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In this study criterion of maximum profit intensity for transportation problems, 
in contrast to the known criteria of minimum expenses or minimum time for 
transportation, is considered. This criterion synthesizes financial and time factors 
and has real economic sense. According to the purpose of this paper, the algorithm 
of solution of such transportation problem is constructed. It is shown that the 
choice is carried out among Pareto-optimal options, moreover the factor of 
time becomes defining for the high income from transportation, and the factor 
of expenses – at low ones. Not absolute but relative changes of numerator and 
denominator become important when the criterion represents the fraction (in this 
case – the profit intensity as the ratio of profit to time). Nonlinear generalization 
of such transportation problem is proposed and the scheme of its solution in a 
nonlinear case is outlined. Graphic illustrations of Pareto-optimal and optimal 
solutions of transportation problem by profit intensity criterion are also given. 
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INTRODUCTION

Transportation problem has an important 
significance at the present stage of economic 
development and international trade. Grazia 
Speranza (2018) considered modern trends of 
transportation and logistics. Damci-Kurt et al. (2015) 
investigated transportation problem with market 
choice. Xie et al. (2017) considered transportation 
problem with varying demands and supplies. Stein 
and Sudermann- Merx (2018) studied the non-
cooperative transportation problem and linear 
generalized Nash games. Christensen and Labbé 
(2015) proposed a branch-cut-and-price algorithm for 
the piecewise linear transportation problem. Khurana 
et al. (2018) considered multi-index constrained 
transportation problem with bounds on availabilities, 
requirements and commodities. Akilbasha et al. 
(2018) and proposed an innovative exact method for 
solving fully interval integer transportation problems. 
Calvete (2018) studied matheuristic for the two-stage 
fixed-charge transportation problem. Fang Liu (2017) 
proposed a greedy algorithm for solving ordinary 
transportation problem with capacity constraints. 
Chow (2018) studied inverse transportation 
problems. Wu et al. (2017) proposed an efficient 
two-phase exact algorithm for the automated truck 
freight transportation problem. Carlo et al. (2017) 
investigated transportation-location problem with 
unknown number of facilities. Guo et al. (2015) studied 
a transportation problem with uncertain costs and 
random supplies. Safi and Razmjoo (2013) considered 
solving fixed charge transportation problem with 
interval parameters. Masson et al. (2016) proposed 
a two-stage solution method for the annual dairy 
transportation problem. Zhang et al. (2016) studied 
fixed charge solid transportation problem in uncertain 
environment and its algorithm. Gabrel et al. (2014) 
investigated robust location transportation problems 
under uncertain demands. Juman and Hoque (2015) 
proposed an efficient heuristic to obtain a better 
initial feasible solution to the transportation problem. 
Funke and Kopfer (2016) studied a model for a 
multi-size inland container transportation problem. 
Aardal and Le Bodic (2014) proposed approximation 
algorithms for the transportation problem with 
market choice and related models. Guajardo et al. 
(2018) studied collaborative transportation with 
overlapping coalitions. Ojha et al. (2014) investigated 
a transportation problem with fuzzy-stochastic cost. 

MATERIALS AND METHODS

In the classical transportation problem total 
expenses of freight transportation are considered as 
a criteria indicator using Eqs. 1 to 4 (Esenkov et al., 
2015).
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Where, the control parameters are: 

ijx – volumes of transportation from the supplier i  to the consumer j , mi ,...,1= , nj ,...,1= ; 

External parameters are: 
m  – number of suppliers, 
n  – number of consumers, 

ijc  – unit expenses of transportation from the supplier i  to the consumer j , mi ,...,1= , nj ,...,1=  

ia  – freight stocks of the supplier i , mi ,...,1= , 

jb  – freight needs of the consumer j , nj ,...,1= . 

 
The condition of resolvability of the problem (1) - (4) is the balance between total suppliers’ freight stocks and 
consumers’ needs Eq. 5. 
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Beyond such traditional statement (1) - (4), 
there is an economic justification of a complex of 
transportation: expediency (profitability) of the 
freight transportation from suppliers to consumers is 
not discussed, there is only one possibility to choose 
its optimum way in the problem. It is adequate, first 
of all, to conditions of the administrative economic 
system, when the necessity of freight transportation 
is set in a directive way, for reasons of the highest 
order, and it is out of the model. If it interprets the 
problem (1) – (4) concerning the market economy, 
the conclusion comes that some income D  from the 
implementation of the whole transportation complex 
is implicitly supposed, then at minimum expenses 
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Moreover, the optimum plan { }*ijx  does not depend 
on the value D , i.e. problems of profit maximization 
and expenses minimization are equivalent.

Besides the above-mentioned expense lowering 
approach to transport optimization, the transportation 
problem by time criterion is also known (Esenkov et 
al., 2015; Hirshleifer, 1970). Under the constraints (2)– 
(4) the total duration of the transportation complex, 
which is defined by the duration of the longest carriage 
from among included in the plan, is minimized using 
Eq. 6.
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the total duration of the transportation complex, which is defined by the duration of the longest carriage from 
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If any of cells of the optimum plan, received at 

the previous value 1−kt , was not blocked at the 
current value kt , the optimum plan does not change, 
otherwise it must be recalculated (it worsens as the 
solution area becomes narrower). The received plan 
is fixed in a set of Pareto-optimal solutions under the 
given kt  (and the previous plan is output from it if 
it has equal expenses with flowing). The module is 
moved on to 2.2. If after the next blocking of cells the 
problem (1) – (4) becomes incompatible, the previous 
value 1−kt  and optimum plan, corresponding to it, will 
define the solution of the problem (6), (2) – (4) by the 
criterion of time. The process 2.2 – 2.4 is completed, 
then pass to the module 2.5.

2.5. The choice from the obtained set of Pareto-
optimal solutions the best by criterion (7) by 
simple comparison. Results of implementation of 
preparatory modules 2.2 – 2.4 of the algorithm are 
illustrated in Fig. 1.

First, maxt is selected and solve the problem (1) – 
(4) without blocked cells. Solution 1 is received, i.e. 
the solution of the transport problem by the criterion 
of expenses. By two rays, emerging from this point 1 
parallel to the coordinate axes, the set of majorized 
solutions is defined (which cannot be Pareto-optimal 
any more). At the choice of the following (shorter) 
t  the minimum (the provided blocked cells are 
with values maxttij = ) sum of expenses increases 
(the solution 2, which is so far considered as Pareto-
optimal too). However, with obtaining (after the next 
reduction of t ) the solution 3 with the same value 
of total expenses (which were not affected by the 
time reduction) the solution 2 should be withdrawn 
from the set of Pareto-optimal. Also intermediate 
are solutions 4 and 5, and the set of Pareto-optimal 
(such which are not majorized by any others) is finally 
formed by solutions 1, 3, 6, 7, 8. Moreover the solution 
8 is the solution of the transportation problem (6), (2) 
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– (4) by the criterion of time, as at further reduction 
of t and blocking of the corresponding portion of 
cells the problem (1) – (4) becomes incompatible. 
Lower bypass of majorized solutions set can be 
considered as the graph of the function )(tC , which 
characterizes the dependence of minimum total 
expenses on time. Finding in module 2.5 of the 
algorithm ttCD

t
/))((max −

 
at various values of D  is 

shown in Fig. 2. In module 2.5 – unlike all previous 
modules – the dependence on the size of income D
, that influences only the final choice of the optimum 
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profit function )()( tCDtF −=  increases respectively. 
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be the last common point of the straight line, which 
the counterclockwise round will be turned the origin 
of coordinates, and the graph of the corresponding 
function of profit. (A similar approach with a rotation 
of the straight line round the origin of coordinates to 
the last common point with a polygon of conditions 
area is also applied in the graphic method of solution 
of the problem of linear fractional programming 

(Stancu-Minasian,1997; Valipour, et al., 2014).
At the low-income value 1D  the factor of 

expenses has crucial importance as at reduction 
of time expenses start exceeding this income, and 
instead of profit it will get losses – both total, and 
for a unit of time. Therefore, at low values of D  
the transportation problem by the criterion of 
profit intensity becomes equivalent to the usual 
transportation problem on a minimum of expenses 
(1) – (4), the factor of time cannot be taken into 
account. The optimal point will be the point A , which 
corresponds to minimum expenses (and maximum 
time maxt ). At a sufficiently high value of the income 

3D
 –  in comparison with possible range of change of 

the minimum total expenses – the factor of time gets 
crucial importance, as the profit is always positive 
and does not change significantly. Therefore, at 
high values of D  the transportation problem by the 
criterion of profit intensity becomes an equivalent to 
the transportation problem by the criterion of time 
(6), (2) – (4), expenses lose their influence on the final 
choice. The optimal point will be the point C , which 
corresponds to the minimum time mint .

The optimum combination of factors of expenses 
and time, which is reached in a certain intermediate 
point B , is required at an intermediate value of the 
income 2D , 321 DDD << . It is noticeable, that not 
absolute, but relative changes of numerator and 
denominator (i.e. not “on how much”, but “in how 
many times” the profit or time increases or decreases) 
become important, when the criterion represents the 
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Fig.1: Pareto‐optimal solutions (1, 3, 6, 7, 8) of the transportation problems by criteria of expenses and time 
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Fig. 1: Pareto-optimal solutions (1, 3, 6, 7, 8) of the transportation problems by criteria of expenses and time
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fraction (in this case – the profit intensity as the ratio 
of profit mass to time).

The general tendency of reduction of optimum 
time of transportation (abscissas of points A , B , C
) within creasing of values of the income 321 ,, DDD

 can be rather accurately traced in Fig. 2. The 
corresponding value of total transportation expenses 
increases gradually. But, despite this, the value of 
the criterion of profit intensity grows monotonically 
by income D . However, such conclusion cannot 
be made about monotonous increase concerning 
separately taken numerator (in this case it is profit). 
It takes place only partially, within this transportation 
optimum time (and it is final, when this time already 
becomes minimum possible). Upon transition to 
another optimum time – for example, from the point 
A  to the point B  – with the increase of the income 

the size of profit can be reduced due to the advancing 
growth of total expenses. It is interesting to compare 
optimal plans by different criteria in conditions, when 
expected income D  does not exceed even minimum 
possible total expenses on transportation, i.e. the 
whole graph of profit function )(tF is below abscissa 
axis. From the point of view of the time criterion, 
this circumstance does not matter and has no effect. 
By the criterion of profit maximization (or expenses 
minimization) carriages will be carried out – let 
with losses, but minimum possible. And only by the 
criterion of the maximum of profit intensity it will 
be favorable to extend time, connected with losses 
of carriages (to increase a criterion denominator at 

negative numerator) indefinitely, i.e. not to carry out 
them at all.

Multiple version
It is also interesting to notice a possibility of 

multiple statement of the transportation problem by 
criterion of profit intensity, when not only one value 
cij, tij, but a few couples of values: 
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To constraints of the model (2) – (4) Eq. 9 are added 
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Modules 2.2, 2.4, 2.5 of the algorithm remain without changes. Such converted algorithm allows to form for 
every kt the most favorable option of basic data, and then to obtain a set of Pareto-optimal solutions and to 
choose from it the best plan by the criterion of profit intensity.  
 
Nonlinear generalization 
Nonlinear generalization of the problem (7), (2) – (4) provides introduction of dependencies of durations ijt  

and unit expenses ijc
 
for each route ),( ji  not only from transportation options ijij Ss ∈ , but also from the 

transportation volume ijx . Fundamental type of dependences )(xt  and )(xc at various options of 

transportation (1 – cheap but slow, 2 – average, 3 – expensive but fast) is shown in Figs. 3 and 4. According to 
Fig. 3, 0)0( =t , at 0>x  initially there is a leap of duration, caused by the fact of transportation, then 
duration increases almost linearly (stepwise, but in a limit case – it is smoothed) with increase of freight 
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slow (but cheap) option. Dependences of unit 
expenses on transportation volumes (Fig. 4) are more 
complicated: 0)0( =c , at 0>x  initially there is a leap 
of expenses due to a constant component, then unit 
expenses gradually decrease due to specialization and 
distribution of constant expenses on the increasing 
volume of freight, reach a certain minimum and 
start growing because of necessity of use of worse 
resources and (or) investment for ensuring further 
growth of transportation volumes. The criterion of 
profit intensity in the non-linear case takes form Eq. 
10.
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For the solution of the problem (10), (2) – (4), (9) it is possible to use monotonous increase of 
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under constraints  (2), (3) and bilateral constraints Eq. 12. 
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From the set of the solutions of sequence of such problems (11), (2), (3), (12) at various kt  and combinations 

of options with { }ijS
 

the optimum plan by the criterion of intensity profits can be selected. In further 

investigations it is planned to use intensity profit criterion, which synthesizes financial and time factors and has 
real economic sense, for various scientific and applied problems, as a choice of optimal seaport for 
transportation, determination of optimal terms of equipment replacement and so on. 
 
CONCLUSIONS 
Thus, the criterion of maximum profit intensity for transportation problems, in contrast to the known criteria of 
minimum expenses or minimum time for transportation, is considered. This criterion synthesizes financial and 
time factors and has real economic sense. The algorithm of the solution of such problem is constructed. It is 
shown that the choice is carried out among Pareto-optimal options, moreover the factor of time becomes 
defining for the high income from transportation, and the factor of expenses – at low ones. Not absolute but 
relative changes of numerator and denominator become important when the criterion represents the fraction 
(in this case – the profit intensity as the ratio of profit to time). Nonlinear generalization of such transportation 
problem is proposed and the scheme of its solution in a nonlinear case is outlined. Graphic illustrations of 
Pareto-optimal and optimal solutions of transportation problem by profit intensity criterion are also given. 
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ABBREVIATIONS

a freight stocks of supplier

b freight needs of consumer

c unit expenses of transportation

D income from whole transportation 
complex

Eq. equation
Fig. figure
i index of supplier

j index of consumer

m number of suppliers

M very big value
max maximum
min minimum
n number of consumers
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Criterion for transportation

s transportation variant

S set of transportation variants

t duration of transportation

tk limit duration of transportation

x volume of transportation

REFERENCES
Aardal, K.; LeBodic, P., (2014). Approximation algorithms for the 

transportation problem with market choice and related models. 
Oper. Res. Lett., 42(8): 549-552 (4 pages).

Adland, R.; Alizadeh, A.H., (2018). Explaining price differences 
between physical and derivative freight contracts. Transp. Res., 
Part E: Logistics Transp. Rev., 118: 20-33 (14 pages).

Akilbasha, A.; Pandian, P.; Natarajan, G. (2018). An innovative 
exact method for solving fully interval integer transportation 
problems. Inf. Med. Unlocked., 11: 95-99 (5 pages).

Calvete, H.I.; Galé, C.; Iranzo, J.A.; Toth, P., (2018). A matheuristic 
for the two-stage fixed-charge transportation problem. Comput. 
Oper. Res., 95: 113-122 (10 pages).

Carlo, H.J.; David, V.; Salvat-Dávila, G.S., (2017). Transportation-
location problem with unknown number of facilities. Comput. 
Ind. Eng., 112: 212-220 (9 pages).

Chow, J.Y.J., (2018). Chapter 5- Inverse transportation problems, 
Informed Urban Transp. Syst. Elsevier: 185-238 (54 pages).

Christensen, T.R.L.; Labbé M., (2015). A branch-cut-and-price 
algorithm for the piecewise linear transportation problem. 
Europ. J. Oper. Res., 245(3): 645-655 (11 pages).

Damci-Kurt, P.; Dey, S.S.; Küçükyavuz, S., (2015). On the 
transportation problem with market choice. Discr. Appl. Math., 
181: 54-77 (24 pages).

Esenkov, A.S.; Leonov, V.Y.; Tizik, A.P.; Tsurkov, V.I., (2015). Nonlinear 
integer transportation problem with additional supply and 
consumption points. J. Comput. Syst. Sci. Int., 54(1): 86–92 (7 
pages).

Fang, Liu, (2017). A greedy algorithm for solving ordinary 
transportation problem with capacity constraints. Oper. Res. 
Lett., 45(4): 388-391 (4 pages).

Funke, J.; Kopfer, H., (2016). A model for a multi-size inland 
container transportation problem. Transportation Research Part 
E: Logist. Transp. Rev., 89: 70-85 (16 pages).

Gabrel, V.; Lacroix, M.; Murat, C.; Remli, N., (2014). Robust location 
transportation problems under uncertain demands. Discr. Appl. 
Math., 164(1): 100-111 (12 pages).

Grazia Speranza, M. (2018). Trends in transportation and logistics. 

Europ. J. Oper. Res., 264(3): 830-836 (7 pages).
Guajardo, M.; Rönnqvist, M.; Flisberg, P.; Frisk, M., (2018). 

Collaborative transportation with overlapping coalitions. Europ. 
J. Oper. Res., 271(1), 238-249 (12 pages).

Guo, H.; Wang, X.; Zhou, S., (2015). A transportation problem with 
uncertain costs and random supplies. Int. J. e-Navig. Mar. Econ., 
2: 1-11 (11 pages).

Hirshleifer, J., (1970). Investment, Interest, and Capital (Prentice-
Hall international series in management) 6th Printing Edition 
(320 pages).

Juman, Z.A.M.S.; Hoque, M.A., (2015). An efficient heuristic to 
obtain a better initial feasible solution to the transportation 
problem. Appl. Soft Comp.,34: 813-826 (14 pages).

Khurana, A.; Adlakha, V.; Lev, B., (2018). Multi-index constrained 
transportation problem with bounds on availabilities, 
requirements and commodities. Oper. Res. Persp., 5: 319-333 
(15 pages).

Masson, R.; Lahrichi, N.; Rousseau, L.-M., (2016). A two-stage 
solution method for the annual dairy transportation problem. 
Europ. J. Oper. Res., 251(1): 36-43 (8 pages).

Ojha, A.; Das, B.; Mondal, S.K.; Maiti, M., (2014). A transportation 
problem with fuzzy-stochastic cost. Appl. Math. Model., 38(4): 
1464-1481 (18 pages).

Safi, M.R.; Razmjoo, A., (2013). Solving fixed charge transportation 
problem with interval parameters. Appl. Math. Model., 37(18–
19): 8341-8347 (17 pages).

Sharma, A.; Verma, V.; Kaur, P.; Dahiya, K., (2015). An iterative 
algorithm for two level hierarchical time minimization 
transportation problem. Europ. J. Oper. Res., 246(3): 700-707 (8 
pages).

Stancu-Minasian, I.M., (1997). Fractional programming: Theory, 
Methods and Applications. Kluwer Academic Publisher, New 
York (420 pages).

Stein, O.; Sudermann-Merx, N., (2018). The noncooperative 
transportation problem and linear generalized Nash games. 
Europ. J. Oper. Res., 266(2): 543-553 (11 pages).

Valipour, E.; Yaghoobi, M.A.; Mashinchi, M.,(2014) An iterative 
approach to solve multiobjective linear fractional programming 
problems. Appl. Math. Model., 38(1): 38-49 (12 pages).

Wu, P.; Chu, F.; Che, A.; Fang, Y., (2017). An efficient two-phase 
exact algorithm for the automated truck freight transportation 
problem. Comput. Ind. Eng., 110: 59-66 (8 pages).

Xie F.; Butt M.M.; Li Z.; Zhu L., (2017). An upper bound on the 
minimal total cost of the transportation problem with varying 
demands and supplies. Omega, 68: 105-118 (14 pages).

Zhang, B.; Peng, J.; Li, S.; Chen L., (2016). Fixed charge solid 
transportation problem in uncertain environment and its 
algorithm. Comput. Ind. Eng., 102: 186-197 (12 pages).

https://dl.acm.org/citation.cfm?id=2943691
https://dl.acm.org/citation.cfm?id=2943691
https://dl.acm.org/citation.cfm?id=2943691
http://openaccess.city.ac.uk/20101/
http://openaccess.city.ac.uk/20101/
http://openaccess.city.ac.uk/20101/
https://www.sciencedirect.com/science/article/pii/S2352914818300984
https://www.sciencedirect.com/science/article/pii/S2352914818300984
https://www.sciencedirect.com/science/article/pii/S2352914818300984
http://isiarticles.com/bundles/Article/pre/pdf/89568.pdf
http://isiarticles.com/bundles/Article/pre/pdf/89568.pdf
http://isiarticles.com/bundles/Article/pre/pdf/89568.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0360835217303455
https://www.sciencedirect.com/science/article/abs/pii/S0360835217303455
https://www.sciencedirect.com/science/article/abs/pii/S0360835217303455
https://www.sciencedirect.com/science/article/pii/B978012813613300005X
https://www.sciencedirect.com/science/article/pii/B978012813613300005X
https://www.sciencedirect.com/science/article/abs/pii/S0377221715002611
https://www.sciencedirect.com/science/article/abs/pii/S0377221715002611
https://www.sciencedirect.com/science/article/abs/pii/S0377221715002611
https://www.sciencedirect.com/science/article/pii/S0166218X14004004
https://www.sciencedirect.com/science/article/pii/S0166218X14004004
https://www.sciencedirect.com/science/article/pii/S0166218X14004004
https://link.springer.com/article/10.1134/S1064230715010050
https://link.springer.com/article/10.1134/S1064230715010050
https://link.springer.com/article/10.1134/S1064230715010050
https://link.springer.com/article/10.1134/S1064230715010050
https://www.sciencedirect.com/science/article/pii/S0167637717300196
https://www.sciencedirect.com/science/article/pii/S0167637717300196
https://www.sciencedirect.com/science/article/pii/S0167637717300196
https://www.sciencedirect.com/science/article/pii/S1366554515300193
https://www.sciencedirect.com/science/article/pii/S1366554515300193
https://www.sciencedirect.com/science/article/pii/S1366554515300193
https://www.sciencedirect.com/science/article/pii/S0166218X11003519
https://www.sciencedirect.com/science/article/pii/S0166218X11003519
https://www.sciencedirect.com/science/article/pii/S0166218X11003519
https://www.sciencedirect.com/science/article/abs/pii/S0377221716306713
https://www.sciencedirect.com/science/article/abs/pii/S0377221716306713
https://www.sciencedirect.com/science/article/abs/pii/S037722171830376X
https://www.sciencedirect.com/science/article/abs/pii/S037722171830376X
https://www.sciencedirect.com/science/article/abs/pii/S037722171830376X
https://www.sciencedirect.com/science/article/pii/S2405535215000558
https://www.sciencedirect.com/science/article/pii/S2405535215000558
https://www.sciencedirect.com/science/article/pii/S2405535215000558
https://www.amazon.com/Investment-Interest-Prentice-Hall-international-management/dp/0135029554
https://www.amazon.com/Investment-Interest-Prentice-Hall-international-management/dp/0135029554
https://www.amazon.com/Investment-Interest-Prentice-Hall-international-management/dp/0135029554
https://www.sciencedirect.com/science/article/pii/S1568494615003099
https://www.sciencedirect.com/science/article/pii/S1568494615003099
https://www.sciencedirect.com/science/article/pii/S1568494615003099
https://www.sciencedirect.com/science/article/pii/S2214716018300666
https://www.sciencedirect.com/science/article/pii/S2214716018300666
https://www.sciencedirect.com/science/article/pii/S2214716018300666
https://www.sciencedirect.com/science/article/pii/S2214716018300666
https://www.sciencedirect.com/science/article/abs/pii/S0377221715009844
https://www.sciencedirect.com/science/article/abs/pii/S0377221715009844
https://www.sciencedirect.com/science/article/abs/pii/S0377221715009844
https://www.sciencedirect.com/science/article/pii/S0307904X13005325
https://www.sciencedirect.com/science/article/pii/S0307904X13005325
https://www.sciencedirect.com/science/article/pii/S0307904X13005325
https://www.sciencedirect.com/science/article/pii/S0307904X13002278
https://www.sciencedirect.com/science/article/pii/S0307904X13002278
https://www.sciencedirect.com/science/article/pii/S0307904X13002278
https://www.sciencedirect.com/science/article/abs/pii/S0377221715002416
https://www.sciencedirect.com/science/article/abs/pii/S0377221715002416
https://www.sciencedirect.com/science/article/abs/pii/S0377221715002416
https://www.sciencedirect.com/science/article/abs/pii/S0377221715002416
https://www.springer.com/gp/book/9780792345800
https://www.springer.com/gp/book/9780792345800
https://www.springer.com/gp/book/9780792345800
https://www.sciencedirect.com/science/article/abs/pii/S0377221717308950
https://www.sciencedirect.com/science/article/abs/pii/S0377221717308950
https://www.sciencedirect.com/science/article/abs/pii/S0377221717308950
https://www.sciencedirect.com/science/article/pii/S0307904X13003697
https://www.sciencedirect.com/science/article/pii/S0307904X13003697
https://www.sciencedirect.com/science/article/pii/S0307904X13003697
https://www.sciencedirect.com/science/article/abs/pii/S0360835217301729
https://www.sciencedirect.com/science/article/abs/pii/S0360835217301729
https://www.sciencedirect.com/science/article/abs/pii/S0360835217301729
https://www.sciencedirect.com/science/article/pii/S0305048316303346
https://www.sciencedirect.com/science/article/pii/S0305048316303346
https://www.sciencedirect.com/science/article/pii/S0305048316303346
https://www.sciencedirect.com/science/article/abs/pii/S0360835216304156
https://www.sciencedirect.com/science/article/abs/pii/S0360835216304156
https://www.sciencedirect.com/science/article/abs/pii/S0360835216304156


139

Global J. Environ. Sci. Manage. 5(SI): 131-140, 2019

AUTHOR (S) BIOSKETCHES

Voynarenko, M., Doctor of Economics Sciences, Professor, Corresponding Member of the National Academy of Science of Ukraine, 
Department of Accounting, Audit and Taxation, Khmelnytsky National University, Khmelnytsky, Ukraine. Email: voynarenko@ukr.net

Kholodenko, A., PhD in Economics, Associate Professor, Department of Business and Tourism, Odesa National Maritime University, 
Odesa, Ukraine. Email: anathol2035@gmail.com

HOW TO CITE THIS ARTICLE

Voynarenko, M.; Kholodenko, A., (2019). Profit intensity criterion for transportation problems. Global. J. 
Environ. Sci. Manage., 5(SI): 131-140.

DOI: 10.22034/gjesm.2019.SI.15

url: https://www.gjesm.net/article_35469.html

COPYRIGHTS

Copyright for this article is retained by the author(s), with publication rights granted to the GJESM Journal.
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/4.0/).

mailto:voynarenko@ukr.net
mailto:anathol2035@gmail.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Profit intensity criterion for transportation problems 
	Abstract
	Keywords
	INTRODUCTION
	MATERIALS AND METHODS 
	RESULTS AND DISCUSSION 
	Profit intensity criterion 
	Multiple version 
	Nonlinear generalization 

	CONCLUSIONS
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST 
	ABBREVIATIONS
	REFERENCES 


