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Abstract—We consider a two-level profit-maximizing strategy,
including planning and control, for battery energy storagesystem

(BESS) owners that participate in the primary frequency corirol

(PFC) market. Specifically, the optimal BESS control minimizes
the operating cost by keeping the state of charge (SoC) in an
optimal range. Through rigorous analysis, we prove that the
optimal BESS control is a “state-invariant” strategy in the sense
that the optimal SoC range does not vary with the state of the
system. As such, the optimal control strategy can be compute
offline once and for all with very low complexity. Regarding the
BESS planning, we prove that the the minimum operating cost
is a decreasing convex function of the BESS energy capacity.
This leads to the optimal BESS sizing that strikes a balance
between the capital investment and operating cost. Our work
here provides a useful theoretical framework for understaring
the planning and control strategies that maximize the ecomic

benefits of BESSs in ancillary service markets.
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|. INTRODUCTION

The instantaneous supply of electricity in a power system
must match the time-varying demand as closely as possible.
Or else, the system frequency would rise or decline, compro-
mising the power quality and security. To ensure a stable fre
guency at its nominal value, the Transmission System Operat
(TSO) must keep control reserves compensate for unforeseen
mismatches between generation and load. Frequency control
is performed in three levels, namely primary, secondarg, an
tertiary controls[[1]. The first level, primary frequencynco
trol (PFC), reacts within the first few seconds when system
frequency falls outside a dead band, and restores quickly th
balance between the active power generation and consumptio
Due to its stringent requirement on the response time, PFC
is the most expensive control reserve. This is because PFC
is traditionally performed by thermal generators, whicle ar
designed to deliver bulk energy, but not for the provision of
fast-acting reserves. To complement the generation-dids P
load-side PFC has been considered as a fast-responding and
cost-effective alternativé [2]6]. Nonetheless, thevisimn of
load-side PFC is constrained by end-use disutility caused b
load curtailment.

Battery energy storage systems (BESSs) have recently been
advocated as excellent candidates for PFC due to their ex-
tremely fast ramp rate [7]/]8]. Indeed, the supply of PFC
reserve has been identified as the highest-value applicatio
of BESSs [[9]. According to a 2010 NREL repoft [10], the
annual profit of energy storage devices that provide PFC
reserve is as high as US$236-US$439 per KW in the U.S.
electricity market. The use of BESS as a frequency control
reserve in island power systems dates back to about 20 years
ago [11]. Due to the fast penetration of renewable energy
sources, the topic recently regained research interegdistn
interconnected power systems [€], [12] and microgrids [13]
[14].

In view of the emerging load-side PFC markets instituted
worldwide [15], [16], we are interested in deriving profit-
maximizing planning and control strategies for BESSs that
participate in the PFC market. In particular, the optimalSSE
control aims to minimize the operating cost by scheduling
the charging and discharging of the BESS to keep its state
of charge (SoC) in a proper range. Here, the operating cost
includes both the battery charging/discharging cost ard th
penalty cost when the BESS fails to provide the PFC service
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according to the contract with the TSO. We also determine the

. . . \ \
optimal BESS energy capacity that balances the capital cos _ | T | ! | | L .
and the operating cost. Previously] [€],[13] investigatied g e Jp o e Ly e [N ™
problem of BESS dimensioning and control, with the aim of te & e 5t

maximizing the profit of BESS owners. There, the BESS is

charged or discharged even when system frequency is witffip. 1. System time line.

the dead band to adjust the state of charge (SoC). This is

to make sure that the BESS has enough capacity to absorb or

supply power when the system frequency falls outside thd dea Il. SYSTEM MODEL

band. A different approach to correct the SoC was proposedpe consider a profit-seeking BESS selling PFC service in

in [12], where the set point is adjusted to force the freqyenghe ancillary service market. The BESS receives remurmerati

control signal to be zero-mean. from the TSO for providing PFC regulation, and is liable to
To complement most of the previous work based on simul@-Penalty whenever the BESS fails to deliver the service as

tions or experiments, we develop a theoretical framework fgpecmgd in the cpntract with the TSO. We endeaVOL_Jr Fo f|.nd

analyzing the optimal BESS planning and control strategy FHe PPt'ma' planning and control of the BESS to maximize its

PFC markets. In particular, the optimal BESS control prerIeprOf't in the PFC market.

is formulated as a stochastic dynamic program with contisuo

state space and action space. Moreover, the optimal BE&SSystem Timeline

planning problem is derived by analyzing the optimal valtie o Most of the time, the system frequency stays inside a dead

the dynamic programming, which is a f_unctlon of the BES_§and (typically 0.04%) centred around the nominal freqyenc
energy capacity. A .key challeng.e here is that ,the complex@nce the system frequency falls outside the dead band, the
of solving a dY”am'C programming problem W',th continuoUg g gends regulation signals to regulating units, inclgdire
state and action spaces is generally very high. MoreoVglegg The BESS needs to supply power (i.e., be discharged)
standard numerical methods to solve the problem do notkevga frequency under-excursion event and absorb power (i.e.
the underlying relationship between the operating cost aBg charged) in a frequency over-excursion event.

the energy capacity of the BESS. Our main contributions In The system time can be divided into two types of intervals

addressing this challenge are summarized as follows. as illustrated in Figdl. The intervals are the ones during
which PFC is not needed, i.e., when the system frequency
« We prove that with slow-varying electricity price, thestays inside the dead band or when the frequency is regulated
optimal BESS control problem reduces to finding aBy secondary or tertiary reserves. Aninterval ends and a
optimal target SoC every time the system frequency falls interval starts, when a frequency excursion event occurs.
inside the dead band. In other words, the optimal decisiqihe lengths of theJ intervals are the PFC deployment times
can be described by a scalar, and hence the dimension@juested by the TSO.
the action space is greatly reduced. The lengths of thei!” T andJ intervals are denoted ds
« We show that the optimal target SoC is a range thghd.J,,, respectively. Suppose that’s are independently and
is invariant with respect to the system state at eacidentically distributed (i.i.d.) with probability dengifunction
stage of the dynamic programming. Moreover, the rangeDF) f; (=) and complimentary cumulative distribution func-
reduces to a fixed point either when the battery charfon (CCDF) ﬁl(x)_ Likewise, J,,’s are i.i.d. with PDFf;(x)
ing/discharging efficiency approaches 1 or when thg,q CCDFFJ((E). Note thatf;(z) = _4Fi(@) gnd filz) =
electricity price is much lower than the penalty rate for_ dF5(2) Moreover. define indicator va?ifabl such that
regulation failure. This result is extremely appealing, fo  dz ° ' h % .
the optimal target SoC can be calculated offline once afltd ! andfl when then ™ frequency excursion eventis an
for all with very low complexity. over-excursion event and under-excursion event, resdgti
« We prove that the minimum operating cost is a decreasi#'i&t pr=Pr{g, =1} andp_, =1 -p = Pr{g, = ~1}.
convex function of the BESS energy capacity. Based on
the result, we discuss the optimal BESS planning strateBy BESS Operation

that strikes a balance between the capital cost and theSuppose that the BESS has an energy capaity, (kWh)
operating cost. and maximum charging and discharging power limits ..
(kW). The charging and discharging efficiencylis< n < 1.
The rest of the paper is organized as follows. In Sedfibn Moreover, lete(t) denote the amount of energy stored in the
we describe the system model. The BESS operation probleattery at timet, andp(t) denote the battery charging(¢) >
is formulated as a stochastic dynamic programming problem or discharging %(¢t) < 0) power at timet. Due to the
in Section[Il. In Sectior .V, we derive the optimal BESSharging and discharging efficienay the power exchanged
operation strategy, which is a range of target Sedependent with the AC bus, denoted by, (), is
of the system state. The optimal BESS planning is discussed )
in Section. Numerical results are presented in Sedfidn VI. Paclt) = {p(t)/n if p(t) >0 . )
Finally, the paper is concluded in SectionVII. p(tyn i p(t) <0




In the n'* frequency excursion event, the BESS is obligedeginning of the nexf interval, s, 1, is related tos¢ as
to supply or absorbPprc, kW regulation power for the . L
entire period ot/,,. Here,Pprc,,’s are i.i.d. random variables s _ 85 Emaz + (Lg=11 — 1g=—1 E)EPFC
with pdf fp, ... (z) and CCDFFp,,.. (). Typically, Pprc.n s Frnaz ’
takes value in0, R], whereR is the standby reserve capacity . 0. )
specified in the contract with the TSO. In return, the BES%here [2]p = min(1, max(0,z)) and 1, is an indicator
is paid for the availability of the standby reserve. Thattie function that equals 1 whed is true and O otherwise.
remuneration is proportional t& and the tendering period,
but independent of the actual amount of PFC energy supplied Hl. PROBLEM FORMULATION
or consumed. As mentioned in the previous section, the remuneration

Let s, and s¢ denote the SoC (normalized the energghe BESS receives frqm the TSO is pr(_)portion_al to the
capacityEmam)ﬂnof the BESS at the beginning and endZgf §tandby reserve capacitii and the tendering period, but.
respectively. Obviously, whegt is too low or too high, the independent of the actual amount of PFC energy supplied
BESS may fail to supply or absorb the amount PFC ener§y absorbed. With fixed remuneration, the problem of profit
requested by the TSO in the subsequé&ninterval, resulting Mmaximization is equivalent to the one that minimizes the
in a regulation failure. In this case, the BESS is assesse¢dpital and operating costs. In this section, we formulaee t
penalty that is proportional to the shortage of PFC energy. optimal BESS control problem that minimizes thg operating
¢, be the penalty rate per kWh PFC energy shortage. Th&RStY_, (coste,n + costy, ) for a given BESS capacitfqq -

the penalty assessed in th&" frequency excursion event is The optimal BESS planning problem that finds the optimal
E, . Will be discussed later in Sectidn V.

1

(6)

. + . . . . .
e (EPFC,n _ E,,mwg]ks")) if gn =1 At the begln_nlng of ea_ch intervd),, the optimalp(t) dyrmg
costyn(sy,) = ot i »this I interval is determined based on the observation,of
¢p (Eprom — NEmaxsy,) It gn ==1 " \When making the decision, the BESS has no prior knowledge
@) of the realizations ofly, Eprc i, and g, for k = n,n +

where(z)* = max(z,0) andEprc,, = Ppro,nJy iS an aux-
iliary variable indicating the PFC energy supplied or absaor

during J,. Since Pprc,,'s and J,’s are i.id., respectively, o siom state at the'” stage, and the state transition framto

Eprc,n_are also i.i.d. variables with PDEE_PFC@) and_ sn11 is determined by the decisigr{t) as well the exogenous
CCDF Fgppo(z). Due to the battery charging/discharging,, iapjess Epron, andg

efficiency,nEprc,n and% are the energy charged to or 5 stagen, solve
discharged from the BESS during the PFC deployment time. ’

To avoid penalty, the BESS must be charged or discharged H(s,)= min Erp [cOSten + costyn (59)]
during I intervals to maintain a proper level of SoC. Suppose " p(t) ety pg] T RO BT P
that the electricity purchasing and selling price, dendigd +aE1, Bpreman [ Hps1(9(5n,0(t), In, Eppcon, qn))]
ce, varies at a much slower time scale (i.e., hours) than that, ) @) and
at which the PFC operates (i.e., seconds to minutes), arsd thu P < s e

. . . - Lmax = p(t) S PTIL(L:L‘ Vt S [tnatnL
can be regarded as a constant during the period of interest. @)

Then, the battery charging cost incurred/inis calculated as wherecost, ., cost.., ands¢ are defined in[12)[{3), andl(5),

1,---. As such, the problem is formulated as the following
stochastic dynamic programming, whetgis regarded as the

to+In respectively./*(s,,) is the optimal value at the*" stage of
coste n = Ce/ Pac(t)dt, (3) the multi-stage problemy € (0,1) is a discounting factor,
tn and g(sn, p(t), In, Eprc.n, @n) = Snt1 describes the state

wherep,. is given in [).cost. , > 0 corresponds to a costtransition given by[(5) and16).
due to power purchasing, antbst.,, < 0 corresponds to In practice, the tendering period of the service contract
a revenue due to power selling. Notice that the BESS Se§gned with the TSO (in the order of months) is much longer
is bounded between 0 and 1. Thysf) is subject to the than the duration of one stage in the above formulation (in
following constraint the order of seconds or minutes). Moreover, the distrilmstio
T of I,, Eprc,n, and g, are i.i.d. Thus, Problen[7) can be
0 < $pEmas + / p(t)dt < Emaz V7 € [t5,15],  (4)  regarded as an infinite-horizon dynamic programming prable
tn with stationary policy. In other words, the subscriptsand
where t; and t;, are the starting and end times d@f,, 5+ 1 in (7) can be removed.

respectively. As a resul,, ands;, are related as Problem [¥) requires the optimization of a continuous time
< E n ft;Hn p(t)dt fu.nc.tion p(t). W_hen the electricity pr!cee remair}s constaqt

s¢ = noma 5 ’ (5) within an I period, there always exists an optimal solution

Ernaa where battery is always charged or discharged at the full

subject to the constraint irfJ(4). Likewise, the SoC at thi@te P... until a prescribed SoC target has been reached
or the I interval has ended. Then, finding the optimal charg-

ing/discharging policy is equivalent to finding an optinmeiget
1SoC at timet is defined as:(t) = ﬁ Obviously, s(t) € [0,1]. SoC m € [0,1]. This is because charging/discharging cost



during an/ period is only related to the total energy chargeid the expected regulation failure penalty in the case that t

or discharged, regardless of when and how fast the charg
or discharging is.

Under the full-rate policy, the battery charges/discharage
a rate P, until the target SoC has been reached or ihe
interval has ended. Thus, the charging c@$t (3) dudings
equal to the following, where is the target SoC.

coste(Sp, ™) = 8)
%ﬁ min(Prazln, (7 — $n)Fmaz) if s, <m
—cenmin(Prazln, (Sn — T)Epas) 1 8, > 7.
0 if s,,=m
Likewise, [3) can be written as a function of andr:
88 (8p, ™) = Sy, + sgn(m — $,,) min (Pmam[n = sn|) , (9)

wheresgn(-) is the sign function.

We are now ready to rewrite Problefd (7) into the foIIowingq*(S)

Bellman’s equation, where subscriptis omitted because the
problem is an infinite-horizon problem with stationary pgli

H* (9) = minﬂ'E[O,I] h(sv 7T) + OZEIA,EPFCA,Q [H* (9(57 m, 1, Eprc, Q))} )
(10)
where

h(s,m) = Ep [coste(s,m)] + Er, Epre.q [cOSty (s°(s,7))]
(11)

is the expected one stage cost. With a slight abuse of notatio

define

g(S,W,I,EPFC,q) =

1
Emax

as the state transition. More specifically, [n](11)

$Emag + sgn(m — s)min (Prae !, |7 — 8| Emaz)
+(Lg=11 = 1g=—17) Eprc

),

Ej [coste(s, )] (12)

1
= (17r>s_ - 17r<s77) Ce X
n
Q1 -
/ Pmamxfl(x)dx + |7T - SlEmamFI (Ql) )
0

where
_ |7 — 8| Fmax

@

is the minimum time to charge or discharge the battery from

s, the initial SOC at this stage, to, the target SOC. Likewise,
(14)

s<m

Er Epro.qlcost, (s9)] = Er [costp(se)

]
fOQl m fr(x)dz + M(W)Fl (Q1)
fOQl cost, fr(x)dx + costy(m) Py (@)
EP(Se) =EBprca [COStT’ (s°)]
Emas(1 — 5)

)]

+epp-1EEppe {(EPFC - nEmamSe)+:|

Prozz

s+ 5
P

Em

maz

T

)
s>m

az

where
(15)

CpplEEPFC

<EPFC -

BOC iss® when the frequency excursion occurs.

IV. OPTIMAL BESS MWNTROL

In general, the optimal decision at each stage of a dynamic
programming is a function of the system state observed at
that stage. That is, we need to calculate the optimal chgrgin
targetr*(s) as a function of the BESS SaCobserved at the
beginning of eacli interval. Interestingly, this is not necessary
in our problem. The following theorem states that the opltima
target SoC is a range that iavariant with respect to the
BESS SoCs at each stage. Furthermore, the range converges
to a single pointr* that is independenbf s whenn — 1
or c. < ¢p,. This result is extremely appealing: we can pre-
calculaterr* for all stages offline. This greatly simplifies the
system operation.

Theorem 1. The optimal target SoC that minimizes the cost
in (10) is a range(r},,,, 77;,,], Wherer}, andmy, .

are fixed in all stages regardless of the system staf@uring
each [ interval, the BESS is charged or discharged when its
SoC falls outside the range, and remains idle when its SoC is
in the range. In other words, at each stage, the optimal targe
SoCr* is set as

* 1 *
T T s<ml .,

* . % _ * H *
=7"(s) = Thigh 1T 8> Thion

(16)

S if s € [Wl*ow77r;<zigh]

Moreover,;,,, and;, , converge to a single point* when
n—1orc —0.

To prove Theorerfill, let us first characterise the sufficient
and necessary conditions for optimaf. For convenience,
rewrite [I0) into

H*(s) = min H(s,m),
(s) Jnin (s, )
where
H(S,']T):h(S,ﬂ')+CYE[7EPFC,Q[H*(Q(S,W,I,EPFC,Q)].

(17)
Taking the first order derivativé’%, we obtain the fol-
lowing after some manipulations.

OH (s,7) _ Oh(s, )

or or (18)
- A—m)Emax *
+ apiFT (Ql) f() K 81{95(8) fEPFC (e)de
=T e
+ ap—1FI (Ql) OTIﬂEmax 81{91(5) JEprc (e)de'
=T e
Specifically,
Oh(s,m) 0 - .
o = a—ﬂ_EI [coste(s, )] + %EI [costp (s (s,w))} ,
(19)
where
l eEmazF -f
0 b leostu(s.1)] = re ~I(Q1) I T>s (20)
or NCeBmax Fr (Q1) i m<s



as a result of differentiating (12), and

%El cost,(s°)] = ac%i:(ﬁ)p] (Q1)

Emaz Emaz(l - 77))
oo ey, (Eraell =)
( p. ,',I PFC ,',I

_CppflnEmamFEch (nEmamW)) FI (Q1)

as aresult ofdifferentiatinﬁl{[ﬂlS) Note th&t[cost.(s, )]
is not differentiable atr = s unless—ce = nce (Or equivalently
whenn =1 or ¢, = 0).
Substituting [[2D) and(21) t¢_(1L8), we have
OH (s, 7 -
BT — (o5, m) B +um) Fr (@1),
wherer (s, ) is defined in[[2R) and

(21)

(A—m)Emaz ”)Emaz OH* (7T+
0 871'

. /WEW OH* (w - nET)
ap_
P-1 o o

#)

fEPFC (e)de'

fEPFC (e)de

u(m) = ap

(23)

To avoid trivial solutions, we assume that the CCDF

EFr(Q1) > 0 for all s, Thus, the sign ofZ H(s,7) is
determined by that of (s, 7)E,q. + u(7). As a result, the
necessary condition for optimaf* is

if 7 =0

if 7 € (0,s)

if 7€ (s,1)’

if 7 =1
(24)

= 75(0) Epas + u(0) > 0

( >

(s 7T* P u 71—* = 7’2(7[. ) max + u( )
(8,7*) Bz + u(m*) e
(

OH

whenz* # s. On the other hand, when* = s,

71(87) Bz +u(sT) > 0 andra(s7) By +u(s™) < 0. (25)

(c) There exists a’ such that—H(s,w) <0 whenw < 7’

and Z H(s,m) > 0 whenr > 7',

The quasi-convexity ofH (s, ) is straightforward from
Lemmall. It ensures that the necessary condifioh (24) and
(29) is also sufficient. We are now ready to prove our main
result Theoren]l.

Proof of Theorenf]l: We calculate the optimat* as
follows. Let 7} € [0,1] be the root of the equation

r1(7) Emaz + u(m) = 0.

In case the root does not eﬁssetwl*ow =0if 1(0)Epax +
uw(0) > 0, and7y,,, = 1if r1(1)Epae + u(1) < 0. Similarly,
definer;, ,, € [0,1] as the root of the equation

7o () Emaz + u(m) = 0.

In case the root does not exist, s§t,, =0 if r2(0)Emaz +
u(0) > 0, andry,, = 1 if r2(1) Emasz + u(1) < 0.
From the definitionr1(7) Eas + w(m) > ro(7m) Emas +
u(m) for any givenr. Thus, it always holds that =< 7,
From the sufficient and necessary conditiondid (24) Ejgili (25)
we can conclude that

* H *
T s <ml,,
* * H *
=4 Thign W8> Th 0 (26)
S if s € [Trl*ow’ ﬂ-;;igh]

In other words, the optimal target SoC is a rangg,,, 7, ]
Since r1 () Emaz + u(m) and ro(m)Eppae + u(w) are not
functions ofs, 7;,, andr}, , are independent of. Thus,
the rangeny,,,. 7yl 1S fixed for all stages regardless of the
system state.

Furthermore, whem =1 or ¢, = 0, r1(7) = ro(m) for all
. In this caser;,,, = 7}, ,,,- Thus, the optimat™ becomes a
single point that remains constant for all system statékhis
completes the proof. |

Now we proceed to show that the necessary conditiofs (3¢mark 1. Usually, infinite-horizon dynamic programming

and [25) are also sufficient conditions for optimdl. To this
end, let us first prove the convexity éf*(s) in the following
proposition.

Proposition 1. H*(s) is convex ins. In other words,

82H*
T(S) >0 for all s

A key step to prove Propositidnd 1 is to show tlf?ez&f% is
the fixed point of equatiorf(s) = T'f(s), where operatofl’

problems are solved by value iteration or policy iteration
methods [[1l7]. Therein, aiv-dimensional decision vector is
optimized in each iteration, with each entry of the vectange
the optimal decision corresponding to a system state. In our
problem, the system statds continuous irf0, 1]. Discretizing

it can lead to a largév. Fortunately, the results in this section
show that the optimal decision is characterized by two ssala
7}, andr;; . that remain constant for all system states. Thus,

is a contraction mapping. The details of the proof are deterrthe calculation of the optimal decision is greatly simptifié\

to Appendix(A.

brief discussion on the algorithm to obtaif},,, andr;, , can

PropositiorL implies the following Lemni 1, which furtheP® found in AppendifD.

leads to Propositioh] 2.

Lemmal. Both r1(7)Enax + u(m) and re(m)Epar + u(n)
are increasing functions of. Moreover,r(s, 7) E a0 + u(m)
is an increasing function of.

The proof of the lemma is deferred to Appenfix B.

Proposition 2. H(s,n) is a quasi-convex function of. In
other words, one of the following three conditions holds.
(@) ZH(s,m) >0 for all .
(b) L H(s,m) <0 for all .

V. OPTIMAL BESS RANNING

Obviously, the minimum operating co&t*(s) is a function
of the BESS energy capacit¥,,,.... On the other hand, the
capital cost of acquiring and setting up the BESS increases
with E,, ... Let the capital cost be denoted@§&F,,...), which
is an increasing function of’,,... In this section, we are

,i.e, 71 () Emaz+u(n) >0

2This happens when (0) Eraz +u(0) > 0
0, i.e., 71(7m) Emaz + u(m) < 0

for all 7, or whenri (1) Emaz + u(l) <
for all 7.



%ce + %FEPFC’ (E’"%(lfﬁ)) — cpp,lnFEch (NEmazm) If m>s

Nce + CP:I FEPFC’ (Em%(l_ﬂ)) - CppflnFEPFc (NEmazm) ifm<s

ﬁ
=
—
S
S~—
Il

(22)

ﬁ
(V)
—
S
S~—
Il

interested in investigating the optimal,,,.,, that minimizes
the total expected cOSYQ(Eqz) + Es [H*(s)], where X
is a weighting factor that depends on the BESS life timi 5008/ 1
BESS degradation, and the tendering periBd[H"*(s)] is 60.06 1
the expected value off*(s) over all initial SoCs under the
optimal charging operation.

The main result of this section is given in Theoirgim 2 beloy
which states thaf#{*(s) is a decreasing convex function of
E,.q. for all s. As a result,E, [H*(s)] is also a decreas-
ing convex function ofE,,,.. In other words, the marginal
decrease of th&, [H*(s)] diminishes whenE,,,, becomes

60.1

60.04

o
o
o
N

u
©
©
©

System frequency
(2]
o

59.96

large. This implies the existence of a unique optima|,.., 59.941
at which the marginal increase 6J(E,,..) is equal to the 59.92}
marginal decrease i, [H*(s)], i.e., 500 ‘ ‘ ‘ ‘ ‘
0 0.5 1 1.5 2 25
/\aQ(Emam) _ OB [H*(S)] . Sample number % 10°

8Emaz aEﬂmam

Theorem 2. The minimum operating co#t*(s) given in(d10)
is a decreasing convex function 6f,,,,.

Fig. 2. System frequency measured at Sacramanto, CA

H 1 T
The proof of Theoreri]2 is deferred to Appenfix C gmpirical oo
= 05t .
VI. NUMERICAL RESULTS *
In this section, we validate our analysis and investigate hc % o x 7 0
different system parameters affect the optimal BESS ojograt 1

and planning. The simulations are conducted using the re
time frequency measurement data collectd in Sacramar - 05f
CA, as shown in Fig[J2. The sample rate is 10 Hz (i.e

‘ —— Empirical CDF of J

1 measurement per 0.1 seconds). The data set, provided o 0 0 10 10°
FNET/GridEye [18], includes a total of 2,555,377 sample: ’

accounting for about 71 hours of frequency measureme 2 05l | I Ermpirical PMF of q |
Suppose that a frequency excursion event occurs when s

system frequency deviates outside a dead band of 10m ° o . .

around the normative frequency. The empirical distritngio -1 X 1

of 1, J, andq derived from the measurement data are plotte _.

in Fig.[3.

. . L Fig. 3. Empirical distributions of , J, and
An underlying assumption of our analysis is that J, g P 7

andgq, are i.i.d. for differentn, respectively, and that they are

mutually indepen_dent. To validate this z_;\ssumption, we plWhence — $0.1/KWh ande, = $10/kWh. The figure verifies

_the _auto-correlanons and_cross-correlatlons of the g 1 . H*(s) is indeed a convex function of, as proved in

in Figs.[4 andb, respectively. As we can see from Elg. ﬂ’ropositiorﬂl.

the auto-correlations of the variables reach the peak when t

time lag is 0 and are close to zero at non-zero time lags, )

implying that they are approximately independent for digfg A Optimal Target SoC

n. Likewise, Fig.[b shows that the cross-correlations of the In this subsection, we investigate the effect of various

variables are all close to zero, implying that.J, andg are system parameters on the optimal target S¢G; and, ..

mutually independent. The settings of system parameters are the same as that [ Fig.
Before proceeding, let us verify Propositldn 1, the conyexiunless otherwise stated. In Fid. #7; , and Thign @r€ plotted

of H*(s) with respect tos, which is a key step in the againstn. It can be seen that when the battery efficiemcy

proof of our main result. Unless otherwise stated, we assuisdow, [r;,,,. 7, ;] is a relatively wide interval. The interval

that E,,.. = 0.1IMWh, P,,.. = IMW, Ppprc is uniformly narrows whem becomes large, and converges to a single point

distributed in[0.5, 1MW, and the discount factor = 0.9 in  whenn — 1. This is consistent with Theorel 1. Recall that

the rest of the section. In Fidll 6, we pléf*(s) againsts there is no need to charge or discharge the battery during an
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Fig. 7. mj,,, andm}, , versusy whence = $0.1/kWh andc, = $10/kWh.

I interval if the SoC at the beginning of the interval is
already within[mj,,, 7, ,]. The result in Figll7 is intuitive
in the sense that when the battery efficiency is low, adjgstin
SoC during thel intervals is more costly due to power losses.
Thus, the intervalr}, 7}, .| is wider so that the battery
SoC does not need to be adjusted too often.

In Fig. 8, =}, and 7}, , are plotted against, when
ce = $0.1/kWh and BESS efficiency; = 0.8. The figure
shows thatn,,, . 7., is a relatively large interval whea,
is comparable with.. Whenc, becomes large compared with
Ces T, @Ndmy, , converges to a single point, as proved in
Theoren{1. Indeeds;,, andr;, , overlap wher, is larger
than $35/kWh. In practice, the regulation failure penalty is
usually much larger the regular electricity price Thus, we
can safely regard the optimal target SoC as a single point in
practical system designs.

Fig. [@ investigates the effect of battery energy capacity
Epnmaqq on the optimal target So@j,, and 7, ,. It can be
seen that bothj,,, andw;, , become low wherk, . is very
large. This can be intuitively explained as follows. Rech#t
s¢ is to denote the BESS SoC at the end offanterval (or the
beginning of aJ interval). If s°F,,,,., and (1 — s¢)E,,,. are
both larger than the maximum possilfle: ¢, then regulation
failures are completely avoided, and the operating costidvou
be dominated by the charging cost durihdntervals. When
E..q. is large, there is a wide range gf that can completely
prevent regulation failures. Out of this range, smaliéis
are preferred, so that the charging cost duringtervals is
lower. This, the optimal target SoCs must be low whgp,.
becomes large.

B. Time Response Comparison
To illustrate the advantage of the proposed BESS control

scheme, we compare the operating cost of our scheme with the
following three benchmark algorithms proposed in previous

work, e.g., in[19].
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Optimal target SoC

Probability of regulation failure

—— Optimal algorithm
—<— No recharging
—Pp— Aggressive recharging
—©— Heuristic recharging

01 i i i i |
10 20 30 40 50 0 0.5 1 1.5
% E__ (MWh)
max
Fig. 8. [7},, Thign] VS- cp Whence = $0.1/kWh andz=0.8 Fig. 10. Comparison of regulation failure probability when= $0.1/kWh,
¢p = $10/kWh andn=0.8
0.6 T T T T T T ; T < 10°
3
| —6— Optimal algorithm
0.55 25| | —<4— No recharging i
—p— Aggressive recharging
—#— Heuristic recharging
% 0.5¢ J
0 P!
3]
2
8 0451 g o 7
Q.
O 04f
0.5F 7
0.35[
03 i i i i i i
0.1 0.2 0.3 04 05 0.6 0.7 08 09 1 05 ; ; ; ; I I I
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Time (hour)

Fig. 9. [r},.,» Thign] VS Emaa Whence = $0.1/kWh ande, = $10/kWh.
Fig. 11. Comparison of time-aggregate costs when,. = 0.1MWh,
ce = $0.1/kWh, ¢, = $10/kWh andn=0.8

o No additional charging durindg intervals. Referred to
“No recharging” in the figures.

« Recharge up td00% during I intervals. Referred to as
“Aggressive recharging” in the figures.

« Recharge with upper and lower target SoCs. This sche0
is similar to our pro.po.sed sgheme, except_thf':lt the_ tar%é%erating cost and regulation failure probability complaséth
SoCs are set heuristically (instead of optimized in OU’r—FI)euristic recharging”
algorithm). In upper and lower target SoCs are set to '
be 0.92 and 0.73, respectively in[[19]. This scheme is
referred to as “Heuristic recharging” in the figures.

often too low (with "No recharging”) or too high (with "Ag-
gressive charging”), yielding much higher regulation e
I%reobabilities, as shown in Fig. 110. On the other hand, with

. . . ) s C. Optimal BESS Planning
In particular, we run a time-response simulation using gad-r

time frequency measurement data in Fi. 2. The probabilityIln Fig.[13, we verify Theorerhl2 and investigate the effect
of encountering regulation failures is plotted in Hig] 10of& of BESS energy capacity,,.., on the operating cost *.
over, the time-aggregate operating costs (without distegh Here,c. = $0.1/kWh, ¢, = $10/kWh, n = 0.8, and E,,,4.;
are plotted in Figsi_11 arld 2 whef,,,, = 0.IMWh and varies from 0.05MWh to to 10MWh. It can be see tiat(s)
Enqe = 1.5MWh, respectively. It can be seen from Fi§s] 11s a decreasing convex function @f,,,,. for all initial SoC

timal target SoC, the proposed algorithm reduces both the

andI2 that both "No recharging” and "Aggressive recharyjing. This implies that there exists an optimal BESS energy

algorithms yield much higher cost than the optimal alganith capacity F,,., that hits the optimal balance between the
proposed in the paper. This is because the battery SoCcéapital investment and operating cost.



px10° ‘ ‘ ‘ ‘ ent services require different energy and power capackies
zggt::];: :rlgic:];thm example, PFC_Z_ reserves do _not require high energy capacity,
—>— Aggressive recharging 'L 1 but are sensitive to regulation failures. On the other hand,
—#— Heuristic recharging T high energy capacity is needed for demand response, energy
i : : R ] arbitrage, and peak shaving. It is an interesting futureaesh

topic to study the optimal combining of these services in a
single BESS.

Cost ($)

APPENDIXA
| PROOF OFPROPOSITIONT]
Proof: First, calculate
OH*(s)  Oh(s,7*)
-2 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0 B Os

0 10 20 30 40 50 60 70 80

S
Time (hour) Q’{ /Q; 8H*(Q§)
0 0 68

(27)

+ ap;

fEPFC' (e)fl (Z)dedl
Fig. 12. Comparison of time-aggregate costs when,. = 1.5MWh,

Q7 Qi * *
ce = $0.1/kWh, ¢, = $10/kKWh and7=0.8 I ap_l/ ' / ! 6HT(Q5)J‘EPFC (€) f1(i)dedi
0 0 8

where
" — (1-9)E (7" — ) Paci
—#— H*(0.1) % — S max — SEMT — S)Lmax?
900 —o— H*(0.3) [ Qs = ’ (28)
800 : _4_:*8?; ! !
(0. Emaz"'s — Pmam'+
700} —>—H*0.9) | Q=" gn(g 2 — (29)
6007 QZ - n(SEmaz + Sgn(ﬂ'* - S)Pmami)v (30)
T 500} .
«  SEnmar +sgn(m* — s)Pa.t —e/n
400} Qs = ( i3 ) / ; (31)
300y andQ? is the same ag), in (I3) except thatr is replaced by
2001 w* in the definition. After some manipulations, we have
100y H*®(s) = as) (32)
7701 02 03 04 05 06 07 08 09 o e 2) (o , ,
: : : E_ (Mwh) : : : + ap1/0 /0 H*®?) (s o=Qs fEpre () f1(i)dedi
Q7 Qi
Fig. 33;5 H*(s) vS. Emaaz Whence = $0.1/kWh, ¢, = $10/kWh, and + ap_l/ / H*(2) (S/) S/_Q*prpc(e)fI(i)dedia
n=028. 0 0 e
where H*(®)(s) := 2[5 ang
VII. CONCLUSIONS . *
. _bgn(ﬂ- - S)Emam * * *
We studied the optimal planning and control for BESS&®) = P (r(s:m") Emaz + u(m")) f1 (Q7)
participating in the PFC regulation market. We show that the Q1 §2cost (')
optimal BESS control is to charge or discharge the BESS +/ Tf; . f1(i)di. (33)
during I intervals until its SoC reaches a target value. We 0 s'=s+ g

have proved that the optimal target SoC is a range thatwe claim thata(s) is non-negative for alk. To see this, note
invariant with respect to the BESS SoCat the beginning of that

the I intervals. This implies that the optimal target SoC can be —sgn(m* — s) (T(Svﬂ*)Emaz + u(ﬁ*)) >0

calculated offline and remain unchanged over the entiresyst N ) )

time. Hence, the operation complexity can be kept very lofpr all s due to the necessary condition of optimal in

Moreover, the target SoC range reduces to a point in practiféd) and KZB)-_ThUS* the first term af(s) is non-negative.

systems, where the penalty rate for regulation failure istmuMoreover, the integrand in the second termu¢f) is always

larger than the regular electricity price. It was also sholat NON-negative as:

the optimal operating cost is a decreasing convex functiapfcost,, (s)

of the BESS energy capacity, implying the existence of an jg2

optimal energy capacity that balances the capital investme 5 p1 9

of BESS and the operating cost. = o Bma (77_2fEPFC (Bmaz (1= 8)) + P17 forre (E'"'““S))
Other than PFC, BESSs can serve multiple purposes, such as),

demand response, energy arbitrage, and peak shavingr-Diffe (34)
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where the equality is obtained by taking the second-orddere, the inequalities are due to the fact that the integrils
derivative of [Ib) overs® at s¢ = s, and the inequality is PDF functions are no larger than 1. Sineds a discounting
due to the fact that PDF functions are non-negative. Thuagtor that is smaller than 1, the Discounting conditiondsol
a(s) > 0. [ |
Define two operator® andT" such that

APPENDIX B
Q7 Qs PROOF OFLEMMA[T]
— / . .
Df(S) = apl/o /0 f(S) s/:QgfEPFc(e)ff(z)dedz Proof:
QT Qi
b [0 [T gy feree @i (i)ded du(m)
0 0 5 on
and A-—m)Emax
- ! *(2)
T1(s) = a(s) + Df(s). @ = o H*® ()] pre_fErro(e)de
. . . T E o a:
It will be shown in LemmalR that the operatdr is a /n @) d
contraction mapping. Thusd*(?)(s) is the fixed point of top- 0 (s) |S:”—nEﬁm JBrrc(e)de
equationf(s) = Tf(s), and the fixed point can be achieved > 0, (38)
by iteration

FERD (5) = 70 () where the equality is obtained by differentiatiig1(23) over
- ' 7, and the inequality is due to the fact th&t(® (s) > 0
Letting £(©)(s) = 0 for all s, we can calculate the fixed pointfor all s, as proved in Propositionl 1. Thus(r) increases

as - with 7. Meanwhile, bothr;(7) and r»(r) are increasing
H*@(s) =S K, functions ofr, becausd'z,. ... () is a decreasing function of
() ; (5), x. Hence, both (7) Epaq +u(m) andry (7)) Epae +u(r) are

h 4 h . increasing functions ofr. Moreover, whenr increases from
whereKo(s) = a(s) and K;(s) = DK;_1(s). Note thatD is st, r(3,7) Emae + u(m) increases by L — 1) ¢, from
a summation of two integrals, and therefore is non-negative n

when the integrand is non-negative. Thus, AlJ(s) > 0 72(57 ) Emaz+u(s™) 10 71(sT) Epae +u(s™). This completes

becauseKy(s) = a(s) > 0. As a result, H*?)(s) > 0 for the proof. u
all s. This completes the proof. [ | APPENDIX C

Lemma2. The operatorT’ defined in [3b) is a contraction PROOF OFTHEOREM[Z

mapping. Proof: The proof of convexity off*(s) with respect to

To prove the lemma, we can show thasatisfies following Emaa is similar to that for Propositionl 1, and thus is shortened
Blackwell Sufficient Conditions for contraction mapping.  here. We first calculate

« (Monotonicity) For any pairs of functiong(s) andg(s) 82H2*(s)
such thatf(s) < g(s) for all s, Tf(s) < Tg(s). O
« (Discounting)3g € (0,1) : T(f + b)(s) < Tf(s) + =5 Eimaz)
>0, s. @9 92H (s
Bb Vf’ b - .07 s . + apy / / %TQ(S) fEPFC' (e)fl(l)dedl
Proof: Obviously,D f(s) < Dg(s) for any pairs of func- o Jo maz |s'=Qj
tions f(s) < g(s), because the operators is a summation of two . S 82H(s)
integrals with non-negative integrands. Thii(s) < T'g(s), + aplFI(Ql)/O DEE | ew ., JERrc(€)de
and the Monotonicity condition holds. 0 0 T s
To prove the discounting property, notice that +ap_1/ ! / ‘ 6852(8) P (€)f1(i)dedi
0 0 mazx s’:Qg
T(f+b)(s) = als)+D(f+b)(s)=al(s)+Df(s)+ Db ) " s 92 F(s/)
— T{(s)+ Db, @6) +orFi@i) | S (e
because integrals are linear operations. Moreover, o (39)
. . where
Qi Qs
Db = ab <p1/ fEpre () f1(i)dedi
0 0 d(37 Em,u:l:)
QI QZ 7—sgn(7r* — ‘S)|7T* — 8|2 * * 5
+p71 / fEPFC' (e)ff (Z)dedl> B PmazEmaz fI(Ql) (T(&ﬂ' )E77mm * U'(ﬂ' ))
0 0 1—7 ? 1—r" Emaw - *
Q»{ Q»l« + cpp1 ( 777T ) prFc <%> FT(Ql)
< ablp | fil)di+po | fi(i)di + epp-1 (07" fEpro (77" Emaz) Fr(Q7)
0 0 o Lo
< ab(p +p-1) +[Te (m (=) semvel@) +p1(’f/8)2prm(QZ)> fr(i)ds

= ab. (37) (40)
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We claim thata(s, Epg.) > 0 for all s and E,,... To see respectively. We have proved that+(s) < h*~(s), or
this, note that the first term is always non-negative, bezausequivalently " (s) < H, (s), if E}, . > E. . Due to the

mar — max*®

monotonicity property of contraction mapping,

H(s) < Hy (s)

—sgn(m* — 8) (r(s, 7)) Emaz + u(m™)) >0

due to [2%) and(25). Moreover, the remaining terms are non-
negative due to the non-negativeness of PDFs and CCDFsas long as;” ,(s) < H,__,(s) for all k. Takingk to infinity,

Same as the proof in Propositibh 1, we can show that the have H*(s) < H* (s) when E} .. > E,. .. This
right hand side ofl(39) is a contraction mapping. Thus, we caompletes the proof.
calculate BE%S) as a fixed point and get ]

QH* 0 ~
88E2 (s) = Ki(s, Emaz), APPENDIXD
max i=0 ALGORITHM TO OBTAIN 7/, AND 7,

where all K;(s, Epqz) > 0. This implies thataa]i?’2 () >, The traditional algorithms to solve infinite-horizon dyriam
and thusH* (s) is convex with respect t@,,q. e programming problems, e.g., value iteration and policyaie

Now we proceed to prove thakt*(s) is a decreasing tion algorithms, involve iterative steps, where in eactaitien,

function of E,.... We first show that the optimal single-the policy «(i) is updated for each system state (i.e., BESS
stage cost*(s) = min, h(s, 7) decreases WithF,,,,. Then, SoC)i. In our problem, the state space is contlnuou{i)qu].

the decreasing monotonicity df*(s) with respect toE,,,, If it is discretized intoV levels, i.e.,i € {0,6,2,---,1}
can be proved by the monotonicity property of contractionheres = '+, then " optimization problems, one for each
mapping, which is stated in Lemriia 2. 7(¢), need to be solved in each iteration.

Recall thatahés ) r(s, W)EmamFI(Ql) wherer(s, ) is Based on the state-invariant propertyngf,, andw;‘ligh, the
defined in [2R). Thus, the optimal that minimizesh(s,7) complexity of solving the dynamic programming problem can
satisfies be greatly reduced. Defing;(7) = Pr{sp41 = j|s, = 4,7},

r(s,m) = 0. (41) Which can be calculated from the distributionsof/, ¢, and

Epprc. For any given pair otl = (mjow, Thign), We have
Furthermore, we can calculate that

DPij (Wlow) 1< Tlow

Oh(s,m) 1 -
B - (ers; - 17r<877) ce|m — s|Fr (Q1) P = Py (m(8)) =  pij (Thigh) i > Tiow (45)
pl(l — 7-‘—) Emam(l — 77) ~ plj(l) Tlow <1 < Thigh
piFEPFC - FI (Ql)
n K Let P4 be the matrix ofy¢;, andH? be the vector of/4(i).
— P 1NTFEppe (MEmaxt) Fr (Q1) (42) Likewise, define vectohd, "whoseith entry ish(i, mow) When

i < Tow, (i, Thign) Wheni > myign, andh(i, i) whenmy, <

Substituting [{411) to[(42), we have i < Thigh- Then,H9 can be obtained as the solution of

oh* 1 ~
95 &) __ (Ln wzop + 1m,<sn> cesFr (Q1) (I-aP?) H?=h% (46)
c Erae(1 — s . The optimal~; , and~;, , can then be obtained by solvin
_ pP1 FEPFC ( (77 1 t)) FI (Ql) p l high 1 y g
: T d\— d
< 0, (43) o min BT (L= aPT) Y (47)

wherer ; is the minimizer ofa(s, 7). @3) implies that*(s) where3 is an arbitrary vectfir In contrast to the traditional

decreases wittk, 4, for all s. value iteration and policy iteration approaches, no iterais
Next, note that the Bellman equation of infinite-horizomequired herer;, andry, , can be obtained by solving one

dynamic programming is a contraction mappihgl[17]. Let optimization probleml]Z?) with two scalar variables only.

TH(s) = min h(s.m)+aEx by q [H{g(s. 7.1 Eprc.a))
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