of-signal-programs-and-its-application-in-the-1k7u0bfm0g
https://typeset.io/papers/profiling-of-signal-programs-and-its-application-in-the-1k7u0bfm0g

HAL Id: hal-00544253
https://hal.archives-ouvertes.fr/hal-00544253

Submitted on 7 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Profiling of SIGNAL programs and its application in the
timing evaluation of design implementations

Apostolos Kountouris, Paul Le Guernic

To cite this version:
Apostolos Kountouris, Paul Le Guernic. Profiling of SIGNAL programs and its application in the
timing evaluation of design implementations. IEE Colloquium on the Hardware-Software Cosynthesis
for Reconfigurable, Feb 1996, Bristol, United Kingdom. pp.6/1-6/9, 10.1049/ic:19960225. hal-
00544253

https://hal.archives-ouvertes.fr/hal-00544253
https://hal.archives-ouvertes.fr

1.0 Introduction

Reasoning about the timing properties of a pro-
gram is indispensable in the development of time
critical systems where failure to meet deadlines
can result in loss of life or material. There is
much work done in the domain of functional
specification where formal languages like SIG-
NAL, Esterel, Lustre [3] can be successfully
used. There seems to be an inadequacy as far as
the validation of temporal properties is concerned
and this is mainly due to the fact that many differ-
ent factors influence the execution time of a pro-
gram making this problem quite complicated
when viewed from a high abstraction level.

In the problem of finding execution time bounds
of a system there are two types of pessimism
involved. The first type has to do with the pro-
gram execution flow, available parallelism etc.
The second type is related to target architecture
configuration, and choice of specific components
that affect the system execution time by either
constraining the potential parallelism or imposing
different operation delays. Previous research
efforts focus in finding safe and tight execution
time bounds by limiting as much as possible the
sources of pessimism. Several approaches are
proposed in the literature [12][14]. In [14] the
conditions necessary for a program so that this
problem has a solution are set, making SIGNAL
programs a good candidate since by definition
they satisfy all of them. In [13] it is shown that
reasoning about time at the higher level source
language, is practicable and can yield interesting
results, it is also shown that features like compiler

optimizations can also be taken into account.
From work in [16] it becomes apparent that mod-
elling processor architectural features increases
the quality of the results. In [16][17][18][19] it is
shown that RISC and DSP processor pipelines
can be adequately modelled and in some cases the
models can also be extended to account for
instruction caches. Finally in [20] it is demon-
strated that it is possible to predict the perfor-
mance of synthesized hardware at the behavioral
specification level.

From the discussion above it is clear that a facil-
ity that evaluates at the specification level if R/T
constraints are respected, when a system is imple-
mented by a chosen architecture, is feasible and
can be very useful. In he remainder of this paper
we describe the facility for extracting the timing
properties of SIGNAL programs by generating
their temporal homomorphisms, the advantages
of the SIGNAL graph in minimizing the pessi-
mism in execution time estimation and finally
how we plan to extend the use of homomor-
phisms to evaluate implementation alternatives.

2.0 Introduction to SIGNAL

The SIGNAL language[1] is a dataflow oriented
language based on the synchrony hypothesis[2].
It belongs to the family of synchronous languages
[3] and it is used for the functional specification
of reactive R/T systems for control and DSP
applications. Using the language expressions the
user is programming in an equational style and
thus each program is a system of equations. The

Profiling of SIGNAL programs and its application in the timing evaluation

of design implementations

Apostolos A. Kountouris

Paul Le Guernic

In this paper we present the tool currently under construction in order to

enhance the SIGNAL environment with a facility that will allow the temporal

validation of a system specification in respect to its R/T constraints while stay-

ing within the context of the SIGNAL language. By use of the so called temporal

homomorphisms we express the temporal dimension of a functional specifica-

tion as a SIGNAL program. This facility can be further extended to evaluate the

temporal behavior of a system in respect to a chosen execution architecture, by

modelling processor architectural features influencing execution time.

A. Kountouris and P. Le Guernic are with Institut de Recherche en Informatique et Systèmes Aléatoires - IRISA,
in Rennes, France

SIGNAL compiler resolves these systems and
proves that the control of a program is function-
ally safe. Around the SIGNAL language and its
compiler exists a variety of tools that constitute
the SIGNAL environment. There is a Graphical

User Interface for program (system design) entry,
C and Fortran code generators to generate code
used for functional simulators, intermediate code
generators to access formal verification [4] and
other third-party development tools [9]. Finally
there exists a VHDL code generator [5] that
enables us to access hardware synthesis tools.
The basic data structure of the SIGNAL environ-
ment is the dynamic graph (DG) which is con-
structed by the compilation process. During the
compilation the SIGNAL compiler performs
checks (see [1]) useful in discovering possible
sources of error and functional unsafety. Briefly
once compilation is over it is certain that the pro-
gram is deterministic, does not exhibit contradic-
tions, has no cycles (circular data/control depen-
dencies), no constraints are set on the inputs and
that desired functional properties (coded as SIG-
NAL equations) are satisfied.

Before introducing the basic elements of the SIG-
NAL language let us give some basic definitions.
In SIGNAL terminology a signal is an infinite
sequence of data where each element is implicitly
indexed by time. At any given logical instant a
signal may be absent or present. Presence is
denoted by the signal’s value at that instant. The
clock of a signal is the set of the logical instants
that it is present (and thus carries a value). Clocks

can be considered as equivalence classes between
signals. When two signals are present at the same
logical instants they possess the same clock; oth-
erwise their clocks are different.

The SIGNAL language is defined by a small ker-
nel of statements. Each statement has formally
defined semantics and defines a clock equation
and the data dependencies of the participating
signals. Its small size allows for mathematical
manipulation of these equations enabling formal
verification of program properties. The basic lan-
guage constructs are shown in the table below
along with an informal description. For a more
detailed description of the language, its semantics
and applications the reader is referred to [1] and
[4]. A last point of interest is the SIGNAL lan-
guage features that extend its use in the domain
of DSP applications.

3.0 Temporal property extraction

In the paragraphs that follow we present the idea
of SIGNAL program homomorphisms and their
application for the extraction of the temporal
properties of a SIGNAL specification. Another
important aspect is the context of their use that
permits not only the extraction of information,
but also the experimentation with alternatives
influencing execution time (e.g. partitioning,
scheduling).

An homomorphism is a SIGNAL program gener-
ated by applying a set of transformation rules on

Language Construct SIGNAL syntax Description

stepwise extensions X := A op B
where op: arithmetic/relational/boolean
operators

delay ZA := A $x memorization of the xth past value of A

extraction R := A when B R equal to A when B is present and true

priority merging R := X default Y
if X present R:=X else if Y present R :=
Y else R absent

process composition (| P | Q |)
processes are composed common names
correspond to shared signals

useful extensions

when B the clock of the true instants of B

event X the presence instants of X

synchro {A, B} clock of A equal with clock of B

an initial SIGNAL program. The structure of the
homomorphic program is essentially the same but
its computations expose another aspect of the in-
formation contained in the program graph. Ho-
momorphism generation can be fully automated
provided that the transformation rules are defined.
Depending on the type of information we wish to
extract from a SIGNAL program we may define
an appropriate homomorphism. As an example in
figure 1 we present the basic translation rules that
when applied to a SIGNAL program yield its
temporal homomorphism. Roughly these rules
are: substitute each signal by its corresponding
date (e.g. date_C for C), substitute each operator
by an appropriate SIGNAL process (e.g.
CADD(){} for the addition) that acts as a com-
ponent library front-end, insert parameters values
that affect operation execution time (e.g.
add_pars). These parameters reflect informa-
tion that is either found in the DG or is provided
by the user and it is the topic of a later section re-
lating to the target architecture modelling. Anoth-
er useful homomorphism is the one for operation
counting. It can be used in identifying computa-
tionally intensive parts that may require parallel-
izing, or algorithmic bottlenecks in the specifica-
tions that may prompt necessary modifications.

3.1 Temporal homomorphism

To present the basic ideas we start by considering
an ideal case. As we proceed we relax our
assumptions so that in the end we consider a real-
istic case of system implementation. At each step
we introduce the necessary additions to the SIG-
NAL Dynamic Graph in such a way that the same
model always applies for date calculations.

3.1.1 Ideal parallel case

In this case we assume that an unlimited number
of processors is available, so that at every instant

of program execution all the potential parallelism
inherent in the system specification can be
exploited. We assume zero communication delays
and finally to make things even simpler, constant
operation delays. Even though this scheme may
be far from real it can yield some useful results
like an upper limit of system performance capa-
bilities. If performance constraints are not satis-
fied even under such an ideal execution, that
prompts the designer for algorithmic modifica-
tions at the functional specification level, before
proceeding to later development phases.

Pure data programs: In pure data programs
there is no control so in the DG dependencies are
always active at every iteration of the system. The
nodes represent operations. At every node we
have incoming arcs representing the operation
arguments and outgoing arcs representing the
operation results. The graph of the temporal
homomorphism has exactly the same structure
but its arcs represent dates and its nodes the
actions that compute the result dates as a function
of the argument dates. These actions consist of
finding the maximum of incoming dates and add-
ing to it the delay corresponding to the operation
in the original graph. This is demonstrated in the
example given in figure 2. In the center we have
drawn the graph that corresponds to the program
on the left. On the right we give the graph corre-
sponding to the temporal homomorphism of the
program, which is produced by applying the
transformation rules. In each node we give the
∆op which is the delay of the operation (op). The
bottom box contains the actions taking place at
each node in order to compute the node’s result
date. In this way starting with the system input
dates and by traversing the graph we obtain the
system output dates.

Control/Data programs: The case of programs
that also contain control demonstrates the advan-

FIGURE 1. translation rules for temporal homomorphism generation

date_C := CADD (add_pars) {date_A,date_B}

C := A+B

tages of the SIGNAL graph in accounting for the
longest execution paths. The date computation
model is exactly the same as before, only now we
have to take into account the clocks of arcs and
nodes. In the SIGNAL graph every element (arc
or node) is tagged by the clock that defines the
logical instants of its presence. Thus considering
the temporal homomorphism of a node at the left
of figure 3 the result of the max is controlled by
the clocks of the incoming arcs, as it is shown in
the bottom box. When both arcs are present at the
same logical instant we take the maximum date
of the two or else we take the date of whichever
arc is present. In the resulting date we add the
delay of the operation in order to compute the
date of the node output.

Using the SIGNAL clocks it is easy to account
only for the active paths in the graph during suc-
cessive system iterations, and even more, exclude
processing paths that can never exist (e.g. paths
containing mutually exclusive parts). Such paths
contain dependencies whose clocks are mutually

exclusive1. This information is discovered during
clock calculus. These advantages of the DG in
respect to traditional graphs are illustrated in the
example given in figure 4. In this example thick
lines correspond to program data and thin ones to
control data that affects the execution flow. Next
to the graph we give the corresponding
pseudocode. It is easy to see that P2 and Q1 are

1. mutually exclusive clocks are never present at the
same instant

FIGURE 2. date calculations for pure data programs

B

+ *

+*

+

E1 E2

E3 E4

A

E

5

date_B

∆+ ∆∗

date_E1

date_E3 date_E4

date_A

date_E

0

∆∗ ∆+

∆+

date_E2

∆op date_c

date_a

date_b

date_c := max(date_a, date_b) + ∆op

E := E3+E4

E3 := E1*E2
E4 := E2+B

E1 := A+5
E2 := A*B

FIGURE 3. date calculations when SIGNAL clocks are taken into account

A B

C

h1 h2

h3

h1 h2

h3

date_B

date_C

date_C := ∆P1 +

max (date_A, date_B) when (h1 when h2)

default date_A default date_B

∆P1P1

date_A

mutually exclusive so the path containing both (1,
3) should not be considered in time consumption
counting. This is important if one considers that
in many approaches for the worst case execution
time calculation, a lot of pessimism is attributed
to the fact that many paths that are infeasible can-
not be excluded from the computations. In [13]
[14] [15] [16] user annotations are used to indi-
cate such paths and thus reduce pessimism but
there is no guarantee that these annotations are
always correct especially in the case of large
complex programs. In the context of SIGNAL
these annotations are clock relationships that
thanks to clock calculus become explicit and are
validated during compilation and thus they can be
considered to be safe and correct.

The case of control/data programs requires some
special care in the generation of their homomor-
phisms. Many control branches depend on bool-
ean signals that are either inputs of the program
or they are internally computed by the evaluation
of relational operations. Since in the homomor-
phic program no computations contained in the
original program take place, we have to provide
the booleans that define such clocks as extra
inputs to the homomorphisms in order to preserve
the same model for date calculations.

3.1.2 Sequential case

Since the graph corresponding to the program is a
partial order, to achieve sequential execution we

have to enforce it with additional dependencies
between potentially parallel operations. The main
preoccupation is to preserve the same model for
date calculations as before. The example in
figure 5 demonstrates our approach. For this sim-
ple case there are no dependencies between oper-
ations P2 and P3 so there are two possibilities for

sequential execution: P1, P2, P3, P4 or P1, P3, P2,

P4. A first step is to add a dependency between P2

and P3. This dependency is conditional in order to

be active only at the instants that both operations
are to be executed at the same time. The clock of
this added dependency is the intersection (com-
mon instants) of the clocks of the two operations
and it is noted [s1] which is the clock defined by

the instants that the boolean s1 carries the true

value. When s1 is true the dependency of P2 to P3

is active meaning that P2 must execute before P3.

In order to make our scheduling scheme more
flexible we also add an inverse conditional depen-
dency from P3 to P2 with [¬ s1] as its clock so that

when a scheduling dependency is active its
inverse dependency is inactive. To demonstrate
that the same model of date calculation is pre-
served let us assume that the clocks of Pi’s (in

figure 5) are equal and that we choose s1 to be

true. The production date of P4 is calculated as

follows:

date_P4 = max (date_P2, date_P3) + ∆P4

= max ((date_P1 + ∆P2),

FIGURE 4. finding longest paths in the SIGNAL dynamic graph

when when not

default

when notwhen

P1 P2

Q1
Q2

default

c2 c1 x

and

y

control
data

if c1
r := P1(x) /* 1 */

else
r := P2(x) /* 2 */

if (c2 && c1)

y := Q1(r) /* 3 */

else
y := Q2(r) /* 4 */

(max (date_P1, date_P2) + ∆P3) +∆P4

= max ((date_P1 + ∆P2), (max (date_P1,

(date_P1 + ∆P2)) + ∆P3) +∆P4

= date_P1 + ∆P2 + ∆P3 + ∆P4

which corresponds to the chosen sequential exe-
cution path.

3.1.3 General case: constrained parallelism

In a more realistic case an execution architecture
consists of a finite number of processing elements

(PE’s) where the communications between these
PE’s take time and are no longer for free. At this
point we consider the PE’s as abstract processing
elements. The architecture configuration (PE’s
and communication links) defines a hardware
graph on which the software graph mapped. This
mapping is dictated by a graph partitioning, that
assigns each graph node to a PE. This partition-
ing can be generated in many ways either manu-
ally [6] or automatically by using a partitioning
algorithm. Execution on each PE may be sequen-
tial, so ordering dependencies are added (where
needed) between the nodes assigned to the same
PE. So far in order to treat this general case we
combine the ideas already mentioned in the ideal
parallel and sequential cases. The last thing that
remains is to present how inter-PE communica-
tions are handled so that we can still apply the
same model for date calculations. Communica-
tions are represented in the DG as operation
nodes added [6] in the graph during partitioning.
For each communication node its clock has to be
found in such a way that the functionality of the
initial graph is preserved and control errors
(cycles) are not introduced. Once all the above
steps are performed we have a DG for which its
temporal homomorphism can be generated as
before. Furthermore communication links can be

modelled as SIGNAL processes in order to
account for different execution rates between
PE’s.

3.1.4 Obtaining results using homomorphisms

There are two ways to use the temporal homo-
morphism in order to obtain results regarding the
temporal behavior of a system and reason
whether or not time constraints are satisfied. The
first is a sort of approximate temporal simulation
where the homomorphism is used on a stand-
alone basis. In the second by combining the orig-
inal SIGNAL program with its temporal homo-
morphism we obtain its profiled version.

Approximate temporal simulation: In order to
simulate the temporal response of a system in
respect to defined operation delays, we generate
its homomorphism which is the main element of
such a simulator whose configuration is shown in
figure 6. In the bottom box it is indicated that an
output date is a function of subsets of input dates,
condition booleans and scheduling dependencies.
For a simulation we have to provide test vectors
[c1,...cq] which are the clock defining booleans.

We can either provide a set of vectors that covers
all the possible combinations or use a smaller
representative set of test vectors. The input gen-
erator (process IN) may perform a statistical
emulation of the external environment in order to
get an approximate temporal response of the sys-
tem. A statistical emulation consists in providing
input date values (environment emulation) and
[c1,..., cq] test vectors (program control flow

emulation). We also have to provide the schedul-
ing booleans si as inputs to the homomorphism.

To do this we add a process (sched) that assigns
them a value according to a scheduling strategy.
For a static scheduling these boolean values are
kept constant throughout the execution. In this
way we can also evaluate the results of a schedul-
ing algorithm that when applied to a program
graph gives a combination of si values. For a

dynamic scheduling si values are assigned

according to a chosen scheduling strategy that
may depend on input/output or intermediate sig-
nal dates. In this case the sched process includes
logic simulating the scheduling strategy. Finally
the post-processing process may calculate,

FIGURE 5. operation scheduling for sequential
execution

P1

P2 P3

P4

¬s1

P1

P4

P2 P3

s1 = P1 ^* P2

s1

S

among other things, maximum, minimum and
average dates for the outputs. All these processes
can be automatically generated.

Temporal profiling: In software development
profiling of a program is the instrumentation of a
source code so that information and statistics are
gathered during execution. This information is
later processed in order to study program behav-
ior, debug, test etc. In the configuration shown in
figure 7 a SIGNAL program is instrumented for
temporal property extraction when composed
with its temporal homomorphism. To refer to the
combined execution of a SIGNAL program and
its temporal homomorphism we introduce the
term temporal profiling. The original program is
transformed in such a way the conditional bool-
eans computed inside are produced as outputs
connected to the corresponding inputs of the tem-
poral homomorphism process. Scheduling and
date post-processing processes follow the same
model as in the approximate simulation case. The
basic application of this profiling is a high level
simulation environment where we can simulate
the execution of a SIGNAL program on a variety
of target architectures and contrast the perfor-
mance of each one against the system’s R/T con-
straints. In this environment we can experiment
with various scheduling strategies and with dif-
ferent types of processing elements in order to
refine the design choices. The necessary ingredi-

ents for such a scheme to work is the topic of the
next section.

3.2 Extending homomorphisms for timing

evaluation of system implementations

Homomorphisms is the tool that permits to ex-
tract such timing information and in the para-
graphs that follow we present how its use can be
extended in order to evaluate at a higher level
how the choice of a specific execution platform
influences the temporal response of a system. The
first step is to parametrize the temporal homomor-
phism and for that we identify the parameters that
influence operation delays and the building
blocks (components) of system architectures. The
second step is to make available the timing model
of each component and by accessing these models
with the appropriate parameter values get the op-
eration delays when executed on a specific com-
ponent. Finally, using the parametrized homo-
morphisms a high-level (co-)simulation environ-
ment can be defined, in which the designer can
simulate the execution of a system on a target ar-

chitecture1. This facility permits fast and cheap
design exploration as evaluation occurs early in
the development process and entirely in software.

1. if a target architecture contains hardware such a
simulation can be seen as a sort of co-simulation.

FIGURE 6. temporal behavior simulator configuration

P

x1

xn

y1

date_xn

date_x1

yn

date_y1

date_yn

Postproc R

date_yj := Fj (date_x1,..., date_xn, c1,..., cq, s1,..., sp)

Sched

c1
cq

s1
sp

(P)IN

Homomorphism parametrization: Briefly we
can introduce parameters in the component
library process front-ends (e.g. add_pars of
CADD in figure 1) whose values indicate among
other things the PE executing an operation so that
the appropriate component library file can be
used, the operation class and the argument types
involved. To account for compiler optimizations
and architectural features like pipelined or super-
scalar processors it is necessary to include param-
eters giving the operation context (in terms of
surrounding operations, argument sources and
result sinks etc.). The parameter values can be
either found in the DG or be provided by the user.

Component modelling: A target architecture
might contain a various number of processing
elements and interconnects between them. A pro-
cessing element can be either an off-the-shelf
processor or a hardware ASIC (or ASIP) but at a
high level of abstraction we can refer to them as
processors. For the off-the shelf processors dif-
ferent ones impose different levels of modelling
complexity depending on their architectural fea-
tures. In [17] and [18] it is shown that RISC pro-
cessor pipelines can be adequately modelled and
in [16] and [18] the method is also extended to
account for instruction caches. In [16] it is clearly
shown that memory hierarchy cannot be
neglected since it affects execution time consid-
erably. Modelling of DSP processors is the sub-
ject of [19] where things seem to be less compli-
cated since in their design features introducing

unpredictability, like data caches for example, are
usually avoided.

Since there are many similarities in machine code
generation for off-the-shelf processors and netlist
generation for hardware ones it would be very
useful if we could use the same modelling ap-
proach for all types of components. In [20] the
feasibility of extracting performance estimations
from behavioral specifications is encouraging as
far as modelling hardware at a high level is con-
cerned. Finally in the case of interconnects accu-
rate analytical models, that we can use to obtain
communication delays, already exist. In our view
it is possible to create high-level models for each
basic processor architectural feature and then by
combining them obtain complete models of exist-
ing processors that can be used under our frame-
work.

4.0 Conclusions

In this paper we presented the ideas for augment-
ing the SIGNAL environment with a facility that
permits the validation of functional as well as
timing properties of R/T control and DSP sys-
tems. The SIGNAL language has many desirable
features permitting control-safe specifications
and it also satisfies the prerequisites for the
extraction of safe execution time bounds. The
internal representation of the dynamic graph con-
tains information that permits to safely minimize
the pessimism for making those bounds tighter by

FIGURE 7. profiling of SIGNAL programs for exact modelling of temporal behavior

P

x1

xn

y1

date_xn

date_x1

yn

date_y1
date_yn

Postproc R

IN
(P)

Sched

c1
cq

c1
cq
s1
sp

excluding infeasible paths. The concept of homo-
morphisms has been introduced, in order to
expose the temporal dimension of SIGNAL pro-
grams expressed as SIGNAL processes. The
parametrization of homomorphisms will permit
reasoning about the timing properties of specific
implementations by use of high-level component
models. This extension will enable us to evaluate
implementation alternatives early in the develop-
ment lifecycle by building versatile implementa-
tion simulators that can also serve as experimen-
tation platforms assisting in fine tuning the design
choices. Accurate component models will further
minimize the pessimism in estimating even
tighter execution time bounds.

In respect to the potential applications of our
method two domains are of particular interest.
First, design evaluation schemes for hw/sw code-
sign methods and second, development frame-
work aspects.Currently the evaluation of design

choices (e.g. hw/sw partitioning) is implicit in the
algorithms and bound to either inaccurate compo-
nent modelling information or quite restrictive
target architectures [7][8][9], at the cost of limit-
ing the design space and making re-iterations in
the design process, costly. The high-level
approach we propose will increase the quality of
results and moves the evaluation early enough so
that design space exploration is quicker and more
flexible.

As future directions in our work we can briefly
mention the use of homomorphisms to obtain
other types of information like for example opera-
tion counting. Also, since the temporal aspect of a
system is expressed as a SIGNAL process that
means that a system of temporal equations can be
extracted and formal calculi tools might be used.
From a SIGNAL program we can generate cor-
rectly annotated C code in order to access other
existing timing tools.

REFERENCES

[1] “Programming Real Time Applications with SIGNAL”, Paul Le Guernic, Michel Le Borgne,
Thierry Gautier, Claude Le Maire, Proceedings of the IEEE, vol.79, no.9, pgs 1321-1336,
Sep. 1991

[2] “The Synchronous Approach to Reactive and Real-Time Systems”, Albert Benveniste, Gerard
Berry, Proceedings of the IEEE, vol.79, no.9, Sep. 1991, pgs 1270-1282

[3] Special section: R/T Programming, Proceedings of the IEEE, vol.79, no.9, Sep. 1991

[4] “The SIGNAL dataflow methodology applied to a production cell”, T.P. Amagbegnon, P. Le
Guernic, H. Marchand, E. Rutten, Lecture Notes in Computer Science LNCS No 891,
Springer Verlag, Jan. 1995

[5] “Using VHDL for Link to Synthesis Tools”, M. Belhadj, North Atlantic Test Workshop, Jun.
1994

[6] “Synchronous distribution of SIGNAL programs”, Pascal Aubry, P. Le Guernic, S. Machard,
Proceedings 29th Hawaii Intl. Conference on System Sciences, Jan. 1996, pgs 656--665

[7] “System Synthesis via Hardware-Software Codesign”, R.K.Gupta, Giovanni De Micheli,
Computer Systems Laboratory Technical Report, CSL-TR-92-548

[8] “A Global Criticality / Local Phase Driven Algorithm for the Constrained Hardware / Soft-
ware Partitioning Problem”, A.Kalavade, E.A.Lee, IEEE Proceedings, Intl.Conf. on HW/SW
Codesign, pgs 42-48, 1994

[9] “The SynDEx software environment for real-time distributed systems design and implementa-
tion”, C. Lavarenne, O. Seghrouchni, Y. Sorel, M. Sorine, ECC91 European Control Confer-
ence, Grenoble, France Jul.91, pgs 1684-1689

[10] “A Hardware-Software Codesign Methodology for DSP Applications”, Asawaree Kalavade,
Edward A. Lee, IEEE Design & Test of Computers, pgs 16-28, Sep. 1993

[11] “Synthesis Steps and Design Models for Codesign”, Tarek Ben Ismail, Amine Jerraya, IEEE
Computer, pgs 44-52, Feb. 1995

[12] “Reasoning about time in higher-level language software”, A.C. Shaw, IEEE Transactions on
Software Engineering, vol.15, no.7, July 1989, pgs 875-889

[13] “Experiments with a Program Timing Tool Based on Source-Level Timing Schema”, Chang
Yun Park, Allan C. Shaw, IEEE Computer, May 1991, pgs 48-57

[14] “Calculating the Maximum Execution Time of Real-Time Programs”, P. Puschner, Ch. Koza,
RR-01-89, Institut fur Technische Informatik, Technische Universitat Wien, April 1989

[15] “ A Tool for the Computation of Worst Case Task Execution Times”, P. Puschner, A. Schedl,
RR-04-93, Institut fur Technische Informatik, Technical University of Vienna

[16] “Efficient Microarchitecture Modelling and Path Analysis for Real-Time Software”, Y-T.S.
Li, Sh. Malik, A. Wolfe, Proceedings of the IEEE Real-Time Systems Symposium, Dec. 1995

[17] “Predicting Worst Case Execution Times on a Pipelined RISC Processor”, S.J. Bharrat, K.
Jeffay, Technical Report TR94-072, Dept. of CS, Univ. of North Carolina at Chapel Hill,
April 1994

[18] “An Accurate Worst Case Timing Analysis Technique for RISC Processors”, Sung-Soo Lim
et al., IEEE Real-Time Systems Symposium 1994, Puerto Rico, Dec. 1994, pgs 97-108

[19] “Software performance estimation of DSPs for HW/SW partitioning”, M. Augin, C. Belleudy,
G. Gogniat, C. Kieffer, Intl. Workshop on Logic and Architecture Synthesis, IFIP TC10
WG10.5, Grenoble-France, Dec. 1995, pgs 273-282

[20] “Estimating Architectural Resources and Performance for High-Level Synthesis Applica-
tions”, Alok Sharma, Rajiv Jain, IEEE Transactions on VLSI systems, vol.1, no.2, June 1993,
pgs 175-190

[21] “Generating Machine Specific Optimizing Compilers”, Roger Hoover, Kenneth Zadeck,
Research Report, IBM Research Division

[22] “A Retargetable Compiler for ANSI C”, C.W. Fraser, D.R. Hanson, SIGPLAN Notices 26,
pgs 29-43, Oct. 1991

