
METHOD Open Access

Profiling tissue-resident T cell repertoires by
RNA sequencing
Scott D. Brown1,2, Lisa A. Raeburn1,3 and Robert A. Holt1,2,3,4*

Abstract

Deep sequencing of recombined T cell receptor (TCR)

genes and transcripts has provided a view of T cell

repertoire diversity at an unprecedented resolution.

Beyond profiling peripheral blood, analysis of tissue-

resident T cells provides further insight into immune-

related diseases. We describe the extraction of TCR

sequence information directly from RNA-sequencing

data from 6738 tumor and 604 control tissues, with a

typical yield of 1 TCR per 10 million reads. This method

circumvents the need for PCR amplification of the TCR

template and provides TCR information in the context

of global gene expression, allowing integrated analysis

of extensive RNA-sequencing data resources.

Background

Primary sequence analysis of the highly variable comple-

mentarity determining region 3 (CDR3) of rearranged T

cell receptor (TCR) genes provides insight into the adap-

tive immune response. T cells recognize peptide epitopes

presented on the surface of cells on major histocompati-

bility complex (MHC) molecules. CDR3 is the TCR motif

that directly binds MHC-presented peptide epitopes and

this binding interaction is the main factor conferring T cell

antigen specificity. Typically, CDR3 sequence information

is acquired by performing TCR-sequencing (TCR-seq) ex-

periments on peripheral T cells isolated from blood [1, 2];

amplifying the CDR3 region with a conserved C gene pri-

mer followed by 5′ rapid amplification of cDNA ends [2],

or with a multiplexed set of V and J gene primers [3].

TCR-seq applied to tissue specimens can provide insight

into tumor-infiltrating lymphocytes [4, 5], T cells associ-

ated with autoimmune pathology [6–8] and infection [9],
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and the properties of normal primary and secondary

lymphatic tissues [10, 11].

Conventional TCR-seq methods provide a detailed

view of TCR diversity [2, 3, 12]. However, because they

rely on targeted amplicon sequencing, they do not evalu-

ate TCR variation in the context of the overall genetic

diversity of the specimen from which the data are de-

rived. Next-generation sequencing technology has made

whole-genome and transcriptome sequencing routine,

and provided opportunities for the extraction of im-

munological data, such as human leukocyte antigen

(HLA) type, using specialized software tools [13, 14].

Here, we describe an optimized approach for TCR

CDR3 extraction from RNA-seq datasets from solid tu-

mors, for the purpose of characterizing T cell popula-

tions present in the tumor environment. Compared to

TCR-seq, the main challenge in CDR3 extraction from

tumor RNA-seq data is the disproportionally large num-

ber of non-TCR transcripts (Fig. 1). For a pure lymphocyte

population, only one in approximately 2000 transcripts

are TCR transcripts (see “Methods”) and in tissues T cells

represent a minor cell type, further decreasing TCR tran-

script representation. This necessitates an analytical ap-

proach that is both fast and accurate for TCR extraction

from tissue-derived RNA-seq datasets.

Methods

Ethics

The research described herein conformed to the Helsinki

Declaration. All clinical specimens not part of The Cancer

Genome Atlas (TCGA) were obtained previously [15] with

informed consent by the British Columbia Cancer Agency

Tumor Tissue Repository, which operates as a dedicated

biobank with approval from the University of British

Columbia-British Columbia Cancer Agency Research

Ethics Board (certificate #H09-01268).
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Extraction of T cell receptor CDR3 sequences from RNA-seq

data

We deployed MiTCR [16] v1.0.3, which is well suited for

the annotation of CDR3 sequences from sequencing

reads. However, upon initial application of MiTCR to

tumor RNA-seq data using the default parameters, we

identified hundreds of non-specific and out-of-frame

CDR3 sequences per sample, which prompted us to ex-

plore alternative parameters. Closer inspection of the

bogus CDR3s identified low similarity between these se-

quences and the putative flanking TCR V and J gene seg-

ments, suggesting that the false positives were spurious,

non-TCR hits to TCR-like sequences elsewhere in the

transcriptome. Therefore, we optimized settings using

positive and negative control RNA-seq data. The positive

control dataset comprised TCR sequences generated in

silico, as follows: V, (D), J, and C gene reference se-

quences for human TCR alpha and beta chains were

downloaded from the ImMunoGeneTics information sys-

tem [17]. To generate each transcript, V, (D), J, and C

genes were chosen randomly. Non-templated nucleotide

addition and deletion frequencies at the V-(D)-J gene

junctions were modeled from observed frequencies in nor-

mal TCR chain beta repertoires [2]. Owing to the absence

of D genes in the alpha chain, the number of bases added

between the V and J genes was selected by averaging the

number to add to both the V-D and D-J junctions in a

beta chain. Out-of-frame transcripts and those that con-

tained stop codons were removed. Full-length recombined

TCR transcript sequences were run through MiTCR using

stringent alignment parameters (minimum V and J align-

ment length both set to 20 in the XML parameter file; de-

fault value is 12) to annotate the CDR3 region in the

transcript, and to ensure the in silico recombination cre-

ated a CDR3 sequence able to be detected by MiTCR. We

generated 10,000 transcripts each of alpha and beta, with

8573 alpha and 8804 beta sequences successfully being

identified by MiTCR and being used as the source for the

positive control dataset. The distribution of CDR3 lengths

for the in silico generated alpha and beta chains are dis-

played in Additional file 1: Figure S1.

For negative control RNA-seq data, we used paired-

end 101-nucleotide RNA-seq data from seven TCR-

negative cell lines, downloaded from ENCODE [18] and

pooled for use as a negative control (Additional file 1:

Table S1). To create negative datasets for shorter read

lengths, reads from the 101-nucleotide datasets were

truncated to 76-nucleotide and 50-nucleotide reads. For

positive control datasets, error-free reads (101, 76, and

50 nucleotides) were created for each in silico generated

CDR3, with the center of the CDR3 region positioned at

the center of the read.

Fig. 1 Schematic representation of T cell receptor sequencing (TCR-seq) versus RNA sequencing. Horizontal lines represent mRNA transcripts with gray

poly-A tails. Each color represents a unique gene sequence. a A pool of all mRNA in a sample is depicted, which contains irrelevant transcripts (blue,

brown, and red) as well as recombined TCR transcripts (multi-colored). b TCR-seq involves selective amplification of the CDR3 region of TCR transcripts

(displayed as a color gradient) by reverse transcription polymerase chain reaction (PCR) shown using a conserved C-gene primer (purple with black

sequencing adapter tails) for the initial reverse transcription step and resulting, after PCR (not shown), in an enriched set of recombined TCR sequences.

c RNA-seq employs shotgun sequencing, generating fragments from all transcripts present in the sample, which then have sequencing adapters

ligated (black). The resulting sequencing library will contain fragments that, by chance, contain the CDR3 encoding sequence. Additionally, these

libraries may contain fragments that share sequence similarity to recombined TCR sequences (e.g., the red transcript), potentially leading

to false-positives
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An unbiased parameter space exploration was per-

formed across all pairwise combinations of V gene mini-

mum alignments and J gene minimum alignments

(values 8 to 26 explored, all other parameters set as de-

fault) to determine optimal parameters. For each of the

361 parameter pairs, MiTCR was run on the negative

and positive control datasets. For negative control data-

sets, the number of detected bogus CDR3s was tracked,

and for positive control datasets, the number of cor-

rectly annotated CDR3s was tracked. Optimal parame-

ters were assessed for each TCR chain–read length

combination. Sensitivity was calculated for each param-

eter pair by dividing the number of recovered CDR3s by

the maximum number of recovered CDR3s for all par-

ameter pairs of that TCR chain–read length combin-

ation, giving a relative sensitivity value. We used a

binary categorization to bin the false discovery rates as

acceptable or not. For a set of false discovery rates, we

selected the best parameter pair that had an acceptable

false discovery rate and highest sensitivity. In the case of

multiple parameter pairs being equally acceptable, the

pair that minimized the V and J alignment parameters

was selected. These optimal parameters are summarized

in Additional file 1: Table S2.

Benchmarking CDR3 extraction efficiency using simulated

data

The Flux Simulator [19] v1.2.1 is a computational tool

that generates RNA-seq datasets by simulating a tran-

scriptome expression profile, library construction, and

sequencing errors. We simulated a range of sequencing

depths (104–108 reads) and read lengths (50, 76, and 101

nucleotides) to determine the importance of different

factors on characterizing the ability to detect a given

CDR3 sequence. Full-length in silico recombined TCR

sequences were annotated as single exon genes in a ref-

erence synthetic chromosome sequence file, which we

added to the human genome (GRCh38) to be used as

the reference genome for Flux Simulator. Flux Simulator

was run with the following command line flags: −t simu-

lator, −x (to simulate expression), −l (to simulate library

construction), −s (to simulate sequencing), and –p para-

meterFile.par. The parameter file contained the follow-

ing parameters: REF_FILE_NAME: path to .gtf file;

GEN_DIR: directory with genome reference files;

FASTA: true; ERR_FILE: 76; READ_LENGTH: one of

50, 76, 101; PAIRED_END: true, UNIQUE_IDS: true;

READ_NUMBER: one of 10000, 50000, 100000, 500000,

1000000, 5000000, 10000000, 50000000, 100000000; and

TMP_DIR: path to temporary directory.

Ten RNA-seq datasets were simulated for each read

length and sequencing depth combination to minimize

the risk of any stochastic effects on transcript abundance

in any one simulation confounding the variables that

explain CDR3 recovery. Each simulated dataset was run

through MiTCR using the optimized parameter sets for

a theoretical 0 % false discovery rate, and results from all

270 simulations were pooled for analysis (Additional file

1: Figure S2). There are two requirements for detection

of a CDR3: (1) the TCR transcript must be expressed,

and (2) the sequence read length must be longer than

the CDR3 length (Additional file 1: Figure S3). Before

modeling, we subsetted the data to cases that met these

two criteria (n = 362,233). A multivariate logistic regres-

sion model was fit using half of the data (n = 181,116),

leaving half the data for a validation set (n = 181,117).

The fit of the logit function is shown in Equ. 1. The per-

formance of the model is summarized in Additional file

1: Table S3, and resulted in 63.8 % sensitivity and 93.1 %

specificity.

logit CDR3 detectedð Þ ¼
−5:38þ 1:98 log10 transcripts per millionð Þ

� �

þ 0:51
sequencing depth

10; 000; 000

0

@

1

A

þ0:04 read lengthð Þ−0:04 CDR3 lengthð Þ

ð1Þ

Approximation of TCR transcript abundance from percent

T cell infiltration

We queried Illumina BodyMap (http://www.ebi.ac.uk/gxa/

experiments/E-MTAB-513) and GTEx (http://www.gtex

portal.org/home/) to find the expression of TRAC and

TRBC1/2 in healthy whole blood. An average expression of

approximately 150 fragments per kilobase of transcript per

million mapped reads was observed for these genes. Be-

cause these genes are roughly 1 kb in length, this level of

expression translates to a transcript fraction on the order of

1.5 × 10−4. Because lymphocytes are generally between 20

and 40 % of white blood cells, a pure lymphocyte popula-

tion would have a TCR transcript fraction of approximately

5 × 10−4. Assuming a similar cellular composition between

peripheral blood lymphocytes and tumor infiltrating lym-

phocytes (TIL), a tumor with 2 % TIL (the median value

for TCGA tumors, parsed from TCGA biospecimen slide

data) would have a TCR transcript fraction of 1 × 10−5.

This value can be inserted into the logistic regression

model in order to predict the minimum sequence depth

required to have a 50 % chance of detecting a CDR3 se-

quence with this abundance and other known properties.

TCGA RNA-seq data analysis

All available RNA-seq fastq files for solid tumors and

matched normal tissues were downloaded with permis-

sion from Cancer Genomics Hub (https://cghub.ucsc.

edu/). This included 8655 samples from 24 tumor sites.
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The majority (79 %) of this TCGA RNA-seq data are 50-

nucleotide reads, while 21 % are 76 nucleotides, with se-

quencing depths ranging from 5.27 × 106 to 4.51 × 108

reads. To be able to directly compare the extracted CDR3s

across all samples, we performed a pre-normalization step

by truncating all reads to 50 nucleotides, and randomly

sub-sampling 1.00 × 108 reads from every sample. This

resulted in removal of 41.5 % of all sequence data

(5.20 × 1011 reads) and 15.2 % of samples (1313) owing

to insufficient depth, leaving 7342 (6738 tumor and 604

normal) samples and 7.34 × 1011 total reads for analysis.

Prior to running MiTCR, the fastq files were cleaned

by only retaining reads longer than 40 nucleotides and

reads containing standard (ACTGN) bases. For every

sample, MiTCR was run with the optimized V and J

alignment parameters for a theoretical 0 % false discov-

ery rate with 50 nucleotide reads for both alpha and

beta chains, keeping all other parameters default. Ex-

tracted CDR3 sequences that contained stop codons or

frame shifts were removed prior to all further analysis.

TCGA gene expression datasets

In order to correlate extracted TCR diversity with the

expression of immune-related genes, all available RNA-

SeqV2 data from the TCGA Data Portal were down-

loaded. These data provide gene expression information

generated using MapSplice [20] for alignment and

RSEM [21] to quantify gene expression. The reported

scaled_estimate value was multiplied by 106 to obtain

transcripts per million (TPM). To obtain consensus gene

expression values, we summed the TPM values within

each of the following groups: HLA Class I (HLA-A,

HLA-B, HLA-C, HLA-E, HLA-F, HLA-G), Class II (HLA-

DMA, HLA-DMB, HLA-DOA, HLA-DOB, HLA-DPA1,

HLA-DPB1, HLA-DQA1, HLA-DQA2, HLA-DQB1,

HLA-DQB2, HLA-DRA, HLA-DRB1, HLA-DRB5), CD8

(CD8A, CD8B), or CD3 (CD3D, CD3E, CD3G). Pearson

correlations were calculated between these genes and

the number of distinct CDR3 sequences in each individ-

ual (Additional file 1: Figures S4 and S5).

Inferred pairing of TCR alpha and beta subunits

For each tumor sample, all possible pairwise combina-

tions of TCR alpha and beta subunit CDR3 sequences

derived from that sample were specified (n = 1,286,810).

We then looked for recurrent alpha-beta pairs among all

TCGA tumor samples, and identified 188 distinct alpha-

beta pairs that were found in at least two individuals. To

test if this was a stronger alpha-beta co-occurrence than

would be expected by chance, we randomized the

relationship between sample identifiers and their corre-

sponding TCR alpha and beta sequences. We then regener-

ated all possible pairwise combinations within subjects and

determined the frequency of recurrent alpha-beta pairs in

this randomized dataset. Randomization was repeated

for 100 iterations, and the proportion of trials that had a

degree of sharing greater than or equal to the original,

non-randomized data was taken as the P value.

Shared peptide-MHC and CDR3 sequences

We predicted HLA Class I alleles and MHC-presented

point mutations for 1361 TCGA individuals as previ-

ously described [22], with an IC50 value of 500 nM for

MHC-predicted binding affinity taken as the maximum

threshold for potential immunogenicity. We counted the

frequency of each peptide-MHC (pMHC; n = 305,438),

and found 393 to be recurrent. In order to determine if

any of the individuals sharing a pMHC also shared a

similar CDR3 sequence, we took all CDR3 sequences

from all 1361 individuals, and clustered them to allow

for inexact CDR3 sequence matches. We clustered at

95 % identity using CD-HIT [23, 24] v4.6 with the fol-

lowing parameters: −c 0.95; −n 5; −l 5. We then checked

each cluster to see if it contained sequences from at least

two individuals, and if those individuals shared a pMHC.

We found one cluster of two individuals that met this

criteria. To test how frequently this would be expected

to happen by chance, we randomly selected two individ-

uals from the set, and checked if they shared a pMHC.

We measured the fraction of successes from 1,000,000

trials, then multiplied by the number of clusters that

contained two individuals (n = 1457) to correct for mul-

tiple testing to give the adjusted P value.

Data analysis

All data analysis was performed in R [25] v3.1.2 or Python

(http://www.python.org) v2.4.3 and v3.2.2.

Code availability

Custom code is available upon request.

Results and discussion

Somatically rearranged T cell receptor sequences can be

effectively recovered from RNA-seq data

We optimized the extraction of TCR alpha and beta chain

sequences from RNA-seq datasets by evaluating negative

and positive control datasets and adjusting search parame-

ters. We identified optimal V and J alignment parameters

that yielded an average of 94 % sensitivity for 100 % speci-

ficity using the shortest (50 nucleotide) reads (Additional

file 1: Table S2, see “Methods”). Sensitivity was limited, ul-

timately, by the inability to detect the small proportion of

CDR3s that are longer than a sequencing read (Additional

file 1: Figure S3).

To estimate the yield of TCR transcripts that could be

expected from typical RNA-seq experiments, we used

Flux Simulator [19] to generate simulated RNA-seq data

spiked with in silico recombined TCR transcripts, and
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processed these data as described in “Methods”. As ex-

pected, the most abundant TCR transcripts were the

most readily detected and the sensitivity of the method

increased with increasing sequencing depths and read

lengths (Additional file 1: Figure S2). We fit a multivari-

ate logistic regression model to explain the odds of de-

tecting a CDR3 sequence from the RNA-seq data using

the explanatory variables log10(transcripts per million)

(odds ratio [OR] 7.242; 95 % confidence interval [CI]

7.079, 7.411; P < 2 × 10−16), sequencing depth in tens of

millions of reads (OR 1.667; 95 % CI 1.658, 1.677; P <

2 × 10−16), sequence read length (OR 1.0358; 95 % CI

1.035, 1.037; P < 2 × 10−16), and CDR3 nucleotide se-

quence length (OR 0.958; 95 % CI 0.956, 0.960; P < 2 ×

10−16), and observed that initial TCR transcript abun-

dance is the most important factor in predicting whether

a CDR3 would be detected.

For tumor tissue, where the degree of T cell infiltration

is typically about 2 % (see “Methods”), we would expect

0.001 % of the total transcripts to be recombined TCR

transcripts. Assuming a monoclonal infiltrate, an RNA-

seq depth of 70 million 50-nucleotide reads is required to

have a greater than 50 % chance of detecting a 45-

nucleotide CDR3 (the most frequent CDR3β length [2]).

Additional probabilities are presented in Additional file 1:

Table S4. To further evaluate the yield of TCR sequences

from RNA-seq data, we generated TCR-seq for TCR beta

chain (1,411,056 reads; 2823 unique CDR3β sequences)

and RNA-seq for total cDNA (56,067,687 reads; 9 unique

CDR3β sequences) data from the same colorectal

tumor tissue sample, using previously described

methods [12, 26]. We observed that all high confi-

dence CDR3βs identified by RNA-seq (n = 9) fell

within the top 2.1 % (n = 60) of CDR3βs detected by

TCR-seq, ranked by abundance (data not shown),

confirming that at a modest depth of sequencing,

RNA-seq can identify the most abundant CDR3-

encoding transcripts. The most abundant T cells may

or may not be the most biologically relevant T cells.

In solid tumors, the relationship between clonal abun-

dance of T cells and anti-tumor immunity is not yet

clear—it is obscured by the presence of bystander T

cells in the tumor environment as further discussed

below. In cases such as T cell leukemia, where the T

cell is the cancerous cell and is highly expanded, the

most abundant CDR3 sequences found by RNA-seq

should generally be adequate to identify the tumor

clone and monitor disease progression [27]. Likewise,

in cases such as acute infection, the most abundant T

cells are likely those that are most biologically rele-

vant. TCR transcripts from rare T cells will become

more accessible in future because continually declin-

ing sequencing costs will allow deeper and deeper

transcriptome sampling by RNA-seq.

TCR sequence diversity in tumor-associated T cell

repertoires

We extracted TCR alpha and beta chain CDR3 se-

quences from all available RNA-seq datasets from the

TCGA project. This included 7342 total datasets derived

from 6738 solid tumor and 604 matched normal tissues,

from 24 different tumor sites. In tumors, the yield per

individual ranged from 0 to 702 (median of 9) reads con-

taining a full CDR3 sequence (Fig. 2), and this translated

to a range of 0 to 538 (median of 7) distinct CDR3

amino acid sequences per individual. Kidney renal clear

cell carcinoma (KIRC) produced the greatest yield of

CDR3s, whereas brain lower grade glioma produced the

lowest. As expected, there was a strong correlation be-

tween number of distinct CDR3 amino acid sequences

and CD3 expression (Additional file 1: Figure S4). Com-

paring the gene expression of HLA Class I and Class II

genes with the number of distinct CDR3 amino acid se-

quences per individual, we observed a positive correl-

ation, with markedly stronger correlations seen for Class

II genes (Additional file 1: Figure S5; P = 9.3 × 10−10,

paired t test). This is consistent with recent reports

highlighting the immunoreactivity of T cells with specifi-

city for MHC Class II presented tumor antigens [28–30].

Next, we evaluated the differential abundance of

CDR3s between tumors and matched normal control

tissues for all individuals where the RNA-seq data

were available for both (n = 462; Fig. 3 and Additional

file 1: Table S5). Of 6611 total alpha chains in this

set, 3560 (53.8 %) were unique to tumor samples and

2826 (42.7 %) were unique to matched control sam-

ples. Likewise, of the 7664 beta chains, 4279 (55.8 %)

were unique to tumor and 3277 (42.8 %) were unique

to matched control samples. A total of 225 unique

CDR3α and 108 unique CDR3β sequences were

present in both tumor and control tissues. Thus,

while there is evidence for a larger and more diverse

T cell infiltrate in tumor compared to control tissues

(P < 2.2 × 10−16, chi-squared test), these results suggest

that a large proportion of tumor-associated T cells are by-

standers, not readily distinguishable from the normal

population of tissue resident T cells. A single individual

with KIRC was a notable outlier in this analysis. The

tumor sample from this individual yielded the three most

abundant tumor-specific CDR3αs and the two most abun-

dant tumor-specific CDR3βs in the entire cohort, suggest-

ing the possibility of an acute anti-tumor T cell response

in this individual.

Public T cells are common in the tumor environment

To explore the recurrence of TCRs mined from the

tumor environment, we compared the CDR3β sequences

extracted from the complete set of analyzed TCGA sam-

ples to the approximately 1.1 million distinct CDR3β
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sequences we previously identified by deep TCR-seq

analysis of peripheral blood from a healthy volunteer

[12]. Of all 49,672 distinct TCGA CDR3β sequences we

observed, 22.8 % were found in the peripheral repertoire

of the healthy individual (Additional file 1: Figure S6).

We found the level of overlap for those CDR3βs that

were seen in multiple TCGA individuals (76.5 % of 2197

shared TCGA CDR3βs found in the healthy repertoire)

was substantially greater than for those that were unique

to a single TCGA individual (20.3 % of 47,475 unique

TCGA CDR3βs found in the healthy repertoire), suggest-

ing these shared tumor-associated CDR3βs are derived,

predominantly, from public T cells. Indeed, when we

queried tumor-associated CDR3β sequences for matches

to CDR3β sequences in the literature with defined anti-

gen specificity, we found numerous matches to known

viral-specific TCRs [31] (Fig. 4). TCGA CDR3βs with

viral specificity were much more common within the set

of shared TCGA CDR3βs than within the set of unique

TCGA CDR3βs. Specifically, nine of 2197 CDR3βs

Fig. 2 The number of reads containing CDR3 sequences varies across tumor sites. ACC adrenocortical carcinoma, BLCA bladder urothelial carcinoma,

BRCA breast invasive carcinoma, CESC cervical squamous cell carcinoma and endocervical adenocarcinoma, CRAD colon and rectum adenocarcinoma,

ESCA esophageal carcinoma, GBM glioblastoma multiforme, HNSC head and neck squamous cell carcinoma, KICH kidney chromophobe, KIRC kidney

renal clear cell carcinoma, KIRP kidney renal papillary cell carcinoma, LGG brain lower grade glioma, LIHC liver hepatocellular carcinoma, LUAD lung

adenocarcinoma, LUSC lung squamous cell carcinoma, OV ovarian serous cystadenocarcinoma, PAAD pancreatic adenocarcinoma, PCPG

pheochromocytoma and paraganglioma, PRAD prostate adenocarcinoma, SKCM skin cutaneous melanoma, STAD stomach adenocarcinoma, TCR T cell

receptor, THCA thyroid carcinoma, UCEC uterine corpus endometrial carcinoma, UCS uterine carcinosarcoma

Fig. 3 The majority of CDR3s recovered from tumor/normal control tissue pairs are unique to tumor or normal tissue. For every CDR3, the

number of reads in the set of tumors is plotted on the y-axis, with the number of reads in the set of normal samples on the x-axis. Circles are

colored by the number of individuals in which that CDR3 sequence is detected
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(0.41 %) that were shared among TCGA individuals were

identifiable as being viral-specific, whereas only three of

the 47,475 CDR3βs (0.0063 %) that were unique to a sin-

gle TCGA individual were similarly identifiable.

Given the observation of substantial sharing of CDR3

sequences among individuals, we asked if some of the

shared alpha and beta CDR3 sequences may represent

shared dimeric TCRs. To test this we generated all pos-

sible alpha-beta pairs within each individual’s alpha and

beta repertoires, and looked for sharing of any pairs be-

tween two or more individuals. We observed 188 dis-

tinct alpha-beta pairs that were found in at least two

individuals, which was not significantly more than would

be expected by chance (P = 0.42, random resampling, see

“Methods”). We also asked if individuals with shared

mutations and shared HLA alleles may also share TCR

sequences. Previously, for a subset of TCGA individuals,

we identified tumor point mutations predicted to yield

MHC class I binding peptides (pMHCs) [22]. We clus-

tered the CDR3 amino acid sequences from all individ-

uals with predicted mutant pMHCs at 95 % amino acid

sequence identity. Of the 17,092 total CDR3 sequence

clusters (including singletons), only one cluster con-

tained sequences from two individuals with matching

mutant pMHCs (Additional file 1: Table S6). Although

this is not statistically significant (P = 0.35, random re-

sampling, see “Methods”), with deeper sequencing data

from large numbers of individuals, this approach may

prove useful for matching TCR sequences to the neo-

antigens they recognize.

Conclusions

In future, as sequence costs continue to decline, there

will be increasing opportunities to derive immune signa-

tures from unbiased data types. Here, we have optimized

an analytical strategy for extracting T cell repertoire

information from RNA-seq datasets, and used it to

characterize tumor-associated T cell repertoires. We

have provided optimal parameters for mining RNA-seq

datasets of varying read lengths, and provided a range of

parameters for varying levels of acceptable false positive

rates. This procedure was validated on simulated RNA-

seq datasets with known recombined TCR transcripts,

and was also compared to classical TCR-seq data, show-

ing that the subset of TCRs we detected using RNA-seq

were the most abundant T cells in the sample. The ex-

pected yield of TCR reads from RNA-seq data is ultim-

ately dependent on the level of T cell infiltration in the

sample and the clonality of the infiltrate. Assuming a

similar cellular composition to TCGA tumors, one can

expect on the order of one TCR read from 10 million se-

quence reads. Our analysis has highlighted a strong and

novel correlation between tumor TCR diversity and

tumor MHC Class II expression and high prevalence of

public T cells in the tumor environment. Further, within

the limitations of the available data, we have explored

the association between alpha-beta TCR pairs, and linking

TCR sequences to specific pMHC complexes. Analyses of

this nature may inform future cancer immunotherapy strat-

egies, and we expect that this same approach will have

value in exploring other immune-related pathologies, where

large RNA-seq datasets already exist or can be obtained.
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Fig. 4 Sharing of CDR3β sequences. All 49,672 CDR3β sequences derived from tumors are plotted along the x-axis according to the number of

tumors they are found in. Color defines the number of nucleotide sequences that were found to generate the same CDR3β amino acid sequence.

The violin plot overlay shows that most recovered CDR3β sequences are unique to an individual, though there is notable sharing (4.4 %) between

individuals. Known public viral-specific CDR3β sequences [31] are labeled with their antigen specificity. EBV Epstein–Barr virus

Brown et al. Genome Medicine  (2015) 7:125 Page 7 of 8

dx.doi.org/10.1186/s13073-015-0248-x


Authors’ contributions

SDB and RAH designed the study and developed the methods. SDB

processed and analyzed the data. LAR performed TCR-seq. SDB and RAH

wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgements

We thank NIH and the Cancer Genome Atlas Research Network for data access

(study accession phs000178.v8.p7). The results published here are in part based

upon data generated by The Cancer Genome Atlas managed by the NCI and

NHGRI. Information about TCGA can be found at http://cancergenome.nih.gov.

We thank ENCODE for data access. This work was supported by the British

Columbia Cancer Foundation and grants from the Canadian Institutes of Health

Research (CIHR) (MOP-102679). SDB is supported by a CIHR Frederick Banting

and Charles Best Canadian Graduate Scholarship.

Author details
1Canada’s Michael Smith Genome Sciences Centre, BC Cancer Agency,

Vancouver, British Columbia V5Z 1L3, Canada. 2Genome Science and

Technology Program, University of British Columbia, Vancouver, British

Columbia V6T 1Z4, Canada. 3Department of Molecular Biology and

Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6,

Canada. 4Department of Medical Genetics, University of British Columbia,

Vancouver, British Columbia V6T 1Z4, Canada.

Received: 15 August 2015 Accepted: 13 November 2015

References

1. Woodsworth DJ, Castellarin M, Holt RA. Sequence analysis of T-cell

repertoires in health and disease. Genome Med. 2013;5:98.

2. Freeman JD, Warren L, Webb JR, Nelson BH, Holt RA. Profiling the T-cell

receptor beta-chain repertoire by massively parallel sequencing. Genome

Res. 2009;19:1817–24.

3. Robins HS, Campregher PV, Srivastava SK, Wacher A, Turtle CJ, Kahsai O, et

al. Comprehensive assessment of T-cell receptor beta-chain diversity in

alphabeta T cells. Blood. 2009;114:4099–107.

4. Clemente CG, Mihm MC, Bufalino R, Zurrida S, Collini P, Cascinelli N.

Prognostic value of tumor infiltrating lymphocytes in the vertical growth

phase of primary cutaneous melanoma. Cancer. 1996;77:1303–10.

5. Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F, et al. Intraepithelial

CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell

ratio are associated with favorable prognosis in ovarian cancer. Proc Natl

Acad Sci U S A. 2005;102:18538–43.

6. Cantaert T, Brouard S, Thurlings RM, Pallier A, Salinas GF, Braud C, et al.

Alterations of the synovial T cell repertoire in anti-citrullinated protein

antibody-positive rheumatoid arthritis. Arthritis Rheum. 2009;60:1944–56.

7. Jonasson L, Holm J, Skalli O, Bondjers G, Hansson GK. Regional

accumulations of T cells, macrophages, and smooth muscle cells in the

human atherosclerotic plaque. Arterioscler Thromb Vasc Biol. 1986;6:131–8.

8. Traugott U, Reinherz E, Raine C. Multiple sclerosis: distribution of T cell

subsets within active chronic lesions. Science. 1983;219:308–10.

9. Matloubian M, Concepcion RJ, Ahmed R. CD4+ T cells are required to

sustain CD8+ cytotoxic T-cell responses during chronic viral infection. J

Virol. 1994;68:8056–63.

10. Moon JJ, Chu HH, Pepper M, McSorley SJ, Jameson SC, Kedl RM, et al. Naive

CD4(+) T cell frequency varies for different epitopes and predicts repertoire

diversity and response magnitude. Immunity. 2007;27:203–13.

11. Parrott DM V, Tait C, MacKenzie S, Mowat AM, Davies MDJ, Micklem HS.

Analysis of the effector functions of different populations of mucosal

lymphocytes. Ann N Y Acad Sci. 1983;409(1 The Secretory):307–20.

12. Warren RL, Freeman JD, Zeng T, Choe G, Munro S, Moore R, et al.

Exhaustive T-cell repertoire sequencing of human peripheral blood samples

reveals signatures of antigen selection and a directly measured repertoire

size of at least 1 million clonotypes. Genome Res. 2011;21:790–7.

13. Warren RL, Choe G, Freeman DJ, Castellarin M, Munro S, Moore R, et al.

Derivation of HLA types from shotgun sequence datasets. Genome Med.

2012;4:95.

14. Boegel S, Löwer M, Schäfer M, Bukur T, De GJ, Boisguérin V, et al. HLA

typing from RNA-Seq sequence reads. Genome Med. 2012;4:102.

15. Warren RL, Freeman DJ, Pleasance S, Watson P, Moore RA, Cochrane K, et al.

Co-occurrence of anaerobic bacteria in colorectal carcinomas. Microbiome.

2013;1:16.

16. Bolotin DA, Shugay M, Mamedov IZ, Putintseva EV, Turchaninova MA,

Zvyagin IV, et al. MiTCR: software for T-cell receptor sequencing data

analysis. Nat Methods. 2013;10:813–4.

17. Lefranc M-P. IMGT, the International ImMunoGeneTics Information System.

Cold Spring Harb Protoc. 2011;2011:595–603.

18. Bernstein BE, Birney E, Dunham I, Green ED, Gunter C, Snyder M. An

integrated encyclopedia of DNA elements in the human genome. Nature.

2012;489:57–74.

19. Griebel T, Zacher B, Ribeca P, Raineri E, Lacroix V, Guigó R, et al. Modelling

and simulating generic RNA-Seq experiments with the flux simulator.

Nucleic Acids Res. 2012;40:10073–83.

20. Wang K, Singh D, Zeng Z, Coleman SJ, Huang Y, Savich GL, et al. MapSplice:

accurate mapping of RNA-seq reads for splice junction discovery. Nucleic

Acids Res. 2010;38:e178.

21. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data

with or without a reference genome. BMC Bioinformatics. 2011;12:323.

22. Brown SD, Warren RL, Gibb EA, Martin SD, Spinelli JJ, Nelson BH, et al.

Neo-antigens predicted by tumor genome meta-analysis correlate with

increased patient survival. Genome Res. 2014;24:743–50.

23. Li W, Jaroszewski L, Godzik A. Clustering of highly homologous sequences

to reduce the size of large protein databases. Bioinformatics. 2001;17:282–3.

24. Li W, Jaroszewski L, Godzik A. Tolerating some redundancy significantly speeds

up clustering of large protein databases. Bioinformatics. 2002;18:77–82.

25. R Core Team. R: a language and environment for statistical computing.

Vienna: R Foundation for Statistical Computing; 2013.

26. Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M, Strauss J, et

al. Fusobacterium nucleatum infection is prevalent in human colorectal

carcinoma. Genome Res. 2012;22:299–306.

27. Wu D, Sherwood A, Fromm JR, Winter SS, Dunsmore KP, Loh ML, et al.

High-throughput sequencing detects minimal residual disease in acute T

lymphoblastic leukemia. Sci Transl Med. 2012;4:134ra63.

28. Schumacher T, Bunse L, Pusch S, Sahm F, Wiestler B, Quandt J, et al. A

vaccine targeting mutant IDH1 induces antitumour immunity. Nature. 2014;

512:324–7.

29. Kreiter S, Vormehr M, van de Roemer N, Diken M, Löwer M, Diekmann J, et

al. Mutant MHC class II epitopes drive therapeutic immune responses to

cancer. Nature. 2015;520:692–6.

30. Tran E, Turcotte S, Gros A, Robbins PF, Lu Y-C, Dudley ME, et al. Cancer

immunotherapy based on mutation-specific CD4+ T cells in a patient with

epithelial cancer. Science. 2014;344:641–5.

31. Lossius A, Johansen JN, Vartdal F, Robins H, Jūratė Šaltytė B, Holmøy T, et al.

High-throughput sequencing of TCR repertoires in multiple sclerosis reveals

intrathecal enrichment of EBV-reactive CD8+ T cells. Eur J Immunol. 2014;44:

3439–52.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Brown et al. Genome Medicine  (2015) 7:125 Page 8 of 8

http://cancergenome.nih.gov

	Abstract
	Background
	Methods
	Ethics
	Extraction of T cell receptor CDR3 sequences from RNA-seq data
	Benchmarking CDR3 extraction efficiency using simulated data
	Approximation of TCR transcript abundance from percent T cell infiltration
	TCGA RNA-seq data analysis
	TCGA gene expression datasets
	Inferred pairing of TCR alpha and beta subunits
	Shared peptide-MHC and CDR3 sequences
	Data analysis
	Code availability

	Results and discussion
	Somatically rearranged T cell receptor sequences can be effectively recovered from RNA-seq data
	TCR sequence diversity in tumor-associated T cell repertoires
	Public T cells are common in the tumor environment

	Conclusions
	Additional file
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

