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Abstract

Background: A long term research goal of venomics, of applied importance for improving current antivenom
therapy, but also for drug discovery, is to understand the pharmacological potential of venoms. Individually or
combined, proteomic and transcriptomic studies have demonstrated their feasibility to explore in depth the
molecular diversity of venoms. In the absence of genome sequence, transcriptomes represent also valuable
searchable databases for proteomic projects.

Results: The venom gland transcriptomes of 8 Costa Rican taxa from 5 genera (Crotalus, Bothrops, Atropoides,
Cerrophidion, and Bothriechis) of pitvipers were investigated using high-throughput 454 pyrosequencing. 100,394
out of 330,010 masked reads produced significant hits in the available databases. 5.165,220 nucleotides (8.27%)
were masked by RepeatMasker, the vast majority of which corresponding to class I (retroelements) and class II
(DNA transposons) mobile elements. BLAST hits included 79,991 matches to entries of the taxonomic suborder
Serpentes, of which 62,433 displayed similarity to documented venom proteins. Strong discrepancies between the
transcriptome-computed and the proteome-gathered toxin compositions were obvious at first sight. Although the
reasons underlaying this discrepancy are elusive, since no clear trend within or between species is apparent, the
data indicate that individual mRNA species may be translationally controlled in a species-dependent manner. The
minimum number of genes from each toxin family transcribed into the venom gland transcriptome of each
species was calculated from multiple alignments of reads matched to a full-length reference sequence of each
toxin family. Reads encoding ORF regions of Kazal-type inhibitor-like proteins were uniquely found in Bothriechis

schlegelii and B. lateralis transcriptomes, suggesting a genus-specific recruitment event during the early-Middle
Miocene. A transcriptome-based cladogram supports the large divergence between A. mexicanus and A. picadoi,
and a closer kinship between A. mexicanus and C. godmani.

Conclusions: Our comparative next-generation sequencing (NGS) analysis reveals taxon-specific trends governing
the formulation of the venom arsenal. Knowledge of the venom proteome provides hints on the translation
efficiency of toxin-coding transcripts, contributing thereby to a more accurate interpretation of the transcriptome.
The application of NGS to the analysis of snake venom transcriptomes, may represent the tool for opening the
door to systems venomics.
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Background
Venomous snakes of the families Viperidae and Elapidae

possess paired specialized venom glands located in the

upper jaw ventral and posterior to the eyes [1] that pro-

duce an arsenal of toxins [2,3], which they inject into

prey tissues through high-pressure delivery fangs [4].

Within the reptile clade Toxicofera, venom was a single

ancient innovation [5]. Snake venom toxins are the

result of recruitment events by which ordinary genes

were duplicated, and the new genes selectively expressed

in the venom gland and amplified to multigene families

with extensive neofunctionalization throughout ~100

million years of evolution [5,6]. Given the central role

that diet has played in the adaptive radiation of snakes

[7], venom thus represents a key adaptation that has

played an important role in the diversification of snakes.

Envenoming by snakebites constitutes a highly rele-

vant, though neglected, public health issue on a global

basis [8], as there are venomous organisms in every con-

tinent and almost every country. However, venomous

animals are particularly abundant in tropical regions,

the kitchen of evolution. Arthropod stings constitute the

most common cause of envenoming by animals,

although around 80% of the more than 150.000 yearly

deaths by envenomings worldwide are caused by snake-

bites, followed by scorpion stings, which cause 15%

[9,10]. The venoms of extant snakes comprise complex

cocktails of proteins tailored by Natural Selection to act

on vital systems of the prey [11]. Medical uses of

venoms are well documented in folk remedies and in

Western and Chinese traditional medicine [12]. How-

ever, despite their remarkable potency and high degree

of target specificity, only in the last decades have toxins

been increasingly used as pharmacological tools, and it

has been realized that venoms represent a vast and

essentially untapped resource of preoptimized lead

molecules for the medicinal chemist [12-17].

Adequate treatment of snakebites is critically depen-

dent on the ability of antivenoms to neutralize the lethal

and tissue-damaging toxins, reversing thereby the signs

of envenoming [18,19]. A long term research goal of

venomics, of applied importance for improving current

antivenom therapy, but also for drug discovery, is to

understand the molecular mechanisms and evolutionary

forces that underlie the enormous pharmacological

potential of venoms [12]. Individually or combined, pro-

teomic and transcriptomic studies have demonstrated

their feasibility to explore in depth the molecular diver-

sity of venoms [[20-28], and references therein]. In the

absence of genome sequence, transcriptomes represent

also valuable searchable databases for proteomic projects.

Since the pioneer report by Ho and co-workers in

1995 [29], snake venom transcriptomic studies have

relied on sequencing DNA clones randomly picked from

a cDNA library constructed by reverse transcription of

the RNA molecules expressed in the venom gland [25].

The partial cDNA sequences derived from expressed

genes, also known as Expressed Sequence Tags (ESTs)

[30], cluster into groups of contiguous sequences (con-

tigs), which eventually cover the entire extension of the

original RNA molecule. In addition, the number of ESTs

clustered into a contig is proportional to the transcrip-

tional level of the parent RNA in the venom gland [25].

However, in the few instances in which transcriptomics

and proteomics databases have been compared

[26,27,31,32], a low degree of concordance has been

reported. The occurrence of non-venom-secreted toxin

transcripts might indicate that these messengers exhibit

an individual or a temporal expression pattern over the

life time of the snake [33], or may encode very low-

abundance venom proteins. On the other hand, the pre-

sence in the venom of toxins not represented in the

transcriptome clearly indicates that construction of the

cDNA library was biased, i.e. due to the necessary frac-

tionating steps to avoid interfering substances like short,

partial length 3’-end cDNAs and adapter sequences [34].

A second bias of cDNA libraries is the potential of the

mRNA transcript in plasmids to be partially expressed

in their bacterial cells with lethal effects [35]. Moreover,

smaller cDNA fragments are over represented compared

to larger ones, due to the higher transformation effi-

ciency of smaller plasmids [35].

The high demand for low-cost sequencing has driven

the development of high-throughput next-generation

sequencing (NGS) technologies such as 454 Roche, Illu-

mina’s Solexa, and Applied Biosystems’ SOLiD, and and

most recently released Helicos HeliScope platforms as

alternatives to the classical chain-termination Sanger

method of DNA sequencing for the qualitative and

quantitative analyses of transcriptomes [36,37]. NGS

technologies are revolutionizing the field of transcrip-

tomics by rapidly reducing the time and cost per base

sequenced [38]. For example, snake venom gland tran-

scriptomes reported are typically arranged from few

hundreds to few thousands ESTs [25]. The largest tran-

scriptome database was assembled from 8696 ESTs

(mean read length of 398 bp) from Deinagkistrodon acu-

tus venom gland [39]. Only very recently Rokyta and

colleagues [40] reported a high-throughput venom gland

transcriptome of the Eastern Diamond Rattlesnake (Cro-

talus adamanteus) using Roche 454 sequencing technol-

ogy. 82,621 reads were singletons, and the remaining

552,863 reads were assembled into 24,773 contigs of

average length 513 nucleotides [40]. NGS technologies

applied to the transcriptomic analysis of non-model spe-

cies has the advantage of providing a genome-wide,
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unbiased insight into the transcriptome [41]. However,

NGS techniques applied to non-model species, which

like snakes lack a suitable reference genome sequence,

are not devoid of limitations. NGS technologies provide

shorter and more error-prone reads than Sanger

sequencing, making transcript assembly a challenging

bioinformatic task, which frequently yields a large set of

contigs but a fragmented transcriptome [38,41]. Here,

we report the application of the 454 platform to infer

the venom gland transcriptomes of Costa Rican snakes,

Bothrops asper (from Caribbean (car) and Pacific (pac)

populations), Bothriechis lateralis, Bothriechis schlegelii,

Atropoides picadoi, Atropoides mexicanus, Crotalus

simus, and Cerrophidion godmani, with special emphasis

on the strategy used to assemble and analyze the gath-

ered DNA sequences. Although the average length of

singletons (174 bp) and contigs (208.2 bp), and the low

coverage of reads per contig (6), prevented the genera-

tion of definitive and reliable full-length gene sequences,

our results provide a deep comparison of the transcrip-

tional activity of the venom glands of these medically

relevant species in Central America [42,43].

Results and Discussion
454 sequencing statistics and annotation of transcripts

The eight venom gland single-strand cDNA libraries

were sequenced using a multiplex strategy. To this end,

each cDNA library was barcoded with a unique 10-base

sequence (MID, Multiplex IDentifier) that is recognized

by the sequencing analysis software, allowing for auto-

mated sorting of MID-containing reads. A total of

334,540 reads (amounting ~ 62 Mb of 8 snake venom

gland transcriptomes) were simultaneously sequenced in

two runs of the Genome Sequencer FLX System. Raw

sequencing data are archived under accession number

SRP003780 in the NCBI Sequence Read Archive (SRA,

http://www.ncbi.nlm.nih.gov/Traces/sra) [44]. Accession

codes by species are SRS117169.3 (B. asper (car));

SRS117211.3 (B. asper (pac)); SRS117214.2 (C. simus);

SRS117215.1 (A. picadoi); SRS117216.1 (A. mexicanus);

SRS117217.1 (C. godmani); SRS117218.1 (B. lateralis);

and SRS117219.2 (B. schlegelii). The first run included

only cDNA from B. asper from the Caribbean versant of

Costa Rica, and was performed as a test run. The sec-

ond run was done using cDNA from all the species

investigated. The average length per read was 186.6

bases (max. 645 bp, and only 3.27% of reads < 50 bp),

and this figure is in keeping with other 454 transcrip-

tomic reports conducted in non-model species [45].

4530 reads could not be assigned due to sequencing

errors in the 3’ 10-mer label. This figure corresponds to

a sequencing error rate of 1.35%, which is higher than

that (~ 0.04%) reported in other studies35,44. In addition,

5,165,220 nucleotides (8.27%) were masked with N’s

characters by RepeatMasker. The vast majority of

sequence elements masked are class I (retroelements)

and class II (DNA transposons) mobile elements

[46-48]. Retroelements may have a profound impact on

the plasticity of the host genomes [49], i.e. modulating

transcription of immediately downstream host genes

[50,51]. The bulk (64%) of mobile elements identified in

the snake venom gland transcriptomes investigated here

are retrotransposons (Additional file 1: Table S1). Retro-

transposable elements have been previously reported in

the transcriptomes of Bothrops insularis (4.1% of ESTs)

[52], Lachesis muta (0.3%) [53], and Philodryas olfersii

(4.1%) [54], and in PLA2 genes from the venom gland

of Vipera ammodytes [55,56] and Protobothrops flavovir-

idis [57]. In the context of multigene toxins, which like

the snake venom PLA2s are evolving under strong posi-

tive adaptive selection [58-60], it is worth mentioning

that transposable elements are overrepresented in the

mRNAs of rapidly evolving genes [61], suggesting that

they have played a role in the diversification and expan-

sion of these gene families [61,62].

The 454 sequencing run yielded a total of 330,010

masked reads, which were distributed among the 8

venom gland transcriptomes as displayed in Additional

file 1: Table S2. In the absence of any reference genome

to guide the assembly, the sets of reads of each species

were separately processed with program Newbler, the de

novo assembler tool of the 454 Sequencing platform.

However, only 58.4% of all reads clustered into 31,025

contigs (average length of the contigs was 208.2 bp;

average number of reads per contig = 6), of which 43%

comprised only 2 reads. The program also returned

103,357 singletons (mean length, 174.4 bp). Employing

other assembler programs, such as MIRA (http://www.

chevreux.org/projects_mira.html) or Velvet [63], and

using different settings (i.e. Velvet: hash-length 21 or 31;

MIRA: job normal or accurate), did not improve the

assembly performance. The transcriptome assembly pro-

blem has been documented [64,65], particularly for

organisms without a reference genome database.

Because of the low data compression gained in the

assembly step and the small difference between contigs

and reads mean length, bioinformatic processing of the

454 sequence data was performed on whole sets of

unassembled reads. The set of 330,010 reads was

searched against non-redundant GenBank databases

using BLASTX and BLASTN algorithms to identify

similar sequences with an e-value cutoff <10-3. 100,394

(30.4%) produced significant hits (Additional file 1:

Table S2). The high percentage of reads without signifi-

cant similarity to any known sequence is in line with

previous transcriptomic studies. Hence, the 8696 high

quality ESTs from a non-normalized cDNA library of

D. acutus were assembled into 2855 clusters, of which
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only 45.60% matched known sequences and 54.40% had

no match to any known sequence in Genbank [39,66].

BLAST hits included 79,991 matches to entries of the

taxonomic suborder Serpentes, of which 62,433 (62% of

BLAST hits) displayed similarity to documented venom

proteins (Additional file 1: Table S2). The set of reads

lacking similarity to Serpentes entries was searched for

the presence of cysteine-rich domains (eg. stretches of

50-100 amino acids containing ≥10% cysteine residues),

as this feature is commonly shared by many toxin

sequences [67]. The survey proved fruitless. Further

attempts to enlarge the toxin dataset by searching speci-

fic databases, such as the Animal Toxin Database [68]

or MEROPS [69], were also unsuccessful. The venom

protein families identified, and their relative abundance,

in the whole 454 read sequence dataset are listed in

Table 1. The relative distribution of these venom pro-

tein families among the eight taxa investigated is shown

in Table 2.

Among the proteins listed in Table 1, glutaminyl

cyclase (GC) belongs to the group of venom proteins

without demonstrated toxic activity. Glutaminyl cyclase

has been been identified in the venom proteomes of

B. jararaca, C. atrox, and C. durissus terrificus [70-72].

N-terminal pyrrolidone carboxylic acid (pyroglutamate,

pGlu) formation from its glutaminyl (or glutamyl) pre-

cursor is required in the maturation of numerous bioac-

tive peptides. Snake venom GC is likely involved in the

biosynthesis of pyroglutamyl peptides such as hypoten-

sive BPPs [73,74], and endogenous inhibitors of

metalloproteinases, pEQW, pENW, and pEKW [75,76].

Accumulation of peptide inhibitors in venoms provides

a basis for attenuating the proteolytic activity of venom

gland-stored SVMPs, preventing thereby autodigestion

[77]. Mature PIII-SVMPs secreted into the venom pro-

teome usually contain an N-terminal pyroglutaminyl

residue (unpublished results), suggesting the action of

the glutaminyl cyclase downstream of the proteolytic

processing of the metalloproteinase precursor. However,

the structural/functional consequences of N-terminal

cyclation are unknown.

To estimate the number of toxin transcript sequences

expressed in each transcriptome, multiple alignments of

all reads clustered in the same protein family were gen-

erated, using the most similar full-length reference

sequence as template. It was then realized that a large

number of “Serpentes venom protein” reads did not

align with translated ORFs. Instead, these reads

appeared to represent 5’UTR, 3’UTR, and microsatellite

loci. Particularly, all reads matching “cobra venom fac-

tor”, “crotamine”, “crotasin”, and “sarafotoxin” entries

corresponded to non-translated, mostly (87-100%)

microsatellite DNA. In addition, 2397 out of 2412 reads

for ohanin, and 840/845 3FTx reads aligned with micro-

satellite DNA. Microsatellite sequences accounted also

for 66% GF, 49% SP, 36% PLA2, 27% CRISP, 15% LAO,

and 8% CTL, but represented less than 5% of the reads

of the rest of venom protein classes listed in Table 2

and Additional file 1: Table S3. On the other hand, the

bulk (> 99%) of non-microsatellite untranslated

sequences corresponded to 3’ UTRs. Additional file 1:

Table S3 summarizes the number of reads aligned to

translated regions of reference snake venom toxin

sequences. The occurrence of a large number of micro-

satellites in the venomous snake Agkistrodon contortrix

has been recently reported by Castoe and colleagues

[78], who used the 454 Genome Sequencer FLX next-

generation sequencing platform to sample randomly

~27 Mbp (128,773 reads) of the genome of this species.

These authors identified microsatellite loci in 11.3% of

all reads obtained, with 14612 microsatellite loci identi-

fied in total.

The presence of mRNA coding for 3’-untranslated

regions of toxins points to a) a bias due to the first-strand

synthesis method used, which produced cDNA libraries

enriched in 3’-end-transcripts, b) incompletely sequenced

transcripts or c) to transcription of nonfunctional gene

Table 1 Identity and relative abundance of venom

protein entries identified in the whole 454 read

sequence dataset of the 8 Costa Rican snake venom

gland transcriptomes

Number of
reads

% of total venom
protein entries

Bradykinin potentiating
peptide (BPP)

9231 14.8

Cysteine-Rich Secretoy
Peptide (CRISP)

1066 1.7

C-type lectin-like protein
(CTL)

1039 1.6

Growth factor (GF) 789 1.2

L-amino acid oxidase (LAO) 2535 4.0

Phospholipase A2 (PLA2) 7065 11.3

Metalloproteinase (SVMP) 26646 42.7

Serine Proteinase (SP) 10019 16.0

5’-nucleotidase (5’-NTase) 374 0.6

Phosphodiesterase (PDE) 119 0.2

Glutaminyl cyclase (GC) 170 0.3

Cobra Venom Factor (CVF) 8 0.01

Crotamine (CRO) 22 0.04

Sarafotoxin (SARA) 3 0.005

Waprin (WAP) 26 0.04

Kunitz-type inhibitor (KUN) 21 0.03

Kazal-type inhibitor (KAZ) 21 0.03

Hyaluronidase (HYA) 24 0.04

Ohanin (OHA) 2412 3.9

Three-Finger Toxin (3FTx) 845 1.3

Their relative abundance in each transcriptome is displayed in Table 2.
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copies. Relevant to the latter possibility, excepting A.

mexicanus venom, which contains a small amount

(<0.1%) of a 3Ftx [50], CVF, SARA, OHA, WAP,

5’NTase, PDE, GC, KUN, HYA and 3FTx have not been

detected in the venom proteomes of the Costa Rican

snakes sampled here [49-52] (Additional file 1: Table S4).

Fry and colleagues [79] have shown that the venom sys-

tem is a basal characteristic of the advanced snakes, and

have investigated the timing of toxin recruitment events

and patterns of toxin diversification across the full range

of the ~100 million-year-old advanced snake clade

[2,3,5,6,79]. These studies revealed single early recruit-

ment events for each toxin type, including those identi-

fied here (Table 1), indicating that the venomous

function arose once in squamate reptile evolution, at

about 200 Myr ago. Structural and functional diversifica-

tion of the venom system is best described by the birth-

and-death model of protein evolution [80,81]. Pseudo-

genes in Costa Rican pitviper venom transcriptomes may

thus represent relics of the evolution of their venom

arsenal.

The 37,961 reads comprising non-venom-protein

BLAST hits were classified based on the presumed bio-

logical process to which they may contribute (Figure

1A) and on their putative molecular function (Figure

1B), according to the Gene Ontology database [48].

Their relative abundance, biological processes (general

metabolism, response to external stimuli, cell differentia-

tion, proliferation, and communication, cell cycle...), and

molecular functions (transcription and translation, pro-

tein binding, catalysis, etc.) identified in this work gener-

ally agree with the broad categories reported for other

viperid transcriptomes [27,32,52,53,82-84], and will not

be described here in detail again. The most abundant

transcripts are related to DNA transcription, mRNA

translation, and post-translational processing of proteins,

reflecting the high specialization of this tissue for

expressing and secreting toxins to the lumen of the

venom gland. Furthermore, many venom toxins bear a

high number of cysteinyl residues, which are engaged in

extensive intra- and intermolecular disulphide crosslink-

ing [20]. Venom proteins such as disintegrins, C-type

lectin-like proteins, serine proteinases, PLA2s, 3FTxs,

and SVMPs occur in different oligomerization states

[85-88]. The large structural impact at low energy cost

of engineering disulphide bonds represents an opportu-

nity for structural (and functional) diversification of pro-

teins during evolution. Not surprisingly, protein

disulphide isomerase (PDI), an enzyme and chaperone

involved in disulphide bond formation in the endoplas-

mic reticulum [89,90], represents a highly expressed

gene transcript (1859 reads; 5.1% of non-venom-protein

reads) in all venom gland transcriptomes, ranging from

2.3% in C. simus to 6.9% in B. lateralis.

Table 2 Relative contribution of the different venom protein family hits in each of the Costa Rican snake venom gland

transcriptome

C. simus B. asper (Car) B. asper (Pac) C. godmani A. picadoi A. mexicanus B. schlegelii B. lateralis

Reads % Reads % Reads % Reads % Reads % Reads % Reads % Reads %

BPP 178 13.4 4232 15.0 169 12.2 818 8.3 1634 16.4 406 13.0 444 15.3 1350 23.6

CRISP 0 0 245 0.8 3 0.2 253 2.6 261 2.6 17 0.5 105 3.6 182 3.2

CTL 32 2.4 287 1.0 19 1.3 23 0.2 476 4.8 15 0.5 7 0.2 180 3.1

GF 60 4.5 275 0.9 38 2.7 64 0.6 56 0.6 50 1.6 142 4.9 103 1.8

LAO 50 3.8 1197 4.2 33 2.4 537 5.5 308 3.1 121 3.9 92 3.2 197 3.4

PLA2 161 12.1 5026 17.8 195 14.2 777 7.9 228 2.3 224 7.2 278 9.6 176 3.0

SVMP 86 6.5 11733 41.6 559 40.6 4144 42.2 5583 56.1 1204 38.7 762 26.3 2575 44.9

SP 373 28.1 3790 13.4 114 8.3 2770 28.1 1089 10.9 692 22.2 594 20.5 597 10.4

5’-NTase 3 0.2 214 0.7 3 0.2 67 0.7 13 0.1 27 0.8 5 0.17 42 0.7

PDE 3 0.2 56 0.2 3 0.2 13 0.1 8 0.08 0 0 2 0.06 33 0.6

GC 5 0.4 108 0.4 4 0.3 32 0.3 13 0.1 7 0.2 0 0 1 0.02

CVF 2 0.15 2 0.006 0 0 1 0.01 0 0 2 0.06 1 0.03 0 0

CRO 0 0 10 0.03 4 0.3 2 0.02 4 0.04 0 0 1 0.03 1 0.02

SARA 1 0.07 2 0.006 0 0 0 0 0 0 0 0 0 0 0 0

WAP 0 0 26 0.09 0 0 0 0 0 0 0 0 0 0 0 0

KUN 2 0.15 10 0.03 3 0.2 0 0 1 0.01 0 0 4 0.12 1 0.02

KAZ 0 0 0 0 0 0 0 0 0 0 0 0 9 0.3 12 0.2

HYA 3 0.2 7 0.02 1 0.07 4 0.04 1 0.01 1 0.03 5 0.17 2 0.03

OHA 199 15.0 779 2.8 165 11.9 256 2. 233 2.3 254 8.2 338 11.6 188 3.3

3FTx 169 12.7 221 0.8 65 4.7 63 0.6 43 0.4 89 2.8 104 3.6 91 1.6

Protein family names are abbreviated as in Table 1.
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It is also worth mentioning the finding of reads for

ribosomal 12S and 16S RNAs. This finding suggests that

either internal mRNA A-rich tracts may have acted as

priming sites in the cDNA synthesis, or that these mes-

sengers contained poly(A) tails. The possibility that

rRNAs represent some residual contamination in the

mRNA preparation should also be taken into account.

Although polyadenylation is a distinctive feature of

mRNA, polyadenylation of rRNA has been reported to

occur in mammals and several unicellular organisms

(Candida albicans, Saccharomyces cerevisiae, Leishma-

nia braziliensis and L. donovani), and it may have a

quality control role in rRNA degradation [91-94]. Polya-

denylated ribosomal RNA has been also reported in the

venom gland transcriptome of the Desert Massasauga

Rattlesnake (Sistrurus catenatus edwardsii) [95].

Calculation of the minimum number of gene copies from

each toxin family

An estimation of the minimum number of genes from

each toxin family transcribed into the venom gland tran-

scriptome of each species was calculated from the multi-

ple alignments of reads matched to a full-length

reference sequence of each toxin family (Figure 2). To

this end, the nucleotide sequences of the ORF-coding

reads of each venom protein family were assembled into

contigs using MIRA and an iterative multiple-pass refer-

ence-guided protocol. MIRA is recommended for analy-

sis of a normalized dataset or a filtered set of reads that

did not have extreme coverage [64]. Each line of the

multiple alignment (Figure 2) contained a distinct set of

contigs spanning the maximum possible number of

nucleotide positions of the reference sequence. Since the

short average length of singletons and contigs (174-208

bp), and the low coverage of reads per contig (6), pre-

vented the generation of full-length gene sequences,

each line of the alignment corresponds to one or more

synthetic gene. We considered two contigs as different if

their nucleotide sequences depart in more number of

positions than expected from a sequencing error rate of

1.35%, and the same mutated residues were found in at

least two other reads. For each toxin family from each

venom gland transcriptome a representation of the

“number of reads per contig” vs. “number of contigs”

was plotted, and only contigs accounting for ~95% of all

assembled reads were considered. The rationale for

Figure 2 Calculation of the minimum number of gene copies.
Multiple alignment of the top six SVMP transcripts of B. asper (Car)
(Additional file 1: Table S6) using the sequence (top) of the most
similar database-annotated toxin sequence as template. Each line of
the multiple sequence alignment displays a distinct set of contig(s),
comprised by a unique set of reads indicated in parentheses (see
also Additional file 1: Table S5). Since the short average length of
the reads and the low coverage of reads per contig prevented the
assemblage of reliable gene sequences, each line of the alignment
corresponds to at least a distinct gene of the SVMP multigene
family translated into the venom gland transcriptome of B. asper
(car).

Figure 1 Gene Ontology annotation of the non-toxin Serpentes reads according to their presumed biological process (panel A) and

molecular function (panel B). The figure represents the combination of the reads from all eight species. However, each species transcriptome
exhibited similar relative expression levels of GO-annotated non-toxin transcript classes.
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introducing this quality trimming is because in this way

only contigs in which the observed sequence differences

were validated in a significant number of reads were

taken into account, eliminating thus potential false posi-

tives due to sequencing errors, which generate “orphan”

reads. The number of topologically equivalent homolo-

gous multiply-aligned reads corresponds thus to the

minimum number of genes from a given toxin family

transcribed into the venom gland transcriptome (Figure

2). The outcome of this analysis is displayed in Table 3.

The estimated number of toxin-coding genes is in line

with the number of different proteins identified in the

respective venom proteomes: C. simus (27 reverse-phase

HPLC fractions, ~20 proteins) [52]; B.asper (Car) (31

HPLC fractions, ~30 proteins) [51]; B. asper (Pac)

(30 HPLC fractions, ~27 proteins) [51]; A. mexicanus

(41 HPLC fractions) and A. picadoi (30 HPLC fractions),

each containing bradykinin-potentiating peptides and

around 25-27 proteins [50]; and B. schlegelii (34 HPLC

fractions) and B. lateralis (34 HPLC fractions) matched

to ~29 and 27 proteins, respectively [49]. Moreover, in

most cases the overwhelming majority of reads of the

large multigene toxin families (i.e., SVMP, PLA2, and

SP) cluster into a small subset of contigs (Additional file

1: Tables S5, S6 and S7). The uneven distribution of

SVMPs of B. asper (Car) (Figure 3) clearly illustrates

this point: 3590 out of 6746 reads clustered into a single

contig, and only 6 other contigs were assembled from

449-173 reads. The remaining 22 transcripts comprised

each 95-12 reads. The low number of venom proteins

inferred from our 454 transcriptomic analysis is also in

concordance with a recent high-throughput venom

pland transcriptomic analysis for the Eastern Diamond

Rattlesnake (C. adamanteus), which identified 40 unique

toxin transcript [40]. The most diverse and highly

expressed toxin classes were the SVMPs (11 isoforms),

serine proteinases and C-type lectin-like proteins (9 dif-

ferent protein species each).

The insight provided by our present transcriptomic

data, supported by previous proteomic studies, indicate

that the venoms of the Costa Rican snakes investigated

are comprised by toxins belonging to a few major pro-

tein families. In addition, our data suggest that different

genes of a multigene family are subjected to very dis-

tinct transcription (and translation) yields, i.e. as the

result of distinct stability and translational rates of the

messengers.

Comparison of transcriptomes and proteomes

The relative abundance of the different toxin families in

each transcriptome was calculated as the percentage of

toxin family-specific reads relative to all BLAST hits

(Table 2) or to the set of reads aligned to translated

(ORF) regions of a reference sequences (Additional file

1: Table S3). To estimate the relative contribution of

each toxin family, the total number of nucleotides of the

ORF-coding reads was normalized for the full-length

nucleotide sequence of a canonical member of the pro-

tein family. When available, the obtained figures were

compared with the percentages of toxin families

reported for the venom proteome of the same species.

The outcome of this comparative analysis is compiled in

Table 3 Estimation of the minimum number of toxin family gene copies translated in the venom gland transcriptomes

of Costa Rican snakes

C. simus B. asper (Car) B. asper (Pac) C. godmani A. picadoi A. mexicanus B. schlegelii B. lateralis

BPP 1 1 1 2 1 1 4 2

CRISP 0 2 1 2 4 1 2 1

CTL 2 5 2 3 9 1 0 5

GF 2 5 1 3 3 1 1 1

LAO 3 2 2 4 5 2 3 3

PLA2 3 9 4 4 2 2 1 3

SVMP 9 29 5 19 15 4 14 20

SP 6 15 1 13 7 6 8 11

5’-NTase 1 3 1 2 2 2 1 3

PDE 1 1 1 2 2 0 1 2

GC 1 2 1 1 1 1 0 1

WAP 0 2 0 0 0 0 0 0

HYA 2 2 0 1 1 1 0 1

OHA 0 0 0 0 1 1 0 0

3FTx 1 0 0 0 0 0 0 0

KUN 0 0 0 0 0 0 1 0

KAZ 0 0 0 0 0 0 1 1

Protein family names are abbreviated as in Table 1.
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Additional file 1: Tables S3 and S4. Strong discrepancies

between the transcriptome-computed and the pro-

teome-gathered toxin compositions are obvious at first

sight. The best, although still far from perfect, agree-

ment between proteomic and transcriptomic data

occured when the relative abundance of transcripts was

computed using all the reads (ORFs + UTRs) belonging

only to toxin classes detected in the venom proteome

(Figure 4). This would support the view that the major-

ity of reads matching UTRs may indeed form part of

parent translatable mRNAs. However, particularly

B. asper (Car) (Figure 4A), B. schlegelii (Figure 4B),

A. mexicanus (Figure 4C), and C. simus (Figure 4D)

strongly depart from this picture. The reasons underly-

ing this discrepancy are elusive, since no clear trend

within or between species is apparent, but both intrinsic

(methodological) and extrinsic (biological) factors may

be involved. Hence, besides the difficulty of deciding

between bias due to cDNA libraries enriched in 3’-end-

transcripts, and the presence of transcripts of pseudo-

genes in the transcriptome, we hypothesize that the dis-

tinct stability and translational rates of the messengers

might also contribute to the observed differences

between transcriptome and proteome. Thus, a high

abundant messenger subjected to a higher degradation

rate may produce the same concentration as a low

abundance but more stable mRNA or exhibiting a

higher translational rate. The observation that B. asper

(Car) and B. asper (Pac), as well as A. mexicanus and

A. picadoi, exhibit highly similar transcriptomes but

strongly depart in the relative toxin composition of their

venom proteomes (Figure 4), indicates that individual

mRNA species are translationally controlled in a spe-

cies-dependent manner. The same conclusion can be

drawn by comparing the proteome and transcriptome of

C. simus (Figure 4D). In this respect, mounting evi-

dences in yeast, indicate that the loading of ribosomes

onto individual mRNA species varies broadly across a

cellular transcriptome, and this finding is consistent

with each transcript having a uniquely defined efficiency

of translation [96-99].

A rough comparison of the transcriptomes (Table 2)

shows that some toxin families are relatively constantly

expressed among snakes while others exhibit greater

variability. Principal Component Analysis (PCA)

revealed that the abscissa (PC1) and the ordinate (PC2)

each explained 32% of the observed variability (Figure

5A). PCA discriminated the eight transcriptomes into

four groups (Figure 5B). Referring to the average value

of the toxin family, the transcriptomes of A. picadoi and

B. lateralis contain higher content (⇑) of SVMP reads

and lower number (⇓) of PLA2 and SP reads; the two B.

asper taxa express ⇑SVMPs and PLA2s and ⇓ SPs; A.

mexicanus and C. godmani contain ⇑SVMPs, ⇑SPs, and

slightly ⇓PLA2s; and B. schlegelii and C. simus contain

⇓SVMPs, ⇑SPs, and average number (⇔) of PLA2 reads.

These data point to convergent and divergent evolution-

ary trends among pitvipers. PCA of the venom pro-

teomes listed in Additional file 1: Table S4 revealed

different clustering of taxa (Figure 5, panels C and D),

and unequal contributions of PC1 (48%) and PC2 (22%)

to venom variability. These results illustrate the versati-

lity of snake venoms as a system to achieve the purpose

of subduing prey through different strategies [100]. On

the other hand, the lack of any apparent correlation

between the PCA score plots for transcriptome (Figure

5B) and proteome (Figure 5D) data, further highlights

the existence of variable translational patterns across

species. Clearly, our results emphasize the relevance of

combining detailed proteomic and transcriptomic stu-

dies for a thorough characterization of the venom toxin

repertoire and the factors regulating transcription and

translation.

In a previous proteomic study, we identified two RP-

HPLC fractions of B. schlegelii venom as Kazal-type pro-

teinase inhibitor-like proteins (family PD000417 in the

ProDom database, http://prodom.prabi.fr/prodom/cur-

rent/html/home.php) [49]. Kazal-type inhibitor-like pro-

teins (KAZ) have not been found in any other snake

venom reported to date, casting doubts on their venom

gland origin, on the one hand, or pointing to a recruit-

ment event of these proteins along the speciation of the

Neotropical pitviper clade [49]. Now we report the find-

ing of 9 and 12 reads encoding ORF regions of KAZ in

Figure 3 Cartesian graph and corresponding chart pie

displaying the uneven distribution of the number of reads per

contig among the 29 SVMP genes identified in the venom

gland transcriptome of B. asper (car).
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B. schlegelii and B. lateralis transcriptomes, respectively

(Table 2 and Additional file 1: Table S4). In each spe-

cies, all KAZ reads assembled into a single transcript

(Table 3), suggesting a monogenic origin. The occur-

rence of Kazal-type inhibitor-like proteins only in the

venom gland transcriptomes of the two Bothriechis taxa

(Additional file 1: Tables S4 and S5) supports the view

of a genus-specific recruitment event during the early-

Middle Miocene ~14 Mya, the estimated divergence

time for Bothriechis in a model of Middle American

highland speciation [101]. On the other hand, the pre-

sence of Kazal-type proteins in the venom proteome of

B. schlegelii, the basal species of the Bothriechis clade

[102], suggests a species-specific expression of this class

of protein. Though a number of Kazal-like domains har-

bor serine proteinase inhibitor activity, these protein

scaffolds are also present in the extracellular part of a

number of proteins, which are not known to be

proteinase inhibitors. Clearly, further investigations are

needed to assess the biological activity of the Kazal-type

proteins, and the role that these proteins may have

played in the early adaptive radiation of the Bothriechis

clade.

Transcriptome-based cladistic analysis of the Costa Rican

snake venom gland transcriptomes

To assess structural relationships between the transcrip-

tomes, consensus sequences were constructed for those

major toxin families shared by all snake venom gland

transcriptomes, i.e. BPP, LAO, PLA2, SVMP, and SP. To

assess the degree of kinship between the Costa Rican

snake venom gland transcriptomes, species-specific syn-

thetic sequences were generated by the concatenation of

the 5 toxin-family consensus sequences (in the order

described above), and using these synthetic sequences as

input, a cladogram was built using the suite of web-

Figure 4 Transcriptomes versus proteomes. Comparison of the protein composition of the venom of Costa Rican snakes reported from
proteomic analysis (chart pies labelled “a“) (Additional file 1: Table S4)49-52 and predicted from their venom gland transcriptomes (this work).
Chart pies “b“ display the relative occurrence of ORF-coding reads listed in Additional file 1: Table S4 normalized for the full-length DNA
sequence of a canonical member of the protein family (%mol). Panels c show the relative abundance (mol%) of toxin families as in panels “b“
but computing only toxins previously identified in the venom proteome49-52. Chart pies depicted in panels d show the relative composition
(reads%) of all venom protein family hits in each of the Costa Rican snake venom gland transcriptome (Table 2). Protein family names are
abbreviated as in Table 1.
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tools Phylemon (http://phylemon.bioinfo.cipf.es) (Figure

6). Mutation is the driving force of evolution, but infer-

ring evolutionary distances from multiple sequence

alignments can yield misleading results if the mutation

rates of the genes being compared are unequal across

species. Given knowledge of the degree of mutation rate

heterogeneity, appropriate algorithms can be applied to

correct unbiasness and inaccuracy of the phylogenetic

reconstruction [103-105]. Globally, translated assembled

sequences displayed mean variability levels between 0

and 7.4% (computed as number of variable residues

divided by sequence length), being the SVMPs and SPs

the toxin families which accumulate more amino acid

substitutions. Although the cladogram depicted in

Figure 6 should not be regarded as an evolutionary

hypothesis, the divergence of the Atropoides taxa, and

the clustering of A. mexicanus and C. godmani deserves

discussion.

Figure 5 Principal Component Analysis (PCA) of the Costa Rican snake venom gland transcriptomes (A, B) and the corresponding

proteomes (C, D). Panels A and C show, respectively, the contributions to PC1 and PC2 of the different toxin families of the transcriptomes and
the proteomes. Panels B and D, score plots displaying the segregation of the transcriptomes (B) and the proteomes (D) into different categories.
In B, PC1 and PC2 contribute equally and together explain 65% of the observed transcriptome variability; in D, PC1 and PC2 explain 70% of the
variability among proteomes.
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Despite the efforts of numerous authors, phylogenetic

relationships within the subfamily Crotalinae remain

controversial, particularly at the intergeneric level

[100,105]. In particular, several analyses, even from the

same research group, support different phylogenetic

models. Thus, Bayesian Markov chain Monte-Carlo

results suggested the monophyly of the three genera of

the Porthidium group (Atropoides, Cerrophidion, and

Porthidium) and indicated that Cerrophidion and Porthi-

dium form a clade that is the sister taxon to Atropoides

[106]. On the other hand, genus Atropoides has been

also inferred through Bayesian phylogenetic methods to

be paraphyletic with respect to Cerrophidion and Porthi-

dium, due to Atropoides picadoi being distantly related

to other Atropoides species [107,108]. Although resol-

ving the phylogenetic relationships among the Neotropi-

cal pitvipers of the Porthidium group requires a detailed

genomic study of species occupying geographically close

ecological niches, i.e., Porthidium nasutum, Porthidium

ophryomegas, Porthidium volcanicum, and Cerrophidion

godmani, both a previous proteomic study by Angulo

and co-workers [50], who estimated that the similarity

of venom proteins between the two Atropoides taxa

may be around 14-16%, and the present transcriptomic

analysis, support a large divergence between A. mexica-

nus and A. picadoi, and the closer kinship between A.

mexicanus and C. godmani.

Conclusions
The snake venom gland is a highly specialized and sophis-

ticated organ, which harbors the cellular machinery that

transformed throughout > 200 million years of evolution

genes coding for ordinary proteins of disparate scaffolds,

diverse ancestral bioactivities, and recruited from a wide

range of tissues, into lethal toxins [2]. Although the details

of recruitment and neofunctionalization of these proteins

remain elusive, gene duplication events, followed by the

accelerated evolution of some copies and degradation of

others to pseudogenes, underlay the emergence of venom

gland multigene toxin families. Comparative analysis of

complete genome sequences of squamate reptiles would

be extremely valuable for tracking the evolution of the

venom system in lizards and snakes [5,6]. On the other

hand, a deep understanding of the toxin gene expression

pattern revealed by high-throughput transcriptomic may

reveal taxon-specific adaptations and the underlying biolo-

gical processes governing the formulation of the venom

arsenal. In this respect, invoking a reverse venomics

approach, knowledge of the end product of transcriptome

translation, the venom proteome, may provide hints on

the translation efficiency of toxin-coding transcripts. The

high-throughput capability of next-generation sequencing

technologies offer the opportunity to generate large tran-

scriptome databases relatively rapidly, which may help to

speed up the tedious, often de novo [20], assignment of

proteomic-gathered data. Furthermore, analysis of the

venom gland transcriptome enhances the comprehensibil-

ity of the venom proteome, and this in turn contributes to

a more accurate interpretation of the transcriptome. The

application of NGS to the analysis of snake venom tran-

scriptomes, may represent the tool for opening the door

to systems venomics.

Methods
Snake venom gland cDNA synthesis and sequencing

Venom glands were removed 3 days after venom milk-

ing, when transcription is maximal [109], from anesthe-

tized snakes using fine forceps and immediately placed

in RNAlater™ solution (Qiagen). 30 mg of tissue were

disrupted and homogenized by a rotor-stator homogeni-

zer, and total RNA was isolated using RNeasy Mini kit

(Qiagen), quantified in a spectrophotometer, and

Figure 6 Cladogram of phylogenetic alliances among Central American snakes inferred from comparison of concatenated consensus

sequences for SVMP, SP, BPP, LAO and PLA2 gathered from analysis of their venom gland transcriptomes. Numbers at branching points
indicate the degree of sequence divergence (0.1 = 10% sequence divergence).
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quality-checked on an agarose gel discerning the 28S

and 18S bands of ribosomal RNA. First strand cDNA

was synthesized using RevertAid™ H Minus First

Strand cDNA Synthesis Kit (Fermentas), which selec-

tively transcribes full-length polyadenylated mRNA. The

manufacturer’s recommendations were followed except

where specified. Approximately 5 μg of total RNA was

used as starting material. In order to avoid polymerase

slippage, a modified 3’ 54-mer adaptor (5’ GAGC-

TAGTTCTGGAG(T)16VN), which includes a type IIs

enzyme (GsuI) site (underlined), was used for first-

strand synthesis. This modified oligonucleotide effec-

tively converts the long run of adenosine residues at the

polyA tail into a sequence that causes fewer problems

for dideoxy sequencing chemistry, and thus the resulting

cDNA libraries were enriched in 3’-end-transcripts. To

avoid internal cuts, the cDNA was hemimethylated by

adding 5-methyl-dCTP to the dNTPs mix. The first

strand cDNA was used as template for second strand

synthesis by E. coli DNA Polymerase I and RNase H.

Double strand (ds) cDNA was precipitated with ethanol

and the pellet was resuspended in 70 μL of nuclease-

free water and subjected to enzymatic digestion with

GsuI for 4 hours at 30°C. The enzyme was then inacti-

vated at 65°C for 20 minutes and the digested cDNA

was stored at -20°C. For 454 pyrosequencing, the GS

FLX General Library Preparation Method Manual work-

flow (Roche Diagnostics) was followed. To this end, 3

μg of final non-normalized cDNA library were sheared

by nebulization into small fragments. The fragment ends

were polished and short A/B adaptors were ligated onto

both ends, providing priming regions to support both

emulsion amplification and the pyrosequencing process.

A biotin tag on the B adaptor allowed immobilization of

the dscDNA library fragments onto streptavidin-conju-

gated magnetic beads and the subsequent isolation of

the library of single strand cDNA sequencing templates.

Each of the eight cDNA libraries was tagged with a

unique 10-base sequence (MID, Multiplex IDentifier)

that is recognized by the sequencing analysis software,

allowing for automated sorting of MID-containing reads.

Barcoded libraries were simultaneously sequenced in a

Genome sequencing FLX System (Roche Applied

Science) at Life Sequencing S.L. (Parc Científic Universi-

tat de Valencia, Paterna, Valencia, Spain; http://www.

lifesequencing.com) using the method developed by

Margulies et al. [110].,

Bioinformatic processing of the 454 reads, identification

of toxin transcripts, and quantitation of the expression

levels of toxin families

Additional file 2: Figure S1 displays a scheme of the data

analysis pipeline developed to identify sequences of

toxin molecules by similarity search against nucleotide

databases, and elaborate a reference-guide estimation of

transcripts, which included available NGS algorithms

and in-house scripts. To this end, interspersed repeats

and low complexity DNA sequences were masked from

the transcript reads using RepeatMasker (version 3.2.7)

[111]. RepeatMasker is available from the Institute for

Systems Biology (http://www.systemsbiology.org) addres-

sing http://repeatmasker.org. The program makes use of

Repbase, which is a service of the Genetic Information

Research Institute (http://www.girinst.org). Repbase is a

comprehensive database of repetitive element consensus

sequences (update of 20 January 2009). Data and com-

putational resources for the Pre-Masked Genomes page

is provided courtesy of the UCSC Genome Bioinfor-

matics group (http://genome.ucsc.edu). Masked reads

were then searched against the non-redundant NCBI

database (http://blast.ncbi.nlm.nih.gov, release of March

2009) and the UniProtKB/Swiss-Prot Toxin Annotation

Program database (http://us.expasy.org/sprot/tox-prot),

using BlastX and BlastN [112] algorithms, specifying a

cut-off value of e-03 and BLOSUM62 as scoring matrix.

Snake venom gland-specific transcripts were selected

from best BLAST-hit descriptions identifying GenBank

entries belonging to the taxonomic suborder Serpentes.

This taxonomic group is represented by 37,070 records

comprising entries from 357 different genera. The sub-

set of reads exhibiting similarity to Serpentes sequences

were further filtered using a list of keywords (including

the acronyms of all known toxin protein families

described so far [20,25]) to distinguish putative snake

venom toxins from non-toxin (ribosomal, mitochondrial,

nuclear, etc.), ordinary proteins. In a second round of

filtering, non-matched sequences were searched for

structural features (eg. high cysteine content) expected

for a putative toxin molecule. Non-toxin-assigned tran-

scripts were functionally annotated using the Blast2GO

software [113] and classified using GO-terms [114]. The

relative expression of a given toxin protein family (mol

%) was calculated as the number of reads assigned to

this protein family (Ri) normalized by the length (in

nucleotides) of the reference transcript sequence

(ntREF) and expressed as the % of total reads in the

snake transcriptome (∑Reads): mol% toxin family “i” =

%[(Ri/ntREF)/∑Reads). The relationship between the

expression levels of the different protein families in the

different species sampled was analyzed by Principal

Component Analysis (PCA). When possible, toxin tran-

scriptome profiles were compared with available proteo-

mic-based venom toxin profiles [115-118].

Assessing molecular diversity within toxin families and

cladistic analysis

To assess the molecular diversity within each toxin

family, the phylogenetically nearest top-hit sequence was

Durban et al. BMC Genomics 2011, 12:259

http://www.biomedcentral.com/1471-2164/12/259

Page 12 of 16

http://www.lifesequencing.com
http://www.lifesequencing.com
http://www.systemsbiology.org
http://repeatmasker.org
http://www.girinst.org
http://genome.ucsc.edu
http://blast.ncbi.nlm.nih.gov
http://us.expasy.org/sprot/tox-prot


designated as the reference sequence for aligning all the

toxin family-specific reads. To this end, each toxin

family read was translated into the 6 possible reading

frames and blasted against the reference protein

sequence using tBlastN. Matched frames exhibiting e-

value thresholds better than e-03 were aligned onto

the reference sequence to create a multiple alignment

using COBALT [119]. The multiple alignment was

then parsed to create an assembled (consensus) toxin

sequence in which each amino acid position is sup-

ported by at least four reads, representing at least 30%

of the total number of reads at that position. Non-

sequenced positions or those that did not meet the

minimum coverage condition, are depicted in lower

case in the assembled sequences. Positions where two

or more amino-acids fulfilled the selection criteria

were annotated as variable residues suggesting the

occurrence of different alleles (isoforms) of the protein.

Multiple sequence alignments based on transcriptomic

data were computed with program MUSCLE [120]

(version 3.52) using species-specific synthetic

sequences constructed by the concatenation of the

consensus sequences of the major toxin families shared

by all snake venom gland transcriptomes, i.e. BPP,

LAO, PLA2, SVMP, and SP, in this order. Phylogenetic

tree reconstruction was done using the suite of web-

tools Phylemon (http://phylemon.bioinfo.cipf.es/cgi-

bin/tools.cgi) using the MUSCLE, ProtDist and Neigh-

bor options of Phylip (version 3.65).

Additional material

Additional file 1: Table S1: RepeatMasker usage results and features of
the sequence elements masked in the 8 Costa Rican venom gland
transcriptomes analyzed Table S2: Summary of the 454 sequencing
statistics and annotation of transcripts in the 8 venom gland
transcriptomes. Table S3: Number of reads aligned to translated (ORF)
regions of reference snake venom toxin sequences. Table S4: Relative
occurrence (in %) of the ORF-coding reads listed in Table S3. Table S5:
Distribution of reads per contig among the SVMP genes. Table S6:
Distribution of reads per contig among the PLA2 genes. Table S7:
Distribution of reads per contig among the serine proteinase genes.
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