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Abstract—We consider a two-level profit-maximizing strategy,
including planning and control, for battery energy storagesystem
(BESS) owners that participate in the primary frequency control
(PFC) market. Specifically, the optimal BESS control minimizes
the operating cost by keeping the state of charge (SoC) in an
optimal range. Through rigorous analysis, we prove that the
optimal BESS control is a “state-invariant” strategy in the sense
that the optimal SoC range does not vary with the state of the
system. As such, the optimal control strategy can be computed
offline once and for all with very low complexity. Regarding the
BESS planning, we prove that the the minimum operating cost
is a decreasing convex function of the BESS energy capacity.
This leads to the optimal BESS sizing that strikes a balance
between the capital investment and operating cost. Our work
here provides a useful theoretical framework for understanding
the planning and control strategies that maximize the economic
benefits of BESSs in ancillary service markets.

NOMENCLATURE

ce electricity purchasing and selling price
cp penalty rate for PFC regulation failure
n interval index
In length of thenth I interval
Jn length of thenth J interval
tsn start time of thenth I interval
ten end time of thenth I interval
qn indicator variable ofnth excursion event
PPFCn PFC power requested in thenth J interval
p(t) battery charging/discharging power at timet
pac(t) power exchanged with the AC bus at timet
η battery charging and discharging efficiency
Emax battery capacity
Pmax maximum charging power of battery
sn SoC at the beginning of thenth I interval
sen SoC at the end of thenth I interval
coste,n charging cost incurred in thenth I interval
costp,n penalty assessed in thenth J interval
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I. I NTRODUCTION

The instantaneous supply of electricity in a power system
must match the time-varying demand as closely as possible.
Or else, the system frequency would rise or decline, compro-
mising the power quality and security. To ensure a stable fre-
quency at its nominal value, the Transmission System Operator
(TSO) must keep control reserves compensate for unforeseen
mismatches between generation and load. Frequency control
is performed in three levels, namely primary, secondary, and
tertiary controls [1]. The first level, primary frequency con-
trol (PFC), reacts within the first few seconds when system
frequency falls outside a dead band, and restores quickly the
balance between the active power generation and consumption.
Due to its stringent requirement on the response time, PFC
is the most expensive control reserve. This is because PFC
is traditionally performed by thermal generators, which are
designed to deliver bulk energy, but not for the provision of
fast-acting reserves. To complement the generation-side PFC,
load-side PFC has been considered as a fast-responding and
cost-effective alternative [2]–[6]. Nonetheless, the provision of
load-side PFC is constrained by end-use disutility caused by
load curtailment.

Battery energy storage systems (BESSs) have recently been
advocated as excellent candidates for PFC due to their ex-
tremely fast ramp rate [7], [8]. Indeed, the supply of PFC
reserve has been identified as the highest-value application
of BESSs [9]. According to a 2010 NREL report [10], the
annual profit of energy storage devices that provide PFC
reserve is as high as US$236-US$439 per KW in the U.S.
electricity market. The use of BESS as a frequency control
reserve in island power systems dates back to about 20 years
ago [11]. Due to the fast penetration of renewable energy
sources, the topic recently regained research interests inboth
interconnected power systems [8], [12] and microgrids [13],
[14].

In view of the emerging load-side PFC markets instituted
worldwide [15], [16], we are interested in deriving profit-
maximizing planning and control strategies for BESSs that
participate in the PFC market. In particular, the optimal BESS
control aims to minimize the operating cost by scheduling
the charging and discharging of the BESS to keep its state
of charge (SoC) in a proper range. Here, the operating cost
includes both the battery charging/discharging cost and the
penalty cost when the BESS fails to provide the PFC service
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according to the contract with the TSO. We also determine the
optimal BESS energy capacity that balances the capital cost
and the operating cost. Previously, [8], [13] investigatedthe
problem of BESS dimensioning and control, with the aim of
maximizing the profit of BESS owners. There, the BESS is
charged or discharged even when system frequency is within
the dead band to adjust the state of charge (SoC). This is
to make sure that the BESS has enough capacity to absorb or
supply power when the system frequency falls outside the dead
band. A different approach to correct the SoC was proposed
in [12], where the set point is adjusted to force the frequency
control signal to be zero-mean.

To complement most of the previous work based on simula-
tions or experiments, we develop a theoretical framework for
analyzing the optimal BESS planning and control strategy in
PFC markets. In particular, the optimal BESS control problem
is formulated as a stochastic dynamic program with continuous
state space and action space. Moreover, the optimal BESS
planning problem is derived by analyzing the optimal value of
the dynamic programming, which is a function of the BESS
energy capacity. A key challenge here is that the complexity
of solving a dynamic programming problem with continuous
state and action spaces is generally very high. Moreover,
standard numerical methods to solve the problem do not reveal
the underlying relationship between the operating cost and
the energy capacity of the BESS. Our main contributions in
addressing this challenge are summarized as follows.

• We prove that with slow-varying electricity price, the
optimal BESS control problem reduces to finding an
optimal target SoC every time the system frequency falls
inside the dead band. In other words, the optimal decision
can be described by a scalar, and hence the dimension of
the action space is greatly reduced.

• We show that the optimal target SoC is a range that
is invariant with respect to the system state at each
stage of the dynamic programming. Moreover, the range
reduces to a fixed point either when the battery charg-
ing/discharging efficiency approaches 1 or when the
electricity price is much lower than the penalty rate for
regulation failure. This result is extremely appealing, for
the optimal target SoC can be calculated offline once and
for all with very low complexity.

• We prove that the minimum operating cost is a decreasing
convex function of the BESS energy capacity. Based on
the result, we discuss the optimal BESS planning strategy
that strikes a balance between the capital cost and the
operating cost.

The rest of the paper is organized as follows. In Section II,
we describe the system model. The BESS operation problem
is formulated as a stochastic dynamic programming problem
in Section III. In Section IV, we derive the optimal BESS
operation strategy, which is a range of target SoCindependent
of the system state. The optimal BESS planning is discussed
in Section V. Numerical results are presented in Section VI.
Finally, the paper is concluded in Section VII.
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Fig. 1. System time line.

II. SYSTEM MODEL

We consider a profit-seeking BESS selling PFC service in
the ancillary service market. The BESS receives remuneration
from the TSO for providing PFC regulation, and is liable to
a penalty whenever the BESS fails to deliver the service as
specified in the contract with the TSO. We endeavour to find
the optimal planning and control of the BESS to maximize its
profit in the PFC market.

A. System Timeline

Most of the time, the system frequency stays inside a dead
band (typically 0.04%) centred around the nominal frequency.
Once the system frequency falls outside the dead band, the
TSO sends regulation signals to regulating units, including the
BESS. The BESS needs to supply power (i.e., be discharged)
in a frequency under-excursion event and absorb power (i.e.,
be charged) in a frequency over-excursion event.

The system time can be divided into two types of intervals
as illustrated in Fig. 1. TheI intervals are the ones during
which PFC is not needed, i.e., when the system frequency
stays inside the dead band or when the frequency is regulated
by secondary or tertiary reserves. AnI interval ends and a
J interval starts, when a frequency excursion event occurs.
The lengths of theJ intervals are the PFC deployment times
requested by the TSO.

The lengths of thenth I andJ intervals are denoted asIn
andJn, respectively. Suppose thatIn’s are independently and
identically distributed (i.i.d.) with probability density function
(PDF)fI(x) and complimentary cumulative distribution func-
tion (CCDF) F̃I(x). Likewise,Jn’s are i.i.d. with PDFfJ(x)
and CCDFF̃J (x). Note thatfI(x) = − dF̃I(x)

dx
and fJ(x) =

− dF̃J(x)
dx

. Moreover, define indicator variablesqn such that
qn = 1 and−1 when thenth frequency excursion event is an
over-excursion event and under-excursion event, respectively.
Let p1 = Pr{qn = 1} andp−1 = 1− p1 = Pr{qn = −1}.

B. BESS Operation

Suppose that the BESS has an energy capacityEmax (kWh)
and maximum charging and discharging power limitsPmax

(kW). The charging and discharging efficiency is0 < η ≤ 1.
Moreover, lete(t) denote the amount of energy stored in the
battery at timet, andp(t) denote the battery charging (p(t) >
0) or discharging (p(t) < 0) power at timet. Due to the
charging and discharging efficiencyη, the power exchanged
with the AC bus, denoted bypac(t), is

pac(t) =

{

p(t)/η if p(t) > 0

p(t)η if p(t) < 0
. (1)
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In the nth frequency excursion event, the BESS is obliged
to supply or absorbPPFC,n kW regulation power for the
entire period ofJn. Here,PPFC,n’s are i.i.d. random variables
with pdf fPPFC

(x) and CCDFF̃PPFC
(x). Typically, PPFC,n

takes value in[0, R], whereR is the standby reserve capacity
specified in the contract with the TSO. In return, the BESS
is paid for the availability of the standby reserve. That is,the
remuneration is proportional toR and the tendering period,
but independent of the actual amount of PFC energy supplied
or consumed.

Let sn and sen denote the SoC (normalized the energy
capacityEmax) 1 of the BESS at the beginning and end ofIn,
respectively. Obviously, whensen is too low or too high, the
BESS may fail to supply or absorb the amount PFC energy
requested by the TSO in the subsequentJn interval, resulting
in a regulation failure. In this case, the BESS is assessed a
penalty that is proportional to the shortage of PFC energy. Let
cp be the penalty rate per kWh PFC energy shortage. Then,
the penalty assessed in thenth frequency excursion event is

costp,n(s
e
n) =







cp

(

EPFC,n −
Emax(1−sen)

η

)+

if qn = 1

cp (EPFC,n − ηEmaxs
e
n)

+ if qn = −1
,

(2)
where(x)+ = max(x, 0) andEPFC,n = PPFC,nJn is an aux-
iliary variable indicating the PFC energy supplied or absorbed
during Jn. SincePPFC,n’s and Jn’s are i.i.d., respectively,
EPFC,n are also i.i.d. variables with PDFfEPFC

(x) and
CCDF F̃EPFC

(x). Due to the battery charging/discharging
efficiency,ηEPFC,n and EPFC,n

η
are the energy charged to or

discharged from the BESS during the PFC deployment time.

To avoid penalty, the BESS must be charged or discharged
during I intervals to maintain a proper level of SoC. Suppose
that the electricity purchasing and selling price, denotedby
ce, varies at a much slower time scale (i.e., hours) than that
at which the PFC operates (i.e., seconds to minutes), and thus
can be regarded as a constant during the period of interest.
Then, the battery charging cost incurred inIn is calculated as

coste,n = ce

∫ tsn+In

tsn

pac(t)dt, (3)

wherepac is given in (1).coste,n > 0 corresponds to a cost
due to power purchasing, andcoste,n < 0 corresponds to
a revenue due to power selling. Notice that the BESS SoC
is bounded between 0 and 1. Thus,p(t) is subject to the
following constraint

0 ≤ snEmax +

∫ τ

tsn

p(t)dt ≤ Emax ∀τ ∈ [tsn, t
e
n], (4)

where tsn and ten are the starting and end times ofIn,
respectively. As a result,sn andsen are related as

sen =
snEmax +

∫ tsn+In

tsn
p(t)dt

Emax

, (5)

subject to the constraint in (4). Likewise, the SoC at the

1SoC at timet is defined ass(t) = e(t)
Emax

. Obviously,s(t) ∈ [0, 1].

beginning of the nextI interval, sn+1, is related tosen as

sn+1 =

[

senEmax + (1q=1η − 1q=−1
1
η
)EPFC

Emax

]1

0

, (6)

where [x]10 = min(1,max(0, x)) and 1A is an indicator
function that equals 1 whenA is true and 0 otherwise.

III. PROBLEM FORMULATION

As mentioned in the previous section, the remuneration
the BESS receives from the TSO is proportional to the
standby reserve capacityR and the tendering period, but
independent of the actual amount of PFC energy supplied
or absorbed. With fixed remuneration, the problem of profit
maximization is equivalent to the one that minimizes the
capital and operating costs. In this section, we formulate the
optimal BESS control problem that minimizes the operating
cost

∑

n(coste,n+ costp,n) for a given BESS capacityEmax.
The optimal BESS planning problem that finds the optimal
Emax will be discussed later in Section V.

At the beginning of each intervalIn, the optimalp(t) during
this I interval is determined based on the observation ofsn.
When making the decision, the BESS has no prior knowledge
of the realizations ofIk, EPFC,k, and qk for k = n, n +
1, · · · . As such, the problem is formulated as the following
stochastic dynamic programming, wheresn is regarded as the
system state at thenth stage, and the state transition fromsn to
sn+1 is determined by the decisionp(t) as well the exogenous
variablesIn, EPFC,n, andqn.

At stagen, solve

H∗
n(sn) = min

p(t),t∈[tsn,t
e
n]
EIn,EPFC,n,qn [coste,n + costp,n (s

e
n)]

+ αEIn,EPFC,n,qn

[

H∗
n+1(g(sn, p(t), In, EPFC,n, qn))

]

s.t. (1), (4), and

− Pmax ≤ p(t) ≤ Pmax ∀t ∈ [tsn, t
e
n],

(7)
wherecostp,n, coste,n andsen are defined in (2), (3), and (5),
respectively.H∗

n(sn) is the optimal value at thenth stage of
the multi-stage problem,α ∈ (0, 1) is a discounting factor,
and g(sn, p(t), In, EPFC,n, qn) := sn+1 describes the state
transition given by (5) and (6).

In practice, the tendering period of the service contract
signed with the TSO (in the order of months) is much longer
than the duration of one stage in the above formulation (in
the order of seconds or minutes). Moreover, the distributions
of In, EPFC,n, and qn are i.i.d. Thus, Problem (7) can be
regarded as an infinite-horizon dynamic programming problem
with stationary policy. In other words, the subscriptsn and
n+ 1 in (7) can be removed.

Problem (7) requires the optimization of a continuous time
function p(t). When the electricity pricece remains constant
within an I period, there always exists an optimal solution
where battery is always charged or discharged at the full
rate Pmax until a prescribed SoC target has been reached
or the I interval has ended. Then, finding the optimal charg-
ing/discharging policy is equivalent to finding an optimal target
SoC π ∈ [0, 1]. This is because charging/discharging cost
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during anI period is only related to the total energy charged
or discharged, regardless of when and how fast the charging
or discharging is.

Under the full-rate policy, the battery charges/discharges at
a ratePmax until the target SoC has been reached or theI
interval has ended. Thus, the charging cost (3) duringIn is
equal to the following, whereπ is the target SoC.

coste(sn, π) = (8)










ce
η
min(PmaxIn, (π − sn)Emax) if sn < π

−ceηmin(PmaxIn, (sn − π)Emax) if sn > π

0 if sn = π

.

Likewise, (5) can be written as a function ofsn andπ:

sen(sn, π) = sn + sgn(π − sn)min

(

PmaxIn
Emax

, |π − sn|

)

, (9)

wheresgn(·) is the sign function.

We are now ready to rewrite Problem (7) into the following
Bellman’s equation, where subscriptn is omitted because the
problem is an infinite-horizon problem with stationary policy.

H∗(s) = minπ∈[0,1] h(s, π) + αEI,EPFC ,q [H
∗(g(s, π, I, EPFC , q))] ,

(10)
where

h(s, π) = EI [coste(s, π)] + EI,EPFC ,q [costp (s
e(s, π))]

(11)
is the expected one stage cost. With a slight abuse of notation,
define

g(s, π, I, EPFC , q) =
[

1
Emax

(

sEmax + sgn(π − s)min (PmaxI, |π − s|Emax)
+(1q=1η − 1q=−1

1
η
)EPFC

)]1

0

as the state transition. More specifically, in (11)

EI [coste(s, π)] (12)

=

(

1π>s

1

η
− 1π<sη

)

ce ×

(

∫ Q1

0

PmaxxfI(x)dx + |π − s|EmaxF̃I (Q1)

)

,

where

Q1 =
|π − s|Emax

Pmax

(13)

is the minimum time to charge or discharge the battery from
s, the initial SOC at this stage, toπ, the target SOC. Likewise,

EI,EPFC ,q [costp (s
e)] = EI

[

costp(s
e)
]

(14)

=







∫ Q1

0 costp

(

s+ Pmaxx
Emax

)

fI(x)dx + costp(π)F̃I (Q1) s ≤ π
∫ Q1

0
costp

(

s− Pmaxx
Emax

)

fI(x)dx + costp(π)F̃I (Q1) s > π
,

where

costp(s
e) = EEPFC ,q [costp (s

e)] (15)

= cpp1EEPFC

[

(

EPFC −
Emax(1− se)

η

)+
]

+cpp−1EEPFC

[

(EPFC − ηEmaxs
e)+
]

is the expected regulation failure penalty in the case that the
SOC isse when the frequency excursion occurs.

IV. OPTIMAL BESS CONTROL

In general, the optimal decision at each stage of a dynamic
programming is a function of the system state observed at
that stage. That is, we need to calculate the optimal charging
targetπ∗(s) as a function of the BESS SoCs observed at the
beginning of eachI interval. Interestingly, this is not necessary
in our problem. The following theorem states that the optimal
target SoC is a range that isinvariant with respect to the
BESS SoCs at each stage. Furthermore, the range converges
to a single pointπ∗ that is independentof s when η → 1
or ce ≪ cp,. This result is extremely appealing: we can pre-
calculateπ∗ for all stages offline. This greatly simplifies the
system operation.

Theorem 1. The optimal target SoC that minimizes the cost
H∗(s) in (10) is a range[π∗

low, π
∗
high], whereπ∗

low andπ∗
high

are fixed in all stages regardless of the system states. During
eachI interval, the BESS is charged or discharged when its
SoC falls outside the range, and remains idle when its SoC is
in the range. In other words, at each stage, the optimal target
SoCπ∗ is set as

π∗ := π∗(s) =











π∗
low if s < π∗

low

π∗
high if s > π∗

high

s if s ∈ [π∗
low, π

∗
high]

. (16)

Moreover,π∗
low andπ∗

high converge to a single pointπ∗ when
η → 1 or ce → 0.

To prove Theorem 1, let us first characterise the sufficient
and necessary conditions for optimalπ∗. For convenience,
rewrite (10) into

H∗(s) = min
π∈[0,1]

H(s, π),

where

H(s, π) = h(s, π) + αEI,EPFC ,q [H
∗(g(s, π, I, EPFC , q)] .

(17)
Taking the first order derivative∂H(s,π)

∂π
, we obtain the fol-

lowing after some manipulations.

∂H(s, π)

∂π
=

∂h(s, π)

∂π
(18)

+ αp1F̃I (Q1)
∫

(1−π)Emax
η

0
∂H∗(s)

∂s

∣

∣

∣

∣

s=π+ ηe
Emax

fEPFC
(e)de

+ αp−1F̃I (Q1)
∫ ηπEmax

0
∂H∗(s)

∂s

∣

∣

∣

∣

s=π− e
ηEmax

fEPFC
(e)de.

Specifically,

∂h(s, π)

∂π
=

∂

∂π
EI [coste(s, π)] +

∂

∂π
EI

[

costp (s
e(s, π))

]

,

(19)
where

∂

∂π
EI [coste(s, π)] =

{

1
η
ceEmaxF̃I (Q1) if π > s

ηceEmaxF̃I (Q1) if π < s
(20)
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as a result of differentiating (12), and

∂

∂π
EI [costp(s

e)] =
∂costp(π)

∂π
F̃I (Q1) (21)

=

(

cpp1
Emax

η
F̃EPFC

(

Emax(1− π)

η

)

−cpp−1ηEmaxF̃EPFC
(ηEmaxπ)

)

F̃I (Q1)

as a result of differentiating (14)(15). Note thatEI [coste(s, π)]
is not differentiable atπ = s unless1

η
ce = ηce (or equivalently

whenη = 1 or ce = 0).
Substituting (20) and (21) to (18), we have

∂H(s, π)

∂π
=
(

r(s, π)Emax + u(π)
)

F̃I (Q1) ,

wherer(s, π) is defined in (22) and

u(π) = αp1

∫
(1−π)Emax

η

0

∂H∗
(

π + ηe
Emax

)

∂π
fEPFC

(e)de

+ αp−1

∫ ηπEmax

0

∂H∗
(

π − e
ηEmax

)

∂π
fEPFC

(e)de. (23)

To avoid trivial solutions, we assume that the CCDF
F̃I (Q1) > 0 for all s, π. Thus, the sign of ∂

∂π
H(s, π) is

determined by that ofr(s, π)Emax + u(π). As a result, the
necessary condition for optimalπ∗ is

r(s, π∗)Emax + u(π∗)



















= r2(0)Emax + u(0) ≥ 0 if π∗ = 0

= r2(π
∗)Emax + u(π∗) = 0 if π∗ ∈ (0, s)

= r1(π
∗)Emax + u(π∗) = 0 if π∗ ∈ (s, 1)

= r1(1)Emax + u(1) ≤ 0 if π∗ = 1

,

(24)
whenπ∗ 6= s. On the other hand, whenπ∗ = s,

r1(s
+)Emax + u(s+) > 0 andr2(s−)Emax + u(s−) < 0. (25)

Now we proceed to show that the necessary conditions (24)
and (25) are also sufficient conditions for optimalπ∗. To this
end, let us first prove the convexity ofH∗(s) in the following
proposition.

Proposition 1. H∗(s) is convex in s. In other words,
∂2H∗(s)

∂s2
≥ 0 for all s.

A key step to prove Proposition 1 is to show that∂2H∗(s)
∂s2

is
the fixed point of equationf(s) = Tf(s), where operatorT
is a contraction mapping. The details of the proof are deferred
to Appendix A.

Proposition 1 implies the following Lemma 1, which further
leads to Proposition 2.

Lemma1. Both r1(π)Emax + u(π) and r2(π)Emax + u(π)
are increasing functions ofπ. Moreover,r(s, π)Emax + u(π)
is an increasing function ofπ.

The proof of the lemma is deferred to Appendix B.

Proposition 2. H(s, π) is a quasi-convex function ofπ. In
other words, one of the following three conditions holds.

(a) ∂
∂π

H(s, π) ≥ 0 for all π.
(b) ∂

∂π
H(s, π) ≤ 0 for all π.

(c) There exists aπ′ such that ∂
∂π

H(s, π) ≤ 0 whenπ < π′

and ∂
∂π

H(s, π) ≥ 0 whenπ > π′.

The quasi-convexity ofH(s, π) is straightforward from
Lemma 1. It ensures that the necessary condition (24) and
(25) is also sufficient. We are now ready to prove our main
result Theorem 1.

Proof of Theorem 1: We calculate the optimalπ∗ as
follows. Let π∗

low ∈ [0, 1] be the root of the equation

r1(π)Emax + u(π) = 0.

In case the root does not exist2, setπ∗
low = 0 if r1(0)Emax +

u(0) > 0, andπ∗
low = 1 if r1(1)Emax + u(1) < 0. Similarly,

defineπ∗
high ∈ [0, 1] as the root of the equation

r2(π)Emax + u(π) = 0.

In case the root does not exist, setπ∗
high = 0 if r2(0)Emax +

u(0) > 0, andπ∗
high = 1 if r2(1)Emax + u(1) < 0.

From the definition,r1(π)Emax + u(π) > r2(π)Emax +
u(π) for any givenπ. Thus, it always holds thatπ∗

low ≤ π∗
high.

From the sufficient and necessary conditions in (24) and (25),
we can conclude that

π∗ =











π∗
low if s < π∗

low

π∗
high if s > π∗

high

s if s ∈ [π∗
low , π

∗
high]

. (26)

In other words, the optimal target SoC is a range[π∗
low, π

∗
high].

Since r1(π)Emax + u(π) and r2(π)Emax + u(π) are not
functions of s, π∗

low and π∗
high are independent ofs. Thus,

the range[π∗
low, π

∗
high] is fixed for all stages regardless of the

system states.
Furthermore, whenη = 1 or ce = 0, r1(π) = r2(π) for all

π. In this case,π∗
low = π∗

high. Thus, the optimalπ∗ becomes a
single point that remains constant for all system statess. This
completes the proof.

Remark 1. Usually, infinite-horizon dynamic programming
problems are solved by value iteration or policy iteration
methods [17]. Therein, anN -dimensional decision vector is
optimized in each iteration, with each entry of the vector being
the optimal decision corresponding to a system state. In our
problem, the system states is continuous in[0, 1]. Discretizing
it can lead to a largeN . Fortunately, the results in this section
show that the optimal decision is characterized by two scalars
π∗
low andπ∗

high that remain constant for all system states. Thus,
the calculation of the optimal decision is greatly simplified. A
brief discussion on the algorithm to obtainπ∗

low andπ∗
high can

be found in Appendix D.

V. OPTIMAL BESS PLANNING

Obviously, the minimum operating costH∗(s) is a function
of the BESS energy capacityEmax. On the other hand, the
capital cost of acquiring and setting up the BESS increases
with Emax. Let the capital cost be denoted asQ(Emax), which
is an increasing function ofEmax. In this section, we are

2This happens whenr1(0)Emax+u(0) > 0, i.e.,r1(π)Emax+u(π) > 0
for all π, or whenr1(1)Emax + u(1) < 0, i.e., r1(π)Emax + u(π) < 0
for all π.
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r(s, π) =







r1(π) :=
1
η
ce +

cpp1

η
F̃EPFC

(

Emax(1−π)
η

)

− cpp−1ηF̃EPFC
(ηEmaxπ) if π > s

r2(π) := ηce +
cpp1

η
F̃EPFC

(

Emax(1−π)
η

)

− cpp−1ηF̃EPFC
(ηEmaxπ) if π < s

. (22)

interested in investigating the optimalEmax that minimizes
the total expected costλQ(Emax) + Es [H

∗(s)] , where λ
is a weighting factor that depends on the BESS life time,
BESS degradation, and the tendering period.Es [H

∗(s)] is
the expected value ofH∗(s) over all initial SoCs under the
optimal charging operation.

The main result of this section is given in Theorem 2 below,
which states thatH∗(s) is a decreasing convex function of
Emax for all s. As a result,Es [H

∗(s)] is also a decreas-
ing convex function ofEmax. In other words, the marginal
decrease of theEs [H

∗(s)] diminishes whenEmax becomes
large. This implies the existence of a unique optimalEmax,
at which the marginal increase ofQ(Emax) is equal to the
marginal decrease ofEs [H

∗(s)], i.e.,

λ
∂Q(Emax)

∂Emax

= −
∂Es [H

∗(s)]

∂Emax

.

Theorem 2. The minimum operating costH∗(s) given in(10)
is a decreasing convex function ofEmax.

The proof of Theorem 2 is deferred to Appendix C

VI. N UMERICAL RESULTS

In this section, we validate our analysis and investigate how
different system parameters affect the optimal BESS operation
and planning. The simulations are conducted using the real-
time frequency measurement data collectd in Sacramanto,
CA, as shown in Fig. 2. The sample rate is 10 Hz (i.e.,
1 measurement per 0.1 seconds). The data set, provided by
FNET/GridEye [18], includes a total of 2,555,377 samples,
accounting for about 71 hours of frequency measurement.
Suppose that a frequency excursion event occurs when the
system frequency deviates outside a dead band of 10mHz
around the normative frequency. The empirical distributions
of I, J , andq derived from the measurement data are plotted
in Fig. 3.

An underlying assumption of our analysis is thatIn, Jn
andqn are i.i.d. for differentn, respectively, and that they are
mutually independent. To validate this assumption, we plot
the auto-correlations and cross-correlations of the variables
in Figs. 4 and 5, respectively. As we can see from Fig. 4,
the auto-correlations of the variables reach the peak when the
time lag is 0 and are close to zero at non-zero time lags,
implying that they are approximately independent for different
n. Likewise, Fig. 5 shows that the cross-correlations of the
variables are all close to zero, implying thatI, J , andq are
mutually independent.

Before proceeding, let us verify Proposition 1, the convexity
of H∗(s) with respect tos, which is a key step in the
proof of our main result. Unless otherwise stated, we assume
that Emax = 0.1MWh, Pmax = 1MW, PPFC is uniformly
distributed in[0.5, 1]MW, and the discount factorα = 0.9 in
the rest of the section. In Fig. 6, we plotH∗(s) againsts
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whence = $0.1/kWh andcp = $10/kWh. The figure verifies
that H∗(s) is indeed a convex function ofs, as proved in
Proposition 1.

A. Optimal Target SoC

In this subsection, we investigate the effect of various
system parameters on the optimal target SoCπ∗

low andπ∗
high.

The settings of system parameters are the same as that in Fig.6
unless otherwise stated. In Fig. 7,π∗

low andπ∗
high are plotted

againstη. It can be seen that when the battery efficiencyη
is low, [π∗

low, π
∗
high] is a relatively wide interval. The interval

narrows whenη becomes large, and converges to a single point
whenη → 1. This is consistent with Theorem 1. Recall that
there is no need to charge or discharge the battery during an
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I interval if the SoC at the beginning of theI interval is
already within[π∗

low, π
∗
high]. The result in Fig. 7 is intuitive

in the sense that when the battery efficiency is low, adjusting
SoC during theI intervals is more costly due to power losses.
Thus, the interval[π∗

low, π
∗
high] is wider so that the battery

SoC does not need to be adjusted too often.
In Fig. 8, π∗

low and π∗
high are plotted againstcp when

ce = $0.1/kWh and BESS efficiencyη = 0.8. The figure
shows that[π∗

low , π
∗
high] is a relatively large interval whencp

is comparable withce. Whencp becomes large compared with
ce, π∗

low andπ∗
high converges to a single point, as proved in

Theorem 1. Indeed,π∗
low andπ∗

high overlap whencp is larger
than$35/kWh. In practice, the regulation failure penaltycp is
usually much larger the regular electricity pricece. Thus, we
can safely regard the optimal target SoC as a single point in
practical system designs.

Fig. 9 investigates the effect of battery energy capacity
Emax on the optimal target SoCπ∗

low and π∗
high. It can be

seen that bothπ∗
low andπ∗

high become low whenEmax is very
large. This can be intuitively explained as follows. Recallthat
se is to denote the BESS SoC at the end of anI interval (or the
beginning of aJ interval). If seEmax and (1 − se)Emax are
both larger than the maximum possibleEPFC , then regulation
failures are completely avoided, and the operating cost would
be dominated by the charging cost duringI intervals. When
Emax is large, there is a wide range ofse that can completely
prevent regulation failures. Out of this range, smallerse’s
are preferred, so that the charging cost duringI intervals is
lower. This, the optimal target SoCs must be low whenEmax

becomes large.

B. Time Response Comparison

To illustrate the advantage of the proposed BESS control
scheme, we compare the operating cost of our scheme with the
following three benchmark algorithms proposed in previous
work, e.g., in [19].
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• No additional charging duringI intervals. Referred to
“No recharging” in the figures.

• Recharge up to100% during I intervals. Referred to as
“Aggressive recharging” in the figures.

• Recharge with upper and lower target SoCs. This scheme
is similar to our proposed scheme, except that the target
SoCs are set heuristically (instead of optimized in our
algorithm). In upper and lower target SoCs are set to
be 0.92 and 0.73, respectively in [19]. This scheme is
referred to as “Heuristic recharging” in the figures.

In particular, we run a time-response simulation using the real-
time frequency measurement data in Fig. 2. The probability
of encountering regulation failures is plotted in Fig. 10. More-
over, the time-aggregate operating costs (without discounting)
are plotted in Figs. 11 and 12 whenEmax = 0.1MWh and
Emax = 1.5MWh, respectively. It can be seen from Figs. 11
and 12 that both ”No recharging” and ”Aggressive recharging”
algorithms yield much higher cost than the optimal algorithm
proposed in the paper. This is because the battery SoC is
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ce = $0.1/kWh, cp = $10/kWh andη=0.8

often too low (with ”No recharging”) or too high (with ”Ag-
gressive charging”), yielding much higher regulation failure
probabilities, as shown in Fig. 10. On the other hand, with
optimal target SoC, the proposed algorithm reduces both the
operating cost and regulation failure probability compared with
”Heuristic recharging”.

C. Optimal BESS Planning

In Fig. 13, we verify Theorem 2 and investigate the effect
of BESS energy capacityEmax on the operating costH∗.
Here, ce = $0.1/kWh, cp = $10/kWh, η = 0.8, andEmax

varies from 0.05MWh to to 10MWh. It can be see thatH∗(s)
is a decreasing convex function ofEmax for all initial SoC
s. This implies that there exists an optimal BESS energy
capacity Emax that hits the optimal balance between the
capital investment and operating cost.
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VII. C ONCLUSIONS

We studied the optimal planning and control for BESSs
participating in the PFC regulation market. We show that the
optimal BESS control is to charge or discharge the BESS
during I intervals until its SoC reaches a target value. We
have proved that the optimal target SoC is a range that is
invariant with respect to the BESS SoCs at the beginning of
theI intervals. This implies that the optimal target SoC can be
calculated offline and remain unchanged over the entire system
time. Hence, the operation complexity can be kept very low.
Moreover, the target SoC range reduces to a point in practical
systems, where the penalty rate for regulation failure is much
larger than the regular electricity price. It was also shownthat
the optimal operating cost is a decreasing convex function
of the BESS energy capacity, implying the existence of an
optimal energy capacity that balances the capital investment
of BESS and the operating cost.

Other than PFC, BESSs can serve multiple purposes, such as
demand response, energy arbitrage, and peak shaving. Differ-

ent services require different energy and power capacities. For
example, PFC reserves do not require high energy capacity,
but are sensitive to regulation failures. On the other hand,
high energy capacity is needed for demand response, energy
arbitrage, and peak shaving. It is an interesting future research
topic to study the optimal combining of these services in a
single BESS.

APPENDIX A
PROOF OFPROPOSITION1

Proof: First, calculate

∂H∗(s)

∂s
=

∂h(s, π∗)

∂s
(27)

+ αp1

∫ Q∗

1

0

∫ Q∗

2

0

∂H∗(Q∗
3)

∂s
fEPFC

(e)fI(i)dedi

+ αp−1

∫ Q∗

1

0

∫ Q∗

4

0

∂H∗(Q∗
5)

∂s
fEPFC

(e)fI(i)dedi

where

Q∗
2 =

(1 − s)Emax − sgn(π∗ − s)Pmaxi

η
, (28)

Q∗
3 =

sEmax + sgn(π∗ − s)Pmaxi+ ηe

Emax

, (29)

Q∗
4 = η(sEmax + sgn(π∗ − s)Pmaxi), (30)

Q∗
5 =

sEmax + sgn(π∗ − s)Pmaxi − e/η

Emax

, (31)

andQ∗
1 is the same asQ1 in (13) except thatπ is replaced by

π∗ in the definition. After some manipulations, we have

H∗(2)(s) = a(s) (32)

+ αp1

∫ Q∗

1

0

∫ Q∗

2

0

H∗(2) (s′)
∣

∣

s′=Q∗

3
fEPFC

(e)fI(i)dedi

+ αp−1

∫ Q∗

1

0

∫ Q∗

4

0

H∗(2) (s′)
∣

∣

s′=Q∗

5

fEPFC
(e)fI(i)dedi,

whereH∗(2)(s) := ∂2H∗(s)
∂s2

and

a(s) =
−sgn(π∗ − s)Emax

Pmax

(

r(s, π∗)Emax + u(π∗)
)

fI (Q
∗
1)

+

∫ Q∗

1

0

∂2costp (s
′)

∂s′2

∣

∣

∣

∣

s′=s+Pmaxi
Emax

fI(i)di. (33)

We claim thata(s) is non-negative for alls. To see this, note
that

−sgn(π∗ − s)
(

r(s, π∗)Emax + u(π∗)
)

≥ 0

for all s due to the necessary condition of optimalπ∗ in
(24) and (25). Thus, the first term ofa(s) is non-negative.
Moreover, the integrand in the second term ofa(s) is always
non-negative as:

∂2costp(s)

∂s2

= cpE
2
max

(

p1
η2

fEPFC
(Emax(1− s)) + p−1η

2fEPFC
(Emaxs)

)

≥ 0,
(34)
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where the equality is obtained by taking the second-order
derivative of (15) overse at se = s, and the inequality is
due to the fact that PDF functions are non-negative. Thus,
a(s) ≥ 0.

Define two operatorsD andT such that

Df(s) = αp1

∫ Q∗

1

0

∫ Q∗

2

0

f (s′)
∣

∣

s′=Q∗

3
fEPFC

(e)fI(i)dedi

+ αp−1

∫ Q∗

1

0

∫ Q∗

4

0

f (s′)
∣

∣

s′=Q∗

5
fEPFC

(e)fI(i)dedi,

and
Tf(s) = a(s) +Df(s). (35)

It will be shown in Lemma 2 that the operatorT is a
contraction mapping. Thus,H∗(2)(s) is the fixed point of
equationf(s) = Tf(s), and the fixed point can be achieved
by iteration

f (k+1)(s) = Tf (k)(s).

Letting f (0)(s) = 0 for all s, we can calculate the fixed point
as

H∗(2)(s) =

∞
∑

i=0

Ki(s),

whereK0(s) = a(s) andKi(s) = DKi−1(s). Note thatD is
a summation of two integrals, and therefore is non-negative
when the integrand is non-negative. Thus, allKi(s) ≥ 0,
becauseK0(s) = a(s) ≥ 0. As a result,H∗(2)(s) ≥ 0 for
all s. This completes the proof.

Lemma2. The operatorT defined in (35) is a contraction
mapping.

To prove the lemma, we can show thatT satisfies following
Blackwell Sufficient Conditions for contraction mapping.

• (Monotonicity) For any pairs of functionsf(s) andg(s)
such thatf(s) ≤ g(s) for all s, Tf(s) ≤ Tg(s).

• (Discounting)∃β ∈ (0, 1) : T (f + b)(s) < Tf(s) +
βb ∀f, b ≥ 0, s.

Proof: Obviously,Df(s) ≤ Dg(s) for any pairs of func-
tionsf(s) ≤ g(s), because the operators is a summation of two
integrals with non-negative integrands. Thus,Tf(s) ≤ Tg(s),
and the Monotonicity condition holds.

To prove the discounting property, notice that

T (f + b)(s) = a(s) +D(f + b)(s) = a(s) +Df(s) +Db

= Tf(s) +Db, (36)

because integrals are linear operations. Moreover,

Db = αb

(

p1

∫ Q∗

1

0

∫ Q∗

2

0

fEPFC
(e)fI(i)dedi

+p−1

∫ Q∗

1

0

∫ Q∗

4

0

fEPFC
(e)fI(i)dedi

)

≤ αb

(

p1

∫ Q∗

1

0

fI(i)di+ p−1

∫ Q∗

1

0

fI(i)di

)

≤ αb(p1 + p−1)

= αb. (37)

Here, the inequalities are due to the fact that the integralsof
PDF functions are no larger than 1. Sinceα is a discounting
factor that is smaller than 1, the Discounting condition holds.

APPENDIX B
PROOF OFLEMMA 1

Proof:

∂u(π)

∂π

= αp1

∫

(1−π)Emax
η

0

H∗(2) (s)
∣

∣

s=π+ ηe
Emax

fEPFC
(e)de

+αp−1

∫ ηπEmax

0

H∗(2) (s)
∣

∣

s=π− e
ηEmax

fEPFC
(e)de

≥ 0, (38)

where the equality is obtained by differentiating (23) over
π, and the inequality is due to the fact thatH∗(2) (s) ≥ 0
for all s, as proved in Proposition 1. Thus,u(π) increases
with π. Meanwhile, bothr1(π) and r2(π) are increasing
functions ofπ, becausẽFEPFC

(x) is a decreasing function of
x. Hence, bothr1(π)Emax+u(π) andr2(π)Emax+u(π) are
increasing functions ofπ. Moreover, whenπ increases from
s− to s+, r(s, π)Emax + u(π) increases by

(

1
η
− η
)

ce from

r2(s
−)Emax+u(s−) to r1(s

+)Emax+u(s+). This completes
the proof.

APPENDIX C
PROOF OFTHEOREM 2

Proof: The proof of convexity ofH∗(s) with respect to
Emax is similar to that for Proposition 1, and thus is shortened
here. We first calculate

∂2H∗(s)

∂E2
max

=ã(s, Emax)

+ αp1

∫ Q∗

1

0

∫ Q∗

2

0

∂2H(s′)

∂E2
max

∣

∣

∣

∣

s′=Q∗

3

fEPFC
(e)fI(i)dedi

+ αp1F̃I(Q
∗
1)

∫

(1−π∗)Emax
η

0

∂2H(s′)

∂E2
max

∣

∣

∣

∣

s′=π∗Emax+ηe
Emax

fEPFC
(e)de

+ αp−1

∫ Q∗

1

0

∫ Q∗

4

0

∂2H(s′)

∂E2
max

∣

∣

∣

∣

s′=Q∗

5

fEPFC
(e)fI(i)dedi

+ αp−1F̃I(Q
∗
1)

∫ ηπ∗Emax

0

∂2H(s′)

∂E2
max

∣

∣

∣

∣

s′=π∗− e
ηEmax

fEPFC
(e)de,

(39)
where

ã(s, Emax)

=
−sgn(π∗ − s)|π∗ − s|2

PmaxEmax

fI(Q
∗
1) (r(s, π

∗)Emax + u(π∗))

+ cpp1

(

1− π∗

η

)2

fEPFC

(

(1− π∗)Emax

η

)

F̃I(Q
∗
1)

+ cpp−1(ηπ
∗)2fEPFC

(ηπ∗Emax) F̃I(Q
∗
1)

+

∫ Q∗

1

0

cp

(

p1

(

1− s

η

)2

fEPFC
(Q∗

2) + p−1(ηs)
2fEPFC

(Q∗
4)

)

fI(i)di.

(40)
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We claim thatã(s, Emax) ≥ 0 for all s and Emax. To see
this, note that the first term is always non-negative, because

−sgn(π∗ − s) (r(s, π∗)Emax + u(π∗)) ≥ 0

due to (24) and (25). Moreover, the remaining terms are non-
negative due to the non-negativeness of PDFs and CCDFs.

Same as the proof in Proposition 1, we can show that the
right hand side of (39) is a contraction mapping. Thus, we can
calculate∂2H∗(s)

∂E2
max

as a fixed point and get

∂2H∗(s)

∂E2
max

=

∞
∑

i=0

K̃i(s, Emax),

where all K̃i(s, Emax) ≥ 0. This implies that∂
2H∗(s)
∂E2

max
≥ 0,

and thusH∗(s) is convex with respect toEmax.
Now we proceed to prove thatH∗(s) is a decreasing

function of Emax. We first show that the optimal single-
stage costh∗(s) = minπ h(s, π) decreases withEmax. Then,
the decreasing monotonicity ofH∗(s) with respect toEmax

can be proved by the monotonicity property of contraction
mapping, which is stated in Lemma 2.

Recall that∂h(s,π)
∂π

= r(s, π)EmaxF̃I(Q1), wherer(s, π) is
defined in (22). Thus, the optimalπ that minimizesh(s, π)
satisfies

r(s, π) = 0. (41)

Furthermore, we can calculate that

∂h(s, π)

∂Emax

=

(

1π≥s

1

η
− 1π<sη

)

ce|π − s|F̃I (Q1)

− cp
p1(1 − π)

η
F̃EPFC

(

Emax(1 − π)

η

)

F̃I (Q1)

− cpp−1ηπF̃EPFC
(ηEmaxπ) F̃I (Q1) (42)

Substituting (41) to (42), we have

∂h∗(s)

∂Emax

= −

(

1π1st≥s

1

η
+ 1π1st<sη

)

cesF̃I (Q1)

−
cpp1
η

F̃EPFC

(

Emax(1− π1st)

η

)

F̃I (Q1)

≤ 0, (43)

whereπ1st is the minimizer ofh(s, π). (43) implies thath∗(s)
decreases withEmax for all s.

Next, note that the Bellman equation of infinite-horizon
dynamic programming is a contraction mapping [17]. Let

TH(s) = min
π∈[0,1]

h(s, π)+αEI,EPFC ,q [H(g(s, π, I, EPFC , q))]

(44)
be the contraction operator corresponding to the Bellman
equation in (10). Then,

H∗(s) = lim
k→∞

(T kH0)(s)

for all s.
Starting withH0(s) = 0, we have

H1(s) = TH0(s) = h∗(s).

Let h∗+(s) (or H+
k (s)) andh∗−(s) (or H−

k (s)) denoteh∗(s)
(or Hk(s)) with BESS energy capacityE+

max and E−
max,

respectively. We have proved thath∗+(s) ≤ h∗−(s), or
equivalentlyH+

1 (s) ≤ H−
1 (s), if E+

max ≥ E−
max. Due to the

monotonicity property of contraction mapping,

H+
k (s) ≤ H−

k (s)

as long asH+
k−1(s) ≤ H−

k−1(s) for all k. Takingk to infinity,
we haveH∗+(s) ≤ H∗−(s) when E+

max ≥ E−
max. This

completes the proof.

APPENDIX D
ALGORITHM TO OBTAIN π∗

low AND π∗
high

The traditional algorithms to solve infinite-horizon dynamic
programming problems, e.g., value iteration and policy itera-
tion algorithms, involve iterative steps, where in each iteration,
the policy π(i) is updated for each system state (i.e., BESS
SoC)i. In our problem, the state space is continuous in[0, 1].
If it is discretized intoN levels, i.e.,i ∈ {0, δ, 2δ, · · · , 1}
whereδ = 1

N−1 , thenN optimization problems, one for each
π(i), need to be solved in each iteration.

Based on the state-invariant property ofπ∗
low andπ∗

high, the
complexity of solving the dynamic programming problem can
be greatly reduced. Definepij(π) = Pr{sn+1 = j|sn = i, π},
which can be calculated from the distributions ofI, J , q, and
EPFC . For any given pair ofd = (πlow , πhigh), we have

pdij
.
= pij(π(i)) =











pij(πlow) i < πlow

pij(πhigh) i > πlow

pij(i) πlow ≤ i ≤ πhigh

(45)

Let Pd be the matrix ofpdij , andHd be the vector ofHd(i).
Likewise, define vectorhd, whoseith entry ish(i, πlow) when
i < πlow, h(i, πhigh) wheni > πhigh, andh(i, i) whenπlow ≤
i ≤ πhigh. Then,Hd can be obtained as the solution of

(

I− αPd
)

H
d = h

d. (46)

The optimalπ∗
low andπ∗

high can then be obtained by solving

min
πlow,πhigh

βT
(

I− αPd
)−1

h
d, (47)

whereβ is an arbitrary vector3. In contrast to the traditional
value iteration and policy iteration approaches, no iteration is
required here.π∗

low andπ∗
high can be obtained by solving one

optimization problem (47) with two scalar variables only.
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