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Abstract

Scope—The objective was to investigate the metabolome changes in female rats gavaged with 

partially purified cranberry procyanidins (PPCP) using 1H NMR and UHPLC-Q-Orbitrap-HRMS 

metabolomics approaches, and to identify the contributing metabolites.

Methods and results—Twenty four female Sprague-Dawley rats were randomly separated into 

two groups and administered PPCP or partially purified apple procyanidins (PPAP) for 3 times 

using a 250 mg extracts/kg body weight dose. Plasma were collected six hours after the last 

gavage and analyzed using 1H NMR and UHPLC-Q-Orbitrap-HRMS. No metabolome difference 

was observed using 1H NMR metabolomics approach. However, LC-HRMS metabolomics data 

show that metabolome in plasma of female rats administered PPCP differed from those gavaged 

with PPAP. Eleven metabolites were tentatively identified from a total of 36 discriminant 

metabolic features based on accurate masses and/or product ion spectra. PPCP caused a greater 

increase of exogenous metabolites including p-hydroxybenzoic acid, phenol, phenol-sulfate, 

catechol sulphate, 3, 4-dihydroxyphenylvaleric acid, and 4′-O-methyl-(−)-epicatechin-3′-O-beta-

glucuronide in rat plasma. Furthermore, the plasma level of O-methyl-(−)-epicatechin-O-

glucuronide, 4-hydroxy-5-(hydroxyphenyl)-valeric acid-O-sulphate, 5-(hydroxyphenyl)-γ-

valerolactone-O-sulphate, 4-hydroxydiphenylamine, and peonidin-3-O-hexose were higher in 

female rats administered with PPAP.

Conclusion—The metabolome changes caused by cranberry procyanidins were revealed using 

an UHPLC-Q-Orbitrap-HRMS global metabolomics approach. Exogenous and microbial 

metabolites were the major identified discriminate biomarkers.
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1 Introduction

Procyanidins are oligomers and polymers of (−)-epicatechin or (+)-catechin [1]. The 

molecular weight of procyanidins is described by degree of polymerization (DP). 

Monomeric procyanidins are (−)-epicatechin or (+)-catechin. Procyanidins with DP 2, 3, or 

4 are dimers, trimers, and tetramers, respectively. The most widely distributed procyanidins 

in foods are the B-type, which are linked through C4 → C8 and/or C4 → C6 interflavan 

bonds [2]. Examples of foods that contain exclusively B-type procyanidins are apples, pears, 

blueberries, and cocoa. A-type procyanidins are rare in foods and they have an additional 

ether interflavan bond between C2 →O →C7. Cranberries are among a few foods that 

contain A-type procyanidins. A previous study showed that procyanidins with at least one 

A-type bond accounted for more than 90% of trimers through undecamers in cranberry press 

cake [3]. Studies suggested that A-type procyanidins have greater and unique bioactivity 

compared with B-type [4]. For example, cranberries are known to prevent or mitigate 

urinary tract infection [5]. Such activity was attributed to A-type procyanidins but not B-

type ones [4].

Metabolomics have been widely applied in clinical, pharmaceutical and toxicological studies 

for identification of biomarkers [6]. It assesses the metabolic changes in a global manner in 

order to monitor biological function alteration due to genetic modification, 

pathophysiological changes, or exogenous challenges [7]. Phytochemicals originating from 

foods are ingested, metabolized and absorbed in the gastrointestinal tract generating a 

characteristic metabolome profile, which may further alter endogenous metabolites. 

Metabolomics is an effective approach to distinguish the metabolome caused by different 

diets. It is expected to reveal the physiological effects of phytochemical intake and identify 

new candidate biomarkers. NMR and UHPLC-HRMS are the two most widely used 

metabolomics platforms [8]. Both techniques are able to detect hundreds or thousands of 

metabolites in biological samples. NMR spectroscopy has the advantage of being 

quantitative, highly reproducible, non-selective [8] and requiring minimal sample 

preparation [9], while UHPLC-HRMS is highly sensitive and able to identify the chemical 

structures of metabolites [8]. The high-dimensional data produced by a metabolomics study 

is often processed using multivariate statistical techniques such as PLS-DA and OPLS-DA 

to reduce the dimensionality of the data [10].

The mechanism by which cranberry procyanidins mitigate urinary tract infection remains 

elusive. A-type procyanidins from cranberry juice inhibited the adhesion of uropathogenic 

E. coli, whereas those from apple juice showed no activity. Anti-adhesion activity in human 

urine was detected following cranberry juice cocktail consumption, but not after 

consumption of apple juice [4]. We hypothesized that the metabolome changes caused by 

cranberry procyanidins in female rats may be different from those caused by apple 

procyanidins. The objective of this study is to identify molecular profile and putative 

biomarkers in plasma of female rats after intake of partially purified cranberry procyanidins 
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(PPCP) using both 1H NMR and UHPLC-Q-Orbitrap-HRMS based global metabolomics 

approaches.

2 Materials and methods

2.1 Chemicals and materials

Freeze-dried cranberry powder was provided by Ocean Spray Cranberries, Inc. (Lakeville-

Middleboro, MA, USA). Fresh granny smith apples were purchased from a local grocery 

store. LC-MS grade acetonitrile, methylene chloride, methanol, acetic acid, formic acid, and 

acetone were purchased from Fischer Scientific Co. (Pittsburgh, PA, USA). (−)-Epicatechin 

was provided by Sigma Chemical Co. (St. Louis, MO, USA). A mixture of partially pure 

procyanidin oligomers (monomers through nonamers) was provided by Mars Inc. (McLean, 

VA, USA). D2O (99.9% D) was provided by Cambridge Isotope Laboratories, Inc. 

(Tewksbury, MA, USA). Creatine-D3, L-leucine-D10, L-tryptophan-2, 3, 3-D3, caffeine-D3 

were obtained from CDN Isotopes Inc. (Pointe-Claire, Quebec, Canada). Sephadex LH-20 

resin was purchased from Sigma-Aldrich (St. Louis, MO, USA). Amberlite FPX 66 resin 

was a product of Rohm and Haas Co. (Philadelphia, PA, USA). Pooled quality control 

plasma samples used in NMR metabolomics were purchased from the American Red Cross 

and were collected over a period of about 2 weeks.

2.2 Extraction, purification and characterization of PPCP and PPAP

One hundred and twenty grams of freeze-dried cranberry powder was extracted with 1 L of 

methanol. The cranberry-methanol mixture was put into a beaker sealed with Parafilm M 

and sonicated for 30 min. After sonication the cranberry-methanol mixture was placed in 

darkness at room temperature for 48 h. Extracts obtained after vacuum filtration were 

combined and concentrated under a partial vacuum using a rotary evaporator at 45 °C. The 

concentrated extract was re-suspended in 20 mL of water and loaded onto a column packed 

with Amberlite FPX 66 resin. Column was eluted with 3 L of de-ionized water to remove 

free sugars and organic acids. Column was then eluted with 500 mL of methanol to recover 

cranberry phytochemicals absorbed on the resin. Methanol was evaporated using a 

SpeedVac Concentrator (Thermo scientific ISS110, Waltham, MA, USA) under a reduced 

pressure to yield dry cranberry sugar-free extract (5.40 g). The sugar-free extract (5.40 g) 

was suspended in 100 mL of 30% methanol and loaded onto a column (5.8 × 28 cm) packed 

with Sephadex LH-20, which was soaked in 30% methanol for over 4 hours before use. The 

column was eluted with 30% methanol to remove anthocyanins and phenolic acids, and then 

eluted with 70% acetone to yield partially purified cranberry procyanidins (3.95 g). To 

extract procyanidins from fresh apples, 5,000 g fresh granny smith apples were used. Fresh 

apples were stored at −20 °C and divided into two batches before the extraction. Each 2,500 

g frozen apples were cut into small pieces and pulverized to get apple puree using a blender. 

Apple puree was mixed with 2 L of methanol and sonicated for 40 min in an ice bath. Then 

the apple puree-methanol suspension was placed in darkness at −10 °C for 48 h. Two 

batches of extracts obtained after vacuum filtration were combined and concentrated under a 

partial vacuum using a rotary evaporator at 45 °C. The concentrated extract was re-

suspended in 50 mL of water and loaded onto a column packed with Amberlite FPX 66 

resins. Column was eluted with 3 L of de-ionized water to remove free sugars and organic 
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acids. Column was then eluted with 500 mL of methanol to recover apple procyanidins 

absorbed on the resin. Methanol was then evaporated using a SpeedVac Concentrator 

(Thermo scientific ISS110, Waltham, MA) under a reduced pressure to yield partially 

purified apple procyanidins (5.30 g). Procyanidins were analyzed using HPLC-FLD-MSn 

(details in supplementary data).

2.4 Animals and experiment design

Approval for animal study was sought through the Institutional Animal Care and Use 

Committee at the University of Florida (IACUC Study #201307837). Female Sprague 

Dawley (n=24, 220–280 g) were housed in the animal facility and acclimated for 5–7 days 

using a purified diet free of flavonoid compounds (D10012G, Research diet Inc., New 

Brunswick, NJ, USA). Two female rats were housed in a cage. After the acclimation period 

female rats were randomly divided into two groups with 12 female rats per group, and fasted 

for six hours before the metabolomics study. PPCP or PPAP were dispersed in water and 

administered by oral gavage at 0 and 12 hours using a dose of 250 mg extracts/kg body 

weight. Female rats had free access to food and water after dosing. At 24 hours, female rats 

were gavaged for a third time. Six hours after the 3rd gavage, female rats were anesthetized 

and blood samples were collected by cardiac puncture into vials containing sodium heparin 

using heparinized syringes. Blood collection time point was selected based on a previous 

study which showed that [14C] procyanidin B2 in rats reached a peak plasma concentration 

at Tmax 5–6 hours after oral administration [11]. Blood samples were centrifuged at 2,000 g 

for 10 min at 4 °C to obtain plasma. All plasma samples were aliquoted and kept in a −80 °C 

freezer until analyses.

2.5 1H NMR analyses

Plasma samples were thawed at 4°C in a cold room. Four hundred μL of saline solution 

(NaCl 0.9% in 10% D2O) was added to 200 μL of each plasma sample. The mixtures were 

vortexed for 1 minute and centrifuged at 16, 000 g for 15 min at 4°C and 550 μL of 

supernatant was transferred into 5 mm Bruker NMR tubes (Z105684 Bruker 96 well rack) 

using Gilson 215 Liquid Handler (Trilution software version 2.0). All 1H-NMR spectra were 

collected on a 600 MHz Avance II NMR spectrometer (Bruker Biospin, Rheinstetten, 

Germany) equipped with a 5 mm CryoProbe. A Bruker sampleJet operated by IconNMR in 

Topspin was used to record spectra automatically. 1D CPMG-presaturated spectra for 

plasma were recorded. Optimal probe tuning and matching, 90° pulse length, water offset, 

and receiver gain were adjusted on the representative sample. The probe was automatically 

locked to H2O+D2O (90%+10%) and shimmed for each sample. All NMR data were 

acquired at 300 K.

2.6 UHPLC-Q-Orbitrap-HRMS analyses

Frozen plasma samples (−80 °C) were thawed at room temperature. One plasma sample (50 

μL) was mixed with 400 μL acetonitrile: acetone: methanol (8:1:1, v: v: v) to precipitate the 

proteins. Ten μL isotopically-labeled standard solution (40 μg/mL L-tryptophan-D3, 4 

μg/mL L-leucine-D10, 4 μg/mL creatine-D3, 4 μg/mL caffeine-D3) was added to the above 

extraction mixture as internal standards. The sample was then vortexed and placed in a 4 °C 
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refrigerator for 30 min to assist protein precipitation. Then the sample was centrifuged at 

20,000 g for 10 min at <10 °C to pellet the protein. One hundred and twenty five μL of 

supernatant was transferred to a new 1 mL Eppendorf tube and dried under a gentle stream 

of Nitrogen (Organomation Associates, Inc., Berlin, MA, USA). Dried sample was 

reconstituted in 50 μL 0.1% formic acid in water and vortexted. The sample solution was 

placed in ice bath for 10–15 min and centrifuged at 20,000 g for 5 min at <10 °C to remove 

debris. The supernatant was transferred into a LC glass vial with fused glass insert for 

analyses. Three pooled quality control (QC) samples were prepared by mixing an equal 

volume of the supernatant from 24 rat plasma extracts. In addition, three neat QC samples 

were prepared by adding 20 μL of isotopically-labeled standard solution directly to three LC 

glass vials, respectively. To monitor the performance of data acquisition, run sequence was 

started with 3 blanks (0.1% formic acid in water), one neat QC, and one pooled QC followed 

by every 10 plasma samples to ensure instrument drift was minimal.

Chromatographic separation was performed on a Thermo Scientific-Dionex Ultimate 3000 

UHPLC using an ACE Excel 2 C18-PFP column, 100 mm x 2.1 mm i.d., 2 μm (Advanced 

Chromatography Technologies, Aberdeen, UK). The mobile phase consisted of (A) water 

with 0.1% formic acid and (B) acetonitrile. The gradient was as follows: 0–3 min, 100% A 

isocratic; 3–13 min, 0–80% B linear; 13–16 min, 80% B isocratic; 16–16.5 min, 80–0% B 

linear; followed by 3 min of re-equilibration of the column before the next run. The flow 

rate was 350 μL/min and the injection volume was 4 μL. Before starting the sequence, 

UHPLC column was rinsed using acetonitrile and then equilibrated using water with 0.1% 

formic acid for 10 min. The UHPLC system was coupled to a Q Exactive™ Hybrid 

Quadrupole-Orbitrap High Resolution Mass Spectrometer (Thermo Fisher Scientific, San 

Jose, CA, USA). The MS acquisition was performed in negative ionization with a mass 

resolution of 70,000 at m/z 200 and separate injections were performed in a data-dependent 

(top 5) MS/MS mode with the full scan mass resolution reduced to 35,000 at m/z 200. The 

m/z range for all full scan analyses was 70–1000. Heated electrospray ionization (HESI) 

parameters were as follows: sheath gas flow 45 arb, auxiliary gas flow 10 arb, sweep gas 

flow 1 arb, spray voltage 3.5 kV, capillary temperature 320 °C, and probe temperature 

350°C. In source CID (Collision-Induced Dissociation) was 2 eV. The mass spectrometer 

was calibrated using Pierce™ negative ion calibration solution (Thermo Fisher Scientific, 

San Jose CA, USA). To avoid possible bias, the sequence of injections for plasma samples 

was randomized.

2.7 Multivariate data processing and statistical analyses

All NMR spectra were phased and baseline corrected using NMRPipe [12], and then 

converted to FT (Fourier transformed) files. The FT files were imported into MATLAB 

(R2013B, the Mathworks, Inc., Natick, MA, USA). Spectra were referenced to the alanine 

peak at δ1.469 ppm and water resonance region (4.66–4.95 ppm) was excluded. Then the 

spectra were aligned and normalized in MATLAB. The resultant data set was imported into 

SIMCA (Version 13.0.3, Umetrics, Umea, Sweden) for multivariate statistical analyses. 

Data were mean-centered and Pareto scaled before PCA, PLS-DA and OPLS-DA analyses 

in SIMCA. LC-HRMS data were converted to mzXML using MSConvert from 

ProteoWizard [13] and then processed using MZmine 2.12 [14]. Peaks in each sample were 
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extracted, deconvoluted, and deisotoped. Alignment (using join aligner) was conducted with 

a 10 ppm tolerance for m/z values and 0.2 min tolerance for retention time. Gap filling 

(using peak finder) was performed to fill in missing peaks. The resultant data set was 

imported into SIMCA (Version 13.0.3, Umetrics, Umea, Sweden) for multivariate statistical 

analyses. Data were mean-centered, Pareto scaled and log-transformed before PCA analysis. 

Data were mean-centered and log-transformed before PLS-DA and OPLS-DA analyses in 

SIMCA. Unsupervised PCA model was performed to initially examine intrinsic variation in 

the data set. Then supervised pattern recognition methods including PLS-DA and OPLS-DA 

[10] were used to extract maximum information on discriminant compounds from the data. 

Validation of the model was tested using 7-fold internal cross-validation and permutation 

tests for 200 times. To further evaluate the predictive ability of the PLS-DA and OPLS-DA 

models, an external validation procedure was performed [15]. The LC-HRMS metabolomics 

data set was split into a training set and a test set. Approximately 80% of the samples were 

randomly selected as the training set and the remaining 20% were treated as the test set. 

PLS-DA and OPLS-DA models were built based on the training set and then blindly 

predicted the classes of the samples in the test set. This procedure was repeated 30 times and 

a correct classification rate was calculated. For univariate analyses, mass spectral intensity 

data of selected metabolites which have been mean-centered and log-transformed were 

subjected to Welch’s t test. Benjamini–Hochberg procedure at α=0.01 [16] was conducted to 

control false discoveries. The univariate analyses were done using Microsoft Excel (Version 

2010, Microsoft Corporation, Seattle, WA, USA).

3 Results and discussion

3.1 Procyanidin composition and content in PPCP and PPAP

Procyanidins were extracted and partially purified from cranberry powder or fresh apples. 

Figure S1 in supplementary data shows the HPLC fluorescence chromatograms of 

procyanidins in PPCP and PPAP. Oligomeric procyanidins with DP of 1–6 and high 

polymeric procyanidins in apples or cranberry powder were identified and quantified by 

HPLC-MSn. The content of total procyanidins in PPCP was 511 mg/g extracts, lower than 

that in PPAP (690mg/g extracts). Over 90% of procyanidin oligomers (dimer to tetramers) 

in PPCP were A-type (Table S1). Our results were consistent with a previous study which 

showed that procyanidins with at least one A-type bond accounted for more than 90% of 

trimers through undecamers in cranberry press cake [3]. Monomers through tetramers 

accounted for 45% of total procyanidin, with the rest being high polymers. A- and B-type 

pentamers and hexamers were identified but not quantified in PPCP due to peak overlapping 

(Figure S1). PPAP contained exclusively B-type procyanidins. Content of dimers through 

tetramers in PPAP were higher than those in PPCP (Table S1). Monomer through tetramers 

accounted for 65% of total procyanidins in PPAP, with about 13% being high polymers.

3.2 Quality control of multivariate analyses

In this study, the concept of biology QC which uses biological samples including plasma, 

urine or tissue as quality controls was adopted [17]. Biological QCs consisting of 4 

replicates of pooled Red Cross plasma were analyzed together with rat plasma to validate 

NMR acquisition method. The PCA model was built to investigate the metabolome 
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differences between QCs and rat plasma. The mechanism was based on the ability of the 

PCA model to cluster samples in an unsupervised approach. The PCA score plot (Figure S2) 

shows that the 4 replicates were segregated from experimental samples, indicating that the 

NMR data acquisition method was valid. Since variations between LC-HRMS injections and 

artifacts due to the order of acquisition and carry-over, sensitivity changes or ion 

suppression could occur during the experimental period [18]. Sample acquisition was 

randomized, and QC samples were used to monitor the instrument performance. Pooled QCs 

were further examined using multivariate statistic techniques. A PCA model was 

constructed to visualize any separation between three QCs. PCA score plot (Figure S4) 

demonstrates that the three QCs across the entire sequence were tightly clustered, suggesting 

a high quality of data acquisition.

3.3 NMR metabolomics analysis of rat plasma

PCA model was built on NMR metabolomics data before supervised multivariate analyses. 

PCA score plot shows a separation between PPCP and PPAP, with one sample from PPAP 

group mixed with the group of PPCP (Figure S3). To further confirm and validate the 

metabolome differences between PPCP and PPAP, PLS-DA and OPLS-DA models were 

constructed. Two principal components were selected to build PLS-DA model; one principal 

component and one orthogonal component were used to construct OPLS-DA model. The 

R2X and R2Y of both models was 0.433 and 0.676, respectively (Table 1). R2 represents the 

goodness of fit, and the results indicated that about 43% of variance in X data matrix and 

68% of variance in Y was explained by PLS-DA and OPLS-DA models. The high R2 values 

indicated the robustness of the supervised models [19]. Overfitting arises in PLS and OPLS 

models when the number of variables is much larger than that of observations, and could be 

a problem with any high-dimensional data. Accidental correlation between one or more 

variables becomes common for metabolomics data [20]. Internal cross-validation is thus the 

first step to test the predictability of the supervised models. If Q2 calculated from the cross-

validation has a low value, then conclusion could be drawn that the supervised model does 

not have predictability. In the present study, 7-fold internal cross validation was performed 

on both PLS-DA and OPLS-DA models derived from NMR metabolomics data. Q2 obtained 

from cross-validation for PLS-DA and OPLS-DA was 0.254 and 0.291, respectively (Table 

1). They were much lower than 0.5, a threshold value for a good multivariate model of 

metabolomics data [21]. Although a segregation between PPCP and PPAP was observed on 

the PLS-DA and OPLS-DA score plots (Figure 1A, 1B), the low Q2 values suggested that 

both models had poor predictability and the segregation was most likely due to overfitting. 

Misclassification that occurred during cross-validation (Figure 1C, 1D) also confirmed that 

NMR metabolomics data did not reveal a metabolome difference in rat plasma between 

PPCP and PPAP.

3.4 LC-HRMS metabolomics analysis of rat plasma

Similarly, LC-HRMS metabolomics data was analyzed using supervised models to reveal 

the metabolic changes of rat plasma after administering PPCP or PPAP. Figure 2A and 2B 

show a clear segregation between two groups on the score plot of both PLS-DA and OPLS-

DA models. The advantage of OPLS-DA over PLS-DA is that the “structure noise” of data 

matrix which is unrelated to the variation of interest is filtered and described only by the 
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orthogonal component. The variation of scientific interest is described in the predictive 

component. Therefore the interpretability of the resulting model is increased [10]. This was 

demonstrated in our previous study where OPLS-DA showed a better performance than 

PLS-DA model for human plasma and urine because it removed “structure noise” of data 

[22]. In the present study, PLS-DA models derived from LC-HRMS metabolomic data had 

high quality parameters which was not improved by OPLS-DA, suggesting low “structure 

noise” in the data set. PLS-DA had two principal components with an overall value of R2X 

and R2Y of 0.428 and 0.995, respectively (Table 1). Similarly, OPLS-DA generated one 

principal component and one orthogonal component. The R2X and R2Y of OPLS-DA model 

was 0.428 and 0.995 (Table 1). It shows that about 42% of variance in X data matrix and 

99% of variance in Y data matrix was explained by both supervised models.

To test for overfitting and the validity of PLS and OPLS models derived from LC-HRMS 

metabolomic data, three validation methods were used. Seven-fold internal cross validation 

was initially performed on both PLS-DA and OPLS-DA models. Predictability Q2 obtained 

from cross-validation was 0.982 and 0.974 for PLS-DA and OPLS-DA model, respectively. 

The high Q2 indicated both supervised models had excellent predictability. The cross-

validated score plots (Figure 2C, 2D) show that no rat plasma from two groups was 

misclassified which was consistent with the internal validation result. In order to further 

confirm the predictability of PLS-DA and OPLS-DA models, permutation test was 

conducted. The class labels of PPCP and PPAP group were permuted and randomly 

assigned to different observations. Then a classification model was calculated with the 

permutated class labels. The procedure was repeated 200 times. R2 and Q2 within each 

model were calculated and a regression line was drawn. Ideally, all R2 and Q2 calculated 

from the permutation data should be lower than those from the actual data and the Q2-

intercept value obtained from the regression line should be lower than 0.05 [23]. The 

rationale behind the permutation test is that the newly constructed classification models 

should not be able to predict the classes well with a wrong class label [24]. Figure S6 shows 

that the goodness of fit (R2) and predictive powder (Q2) of newly constructed models with 

permuted class labels were decreased compared to the actual model, indicating our 

supervised model is statistically valid and the achieved segregation between PPCP and 

PPAP was not due to overfitting. Cross-validation and permutation test provide a reasonable 

estimate of the predictability of a PLS or OPLS model [25]. However, external validation 

that uses an independent set of test data to evaluate predictability of a supervised model that 

is built on the training set is a more scrupulous and demanding method [25]. In the present 

study, the LC-HRMS data was split into a training set (approximate 80% of the samples) 

and a test set (remaining 20% of the samples) [15]. PLS-DA and OPLS-DA models were 

then constructed on the training data set and blindly classified the test set. This external 

validation procedure was repeated for 30 times and a correct classification rate was 

calculated by counting the correctly classified samples and divided by the total number of 

samples in the test set. Correct classification rate of 100% for both PLS-DA and OPLS-DA 

models (Table 1) indicated that the supervised models based on LC-HRMS metabolomics 

data had excellent predictability and were able to correctly predict the unknown samples. 

The validation tests suggested that the UHPLC-HRMS metabolomics approach was able to 
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reveal the metabolome changes in female rats after administering PPCP compared with 

PPAP.

3.5 Discriminant metabolites identification

No modification of rat plasma metabolome was detected using 1H NMR-based 

metabolomics approach although it was proven to be an effective tool for metabolomics 

profiling in other studies [23, 26]. This was likely due to the inherent low sensitivity of 

NMR technique that failed to detect procyanidin metabolites in plasma. Untargeted UHPLC-

HRMS metabolomics was a more sensitive method to reveal the metabolome differences 

and contributing markers.

S-plot (Figure 3) is a statistical tool that visualize the variable influence in a projection-

based model and discover the responsible metabolites. It is a scatter plot that combines the 

covariance (magnitude) and correlation loading (reliability) for the model variables [27]. It 

can be applied to projection-based models including OPLS, PLS or PCA. The x-axis in the 

S-plot describes the magnitude of each variable. The y-axis represents the reliability of each 

variable. The y-axis has a theoretical minimum of −1 and maximum of +1. Unless the 

variable variance is uniform, otherwise the scatter plot will look like an S-shape. At a p 

significance level of 0.05, a p(corr) of 0.5 was used as an arbitrary cutoff value to select the 

potential markers [19]. The markers with higher absolute p[1] and p(corr) values which are 

located on the upper right or lower left corner of the S-plot were the statistical relevant 

variables for explaining the separation between PPCP and PPAP. The variables in the 

middle of the S-plot did not show any relevance in the model. Variable importance for 

projection (VIP) is another statistical tool used to summarize the importance of X-variable 

both for X- and Y-models [25]. It is used to determine the relevance and importance of a 

variable in a projection-based model. The influence of each variable on the response is 

summed over all components and categorical responses, relative to the total sum of squares 

of the model. For a given model, there will be only one VIP-vector summarizing all 

components and Y-variables. This makes the VIP an appealing measure of the global effect 

of diet intervention. A threshold of VIP value ≥1 is usually considered appropriate for a 

metabolomics study [25]. In the present study, S-plot is used as the primary statistical tool 

for determining the significant metabolites. We compared the markers selected from S-plot 

to those selected using a VIP plot. All variables with VIP score >1 were plotted in Figure 

S7. Variables selected as significant ones from S-plot were colored in red. It was found that 

variables selected from S-plot had a higher VIP score (VIP>1.7). This result supported the 

reliability and effectiveness of S-plot, and indicated that S-plot is a more scrupulous method. 

These selected significant metabolites were then subjected to Welch’s t test, and the p-value 

obtained for each marker was smaller than 0.01. Benjamini–Hochberg procedure (α=0.01) 

was conducted to control false discoveries.

A total of 1186 metabolic features were detected in rat plasma, among which 36 features 

were found to be discriminant metabolites on the basis of multivariate analysis (Figure 3). 

Eleven metabolites were identified based on their accurate masses and/or product ion spectra 

(Table 2). The other 25 unidentified metabolites were listed in Table S2. HMDB [28] and/or 

Phenol-Explorer [29] were searched to assist metabolite identification. One metabolite that 
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was higher in rat plasma after PPCP was the ion at m/z 137.0246 [M-H]− producing a 

product ion at m/z 93.0339 [M-H-COO]− after MS/MS. It was tentatively identified as p-

hydroxybenzoic acid as it matched in HMDB (Δ=0.0002 Da) and a previous publication 

[30]. The compound producing a [M-H]− ion at m/z 93.0337 [M-H]− was tentatively 

identified as phenol according to HMDB (Δ=0.0009 Da). The ion at m/z 172.9915 [M-H]− 

was tentatively identified as phenol sulfate which agreed with HMDB (Δ=0.0001 Da). The 

plasma level of catechol sulfate was elevated in female rats after administering PPCP. This 

metabolite was previously identified in human urine after drinking blackcurrant juice [31]. 

Identification of catechol sulfate was based on the accurate m/z 188.9863[M-H]−, product 

ion at m/z 109.0296 [M-H-sulphate]−, and HMDB match (Δ=0 Da). 3, 4-

Dihydroxyphenylvaleric acid and 4′-O-methyl-(−)-epicatechin-3′-O-beta-glucuronide were 

also detected and tentatively identified in rat plasma after PPCP intake. It should be noted 

that the difference between detected mass and theoretical mass of 4′-O-methyl-(−)-

epicatechin-3′-O-beta-glucuronide was 0.0707 Da, which was relatively higher than other 

mass error. However, 4′-O-methyl-(−)-epicatechin-3′-O-beta-glucuronide was tentatively 

assigned because it was the only database match that was biologically relevant and no 

standard was available for further identification. Furthermore, consumption of PPCP also 

decreased the plasma level of five metabolites. The metabolite producing a [M-H]− ion at 

m/z 479.1190 and a product ion at m/z 303.0885 [M-H-glucuronide]− was assigned as O-

methyl-(−)-epicatechin-O-glucuronide by comparing with HMDB (Δ=0.0001 Da). A 

previous publication revealed that methylation of (−)-epicatechin occurred at 3′-position in 

rats [32]. Another study showed that glucuronidation of daidzein occurred at the 7 position 

after daidzein was incubated with Sprague-Dawley rat liver microsome [33]. The positions 

of glucuronidation and methylation in rats were markedly different from humans, mice, pigs, 

etc. In the present study, the substitution positions were not able to be further confirmed 

without NMR spectra of purified compounds. The metabolite producing a [M-H]− ion at m/z 

289.0384 was putatively identified as 4-hydroxy-5-(hydroxyphenyl)-valeric acid-O-

sulphate. The identification agreed with HMDB (Δ=0.0003 Da) and was described in a 

previous study [34]. 5-(hydroxyphenyl)-γ-valerolactone-O-sulphate was putatively identified 

based on its m/z at 271.0287 [M-H]− and HMDB match (Δ=0.0005 Da). The metabolite 

having a [M-H]− ion at m/z 184.0757 was putatively identified as 4-hydroxydiphenylamine 

according to the HMDB (Δ=0.0011 Da). 4-hydroxydiphenylamine is a metabolite of 

diphenylamine and found in stored apples [35]. The metabolite giving a [M-H]− ion at m/z 

461.9787 and product ion at m/z 264.0330 [M-H-hexose-H2O]− was tentatively identified as 

peonidin-3-O-hexose. The exact type of hexose could not be determined due to lack of 

standard comparison. Previous studies showed that both peonidin-3-O-glactoside and 

peonidin-3-O-glucoside were found in rat plasma after they were administered with 

anthocyanin-rich extracts [36]. In the present study, the detection of peonidin-3-O-hexose in 

rat plasma after administering PPAP was likely due to the residual anthocyanins in PPAP.

Procyanidins purified from cranberry powder were predominantly A-type, whereas PPAP 

contained exclusively B-type procyanidins. Procyanidins had a very low absorption rate in 

vivo and only a small portion of epicatechin and oligomeric procyanidins (DP<5) were able 

to be absorbed in the small intestine [2]. The majority of A- and B-type procyanidin 

oligomers and polymers were degraded by gut microbiota in the colon to produce microbial 
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metabolites. More than half of discriminant metabolites detected in the present study 

corresponded to the phase II and microbial metabolites of procyanidins. A previous study 

showed that B-type procyanidin dimers were catabolized by microbial cleavage of C-ring 

and/or oxidation of A-ring, and further degraded into hydroxyphenyl-γ-valerolactone [37]. 

Phenylvalerolactones were then slowly dehydroxylated by bacteria to form phenylvaleric 

acids [38]. 5-(hydroxyphenyl)-γ-valerolactone-O-sulphate which was found to be decreased 

after rat receiving PPCP was formed after phase II metabolism of 5-(hydroxyphenyl)-γ–

valerolactone. 4-hydroxy-5-(hydroxyphenyl)-valeric acid-O-sulphate was also decreased 

after ingesting PPCP. It was probably generated after dehydroxylation of dihydroxyphenyl-

γ-valerolactone and further sulfation. 3, 4-Dihydroxyphenylvaleric acid was probably a 

dehydroxylation product from dihydroxyphenyl-γ-valerolactone. p-hydroxybenzoic acid was 

likely formed by progressive shortening the aliphatic chain by α-and β-oxidation of 

phenylvaleric acids [38]. Compared to extensive investigation on B-type dimers catabolism, 

limited data is available on the microbial catabolism of A-type procyanidins. An early study 

employed a pig cecum model and showed that, similar to B-type dimer catabolism, A-type 

procyanidins degradation was initiated by cleavage of C-ring followed by generation of 

various phenolic acids [39]. A-type procyanidins oligomers exhibited a more complicated 

pattern of hydroxylated catabolites probably due to their more rigid and complex interflavan 

ether bonds [39]. However, in the present study we failed to detect any metabolites that 

retain this unique ether linkage.

4 Concluding remarks

In conclusion, female Sprague-Dawley rat plasma metabolome differences between PPCP 

and PPAP were detected using an untargeted UHPLC-Q-Orbitrap-HRMS metabolomics 

approach but not a 1H NMR metabolomics approach. Our study is one of few publications 

that use two metabolomics tools. Compared to 1H NMR metabolomics, UHPLC-Q-

Orbitrap-HRMS metabolomics is more effective to reveal the overall rat plasma metabolome 

modifications caused by PPCP or PPAP and identify the contributing makers. Discriminant 

metabolites including p-hydroxybenzoic acid, phenol, phenol-sulfate, catechol sulphate, 3, 

4-dihydroxyphenylvaleric acid, 4′-O-methyl-(−)-epicatechin-3′-O-beta-glucuronide were 

significantly higher in rat plasma after PPCP intake. On the contrary, plasma level of several 

metabolites including O-methyl-(−)-epicatechin-O-glucuronide, 4-hydroxy-5-

(hydroxyphenyl)-valeric acid-O-sulphate, 5-(hydroxyphenyl)-γ-valerolactone-O-sulphate, 

peonidin-3-O-hexose and 4-hydroxydiphenylamine were increased after female rats were 

gavaged with PPAP. The results obtained in this study highlight the importance of using an 

untargeted approach to reveal the metabolic impact of diet intervention. Development and 

complement of food metabolome database will be needed to obtain a full identification of 

biomarkers. Biochemical pathway alteration due to cranberry procyanidins intervention will 

also need to be elucidated in the future work.
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Refer to Web version on PubMed Central for supplementary material.
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PLS-DA projection on latent structure-discriminant analysis
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Figure 1. 
The PLS-DA (A), OPLS-DA (B) score plots, PLS-DA (C) and OPLS-DA (D) cross-

validated score plots derived from 1H NMR metabolomics. Triangle: rat plasma after 

administering PPCP. Filled box: rat plasma after administering PPAP. Each triangle or filled 

box represents an individual rat.
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Figure 2. 
The PLS-DA (A), OPLS-DA (B) score plots, PLS-DA (C) and OPLS-DA (D) cross-

validated score plots derived from LC-HRMS metabolomics. Triangle: rat plasma after 

administering PPCP. Filled box: rat plasma after administering PPAP. Each triangle or filled 

box represents an individual rat.
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Figure 3. 
S-plots associated with the OPLS-DA score plot of data derived from LC-HRMS of rat 

plasma after administering PPCP or PPAP. p[1] is the loading vector of covariance in the 

first principal component. p(corr)[1] is loading vector of correlation in the first principal 

component. Variables with |p| ≥0.05 and |p(corr)| ≥0.5 are considered statistically 

significant. Significant variables marked in circles were identified and numbered in Table 2. 

Unidentified significant variables marked in triangles were listed in Table S2. Non-

significant variables were marked in squares.
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